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0.1 Introduction

The Langlands Program is a far-reaching collection of theorems and conjectures
about representations of the absolute Galois group of certain fields. For a recent
accessible review see [1]. V. Drinfeld and G. Laumon [2] introduced a geometric
analogue which deals with representations of the fundamental group of a Riemann
surface C, or, more generally, with equivalence classes of homomorphisms from
π1(C) to a reductive algebraic Lie group GC (which we think of as a complexifica-
tion of a compact reductive Lie group G). From the geometric viewpoint, such a
homomorphism corresponds to a flat connection on a principal GC bundle over C.
The Geometric Langlands Duality associates to an irreducible flat GC connection a
certain D-module on the moduli stack of holomorphic LG-bundles on C. Here LG
is, in general, a different compact reductive Lie group called the Langlands dual of
G. The group LG is defined by the condition that the lattice of homomorphisms
from U(1) to a maximal torus of G be isomorphic to the weight lattice of LG. For
example, the dual of SU(N) is SU(N)/ZN , the dual of Sp(N) is SO(2N + 1),
while the groups U(N),E8, F4, and G2 are self-dual.

The same notion of duality for Lie groups appeared in the work of P. God-
dard, J. Nuyts and D. Olive on the classification of magnetic sources in gauge the-
ory [3]. These authors found that magnetic sources in a gauge theory with gauge
group G are classified by irreducible representations of the group LG. On the basis
of this, C. Montonen and D. Olive conjectured [4] that Yang-Mills theories with
gauge groups G and LG might be isomorphic on the quantum level. This conjecture
can be regarded as a generalization of the electric-magnetic duality in quantum
Maxwell theory. Later H. Osborn [5] noticed that the Montonen-Olive conjecture
is more likely to hold for N = 4 supersymmetric version of the Yang-Mills theory.
There is currently much circumstantial evidence for the MO conjecture, but no
proof.

It has been suggested by M. Atiyah soon after the work of Goddard, Nuyts
and Olive that Langlands duality might be related to the MO duality, but only
recently the precise relation has been found [6]. In these lectures I will try to
explain the main ideas of [6]. For detailed derivations and a more extensive list
of references the reader is referred to the original paper. I will not discuss the
ramified version of Geometric Langlands Duality; for that the reader is referred to
[7, 8, 9].

0.2 Electric-magnetic duality in abelian gauge theory

I will begin by reviewing electric-magnetic duality in Maxwell theory, which is a
theory of a U(1) gauge field without sources. On the classical level, this theory
describes a connection A on a principal U(1) bundle E over a four-manifold X.
The four-manifold X is assumed to be equipped with a Lorenzian metric (later we
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will switch to Riemannian metric). The equations of motion for A read

d ⋆ F = 0,

where F = dA is the curvature of A and ⋆ is the Hodge star operator on forms. In
addition, the curvature 2-form F is closed, dF = 0 (this is known as the Bianchi
identity), so one can to a large extent eliminate A in favor F . More precisely,
F determines the holonomy of A around all contractible loops in X. If π1(X)
is trivial, F completely determines A, up to gauge equivalence. In addition, if
H2(X) ≠ 0, F satisfies a quantization condition: its periods are integral multiples
of 2π. The cohomology class of F is the Euler class of E (or alternatively the first
Chern class of the associated line bundle).

When X = R3,1, the theory is clearly invariant under a transformation

F ↦ F ′ = ⋆F. (1)

If X is Lorenzian, this transformation squares to −1. It is known as the electric-
magnetic duality. To understand why, let x0 be the time-like coordinate and xi, i =
1,2,3 be space-like coordinates. Then the usual electric and magnetic fields are

Ei = F0i, Bi =
1
2
εijkFjk,

and the transformation (1) acts by

Ei ↦ Bi, Bi ↦ −Ei.

Thus, up to some minus signs, the duality transformation exchanges electric and
magnetic fields. The signs are needed for compatibility with Lorenz transforma-
tions. Alternatively, from the point of view of the Hamiltonian formalism the signs
are needed to preserve the symplectic structure on the space of fields Ei and Bi.
This symplectic structure corresponds to the Poisson bracket

{Bi(x),Ek(y)} =
e2

2
εijk∂jδ

3(x − y),

where e2 is the coupling constant (it determines the overall normalization of the
action).

As remarked above, the classical theory can be rewritten entirely in terms
of F only on simply-connected manifolds. In addition, the ⋆F need not satisfy
any quantization condition, unlike F . Thus it appears that on manifolds more
complicated than R3,1 the duality is absent. Interestingly, in the quantum theory
the duality is restored for any X, if one sums over all topologies of the bundle E.
To see how this comes about, let us recall that the quantum theory is defined by
its path-integral

Z = ∫ DA eiS(A),
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where S(A) is the action functional. We take the action to be

S(A) = 1
2e2 ∫X F ∧ ⋆F + θ

8π2 ∫X F ∧ F.

Its critical points are precisely solutions of d ⋆ F = 0. Note that the second term
in the action depends only on the topology of E and therefore does not affect the
classical equations of motion. But it does affect the action and therefore has to be
considered in the quantum theory. In fact, if we sum over all isomorphism classes
of E, i.e. define the path-integral as

Z = ∑
E
∫ DA eiS(A),

the parameter θ tells us how to weigh contributions of different E.
At this stage it is very convenient to replace X with a Riemannian manifold

(which we will also denote X). The idea here is that the path-integral for a Loren-
zian manifold should be defined as an analytic continuation of the path-integral
in Euclidean signature; this is known as the Wick rotation. In Euclidean signature
the path-integral and the action look slightly different:

Z = ∑
E
∫ DA e−SE(A),

where
SE(A) = ∫

X
( 1

2e2
F ∧ ⋆F − iθ

8π2
F ∧ F)

Note that the action becomes complex in Euclidean signature.
Now let us sketch how duality arises on the quantum level. Assuming that

X is simply-connected for simplicity, we can replace integration over A with in-
tegration over the space of closed 2-forms F satisfying the quantization condition
on periods. If we further assume X = R4, the quantization condition is empty, and
the partition function can be written as

Z = ∫ DFDB exp(−SE + i∫
X
B ∧ dF) .

Here the new field B is a 1-form on X introduced so that integration over it
produces the delta-functional δ(dF ) = ∏x∈X δ(dF (x)). This allows us to integrate
over all (not necessarily closed) 2-forms F .

Now we can do the integral over F using the fact that it is a Gaussian integral.
The result is

Z = ∫ DB exp(− 1
2ê2 ∫X G ∧ ⋆G + iθ̂

8π2 ∫X G ∧G) ,

where G = dB, and the parameters ê2 and θ̂ are defined by

θ̂

2π
+ 2πi
ê2

= −( θ

2π
+ 2πi
e2

)
−1

.
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We see that the partition function written as an integral over B has exactly the
same form as the partition function written as an integral over A, but with e2 and
θ replaced with ê2 and θ̂. This is a manifestation of electric-magnetic duality. To
see this more clearly, note that for θ = 0 the equations of motion for F deduced
from the action

SE(F ) − i∫
X
B ∧ dF

reads
F = ie2 ⋆G.

The factor i arises because of Riemannian signature of the metric; in Lorenzian
signature similar manipulations would produce an identical formula but without
i.

The above derivation of electric-magnetic duality is valid only when X is
topologically trivial. If H2(X) ≠ 0, we have to insert additional delta-functions
in the path-integral for F and B ensuring that the periods of F are properly
quantized. It turns out that the effect of these delta-functions can be reproduced
by letting B to be a connection 1-form on an arbitrary principal U(1) bundle Ê
over X and summing over all possible Ê. For a proof valid for general 4-manifolds
X see [10].

We see from this derivation that duality acts nontrivially on the coupling
e2 and the parameter θ. To describe this action, it is convenient to introduce a
complex parameter τ taking values in the upper half-plane:

τ = θ

2π
+ 2πi
e2
.

Then electric-magnetic duality acts by

τ → −1/τ.

Note that the transformation τ → τ + 1 or equivalently the shift θ → θ + 2π
is also a symmetry of the theory if X is spin. Indeed, θ enters the action as the
coefficient of the topological term

− i
2
c21,

where c1 is the first Chern class of E. If X is spin, the square of any integral
cohomology class is divisible by two, and so the above topological term is i times
an integer. This immediately implies that shifting θ by 2π leaves e−SE unchanged.
(For arbitrary X the transformation τ → τ + 2 is still a symmetry.)

The transformations τ → −1/τ and τ → τ + 1 generated the whole group of
integral fractional-linear transformations acting on the upper half-plane, i.e. the
group PSL(2,Z). Points in the upper half-plane related by the PSL(2,Z) give
rise to isomorphic theories. One may call this group the duality group. Actually,
it is better to reserve this name for its “double-cover” SL(2,Z), since applying
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the electric-magnetic duality twice acts by −1 on the 2-form F . In this lectures
we will mostly focus on electric-magnetic duality, which is a particular element of
SL(2,Z). It is also known as S-duality. Note that for θ = 0 S-duality exchanges
weak coupling (e2 ≪ 1) and strong coupling (e2 ≫ 1). This does not cause problems
in the abelian case, because we can solve the U(1) gauge theory for any value of
the coupling. But it will greatly complicate the matters in the nonabelian case,
where the theory is only soluble for small e2.

0.3 Montonen-Olive Duality

Now let us try to generalize the above considerations to a nonabelian gauge theory,
also known as Yang-Mills theory. The basic field is a connection A = Aµdxµ on a
principal G-bundle E over a four-dimensional manifold X. The four-manifold X
is equipped with a Lorenzian metric g, and the equations of motion read

dAF = 0, dA ⋆ F = 0,

where F = dA + A ∧ A ∈ Ω2(ad(E)) is the curvature of A, dA is the covariant
differential, and ⋆ is the Hodge star operator on X. The first of these equations
is satisfied identically, while the second one follows from varying the Yang-Mills
action

S(A) = ∫
X

( 1
2e2

TrF ∧ ⋆F + θ

8π2
TrF ∧ F)

The corresponding Euclidean action is

SE(A) = ∫
X

( 1
2e2

TrF ∧ ⋆F − i θ

8π2
TrF ∧ F)

The action has two real parameters, e and θ. Neither of them affects the
classical equations of motion, but they do affect the quantized Yang-Mills theory.
On the quantum level one should consider a path integral

Z = ∑
E
∫ DA e−SE(A), (2)

and it does depend on both e and θ.
For each X the path-integral (2) is a single function of e2 and θ and so is

not very informative (it is known as the partition function of Yang-Mills theory).
More generally, one can consider path-integrals of the form

∑
E
∫ DA e−SE(A)O1(A)O2(A) . . .Ok(A),

where O1, . . . ,Ok are gauge-invariant functions of A called observables. Such a
path-integral is called a correlator of observables O1, . . . ,Ok and denoted

⟨O1 . . .Ok⟩.
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An example of an observable in Yang-Mills theory is

O(A) =WR(γ) = TrR(Holγ(A)),

where γ is a closed curve in X, Holγ(A) is the holonomy of A along γ, and R is an
irreducible representation of G. Such observables are called Wilson loops [11]; they
play an important role in the geometric Langlands duality, as we will see below.
From the physical viewpoint, inserting WR(γ) into the path-integral corresponds
to inserting an electrically charged source (“quark”) in the representation R whose
worldline is γ. In semiclassical Yang-Mills theory, such a source creates a Coulomb-
like field of the form

Aa0 = T a
e2

4πr
where T a, a = 1,dimG, are generators of G in representation R. Here we took
X = R × R3, r is the distance from the origin in R3, and we assumed that the
worldline of the source is given by r = 0.

In the case G = U(1), we saw that the theory enjoys a symmetry which in
Lorenzian signature acts by

F → F̂ = e2 ⋆ F, τ → τ̂ = −1/τ.

At first sight, it seems unlikely that such a duality could extend to a theory
with a nonabelian gauge group, since equations of motion explicitly depend on A,
not just on F . The first hint in favor of a nonabelian generalization of electric-
magnetic duality was the work of Goddard, Nuyts, and Olive [3]. They noticed
that magnetic sources in a nonabelian Yang-Mills theory are labeled by irreducible
representations of a different group which they called the magnetic gauge group.
As a matter of fact, the magnetic gauge group coincides with the Langlands dual
of G, so we will denote it LG. A static magnetic source in Yang-Mills theory should
create a field of the form

F = ⋆3 d(
µ

2r
) ,

where µ is an element of the Lie algebra g of G defined up to adjoint action of G,
and ⋆3 is the Hodge star operator on R3. Goddard, Nuyts, and Olive showed that
µ is “quantized”. More precisely, using gauge freedom one can assume that µ lies
in a particular Cartan subalgebra t of g, and then it turns out that µ must lie in
the coweight lattice of G, which, by definition, is the same as the weight lattice
of LG.1 Furthermore, µ is defined up to an action of the Weyl group, so possible
values of µ are in one-to-one correspondence with highest weights of LG.

On the basis of this observation, C. Montonen and D. Olive [4] conjectured
that Yang-Mills theories with gauge groups G and LG are isomorphic on the quan-
tum level, and that this isomorphism exchanges electric and magnetic sources.

1The coweight lattice of G is defined as the lattice of homomorphisms from U(1) to a maximal
torus T of G. The weight lattice of G is the lattice of homomorphisms from T to U(1).
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Thus the Montonen-Olive duality is a nonabelian version of electric-magnetic du-
ality in Maxwell theory.

In order for the energy of electric and magnetic sources to transform properly
under MO duality, one has to assume that for θ = 0 the dual gauge coupling is

ê2 = 16π2ng

e2
. (3)

Here the integer ng is 1, 2, or 3 depending on the maximal multiplicity of edges in
the Dynkin diagram of g [12, 13]; for simply-laced groups ng = 1. This means that
MO duality exchanges weak coupling (e → 0) and strong coupling (e → ∞). For
this reason, it is extremely hard to prove the MO duality conjecture. For general
θ, we define

τ = θ

2π
+ 4πi
e2
.

(The slight difference in the definition of τ compared to the nonabelian case is
due to a different normalization of the Killing metric on the Lie algebra.) The
parameter τ takes values in the upper half-plane and under MO duality transforms
as

τ → τ̂ = − 1
ngτ

(4)

The Yang-Mills theory has another, much more elementary symmetry, which
does not change the gauge group:

τ → τ + k.

Here k is an integer which depends on the geometry of X and G. For example, if
X = R4, then k = 1 for all G. Together with the MO duality, these transformations
generate some subgroup of SL(2,R). In what follows we will mostly set θ = 0 and
will discuss only the Z4 subgroup generated by the MO duality.

To summarize, if the MO duality were correct, then the partition function
would satisfy

Z(X,G, τ) = Z(X,LG,− 1
ngτ

)

Of course, the partition function is not a very interesting observable. Isomorphism
of two quantum field theories means that we should be able to match all observ-
ables in the two theories. That is, for any observable O in the gauge theory with
gauge group G we should be able to construct an observable Õ in the gauge theory
with gauge group LG so that all correlators agree:

⟨O1 . . .On⟩X,G,τ = ⟨Õ1 . . . Õn⟩X,LG,−1/(ngτ)

At this point I should come clean and admit that the MO duality as stated
above is not correct. The most obvious objection is that the parameters e and ê
are renormalized, and the relation like (3) is not compatible with renormalization.
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However, it was pointed out later by Osborn [5] (who was building on the work
of Witten and Olive [14]) that the duality makes much more sense in N = 4
super-Yang-Mills theory. This is a maximally supersymmetric extension of Yang-
Mills theory in four dimensions, and it has a remarkable property that the gauge
coupling is not renormalized at any order in perturbation theory. Furthermore,
Osborn was able to show that certain magnetically-charged solitons in N = 4 SYM
theory have exactly the same quantum numbers as gauge bosons. (The argument
assumes that the vacuum breaks spontaneously the gauge group G down to its
maximal abelian subgroup, so that both magnetically charged solitons and the
corresponding gauge bosons are massive). Later strong evidence in favor of the MO
duality for N = 4 SYM was discovered by A. Sen [15] and C. Vafa and E. Witten
[16]. Nowadays MO duality is often regarded as a consequence of string dualities.
One particular derivation which works for all G is explained in [17]. Nevertheless,
the MO duality is still a conjecture, not a theorem. In what follows we will assume
its validity and deduce from it the main statements of the Geometric Langlands
Program.

Apart from the connection 1-form A, N = 4 SYM theory contains six scalar
fields φi, i = 1, . . . ,6, which are sections of ad(E), four spinor fields λ̄a, a = 1, . . . ,4,
which are sections of ad(E) ⊗ S− and four spinor fields λa, a = 1, . . . ,4 which are
sections of ad(E) ⊗ S+. Here S± are the two spinor bundles over X. The fields A
and φi are bosonic (even), while the spinor fields are fermionic (odd). In Minkowski
signature the fields λ̄a and λa are complex-conjugate, but in Euclidean signature
they are independent.

The action of N = 4 SYM theory has the form

SN=4 = SYM + 1
e2 ∫X

⎛
⎝∑i

TrDφi ∧ ⋆Dφi + volX∑
i<j

Tr[φi, φj]2
⎞
⎠
+ . . .

where dots denote terms depending on the fermions. The action has Spin(6) ≃
SU(4) symmetry under which the scalars φi transform as a vector, the fields λa
transform as a spinor, and λ̄a transform as the dual spinor. This symmetry is
present for any Riemannian X and is known as the R-symmetry. If X is R4 with a
flat metric, the action also has translational and rotational symmetries, as well as
sixteen supersymmetries Q̄aα and Qaα̇, where a = 1, . . . ,4 and the Spin(4) spinor
indices α and α̇ run from 1 to 2. As is clear from the notation, Q̄a and Qa transform
as spinors and dual spinors of the R-symmetry group Spin(6); they also transform
as spinors and dual spinors of the rotational group Spin(4).

One can show that under the MO duality all bosonic symmetry generators are
mapped trivially, while supersymmetry generators are multiplied by a τ -dependent
phase:

Q̄a → eiφ/2Q̄a, Qa → e−iφ/2Qa, eiφ = ∣τ ∣
τ

This phase will play an important role in the next section.
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0.4 Twisting N = 4 super-Yang-Mills theory

In order to extract mathematical consequences of MO duality, we are going to
turn N = 4 SYM theory into a topological field theory. The procedure for doing
this is called topological twisting [18].

Topological twisting is a two-step procedure. On the first step, one chooses a
homomorphism ρ from Spin(4), the universal cover of the structure group of TX,
to the R-symmetry group Spin(6). This enables one to redefine how fields trans-
form under Spin(4). The choice of ρ is constrained by the requirement that after
this redefinition some of supersymmetries become scalars, i.e. transform trivially
under Spin(4). Such supersymmetries survive when X is taken to be an arbitrary
Riemannian manifold. In contrast, if we consider ordinary N = 4 SYM on a curved
X, it will have supersymmetry only if X admits a covariantly constant spinor.

It is easy to show that there are three inequivalent choices of ρ satisfying
these constraints [16]. The one relevant for the Geometric Langlands Program is
identifies Spin(4) with the obvious Spin(4) subgroup of Spin(6). After redefining
the spins of the fields accordingly, we find that one of the left-handed supersymme-
tries and one of the right-handed supersymmetries become scalars. We will denote
them Ql and Qr respectively.

On the second step, one notices that Ql and Qr both square to zero and
anticommute (up to a gauge transformation). Therefore one may pick any linear
combination of Ql and Qr

Q = uQl + vQr,
and declare it to be a BRST operator. That is, one considers only observables
which are annihilated by Q (and are gauge-invariant) modulo those which are
Q-exact. This is consistent because any correlator involving Q-closed observables,
one of which is Q-exact, vanishes. From now on, all observables are assumed to be
Q-closed. Correlators of such observables will be called topological correlators.

Clearly, the theory depends on the complex numbers u, v only up to an
overall scaling. Thus we get a family of twisted theories parameterized by the
projective line P1. Instead of the homogenous coordinates u, v, we will mostly use
the affine coordinate t = v/u which takes values in C∪ {∞}. All these theories are
diffeomorphism-invariant, i.e. do not depend on the Riemannian metric. To see
this, one writes an action (which is independent of t) in the form

I = {Q,V } + iΨ
4π ∫X TrF ∧ F

where V is a gauge-invariant function of the fields, and Ψ is given by

Ψ = θ

2π
+ t

2 − 1
t2 + 1

4πi
e2

All the metric dependence is in V , and since changing V changes the action by
Q-exact terms, we conclude that topological correlators are independent of the
metric.
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It is also apparent that for fixed t topological correlators are holomorphic
functions of Ψ, and this dependence is the only way e2 and θ may enter. In par-
ticular, for t = i we have Ψ = ∞, independently of e2 and θ. This means that for
t = i topological correlators are independent of e2 and θ.

To proceed further, we need to describe the field content of the twisted theory.
Since the gauge fieldA is invariant under Spin(6) transformations, it is not affected
by the twist. As for the scalars, four of them become components of a 1-form φ
with values in ad(E), and the other two remain sections of ad(E); we may combine
the latter into a complex scalar field σ which is a section of the complexification
of ad(E). The fermionic fields in the twisted theory are a pair of 1-forms ψ and ψ̃,
a pair of 0-forms η and η̃, and a 2-form χ, all taking values in the complexification
of ad(E).

What makes the twisted theory manageable is that the path integral localizes
on Q-invariant field configurations. One way to deduce this property is to note that
as a consequence of metric-independence, semiclassical (WKB) approximation is
exact in the twisted theory. Thus the path-integral localizes on absolute minima
of the Euclidean action. On the other hand, such configurations are exactly Q-
invariant configurations.

The condition of Q-invariance is a set of partial differential equations on the
bosonic fields A,φ and σ. We will only state the equations for A and φ, since the
equations for σ generically imply that σ = 0:

(F − φ ∧ φ + tDφ)+ = 0, (F − φ ∧ φ − t−1Dφ)− = 0, D ⋆ φ = 0. (5)

Here subscripts + and − denote self-dual and anti-self-dual parts of a 2-form.
If t is real, these equations are elliptic. A case which will be of special interest

is t = 1; in this case the equations can be rewritten as

F − φ ∧ φ + ⋆Dφ = 0, D ⋆ φ = 0.

They resemble both the Hitchin equations in 2d [19] and the Bogomolny equations
in 3d [20] (and reduce to them in special cases). The virtual dimension of the mod-
uli space of these equations is zero, so the partition function is the only nontrivial
observable if X is compact without boundary. However, for applications to the Ge-
ometric Langlands Program it is important to consider X which are noncompact
and/or have boundaries.

Another interesting case is t = i. To understand this case, it is convenient
to introduce a complex connection A = A + iφ and the corresponding curvature
F = dA+A2. Then the equations are equivalent to

F = 0, D ⋆ φ = 0.

The first of these equations is invariant under the complexified gauge transforma-
tions, while the second one is not. It turns out that the moduli space is unchanged
if one drops the second equation and considers the space of solutions of the equa-
tion F = 0 modulo GC gauge transformations. More precisely, according to a
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theorem of K. Corlette [21], the quotient by GC gauge transformations should be
understood in the sense of Geometric Invariant Theory, i.e. one should distinguish
stable and semistable solutions of F = 0 and impose a certain equivalence relation
on semistable solutions. The resulting moduli space is called the moduli space of
stable GC connections on X and will be denoted Mflat(G,X). Thus for t = i the
path integral of the twisted theory reduces to an integral overMflat(G,X). This
is an indication that twisted N = 4 SYM with gauge group G has something to do
with the study of homomorphisms from π1(X) to GC.

Finally, let us discuss how MO duality acts on the twisted theory. The key
observation is that MO duality multiplies Ql and Qr by e±iφ/2, and therefore
multiplies t by a phase:

t↦ ∣τ ∣
τ
t.

Since Imτ ≠ 0, the only points of the P1 invariant under the MO duality are the
“poles” t = 0 and t = ∞. On the other hand, if we take t = i and θ = 0, then the
MO duality maps it to a theory with t = 1 and θ = 0 (it also replaces G with LG).
As we will explain below, it is this special case of the MO duality that gives rise
to the Geometric Langlands Duality.

0.5 Extended Topological Field Theory

Our next goal is to interpret 4d TFT in mathematical terms. The path-integral
which physicists use to defined field theories has not been defined rigorously, but
one might try to list the properties that it must have. These properties can be
taken as axioms of TFT.

The first attempt to formulate axioms of TFT in n-dimensions was made by
M. Atiyah [22]. One considers a category whose objects are compact oriented n−1
manifolds and morphisms are cobordisms between such manifolds. A TFT in n
dimensions is supposed to define a functor F from this geometric category to the
category of (graded) vector spaces. Thus TFT assigns a vector space F (M) to
any compact oriented n−1 manifold M and a linear map F (M1) → F (M2) to any
cobordism between M1 and M2. This linear map must be invariant with respect
to “small” diffeomorphisms (i.e. diffeomorphism which are smoothly connected to
the identity).

From the physical viewpoint, F (M) is the Hilbert space of a quantum-
mechanica l system which is obtained by quantizing the theory on a space-time of
the form M ×R, where M is regarded as “space”’ and R is regarded as “time”. In
many, but not all, theories F (M) is finite-dimensional for all allowed M .

The functor F must also be compatible with the obvious monoidal structures
on both the source and target categories; for example, F maps the disjoint union
of M1 and M2 into F (M1) ⊗F (M2). This reflects the fact that the Hilbert space
of two noniteracting systems with Hilbert spaces H1 and H2 must be H1 ⊗H2.
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The empty n − 1 manifold is the identity object with respect to the disjoint
union, so we must require F (∅) = C. Since we may regard a compact oriented
n-manifold N as a cobordism from ∅ to ∅, F (N) must be a linear map from C
to C, i.e. a complex number F (N). This number is called the partition function
of the n-manifold N .

So far we learned that n-dimensional TFT assigns a number F (N) to a
compact oriented n-manifold N and a (graded) vector space F (M) to a compact
oriented n − 1-manifold M . It is tempting to guess that it also assigns a category
to a compact oriented n − 2-manifold L, a 2-category to a compact oriented n − 3
manifold K, etc. These assignments should satisfy compatibility conditions and
described what is known as an Extended TFT.

To explain the physical meaning of these higher categorical structures, let us
look at the case n = 2 first. 2d TFT is supposed to assign a vector space to an
oriented circle and a category to a point. Objects of this category are boundary
conditions for the 2d TFT. The meaning of the term “boundary condition” is
the following. If one considers 2d TFT on a 2-manifold Σ with a boundary, one
has to impose conditions on the boundary values of the fields to make the path-
integral well-defined (on the physical level of rigor). These conditions must also
be compatible with the BRST operator Q. Typically for a given TFT there are
many possible choices of boundary conditions; they are usually called “branes”.

If the boundary of Σ has several disconnected components, one may choose
boundary conditions independently on each connected component. More gener-
ally, one may subdivide a connected component of the boundary into segments
and impose different boundary conditions on different segments. At the joining
point of two segments with boundary conditions A and B one must specify how
the boundary conditions are “joined” (Fig. 1). The basic physical principle is that
the set of these “joining” data has the structure of a vector space. We denote it
VAB. This vector space is called the space of boundary-changing local operators.
We define the space of morphisms from A to B to be this vector space.2 Compo-
sition of morphisms arises from the fact that boundary-changing local operators
can be fused together (Fig. 2). Properties of TFT guarantee that composition of
morphisms is associative (but not necessarily commutative).

Now we can also understand why n-dimensional TFT assigns a category to a
compact oriented n−2-manifold L. The main point is that such a TFT considered
on an n-manifold of the form L × Σ, where Σ is an oriented 2-manifold which
may have a boundary and is not necessarily compact, can be regarded as a two-
dimensional TFT on Σ and therefore has a category of branes. This category of
branes depends on L and is the category which the n-dimensional TFT assigns to
L.

Let us go one step further and try to understand why n-dimensional TFT
assigns a 2-category to a compact oriented n−3-manifoldK. Again we may consider
this TFT on a manifold of the form K ×W , where W is an oriented 3-manifold

2Since segments are oriented, VAB is different from VBA in general.
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Figure 1: Morphisms in the category of branes correspond to boundary-changing
local operators sitting at the junction of two segments of the boundary.

Figure 2: Composition of morphisms is achieved by merging the insertion points
of boundary-changing local operators. We use ⋅ to denote this operation.



0.5. Extended Topological Field Theory 15

(possibly noncompact or with a nonempty boundary) and reinterpret it as a three-
dimensional K-dependent TFT on W . We claim now that the set of boundary
conditions for any 3d TFT has the structure of a 2-category; this 2-category is
what the n-dimensional TFT assigns to K.

To see why boundary conditions in a 3d TFT form a 2-category, we apply the
same idea as in 2d TFT: we subdivide a connected component of the boundary
of a 3-manifold W into domains separated by closed curves and impose different
boundary conditions on different domains. Given two boundary conditions X and
Y there may be different ways to “join” them along a closed curve; by definition,
the set of 1-morphisms between X and Y is the set of different ways of joining X
and Y along a codimension-1 defect. Codimension-1 defects on the boundary can
be fused, and this gives rise to composition of 1-morphisms (Fig. 3).

Figure 3: 1-morphisms of the 2-category of 2d TFTs correspond to walls, and
composition of 1-morphisms corresponds to fusing walls. This operation is denoted
⊗.

The closed curve on ∂W separating domains with boundary conditions X and
Y may be subdivided into segments, with different codimension-1 defects assigned
to different segments. The points where different segments join are codimension-2
defects on the boundary; different ways of joining codimension-1 defects A and B
at a codimension-2 defect are 2-morphisms of the 2-category of boundary condi-
tions. The basic physical principle is that the set of 2-morphisms has the struc-
ture of a (graded) vector space. We may fuse codimension-1 defects together with
codimension-2 defects; this gives rise to a “horizontal” composition of 2-morphisms
(Fig. 4).

There is also a “vertical” composition of 2-morphisms obtained by fusing
codimension-2 defects sitting on the same codimension-1 defect subdivided into
segments. For a fixed pair of boundary conditions X and Y the set of codimension-
1 defects between them together with all codimension-2 defects on them form a
category. The set of all boundary conditions for a given 3d TFT together with all
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Figure 4: Composition of 2-morphisms of the 2-category of 2d TFTs is achieved
by fusing the walls on which they are inserted. The corresponding operation is
denoted ⊗.

codimension-1 and codimension-2 defects forms a 2-category. This is the 2-category
which a 3d TFT assigns to a point.

0.6 Reduction to two dimensions

Our main object of study is a 4d TFT (or rather a family of 4d TFTs parameterized
by t ∈ CP1 and a choice of the gauge group G). Such a TFT assigns a 3-category to
a point, a 2-category to a circle, and an ordinary category to a compact oriented
2-manifold C. It is fair to say that the 3-category assigned to a point (i.e. the
3-category of boundary conditions) is not understood, though some objects have
been constructed by D. Gaiotto and E. Witten [23, 24]. Objects of the 2-category
attached to a circle are called as surface operators in the physics literature. Their
study has been initiated by S. Gukov and E. Witten [7, 8, 9]. The 2-category
structure on the set of surface operators has been discussed in [25]. In these lectures
we will only study the category attached to a compact oriented 2-manifold C.
Following [6], we will assume that C gas genus g > 1.3 Thus we will consider our
4d TFT on a 4-manifold of the form X = C ×Σ, where Σ may be noncompact or
have a nonempty boundary, regard it as a C-dependent 2d TFT on Σ, and study
its category of branes.

Topological correlators are independent of the volumes of C and Σ. However,
to exploit localization, it is convenient to consider the limit in which the volume
of C goes to zero. In the spirit of the Kaluza-Klein reduction, we expect that in
this limit the 4d theory becomes equivalent to a 2d theory on Σ. In the untwisted
theory, this equivalence holds only in the limit vol(C) → 0, but in the twisted

3The case g = 0 has been studied in [25].
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theory the equivalence holds for any volume.
It is easy to guess the effective field theory on Σ. One begins by consider-

ing the case Σ = R2 and requiring the field configuration to be independent of
the coordinates on Σ and to have zero energy. On can show that a generic such
configuration has σ = 0, while φ and A are pulled-back from C and satisfy

F − φ ∧ φ = 0, Dφ = 0, D ⋆ φ = 0.

Here all quantities as well as the Hodge star operator refer to objects living on C.
These equations are known as Hitchin equations [19], and their space of solutions
modulo gauge transformations is called the Hitchin moduli spaceMH(G,C). The
space MH(G,C) is a noncompact manifold of dimension 4(g − 1)dimG with sin-
gularities.4 From the physical viewpoint,MH(G,C) is the space of classical vacua
of the twisted N = 4 SYM on C ×R2.

In the twisted theory, only configurations with vanishingly small energies
contribute. In the limit vol(C) → 0, such configurations will be represented by
slowly varying maps from Σ toMH(G,C). Therefore we expect the effective field
theory on Σ to be a topological sigma-model with target MH(G,C).

Before we proceed to identify more precisely this topological sigma-model,
let us note that MH(G,C) has singularities coming from solutions of Hitchin
equations which are invariant under a subgroup of gauge transformations. In the
neighborhood of such a classical vacuum, the effective field theory is not equivalent
to a sigma-model, because of unbroken gauge symmetry. In fact, it is difficult to
describe the physics around such vacua in purely 2d terms. We will avoid this
difficulty by imposing suitable conditions on the boundary of Σ ensuring that we
stay away from such dangerous points.

The most familiar examples of topological sigma-models are A and B-models
associated to a Calabi-Yau manifold M [26]. Both models are obtained by twisting
a supersymmetric sigma-model with target M . The path-integral of the A-model
localizes on holomorphic maps from Σ to M and computes the Gromov-Witten
invariants of M . The path-integral for the B-model localizes on constant maps
to M and can be interpreted mathematically in terms of deformation theory of
M regarded as a complex manifold [27]. Both models are topological field theo-
ries (TFTs), in the sense that correlators do not depend on the metric on Σ. In
addition, the A-model depends on the symplectic structure of M , but not on its
complex structure, while the B-model depends on the complex structure of M ,
but not on its symplectic structure.

As explained above, we expect that our family of 4d TFTs, when considered
on a 4-manifold of the form Σ ×C, becomes equivalent to a family of topological
sigma-models with targetMH(G,C). To connect this family to ordinary A and B-
models, we note that MH(G,C) is a (noncompact) hyper-Kähler manifold. That
is, it has a P1 worth of complex structures compatible with a certain metric. This

4We assumed g > 1 precisely to ensure that virtual dimension of MH(G,C) is positive.
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metric has the form

ds2 = 1
e2 ∫C Tr (δA ∧ ⋆δA + δφ ∧ ⋆δφ)

where (δA, δφ) is a solution of the linearized Hitchin equations representing a
tangent vector toMH(G,C).5 If we parameterize the sphere of complex structures
by a parameter w ∈ C ∪ {∞}, the basis of holomorphic differentials is

δAz̄ −w δφz̄, δAz +w−1δφz.

By varying w, we get a family of B-models with targetMH(G,C). Similarly, since
for each w we have the corresponding Kähler form onMH(G,C), by varying w we
get a family of A-models with targetMH(G,C). However, the family of topological
sigma-models obtained from the twisted N = 4 SYM does not coincide with either
of these families. The reason for this is that a generic A-model or B-model with
target MH(G,C) depends on the complex structure on C, and therefore cannot
arise from a TFT on Σ ×C.

As explained in [6], this puzzle is resolved by recalling that for a hyper-Kähler
manifold M there are twists other than ordinary A or B twists. In general, twisting
a supersymmetric sigma-model requires picking two complex structures on the
target. If we are given a Kähler structure on M , one can choose the two complex
structures to be the same (B-twist) or opposite (A-twist). But for a hyper-Kähler
manifold there is a whole sphere of complex structures, and by independently
varying the two complex structures one gets P1 × P1 worth of 2d TFTs. They are
known as generalized topological sigma-models, since their correlators depend on a
generalized complex structure on the target M [28, 29]. The notion of a generalized
complex structure was introduced by N. Hitchin [30] and it includes complex and
symplectic structures are special cases.

It turns out that for M = MH(G,C) there is a 1-parameter subfamily of
this 2-parameter family of topological sigma-models which does not depend on
the complex structure or Kähler form of C. It is this subfamily which appears
as a reduction of the twisted N = 4 SYM theory. Specifically, the two complex
structures on MH(G,C) are given by

w+ = −t, w− = t−1

Note that one gets a B-model if and only if w+ = w−, i.e. if t = ±i. One gets an
A-model if and only if t is real. All other values of t correspond to generalized
topological sigma-models.

Luckily to understand Geometric Langlands Duality we mainly need the two
special cases t = i and t = 1. The value t = i corresponds to a B-model with complex
structure J defined by complex coordinates

Az + iφz, Az̄ + iφz̄
5The overall normalization of the metric we use is natural from the point of view of gauge

theory.
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onMH(G,C). These are simply components of the complex connection A = A+iφ
along C. In terms of this complex connection two out of three Hitchin equations
are equivalent to

F = dA+A2 = 0

This equation is invariant under complexified gauge transformations. The third
equation D ⋆ φ = 0 is invariant only under G gauge transformations. By a theo-
rem of S. Donaldson [31], one can drop this equation at the expense of enlarging
the gauge group from G to GC.(More precisely, one also has to identify certain
semistable solutions of the equation F = 0.) This is analogous to the situation in
four dimensions. Thus in complex structure J the moduli spaceMH(G,C) can be
identified with the moduli space Mflat(G,C) of stable flat GC connections on C.
It is apparent that J is independent of the complex structure on C, which implies
that the B-model at t = i is also independent of it.

The value t = 1 corresponds to an A-model with a symplectic structure ω =
4πωK/e2, where

ωK = − 1
2π ∫C Tr δφ ∧ δA.

It is a Kähler form of a certain complex structure K onMH(G,C). Note that ωK
is exact and independent of the complex structure on C.

Yet another complex structure on MH(G,C) is I = JK. It will make an
appearance later, when we discuss Homological Mirror Symmetry forMH(G,C).
In this complex structure, MH(G,C) can be identified with the moduli space
of stable holomorphic Higgs bundles. Recall that a (holomorphic) Higgs bundle
over C (with gauge group G) is a holomorphic G-bundle E over C together with
a holomorphic section ϕ of ad(E). In complex dimension one, any principal G
bundle can be thought of as a holomorphic bundle, and Hitchin equations imply
that ϕ = φ1,0 satisfies

∂̄ϕ = 0.

This gives a map fromMH(G,C) to the set of gauge-equivalence classes of Higgs
bundles. This map becomes one-to-one if we limit ourselves to stable or semistable
Higgs bundles and impose a suitable equivalence relationship on semistable ones.
This gives an isomorphism between MH(G,C) and MHiggs(G,C).

It is evident that the complex structure I, unlike J , does depend on the choice
of complex structure on C. Therefore the B-model for the moduli space of stable
Higgs bundles cannot be obtained as a reduction of a 4d TFT.6 On the other hand,
the A-model for MHiggs(G,C) is independent of the choice of complex structure
on C, because the Kähler form ωI is given by

ωI =
1

4π ∫C Tr (δA ∧ δA − δφ ∧ δφ).

In fact, the A-model for MHiggs(G,C) is obtained by letting t = 0. This special
case of reduction to 2d has been first discussed in [33].

6It can be obtained as a reduction of a “holomorphic-topological” gauge theory on Σ×C [32].
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0.7 Mirror Symmetry for the Hitchin moduli space

Now we are ready to infer the consequences of the MO duality for the topological
sigma-model with target MH(G,C). For θ = 0, the MO duality identifies twisted
N = 4 SYM theory with gauge group LG and t = i with a similar theory with
gauge group G and t = 1. Therefore the B-model with target Mflat(LG,C) and
the A-model with target (M(G,C), ωK) are isomorphic.

Whenever we have two Calabi-Yau manifolds M and M ′ such that the A-
model of M is equivalent to the B-model of M ′, we say that M and M ′ are a
mirror pair. Thus MO duality implies that Mflat(LG,C) and MH(G,C) (with
the symplectic structure ωK) are a mirror pair. This mirror symmetry was first
proposed in [34].

The most obvious mathematical interpretation of this statement involves the
isomorphism of two Frobenius manifolds associated to the A-model of (MH(G,C), ωK)
and the B-model of Mflat(LG,C). The former of these encodes the Gromov-
Witten invariants of MH(G,C), while the latter one has to to with the complex
structure deformations of Mflat(LG,C). But one can get a much stronger state-
ment by considering the categories of topological D-branes associated to the two
models.

Recall that a topological D-brane for a 2d TFT is a BRST-invariant boundary
condition for it. The set of all topological D-branes has a natural structure of a
category (actually, an A∞ category). For a B-model with a Calabi-Yau target
M , this category is believed to be equivalent to the derived category of coherent
sheaves on M . Sometimes we will also refer to it as the category of B-branes on M .
For an A-model with target M ′, we get a category of A-branes on M ′. It contains
the derived Fukaya category of M ′ as a full subcategory. For a review of these
matters, see e.g. [35].

It has been argued by A. Strominger, S-T. Yau and E. Zaslow (SYZ) [36]
that whenever M and M ′ are mirror to each other, they should admit Lagrangian
torus fibrations over the same base B, and these fibrations are dual to each other,
in a suitable sense. In the case of Hitchin moduli spaces, the SYZ fibration is
easy to identify [6]. One simply maps a solution (A,φ) of the Hitchin equations
to the space of gauge-invariant polynomials built from ϕ = φ1,0. For example,
for G = SU(N) or G = SU(N)/ZN the algebra of gauge-invariant polynomials is
generated by

Pn = Trϕn ∈H0(C,Kn
C), n = 2, . . . ,N,

so the fibration map maps MH(G,C) to the vector space

⊕Nn=2H
0(C,Kn

C).

The map is surjective [37], so this vector space is the base space B. The map to
B is known as the Hitchin fibration of MH(G,C). It is holomorphic in complex
structure I and its fibers are Lagrangian in complex structures J and K. In fact,
one can regardMHiggs(G,C) as a complex integrable system, in the sense that the
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generic fiber of the fibration is a complex torus which is Lagrangian with respect
to a holomorphic symplectic form on MHiggs(G,C)

ΩI = ωJ + iωK .

(Ordinarily, an integrable system is associated with a real symplectic manifold
with a Lagrangian torus fibration.)

For general G one can define the Hitchin fibration in a similar way, and one
always finds that the generic fiber is a complex Lagrangian torus. Moreover, the
bases B and LB of the Hitchin fibrations for MH(G,C) and MH(LG,C) are
naturally identified.7

While the Hitchin fibration is an obvious candidate for the SYZ fibration,
can we prove that it really is the SYZ fibration? It turns out this statement can
be deduced from some additional facts about MO duality.

While we do not know how the MO duality acts on general observables in the
twisted theory, the observables Pn are an exception, as their expectation values
parameterize the moduli space of vacua of the twisted theory on X = R4. The MO
duality must identify the moduli spaces of vacua, in a way consistent with other
symmetries of the theory, and this leads to a unique identification of the algebras
generated by Pn for G and LG. See [6] for details.

To complete the argument, we need to consider some particular topological
D-branes forMH(G,C) andMH(LG,C). The simplest example of a B-brane on
Mflat(LG,C) is the structure sheaf of a (smooth) point. What is its mirror? Since
each point p lies in some fiber LFp of the Hitchin fibration, its mirror must be an
A-brane on MH(G,C) localized on the corresponding fiber Fp of the Langlands-
dual fibration. By definition, this means that the Hitchin fibration is the same as
the SYZ fibration.

According to Strominger, Yau, and Zaslow, the fibers of the two mirror fibra-
tions over the same base point are T-dual to each other. Indeed, by the usual SYZ
argument the A-brane on Fp must be a rank-one object of the Fukaya category, i.e.
a flat unitary rank-1 connection on a topologically trivial line bundle over Fp. The
moduli space of such objects must coincide with the moduli space of the mirror
B-brane, which is simply LFp. This is precisely what we mean by saying that that
LFp and Fp are T-dual.

In the above discussion we have tacitly assumed that both MH(G,C) and
MH(LG,C) are connected. The components of MH(G,C) are labeled by the
topological isomorphism classes of principal G-bundles over C, i.e. by elements
of H2(C,π1(G)) = π1(G). Thus, strictly speaking, our discussion applies literally
only when both G and LG are simply-connected. This is rarely true; for example,
among compact simple Lie groups only E8, F4 and G2 satisfy this condition (all
these groups are self-dual).

7In some cases G and LG coincide, but the relevant identification is not necessarily the identity
map [13, 6].
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In general, to maintain mirror symmetry betweenMH(G,C) andMH(LG,C),
one has to consider all possible flat B-fields on both manifolds. A flat B-field on
M is a class in H2(M,U(1)) whose image in H3(M,Z) under the Bockstein ho-
momorphism is trivial. In the case of MH(G,C), the allowed flat B-fields have
finite order; in fact, they take values in H2(C,Z(G)) = Z(G), where Z(G) is
the center of G. It is well known that Z(G) is naturally isomorphic to π1(LG).
One can show that MO duality maps the class w ∈ Z(G) defining the B-field on
MH(G,C) to the corresponding element in π1(LG) labeling the connected compo-
nent ofMH(LG,C) (and vice versa). For example, if G = SU(N), thenMH(G,C)
is connected and has N possible flat B-fields labeled by Z(SU(N)) = ZN . On
the other hand, LG = SU(N)/ZN , and therefore MH(LG,C) has N connected
components labeled by π1(LG) = ZN . There can be no nontrivial flat B-field on
MH(LG,C) in this case. See section 7 of [6] for more details.

Let us summarize what we have learned so far. MO duality implies that
MH(G,C) and MH(LG,C) are a mirror pair, with the SYZ fibrations being the
Hitchin fibrations. The most powerful way to formulate the statement of mirror
symmetry between two Calabi-Yau manifolds is in terms of the corresponding cat-
egories of topological branes. In the present case, we get that the derived category
of coherent sheaves on Mflat(LG,C) is equivalent to the category of A-branes
on MH(G,C) (with respect to the exact symplectic form ωK). Furthermore, this
equivalence maps a (smooth) point p belonging to the fiber LFp of the Hitchin
fibration of Mflat(LG,C) to the Lagrangian submanifold of MH(G,C) given
by the corresponding fiber of the dual fibration of MH(G,C). The flat unitary
connection on Fp is determined by the position of p on LFp.8

0.8 From A-branes to D-modules

Geometric Langlands Duality says that the derived category of coherent sheaves
onMflat(LG,C) is equivalent to the derived category of D-modules on the moduli
stack BunG(C) of holomorphic G-bundles on C. This equivalence is supposed to
map a point on Mflat(LG,C) to a Hecke eigensheaf on BunG(C). We have seen
that MO duality implies a similar statement, with A-branes onMH(G,C) taking
place of objects of the derived category of D-modules on BunG(C). Our first goal
is to explain the connection between A-branes on MH(G,C) and D-modules on
BunG(C). Later we will see how the Hecke eigensheaf condition can be interpreted
in terms of A-branes.

The starting point of our argument is a certain special A-brane onMH(G,C)
which was called the canonical coisotropic brane in [6]. Recall that a submanifold
Y of a symplectic manifold M is called coisotropic if for any p ∈ Y the skew-
complement of TYp in TMp is contained in TYp. A coisotropic submanifold of
M has dimension larger or equal than half the dimension of M ; a Lagrangian

8This makes sense only if LFp is smooth. If p is a smooth point but LFp is singular, it is not
clear how to identify the mirror A-brane on MH(G,C).
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submanifold of M can be defined as a middle-dimensional coisotropic submani-
fold. While the most familiar examples of A-branes are Lagrangian submanifolds
equipped with flat unitary vector bundles, it is known from the work [38] that
the category of A-branes may contain more general coisotropic submanifolds with
non-flat vector bundles. (Because of this, in general the Fukaya category is only a
full subcategory of the category of A-branes.) The conditions on the curvature of a
vector bundle on a coisotropic A-brane are not understood except in the rank-one
case; even in this case they are fairly complicated [38]. Luckily, for our purposes
we only need the special case when Y = M and the vector bundle has rank one.
Then the condition on the curvature 2-form F ∈ Ω2(M) is

(ω−1F )2 = −1. (6)

Here we regard both F and the symplectic form ω as bundle morphisms from TM
to T ∗M , so that IF = ω−1F is an endomorphism of TM .

The condition (6) says that IF is an almost complex structure. Using the fact
that ω and F are closed 2-forms, one can show that IF is automatically integrable
[38].

Let us now specialize to the case M = MH(G,C) with the symplectic form
ω = 4πωK/e2. Then if we let

F = 4π
e2
ωJ =

2
e2 ∫C Tr δφ ∧ ⋆δA,

the equation is solved, and
IF = ω−1

K ωJ = I.
Furthermore, since F is exact:

F ∼ δ∫
C

Trφ ∧ ⋆δA,

we can regard F as the curvature of a unitary connection on a trivial line bundle.
This connection is defined uniquely if MH(G,C) is simply connected; otherwise
any two such connections differ by a flat connection. One can show that flat U(1)
connections on a connected component of MH(G,C) are classified by elements
of H1(C,π1(G)) [6]. Thus we obtain an almost canonical coisotropic A-brane on
MH(G,C): it is unique up to a finite ambiguity, and its curvature is completely
canonical.

Next we need to understand the algebra of endomorphisms of the canonical
coisotropic brane. From the physical viewpoint, this is the algebra of vertex op-
erators inserted on the boundary of the worldsheet Σ; such vertex operators are
usually referred to as open string vertex operators (as opposed to closed string
vertex operators which are inserted at interior points of Σ).

In the classical limit, BRST-invariant vertex operators of ghost number zero
are simply functions on the target X holomorphic in the complex structure IF =
ω−1F [38]. In the case of the canonical coisotropic A-brane, the target X =
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MH(G,C) in complex structure IF = I is isomorphic to the moduli space of
Higgs bundles on C. BRST-invariant vertex operators of higher ghost number can
be identified with the Dolbeault cohomology of the moduli space of Higgs bundles.

Actually, the knowledge of the algebra turns out to be insufficient: we would
like to work locally in the target space MH(G,C) and work with a sheaf of open
string vertex operators on MH(G,C). The idea of localizing in target space has
been previously used by F. Malikov, V. Schechtman and A. Vaintrob to define the
chiral de Rham complex [39]; we need an open-string version of this construction.

Localizing the path-integral in target space makes sense only if nonpertur-
bative effects can be neglected [40, 41]. The reason is that perturbation theory
amounts to expanding about constant maps from Σ to M , and therefore the per-
turbative correlator is an integral over M of a quantity whose value at a point
p ∈M depends only of the infinitesimal neighborhood of p. In such a situation it
makes sense to consider open-string vertex operators defined only locally on M ,
thereby getting a sheaf on M . Because of the topological character of the theory,
the OPE of Q-closed vertex operators is nonsingular, and Q-cohomology classes
of such locally-defined vertex operators form a sheaf of algebras on M . One dif-
ference compared to the closed-string case is that operators on the boundary of
Σ have a well-defined cyclic order, and therefore the multiplication of vertex op-
erators need not be commutative. The cohomology of this sheaf of algebras is the
endomorphism algebra of the brane [6].

One can show that there are no nonperturbative contributions to any cor-
relators involving the canonical coisotropic A-brane [6], and so one can localize
the path-integral in MH(G,C). But a further problem arises: perturbative re-
sults are formal power series in the Planck constant, and there is no guarantee
of convergence. In the present case, the role of the Planck constant is played by
the parameter e2 in the gauge theory.9 In fact, one can show that the series defin-
ing the multiplication have zero radius of convergence for some locally defined
observables.

In order to understand the resolution of this problem, let us look more closely
the structure of the perturbative answer. In the classical approximation (leading
order in e2), the sheaf of open-string states is quasiisomorphic, as a sheaf of alge-
bras, to the sheaf of holomorphic functions on MHiggs(G,C). The natural holo-
morphic coordinates onMHiggs(G,C) are Az̄ and φz. The algebra of holomorphic
functions has an obvious grading in which φz has degree 1 and Az̄ has degree 0.
Note also that the projection (Az̄, φz) ↦ Az̄ defines a map from MH(G,C) to
BunG(C). If we restrict the target of this map to the subspace of stable G-bundles
M(G,C), then the preimage of M(G,C) in MH(G,C) can be thought of as the
cotangent bundle to M(G,C).

At higher orders, the multiplication of vertex operators becomes noncom-
mutative and incompatible with the grading. However, it is still compatible with

9At first sight, the appearance of e2 in the twisted theory may seem surprising, but one should
remember that the argument showing that the theory at t = 1 is independent of e2 is valid only
when the manifold X has no boundary.
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the associated filtration. That is, the product of two functions on MHiggs(G,C)
which are polynomials in φz of degrees k and l is a polynomial of degree k + l.
Therefore the product of polynomial observables defined by perturbation theory
is well-defined (it is a polynomial in the Planck constant).

We see that we can get a well-defined multiplication of vertex operators if we
restrict to those which depend polynomially on φz. That is, we have to “sheafify”
our vertex operators only along the base of the projection toM(G,C), while along
the fibers the dependence is polynomial.

Holomorphic functions on the cotangent bundle of M(G,C) polynomially
depending on the fiber coordinates can be thought of as symbols of differential op-
erators acting on holomorphic functions on M(G,C), or perhaps on holomorphic
sections of a line bundle onM(G,C). One may therefore suspect that the sheaf of
open-string vertex operators is isomorphic to the sheaf of holomorphic differential
operators on some line bundle L overM(G,C). To see how this comes about, we
note that the action of the A-model on a Riemann surface Σ can be written as

S = ∫
Σ

Φ∗(ω − iF ) +BRST − exact terms.

Here Φ is a map from Σ to M(G,C) (the basic field of the sigma-model). In our
case, both ω and F are exact and the integral reduces to the integral over the
boundary of Σ. More precisely, let ΩI denote the holomorphic symplectic form

ΩI = −
1
π
∫
C

Tr (δφzδAz̄)

on MHiggs(G,C). This form is exact: ΩI = d$, where

$ = − 1
π
∫
C

Tr (φzδAz̄) .

Then the action has the form

S = Im τ ∫
∂Σ

Φ∗$ +BRST − exact terms.

Next we note that under the birational identification of MHiggs(G,C) with the
cotangent bundle of M(G,C), the form $ becomes the canonical holomorphic 1-
form pdq on the cotangent bundle. Thus the path-integral for the A-model is very
similar to the path-integral of a particle on M(G,C) with the zero Hamiltonian,
with −iImτ playing the role of the inverse Planck constant. The main difference
is that instead of arbitrary functions on the cotangent bundle in the A-model one
only considers holomorphic functions. Otherwise, quantization proceeds in much
the same way, and one finds that the algebra of vertex operators can be quantized
into the algebra of holomorphic differential operators onM(G,C). Here the usual
quantization ambiguity creeps in: commutation relations

[pi, qj] = Im τ δji , [pi, pj] = [qi, qj] = 0
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can be represented by holomorphic differential operators on an arbitrary complex
power of a holomorphic line bundle on M(G,C). To fix this ambiguity, one can
appeal to the additional discrete symmetry of the problem: the symmetry under
“time-reversal”. This symmetry reverses orientation of Σ and also multiplies φz
by −1. If we want to maintain this symmetry on the quantum level, we must
require that the algebra of vertex operators be isomorphic to its opposite algebra.
It is known that this is true precisely for holomorphic differential operators on the
square root of the canonical line bundle of M(G,C) [43]. We conclude that the
quantized algebra of vertex operators is isomorphic to the sheaf of holomorphic
differential operators on K1/2, where K is the canonical line bundle onM(G,C).

Now we can finally explain the relation between A-branes and (twisted) D-
modules onM(G,C) ⊂ BunG(C). Given an A-brane β, we can consider the space
of morphisms from the canonical coisotropic brane α to the brane β. It is a left
module over the endomorphism algebra of α. Better still, we can sheafify the
space of morphisms along M(G,C) and get a sheaf of modules over the sheaf of
differential operators on K1/2, where K is the canonical line bundle of M(G,C).
This is the twisted D-module corresponding to the brane β.

In general it is rather hard to determine the D-module corresponding to a
particular A-brane. A simple case is when β is a Lagrangian submanifold defined
by the condition φ = 0, i.e. the zero section of the cotangent bundle M(G,C).
In that case, the D-module is simply the sheaf of sections of K1/2. From this
example, one could suspect that the A-brane is simply the characteristic variety
of the corresponding D-module. However, this is not so in general, since in general
A-branes are neither conic nor even holomorphic subvarieties of MHiggs(G,C).
For example, a fiber of the Hitchin fibration Fp is holomorphic but not conic. It
is not clear how to compute the D-module corresponding to Fp, even when Fp is
a smooth fiber.10

We conclude this sections with two remarks. First, the relation between A-
branes is most readily understood if we replace the stack BunG(C) by the space of
stable G-bundlesM(G,C). Second, from the physical viewpoint it is more natural
to work directly with A-branes rather than with corresponding D-modules. In
some sense it is also more natural from the mathematical viewpoint, since both
the derived category ofMflat(LG,C) and the category of A-branes onMH(G,C)
are “topological”, in the sense that they do not depend on the complex structure
on C. The complex structure on C appears only when we introduce the canonical
coisotropic brane (its curvature F manifestly depends on the Hodge star operator
on C).

10The abelian case G = U(1) is an exception, see [6] for details.
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0.9 Wilson and ’t Hooft operators

In any gauge theory one can define Wilson loop operators:

TrR P exp∫
γ
A = TrR (Hol(A,γ)) ,

where R is a finite-dimensional representation of G, γ is a closed loop in M ,
and P exp ∫ is simply a physical notation for holonomy. The Wilson loop is a
gauge-invariant function of the connection A and therefore can be regarded as a
physical observable. Inserting the Wilson loop into the path-integral is equivalent
to inserting an infinitely massive particle traveling along the path γ and having
internal “color-electric” degrees of freedom described by representation R of G.
For example, in the theory of strong nuclear interactions we have G = SU(3), and
the effect of a massive quark can be modeled by a Wilson loop with R being a
three-dimensional irreducible representation. The vacuum expectation value of the
Wilson loop can be used to distinguish various massive phases of the gauge theory
[11]. Here however we will be interested in the algebra of Wilson loop operators,
which is insensitive to the long-distance properties of the theory.

The Wilson loop is not BRST-invariant and therefore is not a valid observable
in the twisted theory. But it turns out that for t = ±i there is a simple modification
which is BRST-invariant:

WR(γ) = TrR P exp∫
γ
(A ± iφ) = TrR (Hol(A ± iφ), γ))

The reason is that the complex connection A = A± iφ is BRST-invariant for these
values of t. There is nothing similar for any other value of t.

We may ask how the MO duality acts on Wilson loop operators. The answer
is to a large extent fixed by symmetries, but turns out to be rather nontrivial
[44]. The difficulty is that the dual operator cannot be written as a function of
fields, but instead is a disorder operator. Inserting a disorder operator into the
path-integral means changing the space of fields over which one integrates. For
example, a disorder operator localized on a closed curve γ is defined by specifying
a singular behavior for the fields near γ. The disorder operator dual to a Wilson
loop has been first discussed by G. ’t Hooft [45] and is defined as follows [44]. Let
µ be an element of the Lie algebra g defined up to adjoint action of G, and let us
choose coordinates in the neighborhood of a point p ∈ γ so that γ is defined by
the equations x1 = x2 = x3 = 0. Then we require the curvature of the gauge field to
have a singularity of the form

F ∼ ⋆3 d(
µ

2r
) ,

where r is the distance to the origin in the 123 hyperplane, and ⋆3 is the Hodge
star operator in the same hyperplane. For t = 1 Q-invariance requires the 1-form
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Higgs field φ to be singular as well:

φ ∼ µ

2r
dx4.

One can show that such an ansatz for F makes sense (i.e. one can find a gauge
field whose curvature is F ) if and only if µ is a Lie algebra homomorphism from
R to g obtained from a Lie group homomorphism U(1) → G [3]. To describe this
condition in a more suggestive way, let us use the gauge freedom to conjugate µ
to a particular Cartan subalgebra t of g. Then µ must lie in the coweight lattice
Λcw(G) ⊂ t, i.e. the lattice of homomorphisms from U(1) to the maximal torus
T corresponding to t. In addition, one has to identify points of the lattice which
are related by an element of the Weyl group W. Thus ’t Hooft loop operators
are classified by elements of Λcw(G)/W. We will denote the ’t Hooft operator
corresponding to the coweight µ as Tµ.

By definition, Λcw(G) is identified with the weight lattice Λw(LG) of LG.
But elements of Λw(LG)/W are in one-to-one correspondence with irreducible
representations of LG. This suggests that MO duality maps the ’t Hooft operator
corresponding to a coweight µ ∈ Λcw(G) to the Wilson operator corresponding to
a representation LR with highest weight in the Weyl orbit of µ ∈ Λw(LG). This is
a reinterpretation of the the Goddard-Nuyts-Olive argument discussed in section
2 in terms of operators rather than states.

To test this duality, one can compare the algebra of ’t Hooft operators for
gauge group G and Wilson operators for gauge group LG. In the latter case, the
operator product is controlled by the algebra of irreducible representations of LG.
That is, we expect that as the loop γ′ approaches γ, we have

WR(γ)WR′(γ′) ∼ ⊕
Ri⊂R⊗R′

WRi(γ),

where R and R′ are irreducible representations of G, and the sum on the right-
hand-side runs over irreducible summands of R⊗R′.

In the case of ’t Hooft operators the computation of the operator product is
much more nontrivial [6]. We will only sketch the procedure and state the results.
First, one considers the twisted YM theory (at t = 1) on a 4-manifold of the form
X = R × I × C, where I is an interval and R is regarded as the time direction.
The computation is local, so one may even take C = P1. The ’t Hooft operators
are located at points on I × C and extend in the time direction. Their presence
modifies the definition and Hamiltonian quantization of the gauge theory on X.
Namely, the gauge field A and the scalar φ0 have prescribed singularities at points
on I×C. Since the theory is topological, one can take the limit when the volume of
C ×I goes to zero; in this limit the theory reduces to a 1d theory: supersymmetric
sigma-model on R whose target is the space of vacua of the YM theory. The latter
space can be obtained by solving BPS equations (5) assuming that all fields are
independent of the time coordinates. With suitable boundary conditions, one can
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show that this moduli space is the space of solutions of Bogomolny equations on
I ×C with prescribed singularities.

The Bogomolny equations are equations for a gauge field A and a Higgs field
φ0 ∈ ad(E) on a 3-manifold Y (which in our case is C × I):

F = ⋆3dAφ0.

To understand the moduli space of solutions of this equation, let us rewrite it as
an evolution equation along I. Letting σ to be a coordinate on I, and working in
the gauge Aσ = 0, we get

∂σAz̄ = −iDz̄φ0.

This equation says that the isomorphism class of the holomorphic G-bundle on C×
y, y ∈ I corresponding to Az̄ is independent of y. This conclusion is violated only at
the points on I where the ’t Hooft operators are inserted. A further analysis shows
that at these points the holomorphic G-bundle undergoes a Hecke transformation.

By definition, Hecke transformations modify the G-bundle at a single point.
The space of such modifications is parameterized by points of the affine Grass-
mannian GrG = G((z))/G[[z]]. This is an infinite-dimensional space which is a
union of finite-dimensional strata called Schubert cells [46]. Schubert cells are la-
beled by Weyl-equivalence classes of coweights of G. As explained in [6], the Hecke
transformations corresponding to an ’t Hooft operator Tµ are precisely those in
the Schubert cell labeled by µ.

The net result of this analysis is that for a single ’t Hooft operator Tµ the
space of solutions of the BPS equations is the Schubert cell Cµ. The Hilbert space
of the associated 1d sigma-model is the L2 cohomology of Cµ. More generally,
computing the product of ’t Hooft operators reduces to the study of L2 cohomol-
ogy of the Schubert cells. Assuming that the L2 cohomology coincides with the
intersection cohomology of the closure of the cell, the prediction of the MO duality
reduces to the statement of the geometric Satake correspondence, which says that
the tensor category of equivariant perverse sheaves on GrG is equivalent to the
category of finite-dimensional representations of LG [47, 48, 49]. This provides a
new and highly nontrivial check of the MO duality.

From the gauge-theoretic viewpoint one can think about ’t Hooft operators
as functors from the category of A-branes on MH(G,C) to itself. To understand
how this comes about, consider a loop operator (Wilson or ’t Hooft) in the twisted
N = 4 SYM theory (at t = i or t = 1, respectively). As usual, we take the four-
manifold X to be Σ×C, and let the curve γ be of the form γ0×p, where p ∈ C and
γ0 is a curve on Σ. Let ∂Σ0 be a connected component of ∂Σ on which we specify
a boundary condition corresponding to a given brane β. This brane is either a
B-brane in complex structure J or an A-brane in complex structure K, depending
on whether t = i or t = 1. Now suppose γ0 approaches ∂Σ0. The “composite” of
∂Σ0 with boundary condition β and the loop operator can be thought of as a new
boundary condition for the topological sigma-model with target MH(G,C). It
depends on p ∈ C as well as other data defining the loop operator. One can show
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that this “fusion” operation defines a functor from the category of topological
branes to itself [6].

In the case of the Wilson loop, it is very easy to describe this functor. In com-
plex structure J , we can identify MH(G,C) with Mflat(G,C). On the product
Mflat(G,C)×C there is a universal G-bundle which we call E . For any p ∈ C let us
denote by Ep the restriction of E toMflat(G,C)×p. For any representation R of G
we can consider the operation of tensoring coherent sheaves onMflat(G,C) with
the associated holomorphic vector bundle R(Ep). One can show that this is the
functor corresponding to the Wilson loop in representation R inserted at a point
p ∈ C. We will denote this functor WR(p). The action of ’t Hooft loop operators
is harder to describe, see sections 9 and 10 of [6] for details. In particular, it is
shown there that ’t Hooft operators act by Hecke transformations.

Consider now the structure sheaf Ox of a point x ∈ Mflat(LG,C). For any
representation LR of LG the functor corresponding to WLR(p) maps Ox to the
sheaf Ox ⊗ LR(Ep)x. That is, Ox is simply tensored with a vector space LR(Ep)x.
One says that Ox is an eigenobject of the functor WLR(Ep) with eigenvalue
LR(Ep)x. The notion of an eigenobject of a functor is a categorification of the
notion of an eigenvector of a linear operator: instead of an element of a vector
space one has an object of a C-linear category, instead of a linear operator one has
a functor from the category to itself, and instead of a complex number (eigenvalue)
one has a complex vector space LR(Ep)x.

We conclude that Ox is a common eigenobject of all functors WLR(p) with
eigenvalues LR(Ep)x. Actually, since we can vary p continuously on C and the
vector spaces LR(Ep)x are naturally identified as one varies p along any path on
C, it is better to say that the eigenvalue is a flat LG-bundle LR(E)x. Tautologically,
this flat vector bundle is obtained by taking the flat principal LG-bundle on C
corresponding to x and associating to it a flat vector bundle via the representation
LR.

Applying the MO duality, we may conclude that the A-brane onMH(G,C)
corresponding to a fiber of the Hitchin fibration is a common eigenobject for all
’t Hooft operators, regarded as functors on the category of A-branes. The eigen-
value is the flat LG bundle on C determined by the mirror of the A-brane. This
is the gauge-theoretic version of the statement that the D-module on BunG(C)
corresponding to a point on Mflat(LG,C) is a Hecke eigensheaf.

I will conclude this section by putting Wilson and ’t Hooft loop operators
in the context of the Extended TFT. It is best to think of Wilson operators as
objects of a category, and of t’ Hooft operators as objects of another category.
The former category is the category that 4d TFT at t = i assigns to a 2-sphere.
The latter category is the category that 4d TFT at t = 1 assigns to a 2-sphere. In
the physical language, these are categories of line operators. Since Montonen-Olive
duality induces an isomorphism of 4d TFTs at t = i and t = 1, it gives rise to an
equivalence of categories of line operators. It should be noted that Wilson and ’t
Hooft operators are far from being the most general objects in these categories.
The complete description of the category of line operators at t = i is given in [25].
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0.10 Quantum geometric Langlands duality

One possible generalization of geometric Langlands duality is to consider twisted
Yang-Mills theory with θ ≠ 0. Making θ nonzero in the gauge theory corresponds
to turning on a topologically nontrivial B-field in the corresponding topological
sigma-model on Σ:

B = − θ

2π
ωI .

At t = i this deformation does not affect the topological sigma-model, because one
can make it a 2-form of type (2,0) by adding an exact form, and (2,0) B-fields
correspond to BRST-exact deformations of the action. Equivalently, one notes that
all dependence on θ in the gauge theory is through the parameter Ψ, and for t = i
Ψ = ∞ irrespective of the value of θ.

On the other hand, for t = 1 the deformation has a nontrivial effect, as it
makes Ψ real (for t = 1 and θ = 0 we have Ψ = 0). Of course, there is no paradox
here: turning on θ at t = 1 does not correspond to turning on θ at t = i. To
understand the implications of a nonzero θ at t = 1, note that keeping t = 1 and
varying θ we can get arbitrary real values of Ψ. On the other hand, duality maps
Ψ → −1/(ngΨ). Thus one can say that MO duality maps the twisted YM theory
with t = 1 and a nonzero θ = θ0 to a twisted YM theory with t = 1 and θ = −4π2/θ0.
That is, it maps an A-model in complex structure K forMH(G,C) to an A-model
in complex structure K for MH(LG,C).

To understand the mathematical implications of this statement, we need to
reinterpret the category of A-branes onMH(G,C) when the B-field is proportional
to ωI . Again, the key insight is that for any such B-field there exists an analogue of
the canonical coisotropic A-brane, such that the corresponding sheaf of open string
states is isomorphic to the sheaf of twisted differential operators on M(G,C).

The curvature F of the line bundle on a coisotropic A-brane should satisfy

(ω−1(F +B))2 = −1,

where ω = Imτ ωK . We take

F = Imτ ⋅ cos q, sin q = −Reτ
Imτ

as the curvature of the canonical coisotorpic A-brane for nonzero θ. The corre-
sponding sheaf of open strings, regarded as a sheaf of vector spaces, is isomorphic
to the sheaf of functions on MH(G,C) holomorphic in the complex structure

I(Ψ) = I cos q − J sin q.

The corresponding holomorphic coordinates on MH(G,C) are

A′
z̄ = Az̄ − i tan

q

2
φz̄, φ′z = φz + i tan

q

2
Az.
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For q = 0, the complex structure I(Ψ) is simply I, and the corresponding
complex manifold is birational to the cotangent bundle to the moduli space of
holomorphic G-bundles on C. For q ≠ 0 one can show thatMH(G,C) is birational
to the space of pairs (E,∂λ), where E is a holomorphic principal G-bundle on C
and ∂λ is a λ-connection on E, with λ = i tan q

2
. We remind that a λ-connection

on a holomorphic G-bundle E is a map

∂λ ∶ Γ(E) → Γ(E ⊗Ω1)

such that
∂λ(fs) = f∂λs + λdf ⊗ s, ∀f ∈ Γ(Ω0), s ∈ Γ(E).

The space of λ-connections on E is an affine space modeled on the space of Higgs
fields on E. Thus in complex structure I(Ψ) the spaceMH(G,C) is birational to
an affine bundle modeled on the cotangent bundle of M(G,C). We will call this
affine bundle the twisted cotangent bundle.

The rest of the argument proceeds much in the same way as in the case
θ = 0. On the classical level, the sheaf of boundary observables corresponding to
the canonical coisotropic A-brane is quasiisomorphic to the sheaf of holomorphic
functions on the twisted cotangent bundle over M(G,C). On the quantum level,
the algebra of boundary observables becomes noncommutative, and to ensure that
there are no problems with the definition of the product one needs to work with
functions which are polynomial in the fiber coordinates. Thus we end up with a
sheaf on M(G,C) which locally looks like the sheaf of symbols of holomorphic
differential operators on M(G,C). The action of the A-model now has the form

S = ∫
Σ

Φ∗(ω − iF − iB) = −i∫
Σ

Φ∗Ω′

where the holomorphic symplectic form Ω′ on the space of λ-connections is given
by

Ω′ = − Im τ

π
∫
C

Tr (δφzδA′
z̄) + i

Re τ
π
∫
C

Tr (δA′
zδA

′
z̄) .

The first term in this formula is exact, but the second one is not. It is proportional
to the pull-back of the curvature of the determinant line bundle on M(G,C).
Because of this, the action cannot be written as a boundary term globally on
M(G,C). But locally the form Ω′ is still exact, and therefore we end up with the
problem of quantizing the canonical commutation relations

[pi, qj] = Im τ δji , [pi, pj] = [qi, qj] = 0.

The quantization is unique locally and gives holomorphic differential operators on
some power of a line bundle L overM(G,C). Since H2(M(G,C)) and generated
by the first Chern class of the determinant line bundle Det, we may parameterize
this complex power of a line bundle as K ⊗Detq, q ∈ C. We conclude that in the
case θ ≠ 0 the sheaf of boundary observables on the canonical coisotropic A-brane
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is quasiisomorphic to the sheaf of holomorphic differential operators on K ⊗Detq

for some complex number q.
It remains to fix q as a function of θ. For θ ≠ 0 we cannot appeal to time-

reversal symmetry since nonzero θ breaks it. Instead, we note that for θ = 2πn we
must have q = n. Indeed, for these values of q we may consider the locus φ = 0
in M(G,C) equipped with the gauge field F = −nωI as a Lagrangian A-brane
(recall that for nonzero B-field the gauge field on the Lagrangian brane is not flat
but satisfies F+B=0). It is also easy to show that the sheaf of open strings which
begin on the canonical coisotropic A-brane and end on this Lagrangian A-brane is
K ⊗Detn (this follows from the fact that ωI is the curvature of Det). Finally, one
can show that q is linear in θ. Therefore we must have q = θ/(2π) = Ψ for all Ψ.

In the same way as before, by considering the sheaf of open strings beginning
on the c.c. brane and ending on any other A-brane, we can assign to any A-brane a
twisted D-module, i.e. a sheaf of modules over the sheaf of holomorphic differential
operators on K⊗DetΨ. Conjecturally, this map can be extended to an equivalence
of categories. Therefore for Ψ ≠ 0 the Montonen-Olive duality would say that this
category would remain unchanged if we replaced G by LG and Ψ by −1/(ngΨ).
This is called quantum geometric Langlands duality. The name “quantum” comes
from the fact that now on both sides of the duality we have to deal with modules
over noncommutative algebras. Unlike in the “classical” case, here there is nothing
comparable to the Hecke eigensheaf. Physically, the reason for this is that the fibers
of the Hitchin fibration are not valid A-branes for nonzero θ.

Acknowledgments

This work was supported in part by the DOE grant DE-FG03-92-ER40701.



34



Bibliography

[1] E. Frenkel, “Lectures On The Langlands Program And Conformal Field The-
ory,” arXiv:hep-th/0512172.

[2] G. Laumon, “Correspondance Langlands Geometrique Pour Les Corps Des
Fonctions,” Duke Math. J. 54, 309-359 (1987).

[3] P. Goddard, J. Nuyts and D. I. Olive, “Gauge Theories And Magnetic
Charge,” Nucl. Phys. B 125, 1 (1977).

[4] C. Montonen and D. I. Olive, “Magnetic Monopoles As Gauge Particles?,”
Phys. Lett. B 72, 117 (1977).

[5] H. Osborn, “Topological Charges For N=4 Supersymmetric Gauge Theories
And Monopoles Of Spin 1,” Phys. Lett. B 83, 321 (1979).

[6] A. Kapustin and E. Witten, “Electric-Magnetic Duality And The Geometric
Langlands Program,” arXiv:hep-th/0604151.

[7] S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric
Langlands Program,” arXiv:hep-th/0612073.

[8] S. Gukov and E. Witten, “Rigid Surface Operators,” arXiv:0804.1561 [hep-
th].

[9] E. Witten, “Gauge Theory And Wild Ramification,” arXiv:0710.0631 [hep-
th].

[10] E. Witten, “On S-duality in abelian gauge theory,” Selecta Math. 1, 383
(1995).

[11] K. G. Wilson, “Confinement Of Quarks,” Phys. Rev. D 10, 2445 (1974).

[12] N. Dorey, C. Fraser, T. J. Hollowood and M. A. C. Kneipp, “S-Duality In N=4
Supersymmetric Gauge Theories,” Phys. Lett. B 383, 422 (1996) [arXiv:hep-
th/9605069].

35



36 Bibliography

[13] P. C. Argyres, A. Kapustin and N. Seiberg, “On S-duality For Non-Simply-
Laced Gauge Groups,” JHEP 0606, 043 (2006) [arXiv:hep-th/0603048].

[14] E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topolog-
ical Charges,” Phys. Lett. B 78, 97 (1978).

[15] A. Sen, “Dyon - Monopole Bound States, Self-Dual Harmonic Forms On The
Multi-Monopole Moduli Space, And SL(2,Z) Invariance In String Theory,”
Phys. Lett. B 329, 217 (1994) [arXiv:hep-th/9402032].

[16] C. Vafa and E. Witten, “A Strong Coupling Test Of S-Duality,” Nucl. Phys.
B 431, 3 (1994) [arXiv:hep-th/9408074].

[17] C. Vafa, “Geometric Origin Of Montonen-Olive Duality,” Adv. Theor. Math.
Phys. 1, 158 (1998) [arXiv:hep-th/9707131].

[18] E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117,
353 (1988).

[19] N. Hitchin, “The Self-Duality Equations On The Riemann Surface,” Proc.
Lond. Math. Soc. (3) 55, 59-126 (1987).

[20] E. B. Bogomolny, “Stability Of Classical Solutions,” Sov. J. Nucl. Phys. 24,
449 (1976) [Yad. Fiz. 24, 861 (1976)].

[21] K. Corlette, “Flat G-Bundles With Canonical Metrics,” J. Diff. Geom. 28,
361-382 (1988).

[22] M. Atiyah, “Topological Quantum Field Theory,” IHES Publ. Math. 68 175-
186 (1988).

[23] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4
Super Yang-Mills Theory,” arXiv:0804.2902 [hep-th].

[24] D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super
Yang-Mills Theory,” arXiv:0807.3720 [hep-th].

[25] A. Kapustin, K. Setter and K. Vyas, “Surface operators in four-dimensional
topological gauge theory and Langlands duality,” arXiv:1002.0385 [hep-th].

[26] E. Witten, “Mirror Manifolds And Topological Field Theory,” arXiv:hep-
th/9112056.

[27] S. Barannikov and M. Kontsevich, “Frobenius manifolds and formality of Lie
algebra of polyvector fields,” Internat. Math. Res. Notices 4, 201 (1998).

[28] A. Kapustin, “Topological Strings On Noncommutative Manifolds,” Int. J.
Geom. Meth. Mod. Phys. 1, 49 (2004) [arXiv:hep-th/0310057].



Bibliography 37

[29] A. Kapustin and Y. Li, “Topological Sigma-Models With H-Flux And Twisted
Generalized Complex Manifolds,” arXiv:hep-th/0407249.

[30] N. Hitchin, “Generalized Calabi-Yau manifolds,” Q. J. Math. 54, 281-308
(2003).

[31] S. K. Donaldson, “Twisted Harmonic Maps And The Self-Duality Equations,”
Proc. Lond. Math. Soc. (3), 55, 127-131 (1987).

[32] A. Kapustin, “Holomorphic Reduction Of N = 2 Gauge Theories, Wilson-’t
Hooft Operators, And S-Duality,” arXiv:hep-th/0612119.

[33] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, “Topological Reduction
Of 4-d SYM To 2-d Sigma Models,” Nucl. Phys. B 448, 166 (1995) [arXiv:hep-
th/9501096].

[34] T. Hausel and M. Thaddeus, “Mirror Symmetry, Langlands Dual-
ity, And The Hitchin System,” Invent. Math. 153, 197-229 (2003)
[arXiv:math.AG/0205236].

[35] M. R. Douglas, “Dirichlet branes, homological mirror symmetry, and stabil-
ity,” arXiv:hep-th/0207021.

[36] A. Strominger, S. T. Yau and E. Zaslow, “Mirror symmetry Is T-duality,”
Nucl. Phys. B 479, 243 (1996) [arXiv:hep-th/9606040].

[37] N. Hitchin, “Stable Bundles And Integrable Systems,” Duke Math. J. 54,
91-114 (1987).

[38] A. Kapustin and D. Orlov, “Remarks On A-branes, Mirror Symmetry, And
The Fukaya Category,” J. Geom. Phys. 48, 84 (2003) [arXiv:hep-th/0109098].

[39] F. Malikov, V. Schechtman, And A. Vaintrob, “Chiral De Rham Complex,”
Comm. Math. Phys. 204, 439-473 (1999) [arXiv:math.AG/9803041].

[40] A. Kapustin, “Chiral De Rham Complex And The Half-Twisted Sigma-
Model,” arXiv:hep-th/0504074.

[41] E. Witten, “Two-Dimensional Models With (0,2) Supersymmetry: Perturba-
tive Aspects,” arXiv:hep-th/0504078.

[42] A. Kapustin and Y. Li, “Open String BRST Cohomology For General-
ized Complex Branes,” Adv. Theor. Math. Phys. 9, 559 (2005) [arXiv:hep-
th/0501071].

[43] A. Beilinson and J. Bernstein, “A Proof of Jantzen’s Conjectures,” I. M.
Gelfand Seminar, 1-50, Adv. Sov. Math. 16, Part 1, AMS, 1993.



38 Bibliography

[44] A. Kapustin, “Wilson-’t Hooft Operators In Four-Dimensional Gauge Theo-
ries And S-Duality,” Phys. Rev. D 74, 025005 (2006) [arXiv:hep-th/0501015].

[45] G. ’t Hooft, “On The Phase Transition Towards Permanent Quark Confine-
ment,” Nucl. Phys. B 138, 1 (1978); “A Property Of Electric And Magnetic
Flux In Nonabelian Gauge Theories,” Nucl. Phys. B 153, 141 (1979).

[46] A. Pressley and G. Segal, “Loop groups” (Oxford University Press, 1988).

[47] G. Lusztig, “Singularities, Character Formula, And A q-Analog Of Weight
Multiplicities,” in Analyse Et Topolgie Sur Les Espaces Singuliers II-III, As-
terisque vol. 101-2, 208-229 (1981).

[48] V. Ginzburg, “Perverse Sheaves On A Loop Group And Langlands Duality,”
arXiv:alg-geom/9511007.

[49] I. Mirkovic and K. Vilonen, “Perverse Sheaves On Affine Grassman-
nians And Langlands Duality,” Math. Res. Lett. 7, 13-24 (2000)
[arXiv:math.AG/9911050].


