Seminario Análisis y Aplicaciones

Singular integrals in a nondoubling setting: Riesz transforms on ax + b groups

Ponente:  Alessio Martini (Politecnico di Torino)
Fecha:  viernes 04 de abril de 2025 - 11:30
Lugar:  Aula 520, Módulo 17, Departamento de Matemáticas, UAM

Resumen:

We prove the \(L^p\)-boundedness in the full range 1 < p < ∞ of the first-order Riesz transforms associated with the natural left-invariant Laplacian on an ax + b group with a right Haar measure. This is a neat example of singular integral operators in a nondoubling setting, as ax + b groups have exponential growth and the Riesz transforms are singular both locally and at infinity. Our result settles a question left open in previous work of Hebisch and Steger and of Gaudry and Sjögren, as we can treat the case p > 2 for the whole vector of Riesz transforms. An operator-valued Fourier multiplier theorem turns out to be key to this purpose. Our approach proves to be applicable even beyond ax + b groups, but open problems remain about endpoint results at p = ∞.

EVENTOS

1234
567891011
12131415161718
19202122232425
262728293031


Suscríbete a nuestra lista de difusión de Actividades. ALTA - BAJA

Pequeño Instituto de Matemáticas

PIM

La sección del ICMAT en elpais.es