Seminario Teoría de Grupos

The Dehn functions of subgroups in a direct product of free groups

Ponente:  Dario Ascari (UPV)
Fecha:  jueves 20 de febrero de 2025 - 11:00
Lugar:  Aula Naranja, ICMAT

Resumen:

Subgroups in a direct product of free groups form a widely-studied family of groups, whose algebraic structure is strongly related to the finiteness properties that they satisfy. We investigate the Dehn function of such groups; this is an algebraic invariant which represents the complexity of solving the word problem. We show that, for subgroups of type \(F_{n-1}\) inside a product of \(n\) free groups, the Dehn functions have a uniform upper bound of \(N^9\). We also prove that the Bridson-Dison group has Dehn function exactly \(N^4\); the lower bound is proved through a new homotopical invariant encoded in braid groups.

EVENTOS

1234
567891011
12131415161718
19202122232425
262728293031


Suscríbete a nuestra lista de difusión de Actividades. ALTA - BAJA

Pequeño Instituto de Matemáticas

PIM

La sección del ICMAT en elpais.es