Seminario Álgebra Geometría Algebraica y Aritmética

Morphisms from a very general hypersurface

Ponente:  De-Qi Zhang (National University of Singapore)
Fecha:  jueves 29 de mayo de 2025 - 11:00
Lugar:  Aula 420, Módulo 17, Departamento de Matemáticas, UAM

Resumen:

 Let X be a very general hypersurface of degree d in the projective (n+1)-space with n > 2, and f: X to Y a non-birational surjective morphism to a normal projective variety Y. We first prove that Y is a klt Fano variety  if deg f > C for some constant C = C(n, d) depending only on n and d. Next we prove an optimal upper bound: deg f is less than or equal to deg X, provided that Y is factorial, deg f is prime and deg f > E(n) for some constant E(n). As a corollary, we show that Y is the projective n-space under some conditions on Y and deg f. 

This is based on a joint work with Yongnam Lee and Yujie Luo.

EVENTOS

1234
567891011
12131415161718
19202122232425
262728293031


Suscríbete a nuestra lista de difusión de Actividades. ALTA - BAJA

Convocatoria abierta

Pequeño Instituto de Matemáticas

PIM

La sección del ICMAT en elpais.es