Seminario Datalab

Empirical Bernstein in smooth Banach spaces

Ponente:  Diego Martínez Taboada (Carnegie Mellon University)
Fecha:  viernes 13 de diciembre de 2024 - 11:00
Lugar:  Aula Gris 2, ICMAT

Resumen:

Existing concentration bounds for bounded vector-valued random variables include extensions of the scalar Hoeffding and Bernstein inequalities. While the latter is typically tighter, it requires knowing a bound on the variance of the random variables. We derive a new vector-valued empirical Bernstein inequality, which makes use of an empirical estimator of the variance instead of the true variance. The bound holds in 2-smooth separable Banach spaces, which include finite dimensional Euclidean spaces and separable Hilbert spaces. The resulting confidence sets are instantiated for both the batch setting (where the sample size is fixed) and the sequential setting (where the sample size is a stopping time). The confidence set width asymptotically exactly matches that achieved by Bernstein in the leading term. The method and supermartingale proof technique combine several tools of Pinelis (1994) and Waudby-Smith and Ramdas (2024).

EVENTOS

1234
567891011
12131415161718
19202122232425
262728293031


Suscríbete a nuestra lista de difusión de Actividades. ALTA - BAJA

Pequeño Instituto de Matemáticas

PIM

La sección del ICMAT en elpais.es