2018

  • Enciso, Alberto; Hartley, David; Peralta-Salas, Daniel. A problem of Berry and knotted zeros in the eigenfunctions of the harmonic oscillator. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 2, 301–314.
  • Kedia, Hridesh; Peralta-Salas, Daniel; Irvine, William T. M. When do knots in light stay knotted? J. Phys. A 51 (2018), no. 2, 025204, 19 pp.

 

2017

  • Bloch, Anthony M.; Colombo, Leonardo J.; Gupta, Rohit; Ohsawa, Tomoki Optimal control problems with symmetry breaking cost functions. SIAM J. Appl. Algebra Geom. 1 (2017), no. 1, 626–646.
  • Colombo, Leonardo Second-order constrained variational problems on Lie algebroids: applications to optimal control. J. Geom. Mech. 9 (2017), no. 1, 1–45.
  • Enciso, Alberto; Lucà, Renato; Peralta-Salas, Daniel. Vortex reconnection in the three dimensional Navier-Stokes equations. Adv. Math. 309 (2017), 452–486.
  • Enciso, Alberto; Peralta-Salas, Daniel; Steinerberger, Stefan. Prescribing the nodal set of the first eigenfunction in each conformal class. Int. Math. Res. Not. IMRN 2017, no. 11, 3322–3349.
  • Enciso, Alberto; Peralta-Salas, Daniel; Torres de Lizaur, Francisco. Knotted structures in high-energy Beltrami fields on the torus and the sphere. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 4, 995–1016.
  • Espín Buendía, José Ginés; Peralta-Salas, Daniel; Soler López, Gabriel. Existence of minimal flows on nonorientable surfaces. Discrete Contin. Dyn. Syst. 37 (2017), no. 8, 4191–4211.
  • Ferraro, Sebastián; de León, Manuel; Marrero, Juan Carlos; Martín de Diego, David; Vaquero, Miguel. On the geometry of the Hamilton-Jacobi equation and generating functions. Arch. Ration. Mech. Anal. 226 (2017), no. 1, 243–302.
  • de León, Manuel; Martín de Diego, David; Vaquero, Miguel. Hamilton-Jacobi theory, symmetries and coisotropic reduction. J. Math. Pures Appl. (9) 107 (2017), no. 5, 591–614.
  • de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia. Hamilton-Jacobi theory in multisymplectic classical field theories. J. Math. Phys. 58 (2017), no. 9, 092901, 36 pp.
  • de León, M.; Sardón, C. Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems. J. Phys. A 50 (2017), no. 25, 255205, 23 pp.
  • de León, M.; Sardón, C. Geometric Hamilton-Jacobi theory on Nambu-Poisson manifolds. J. Math. Phys. 58 (2017), no. 3, 033508, 15 pp.
  • Luque, Alejandro; Peralta-Salas, Daniel. Arnold diffusion of charged particles in ABC magnetic fields. J. Nonlinear Sci. 27 (2017), no. 3, 721–774.

 

2016

  • Barbero-Liñán, María; Farré Puiggalí, Marta; Martín de Diego, David Inverse problem for Lagrangian systems on Lie algebroids and applications to reduction by symmetries. Monatsh. Math. 180 (2016), no. 4, 665–691.
  • Colombo, Leonardo; Ferraro, Sebastián; Martín de Diego, David Geometric integrators for higher-order variational systems and their application to optimal control. J. Nonlinear Sci. 26 (2016), no. 6, 1615–1650.
  • Colombo, Leonardo; Martín de Diego, David Second-order variational problems on Lie groupoids and optimal control applications. Discrete Contin. Dyn. Syst. 36 (2016), no. 11, 6023–6064.
  • Colombo, Leonardo; Prieto-Martínez, Pedro Daniel Regularity properties of fiber derivatives associated with higher-order mechanical systems. J. Math. Phys. 57 (2016), no. 8, 082901, 25 pp.
  • Enciso, Alberto; Hartley, David; Peralta-Salas, Daniel. Laplace operators with eigenfunctions whose nodal set is a knot. J. Funct. Anal. 271 (2016), no. 1, 182–200.
  • Enciso, Alberto; Peralta-Salas, Daniel. Bounded solutions to the Allen-Cahn equation with level sets of any compact topology. Anal. PDE 9 (2016), no. 6, 1433–1446.
  • Enciso, Alberto; Peralta-Salas, Daniel. Beltrami fields with a nonconstant proportionality factor are rare. Arch. Ration. Mech. Anal. 220 (2016), no. 1, 243–260.
  • Enciso, Alberto; Peralta-Salas, Daniel; Torres de Lizaur, Francisco Helicity is the only integral invariant of volume-preserving transformations. Proc. Natl. Acad. Sci. USA 113 (2016), no. 8, 2035–2040.
  • Epstein, Marcelo; de León, Manuel Unified geometric formulation of material uniformity and evolution. Math. Mech. Complex Syst. 4 (2016), no. 1, 17–29.
  • de León, M.; Martín Méndez, A. Principal bundle structures among second order frame bundles. Differential Geom. Appl. 47 (2016), 202–211.
  • de León, Manuel; Salgado, Modesto; Vilariño, Silvia Methods of differential geometry in classical field theories. k-symplectic and k-cosymplectic approaches. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. xiii+207 pp. ISBN: 978-981-4699-75-4; 978-981-4699-77-8
  • Magnanini, Rolando; Peralta-Salas, Daniel; Sakaguchi, Shigeru. Stationary isothermic surfaces in Euclidean 3-space. Math. Ann. 364 (2016), no. 1-2, 97–124.
  • Margalef-Bentabol, Juan; Peralta-Salas, Daniel. Realization problems for limit cycles of planar polynomial vector fields. J. Differential Equations 260 (2016), no. 4, 3844–3859.
  • Peralta-Salas, Daniel. Selected topics on the topology of ideal fluid flows. Int. J. Geom. Methods Mod. Phys. 13 (2016), suppl., 1630012, 23 pp.
  • Peralta-Salas, Daniel; del Pino, Álvaro; Presas, Francisco. Foliated vector fields without periodic orbits. Israel J. Math. 214 (2016), no. 1, 443–462.

 

2015

  • Barbero-Liñán, María; Farré Puiggalí, Marta; Martín de Diego, David. Isotropic submanifolds and the inverse problem for mechanical constrained systems. J. Phys. A 48 (2015), no. 4, 045210, 35 pp.
  • Barbero-Liñán, María; Iglesias Ponte, David; Martín de Diego, David. Morse families in optimal control problems. SIAM J. Control Optim. 53 (2015), no. 1, 414–433.
  • Barbero-Liñán, María; Jakubczyk, B. Second order conditions for optimality and local controllability of discrete-time systems. SIAM J. Control Optim. 53 (2015), no. 1, 352–377.
  • Barbero-Liñán, María; Sigalotti, Mario. New high order sufficient conditions for configuration tracking. Automatica J. IFAC 62 (2015), 222–226.
  • Bloch, Anthony; Colombo, Leonardo; Gupta, Rohit; Martín de Diego, David. A geometric approach to the optimal control of nonholonomic mechanical systems. Analysis and geometry in control theory and its applications, 35–64, Springer INdAM Ser., 11, Springer, Cham, 2015.
  • Búa, Lucia; Bucataru, Ioan; de León, Manuel; Salgado, Modesto; Vilariño, Silvia. Symmetries in Lagrangian field theory. Rep. Math. Phys. 75 (2015), no. 3, 333–357.
  • Campos, Cédric M.; de León, Manuel; de Diego, David Martín; Vaquero, Miguel. Hamilton-Jacobi theory in Cauchy data space. Rep. Math. Phys. 76 (2015), no. 3, 359–387.
  • Colombo, Leonardo; Jacobs, Henry O. Lagrangian mechanics on centered semi-direct products. Geometry, mechanics, and dynamics, 167–184, Fields Inst. Commun., 73, Springer, New York, 2015.
  • Colombo, Leonardo; Jiménez, Fernando; Martín de Diego, David. Variational integrators for mechanical control systems with symmetries. J. Comput. Dyn. 2 (2015), no. 2, 193–225.
  • Enciso, Alberto; Peralta-Salas, Daniel. Eigenfunctions with prescribed nodal sets. J. Differential Geom. 101 (2015), no. 2, 197–211.
  • Enciso, Alberto; Peralta-Salas, Daniel. Knotted vortex lines and vortex tubes in stationary fluid flows. Eur. Math. Soc. Newsl. No. 96 (2015), 26–33.
  • Enciso, Alberto; Peralta-Salas, Daniel. Critical points and geometric properties of Green's functions on open surfaces. Ann. Mat. Pura Appl. (4) 194 (2015), no. 3, 881–901.
  • Enciso, Alberto; Peralta-Salas, Daniel. Existence of knotted vortex tubes in steady Euler flows. Acta Math. 214 (2015), no. 1, 61–134.
  • Ferraro, Sebastián; Jiménez, Fernando; Martín de Diego, David. New developments on the geometric nonholonomic integrator. Nonlinearity 28 (2015), no. 4, 871–900.
  • Marrero, Juan C.; Martín de Diego, David; Martínez, Eduardo. The local description of discrete mechanics. Geometry, mechanics, and dynamics, 285–317, Fields Inst. Commun., 73, Springer, New York, 2015.
  • Marrero, Juan Carlos; Martín de Diego, David; Stern, Ari. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 367–397.
  • Pérez-Pardo, J. M.; Barbero-Liñán, M.; Ibort, A. Boundary dynamics and topology change in quantum mechanics. Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 8, 1560011, 11 pp.

 

2014

  • Barbero-Liñán, M.; Muñoz-Lecanda, M. C. k-symplectic Pontryagin's maximum principle for some families of PDEs. Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1199–1221.
  • Colombo, Leonardo; Martín de Diego, David. Higher-order variational problems on Lie groups and optimal control applications. J. Geom. Mech. 6 (2014), no. 4, 451–478.
  • Colombo, Leonardo; De Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso. Unified formalism for the generalized kth-order Hamilton-Jacobi problem. Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 9, 1460037, 9 pp.
  • Colombo, Leonardo; de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso. Geometric Hamilton-Jacobi theory for higher-order autonomous systems. J. Phys. A 47 (2014), no. 23, 235203, 24 pp.
  • Colombo, Leonardo; Martín de Diego, David; Zuccalli, Marcela. On the construction of variational integrators for optimal control of nonholonomic mechanical systems. Proceedings of the XIIth "Dr. Antonio A. R. Monteiro'' Congress, 135–147, Actas Congr. "Dr. Antonio A. R. Monteiro'', Univ. Nac. del Sur, Bahía Blanca, 2014.
  • Khesin, Boris; Kuksin, Sergei; Peralta-Salas, Daniel. KAM theory and the 3D Euler equation. Adv. Math. 267 (2014), 498–522.<\li>
  • de León, Manuel; Martín de Diego, David; Vaquero, Miguel. A Hamilton-Jacobi theory on Poisson manifolds. J. Geom. Mech. 6 (2014), no. 1, 121–140.
  • de León, Manuel; Vilariño, Silvia. Hamilton-Jacobi theory in k-cosymplectic field theories. Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 1, 1450007, 17 pp.