Coloquio conjunto de matemáticas

Spectral sets, weak tiling and Fuglede`s conjecture

Ponente:  Máté Matolcsi (Alfréd Rényi Institute of Mathematics)
Fecha:  martes 12 de noviembre de 2024 - 12:00
Lugar:  Aula Azul, ICMAT
Online:  https://www.youtube.com/@ICMATactivities/live

Resumen:

A bounded measurable set X in a d-dimensional Euclidean space is called spectral if the function space L^2(X)  admits an orthogonal basis of exponentials. The easiest example is the unit cube, where elementary Fourier analysis tells you that complex exponentials with integer frequencies form an orthogonal basis. Fuglede's conjecture stated that a set X is spectral if and only if it tiles the space by translation. The conjecture was recently proved for all convex bodies in all dimensions in a joint work of Nir Lev and Mate Matolcsi. We will review the proof, which includes the notion of weak tiling as a key ingredient. Other results and open problems related to weak tiling will also be mentioned.

Más información:

Poster

EVENTOS

1234
567891011
12131415161718
19202122232425
262728293031


Suscríbete a nuestra lista de difusión de Actividades. ALTA - BAJA

Pequeño Instituto de Matemáticas

PIM

La sección del ICMAT en elpais.es