Schedule

Titles
Monday- Y. Eliashberg. Flexible and Rigid facets of Mathematics
- Á. del Pino Gómez. Preliminaries I
- Á. del Pino Gómez. Preliminaries II
- D. Álvarez-Gavela. The holonomic approximation lemma I
- M. Theillière. Convex integration in 1 dimension
- E. Miranda. The h-principle and Reeb/Beltrami embeddings
- D. Álvarez-Gavela. The holonomic approximation lemma II
- K. Cieliebak. The h-principle for wrinkled submersions
- K. Cieliebak. The h-principle for wrinkled embeddings
- M. Theillière. Theory of convex integration
- S. Kupers. Delooping and h-principles I
- K. Cieliebak. Igusa's theorems on generalized Morse functions
- M. Theillière. Convex integration and the Nash-Kuiper theorem
- O. Lazarev. Background on Weinstein domains and connections to Legendrian knot theory
- M. Bertelson. Discretizing symplectic topology
- S. Kupers. Delooping and h-principles II
- G. Meigniez. The h-principle in the homotopy theory of foliations (part 1)
- O. Lazarev. Simplifying (and complicating) Weinstein presentations
- G. Meigniez. The h-principle in the homotopy theory of foliations (part 2)