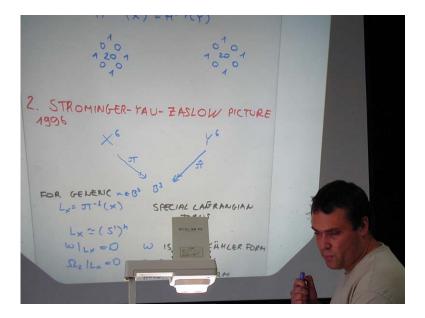
Mirror symmetry, Langlands duality and the Hitchin system

Tamás Hausel

Royal Society URF at University of Oxford http://www.maths.ox.ac.uk/ \sim hausel/talks.html

March 2010 Second International School on Geometry and Physics Geometric Langlands and Gauge Theory CRM Barcelona

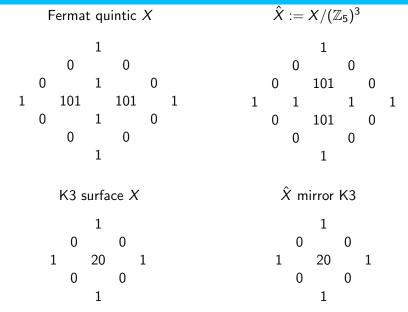
Talk with same title in RIMS, Kyoto 6 September 2001



Mirror Symmetry

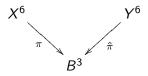
- phenomenon first arose in various forms in string theory
- mathematical predictions (Candelas-de la Ossa-Green-Parkes 1991)
- mathematically it relates the symplectic geometry of a Calabi-Yau manifold X^d to the complex geometry of its mirror Calabi-Yau Y^d
- first aspect is the topological mirror test $h^{p,q}(X) = h^{d-p,q}(Y)$
- compact hyperkähler manifolds satisfy $h^{p,q}(X) = h^{d-p,q}(X)$
- (Kontsevich 1994) suggests homological mirror symmetry $\mathcal{D}^{b}(Fuk(X, \omega)) \cong \mathcal{D}^{b}(Coh(Y, I))$
- (Strominger-Yau-Zaslow 1996) suggests a geometrical construction how to obtain Y from X
- many predictions of mirror symmetry have been confirmed no general understanding yet

Hodge diamonds of mirror Calabi-Yaus



Strominger-Yau-Zaslow

- X CY 3-fold
- Y mirror CY 3-fold
- B is 3-dimensional real manifold mostly S³



- π and $\hat{\pi}$ are special Lagrangian fibrations
- for generic $x \in B^3$ $L_x = \pi^{-1}(x) \cong T^3$ and $\hat{L}_x = \hat{\pi}^{-1}(x) \cong T^3$ are dual special Lagrangian tori
- generically Y^6 can be thought of as the moduli space of flat U(1) connections on a generic fiber L_x (a.k.a. *D*-branes)

Langlands duality

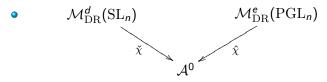
- the Langlands program aims to describe ${\rm Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ via representation theory
- $\bullet~{\rm G}$ reductive group, ${}^L{\rm G}$ its Langlands dual
- e.g ${}^{L}\mathrm{GL}_{n} = \mathrm{GL}_{n}$; ${}^{L}\mathrm{SL}_{n} = \mathrm{PGL}_{n}$, ${}^{L}\mathrm{PGL}_{n} = \mathrm{SL}_{n}$
- [Langlands 1967] conjectures that {homs $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow G(\mathbb{C})$ } \leftrightarrow {automorphic reps of ${}^{L}G(\mathcal{A}_{\mathbb{Q}})$ }
- $G = GL_1 \rightsquigarrow$ class field theory $G = GL_2 \rightsquigarrow$ Shimura-Taniyama-Weil
- function field version: replace \mathbb{Q} with $\mathbb{F}_q(X)$, where X/\mathbb{F}_q is algebraic curve
- [Ngô, 2008] proves fundamental lemma for $\mathbb{F}_q(X) \rightsquigarrow$ FL for \mathbb{Q}
- geometric version: replace $\mathbb{F}_q(X)$ with $\mathbb{C}(X)$ for X/\mathbb{C}
- [Laumon 1987, Beilinson–Drinfeld 1995]
 Geometric Langlands conjecture
 {G-local systems on X} ↔ {Hecke eigensheaves on Bun_{ℓG}(X)}
- [Kapustin–Witten 2006] deduces this from reduction of S-duality (electro-magnetic duality) in N = 4 SUSY YM in 4d

Hitchin system

- Hamiltonian system: (X^{2d}, ω) symplectic manifold
 H : X → ℝ Hamiltonian function X_H Hamiltonian vector field
 (dH = ω(X_H, .))
- $f: X \to \mathbb{R}$ is a first integral if $X_H f = \omega(X_f, X_H) = 0$
- the Hamiltonian system is *completely integrable* if there is $f = (H = f_1, \dots, f_d) : X \to \mathbb{R}^d$ generic such that $\omega(X_{f_i}, X_{f_j}) = 0$
- the generic fibre of f has an action of $\mathbb{R}^d = \langle X_{f_1}, \ldots, X_{f_d} \rangle \rightsquigarrow$ when f is proper generic fibre is a torus $(S^1)^d$
- examples include: Euler and Kovalevskaya tops and the spherical pendulum
- algebraic version when replacing ℝ by ℂ → many examples can be formulated as a version of the *Hitchin system*
- a Hitchin system is associated to a complex curve *C* and a complex reductive group *G*
- it arose in the study [Hitchin 1987] of the 2-dimensional reduction of the Yang-Mills equations

 In these lectures we will discuss the mirror symmetry proposal of [Hausel–Thaddeus 2003]:

"Hitchin systems for Langlands dual groups satisfy Strominger-Yau-Zaslow, so could be considered mirror symmetric; in particular they should satisfy the *topological mirror tests*:"



Conjecture (Hausel-Thaddeus 2003, "Topological mirror test")

For all
$$d, e \in \mathbb{Z}$$
, satisfying $(d, n) = (e, n) = 1$, we have
 $E_{st}^{B^e} \left(\mathcal{M}_{DR}^d(SL_n); x, y \right) = E_{st}^{\hat{B}^d} \left(\mathcal{M}_{DR}^e(PGL_n); x, y \right)$

The moduli space of vector bundles on a curve - GL_n

- C smooth complex projective curve of genus g > 1
- fix integers n > 0 and $d \in \mathbb{Z}$ always assume (d, n) = 1.
- $\mathcal{N}^d :=$ moduli space of isomorphism classes of semi-stable rank *n* degree *d* vector bundles on *C*
- constructed using geometric invariant theory (GIT) or gauge theory
- vector bundle *E* is called *semi-stable* (*stable*) if every proper subbundle *F* satisfies

$$\mu(F) = rac{\deg(F)}{\operatorname{rk}(F)} \stackrel{(<)}{\leq} \mu(E) = rac{\deg(E)}{\operatorname{rk}(E)}$$

when (d, n) = 1 semi-stability ⇔ stability →
 N^d is a non-singular projective fine moduli space

SL_n and PGL_n

• det :
$$\mathcal{N}^d \rightarrow \operatorname{Jac}^d(C)$$

[E] $\mapsto \Lambda^n(E)$

- fix Λ ∈ Jac^d(C) and let Ň^Λ := det⁻¹(Λ) ⊂ N^d the moduli space of (twisted) SL_n bundles on C
- $\check{\mathcal{N}}^{\Lambda}$ does not depend on the choice of $\Lambda \in \operatorname{Jac}^{d}(C)$ just write $\check{\mathcal{N}}^{d} := \check{\mathcal{N}}^{\Lambda}$
- ullet when $(d,n)=1 \rightsquigarrow \check{\mathcal{N}}^d$ is non-singular and projective
- $\operatorname{Pic}^{0}(C) = \operatorname{Jac}^{0}(C)$ acts on \mathcal{N}^{d} via $(L, E) \mapsto L \otimes E$. define $\hat{\mathcal{N}}^{d} := \mathcal{N}^{d} / \operatorname{Pic}^{0}(C)$

the moduli space of degree $d \operatorname{PGL}_n$ bundles on C

• $\Gamma := \operatorname{Pic}^{0}(C)[n] \cong \mathbb{Z}_{n}^{2g} \subset \operatorname{Pic}^{0}(C)$ acts on $\hat{\mathcal{N}}^{d}$ and clearly $\hat{\mathcal{N}}^{d} = \check{\mathcal{N}}^{d} / \Gamma \rightsquigarrow \hat{\mathcal{N}}^{d}$ is a projective orbifold.

Cohomology of $\hat{\check{\mathcal{N}}}$

- The cohomologies H^{*}(N^d), H^{*}(Ň^d) and H^{*}(N^d) are well understood.
- [Harder–Narasimhan 1975] obtained recursive formulae for #N(𝔽_q) → formula for Betti numbers via the Weil conjectures [Deligne 1974]
- [Atiyah-Bott 1981] gave different gauge-theoretic proof

Theorem (Harder–Narasimhan, 1975)

The finite group Γ acts trivially on $H^*(\check{N}^d)$. In particular $H^*(\check{N}^d) \cong H^*(\hat{N}^d)$.

- proof by showing $\#\check{\mathcal{N}}^d(\mathbb{F}_q)=\#\hat{\mathcal{N}}^d(\mathbb{F}_q)$
- [Hitchin, 1987] \Rightarrow false for moduli space of SL_2 Higgs bundles \rightsquigarrow non-triviality of our topological mirror tests

The Hitchin map - GL_n

- $\mathcal{T}^*\mathcal{N}$ is a (non-projective) algebraic symplectic variety
- \bullet the ring $\mathbb{C}[\mathcal{T}^*\mathcal{N}]$ is known to be finitely-generated
- the affinization of $T^*\mathcal{N}$ gives the GL_n Hitchin map.

$$\chi: T^*\mathcal{N} \to \mathcal{A} := \operatorname{Spec}(\mathbb{C}[T^*\mathcal{N}])$$

- deformation theory $\rightsquigarrow T_{[E]}\mathcal{N} = H^1(C, \operatorname{End}(E))$ Serre duality $\Rightarrow T^*_{[E]}\mathcal{N} = H^0(C, \operatorname{End}(E) \otimes K)$
- φ ∈ H⁰(C, End(E) ⊗ K) is a Higgs field locally "a matrix of one-forms on the curve"
- let $(E, \phi) \in T^*\mathcal{N}$ its characteristic polynomial $\chi(\phi) = t^n + a_1 t^{n-1} + \cdots + a_n$ where $a_i \in H^0(K^n)$

•
$$\chi: T^*\mathcal{N} \to \mathcal{A} := \bigoplus_{i=1}^n H^0(K^i)$$

(E, ϕ) \mapsto (a_1, a_2, \dots, a_n)

• The affine space \mathcal{A} is called the *Hitchin base*.

Hitchin map for SL_n and PGL_n

• for SL_n

$$\mathcal{T}^*_{[E]}\check{\mathcal{N}}^d=H^0(\mathrm{End}_0(E)\otimes K)$$

that is, a covector at ${\it E}$ is given by a trace free Higgs field.

• the SL_n Hitchin base is

$$\check{\mathcal{A}} = \mathcal{A}^0 := \bigoplus_{i=2}^n H^0(\mathcal{C}, \mathcal{K}^i).$$

• the SL_n Hitchin map

$$\check{\chi}: T^*\check{\mathcal{N}}^d \to \mathcal{A}^0.$$

- the PGL_n Hitchin map:

$$\hat{\chi}: (T^*\check{\mathcal{N}})/\Gamma o \hat{\mathcal{A}} = \mathcal{A}^0.$$

The Hitchin map is an integrable system

- \bullet recall that $\mathcal{T}^*\mathcal{N}$ is an algebraic symplectic variety
- with canonical Liouville symplectic structure
- $\bullet\,$ as the Hitchin map only depends on the cotangent direction $\rightsquigarrow\,$

Theorem (Hitchin, 1987)

- ω(X_{χi}, X_{χj}) = 0 for any two χ_i, χ_j ∈ ℂ[T*N] coordinate functions.
- $\dim(\mathcal{A}) = \dim(\mathcal{N}) = \dim(\mathcal{T}^*\mathcal{N})/2$
- generic fibres of χ are open subsets of abelian varieties

 $\sim \chi$ is an algebraically completely integrable Hamiltonian system.

• Need to projectivize χ to complete the generic fibres to abelian varieties (compact tori)

Proper Hitchin map

- (E, φ) ∈ T*N → E is stable; to projectivize χ we need to allow E to become unstable.
- A Higgs bundle is a pair (E, ϕ) where E is a vector bundle on C and $\phi \in H^0(C, \operatorname{End}(E) \otimes K)$ is a Higgs field.
- a Higgs bundle (E, φ) is (semi-)stable if for every φ-invariant proper subbundle E we have μ(F) ^(≤)< μ(E)
- *M^d* the moduli space of (semi-)stable Higgs bundles, a non-singular quasi-projective and symplectic variety, containing *T***N* ⊂ *M^d* as an open dense subvariety
- extend $\chi: \mathcal{M}^d
 ightarrow \mathcal{A}$ in the obvious way

Theorem (Hitchin 1987, Nitsure 1991, Faltings 1993)

 χ is a proper algebraically completely integrable Hamiltonian system. Its generic fibres are abelian varieties.

• as dim
$$(\mathcal{M}^d \setminus T^*\mathcal{N}^d) \ge 2 \Rightarrow \mathbb{C}[\mathcal{M}^d] \cong \mathbb{C}[T^*\mathcal{N}^d] \Rightarrow$$
 thus
by the Theorem
 $\mathcal{A} \cong \operatorname{Spec}(\mathbb{C}[\mathcal{M}^d]) \cong \operatorname{Spec}(\mathbb{C}[T^*\mathcal{N}^d])$

15 / 39

SL_n Hitchin system

- fix $\Lambda \in \operatorname{Jac}^d(C)$
- E vector bundle on C with determinant Λ
- $\phi \in H^0(\operatorname{End}_0(E) \otimes K)$ is trace-free Higgs field
- then (E, ϕ) is an SL_n -Higgs bundle
- $\check{\mathcal{M}}^{\Lambda} \subset \mathcal{M}^d$ moduli space of (semi-)stable SL_n -Higgs bundles
- $\check{\mathcal{M}}^{\Lambda}$ is independent of Λ denote $\check{\mathcal{M}}^d := \check{\mathcal{M}}^{\Lambda}$
- $\check{\mathcal{M}}^d$ is a non-singular quasi-projective and symplectic variety
- characteristic polynomial of ϕ gives SL_n -Hitchin system

$$\check{\chi}:\check{\mathcal{M}}^d
ightarrow \mathcal{A}^0:=\oplus_{i=2}^n H^0(C;K^i)$$

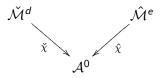
• $\check{\chi}$ is proper and a completely integrable system

PGL_n Hitchin system over the same Hitchin base

0

T* Pic⁰(C) = Pic⁰(C) × H⁰(C, K) is a group; it acts on M^d by (L, φ)(E, φ) → (L ⊗ E, φ + φ)
→ action of Γ = Pic⁰[n] on M^d
M^d = M^d/T* Pic⁰(C) ≅ χ⁻¹(A⁰)/Pic⁰(C) ≅ M/Γ
M^d, the PGL_n Higgs moduli space, is an orbifold
the Γ action is along the fibers of x → PGL_n Hitchin map

$$\hat{\chi}: \ \hat{\mathcal{M}}^d = \check{\mathcal{M}}^d / \Gamma \to \mathcal{A}^0$$



- will show generic fibers are dual Abelian varieties; which are complex Lagrangian due to integrable system
- changing complex structure will lead to special Lagrangian fibrations; and so to SYZ

• let (E, ϕ) be a Higgs bundle such that $\chi(\phi) = a \in \mathcal{A}$ has the form

$$a = t^n + a_1 t^{n-1} + \cdots + a_n,$$

where $a_i \in H^0(K^i)$.

- What should be the spectrum of the Higgs field \u03c6?
- at $p \in C$ the Higgs field $\phi_p : E_p \to E_p \otimes K_p$
- eigenvalue ν_p of φ_p satisfies ∃v ∈ E_p − 0 : Φ_p(v) = ν_pv. → must have ν_p ∈ K_p
- let X denote the total space of K then C_a := ∪_{p∈C}νⁱ_p ⊂ X, the set of all eigenvalues of the Higgs field → spectral curve
- scheme structure on C_a?
- tautological section $\lambda \in H^0(X, \pi^*K)$ satisfying $\lambda(x) = x$

•
$$s_a := \lambda^n + a_1 \lambda^{n-1} + \dots + a_n \in H^0(X, \pi^* K^n)$$

• $C_a := s_a^{-1}(0) \subset X$ spectral curve $\pi_a : C_a \to C$ spectral cover of degree n

Generic fibres of the Hitchin map

• assume C_a is smooth $\Leftrightarrow a \in \mathcal{A}_{reg}$; $(E, \phi) \in \chi^{-1}(a) =: \mathcal{M}_a$

- if $\nu_p \in C_a \subset X$ then $L_{\nu_p} \subset \pi_a^*(E) \nu_p$ -eigenspace in $E_p \rightsquigarrow L \subset \pi_a^*(E)$ subsheaf rank $1 \rightsquigarrow$ invertible as C_a is smooth
- $\rightsquigarrow L \in \text{Jac}(C_a)$ is a line bundle on C_a such that $\pi_*(L) = E \otimes \det(\pi_*(\mathcal{O}_{C_a}))$ (eigenspace decomposition of ϕ)
- starting with a line bundle L ∈ Jac^d(C_a) we construct E = π_{*}(L) ⊗ det(π_{*}(O_{C_a}))⁻¹ rank n degree d torsion free → locally free and Higgs field φ := π_{*}(λ) : π_{*}(L) ⊗ det(π_{*}(O_{C_a}))⁻¹ → π_{*}(L) ⊗ det(π_{*}(O_{C_a}))⁻¹ ⊗ K

pushing forward the tautological map $\lambda: L \to L \otimes \pi^*({\mathcal K})$

- by definition λ solves the characteristic polynomial a on C_a → so will φ → by Cayley-Hamilton χ(φ) = a
- the spectral curve of a proper Higgs subbundle of
 (E, φ) = (π_{*}(L) ⊗ det(π_{*}(O_{C_a}))⁻¹, π_{*}(λ)) would be a
 1-dimensional proper subscheme of C_a ⇒ (E, φ) is stable

Theorem (Hitchin 1987, Beauville-Narasimhan-Ramanan 1989)

For
$$a \in \mathcal{A}_{reg}$$
 we have $\mathcal{M}^d_a \cong \operatorname{Jac}^d(\mathcal{C}_a)$.

Generic fibers for SL_n and PGL_n -Hitchin map

recall (E, φ) SL_n-Higgs bundle if tr(φ) = 0 and det(E) = Λ
 define Prym^d(C) ⊂ Jac^d(C_a) by

 $L \in \mathsf{Prym}^d(\mathcal{C}_a) \Leftrightarrow \det \pi_*(L) \otimes \det(\pi_*(\mathcal{O}_{\mathcal{C}_a}))^{-1} = \Lambda$

• if $a \in \mathcal{A}^0_{reg}$ the SL_n -Hitchin fibre satisfies

$$\check{\mathcal{M}}_{a} := \check{\chi}^{-1}(a) \cong \operatorname{Prym}^{d}(C_{a}).$$

for PGL_n we have Â_a := χ̂⁻¹(a) ≅ Ă_a/Γ ≅ Prym^d(C_a)/Γ makes sense since for L_γ ∈ Pic(C)[n] we have det(π_{*}(π^{*}(L_γ) ⊗ L)) = det(L_γ ⊗ π_{*}(L)) = Lⁿ_γ ⊗ det(π_{*}L) = det(π_{*}L).

• alternatively $\hat{\mathcal{M}}_a = \mathcal{M}_a / \operatorname{Pic}^0(\mathcal{C}) \cong \operatorname{Jac}^d(\mathcal{C}_a) / \operatorname{Pic}^0(\mathcal{C})$

• where $\operatorname{Pic}^{0}(C)$ acts on $\operatorname{Jac}^{d}(C_{a})$ via the homomorphism $\pi_{a}^{*}:\operatorname{Pic}^{0}(C) \to \operatorname{Pic}^{0}(C_{a})$

Symmetries of the GL_n and PGL_n Hitchin fibration

- for GL_n : fix $a \in \mathcal{A}_{reg}$
- tensor product gives a simply transitive action of $Pic^{0}(C_{a})$ on $Jac^{d}(C_{a})$
- $\sim \mathcal{M}_a$ is a torsor for $P_a := \operatorname{Pic}^0(C_a)$
- for PGL_n : fix $a \in \mathcal{A}_{reg}^0$

$$\hat{\mathcal{M}}_{a} = \mathcal{M}_{a}/\operatorname{Pic}^{0}(\mathcal{C})$$

is a torsor for the quotient $\hat{P}_a := P_a / \operatorname{Pic}^0(C)$ abelian variety

Symmetries of the SL_n Hitchin fibration

- recall the spectral cover map $\pi: \mathit{C}_{a}
 ightarrow \mathit{C}$
- for an abelian variety A the dual $\hat{A} := \operatorname{Pic}^{0}(A)$

Definition

For $a \in \mathcal{A}^0_{reg}$ the norm map $Nm_{C_a/C}$: $Pic^0(C_a) \rightarrow Pic^0(C)$ is defined in any of the following three equivalent ways:

• D divisor on C_a , $Nm_{C_a/C}(\mathcal{O}(D)) = \mathcal{O}(\pi_*D)$

- Solution is the dual of the pull-back map $\pi^*_a : \operatorname{Pic}^0(C) \to \operatorname{Pic}^0(C_a)$, that is $Nm_{C_a/C} = \check{\pi} : \operatorname{Pic}^0(C_a) \cong \operatorname{Pic}^0(C_a) \to \operatorname{Pic}^0(C) \simeq \operatorname{Pic}^0(C)$.
- the Prym variety Prym⁰(C_a) := ker(Nm_{Ca/C}) acts on Prym^d(C_a) = M̃_a → M̃_a is a torsor for P̃_a := Prym⁰(C_a).
 for PGL_n: M̂_a is a torsor for P̂_a = Pic⁰(C_a)/Pic⁰(C) ≅ Prym⁰(C_a)/Γ ≅ P̃_a/Γ

• short exact sequence of abelian varieties:

$$0 \rightarrow \operatorname{Prym}^{0}(C_{a}) \hookrightarrow \operatorname{Pic}^{0}(C_{a}) \xrightarrow{\operatorname{Nm}_{C_{a}/C}} \operatorname{Pic}(C) \rightarrow 0$$

• the dual sequence is

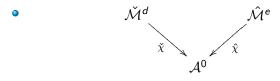
$$0 \quad \leftarrow \quad \operatorname{Prym}^{0}(C_{a}) \quad \leftarrow \quad \operatorname{Pic}^{0}(C_{a}) \quad \xleftarrow{\pi^{*}} \quad \operatorname{Pic}(C) \quad \leftarrow \quad 0 \quad ,$$

•
$$\rightsquigarrow \check{P}_a = \operatorname{Pic}^0(C_a) / \operatorname{Pic}(C) = \hat{P}_a, \Rightarrow \check{P}_a \text{ and } \hat{P}_a \text{ are dual abelian varieties}}$$

Theorem (Hausel-Thaddeus, 2003)

For a regular $a \in \mathcal{A}_{reg}^0 \ \check{\mathcal{M}}_a$ and $\hat{\mathcal{M}}_a$ are torsors for dual Abelian varieties (namely \check{P}_a and \hat{P}_a).

Strominger-Yau-Zaslow for $\mathcal{M}_{\mathrm{DR}}$ and $\mathcal{M}_{\mathrm{DR}}$



- generic fibers are torsors for dual Abelian varieties
- as $\check{\chi}$ and $\hat{\chi}$ are integrable systems \Rightarrow the fibers are complex Lagrangian (i.e. $\omega^c = \omega_J + i\omega_K$ is zero on the fibers)
- [Hitchin, 1987] shows that $\check{\mathcal{M}}$ is hyperkähler and $(\check{\mathcal{M}}, J)$ is the moduli space $\check{\mathcal{M}}_{\mathrm{DR}}$ of (twisted) flat SL_n -connections on C

- the fibers of $\check{\chi}$ on $\check{\mathcal{M}}_{\mathrm{DR}}$ now are special Lagrangian because both ω_J and $\mathrm{Im}((\omega_K + i\omega_I)^{2d})$ restrict to zero on the fibers
- Strominger-Yau-Zaslow is satisfied for $\check{\mathcal{M}}_{DR}$ and $\hat{\mathcal{M}}_{DR}$!

E-polynomials

- (Deligne 1972) constructs weight filtration
 W₀ ⊂ · · · ⊂ W_k ⊂ · · · ⊂ W_{2d} = H^d_c(X; ℚ) for any complex algebraic variety X, plus a pure Hodge structure on W_k/W_{k-1} of weight k
- we say that the weight filtration is *pure* when $W_k/W_{k-1}(H_c^i(X)) \neq 0 \Rightarrow k = i$; examples include smooth projective varieties, $\hat{\mathcal{M}}^d$ and $\hat{\mathcal{M}}_{DR}^d$

• define
$$E(X; x, y) := \sum_{i,j,d} (-1)^d x^i y^j h^{i,j} (W_k / W_{k-1}(H_c^d(X, \mathbb{C})))$$

basic properties:

additive - if $X_i \subset X$ locally closed s.t. $\bigcup X_i = X$ then $E(X; x, y) = \sum E(X_i; x, y)$ multiplicative - $F \to E \to B$ locally trivial in the Zariski topology E(E; x, y) = E(B; x, y)E(F; x, y)

• when weight filtration is pure then $E(X; -x, -y) = \sum_{p,q} h^{p,q} (H_c^{p+q}(X)) x^p y^q$ is the Hodge E(X; t, t) is the Poincaré polynomial

Stringy E-polynomials

- let finite group Γ act on a non-singular complex variety M
- $E_{st}(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_{\gamma}/C(\gamma); x, y)(xy)^{F(\gamma)}$ stringy E-polynomial
- F(γ) is the fermionic shift, defined as F(γ) = ∑ w_i, where γ acts on TX|_{Xγ} with eigenvalues e^{2πiw_i}, w_i ∈ [0, 1)
- $F(\gamma)$ is an integer when M is CY and Γ acts trivially on K_M
- motivating property [Kontsevich 1995] if $f : X \to M/\Gamma$ crepant resolution $\Leftrightarrow K_X = f^* K_{M/\Gamma}$ then $E(X; x, y) = E_{st}(M/\Gamma; x, y)$
- if *B* is a Γ -equivariant flat U(1)-gerbe on *M*, then on each \mathcal{M}_{γ} we get an automorphism of $B|_{\mathcal{M}_{\gamma}} \rightsquigarrow C(\gamma)$ -equivariant local system $L_{B,\gamma}$
- we can define $E_{st}^{B}(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_{\gamma}, L_{B,\gamma}; x, y)^{C(\gamma)}(xy)^{F(\gamma)}$ stringy E-polynomial twisted by a gerbe

Topological mirror symmetry conjecture - unravelled

Conjecture (Hausel–Thaddeus, 2003)

$$\begin{array}{l} (d,n) = (e,n) = 1; \ \hat{B} \ the \ canonical \ \Gamma \ equivariant \ gerbe \ on \ \check{\mathcal{M}}^e_{\mathrm{DR}} \\ E(\check{\mathcal{M}}^d_{\mathrm{DR}}) = E^{\hat{B}^e}_{st}(\hat{\mathcal{M}}^e_{\mathrm{DR}}) \quad \Leftrightarrow \quad E(\check{\mathcal{M}}^d) = E^{\hat{B}^e}_{st}(\hat{\mathcal{M}}^e) \end{array}$$

• Theorem for
$$n = 2, 3$$
 using [Hitchin 1987] and [Gothen 1994].
• as Γ acts on $H^*(\check{\mathcal{M}}^d)$ we have \rightsquigarrow
 $H^*(\check{\mathcal{M}}^d) \cong \bigoplus_{\kappa \in \hat{\Gamma}} H^*_{\kappa}(\check{\mathcal{M}}^d) \longrightarrow$
 $E(\check{\mathcal{M}}^d) = \sum_{\kappa \in \hat{\Gamma}} E_{\kappa}(\check{\mathcal{M}}^d) = E_0(\check{\mathcal{M}}^d) + \sum_{\kappa \in \hat{\Gamma}^*} E_{\kappa}(\check{\mathcal{M}}^d)$
 $E_{st}^{B^d}(\hat{\mathcal{M}}^e) = \sum_{\gamma \in \Gamma} E(\check{\mathcal{M}}^e_{\gamma}, L_{B,\gamma})^{\Gamma} = E(\check{\mathcal{M}}^d)^{\Gamma} + \sum_{\substack{\gamma \in \Gamma^* \\ \Psi \neq \Gamma^*}} E(\check{\mathcal{M}}^d_{\gamma}/\Gamma, L_{B^d,\gamma})}$
• $\Gamma \cong H^1(C, \mathbb{Z}_n)$ and wedge product induces $w : \Gamma \cong \hat{\Gamma}$
• refined Topological Mirror Test for $w(\gamma) = \kappa$:
 $E_{\kappa}(\check{\mathcal{M}}^d) = E(\check{\mathcal{M}}^d_{\gamma}/\Gamma, L_{B,\gamma})$

27 / 39

Example SL_2

• fix
$$n = 2$$
 $d = 1$
• $\mathbb{T} := \mathbb{C}^{\times}$ acts on $\check{\mathcal{M}}$ by $\lambda \cdot (E, \phi) \mapsto (E, \lambda \cdot \phi)$) $\overset{Morse}{\leadsto}$
 $H^*(\check{\mathcal{M}}) = \bigoplus_{F_i \subset \check{\mathcal{M}}^{\mathbb{T}}} H^{*+\mu_i}(F_i)$ as Γ -modules

• $F_0 = \check{\mathcal{N}}$ where $\phi = 0$; then [Harder–Narasimhan 1975] $\Rightarrow H^*(F_0)$ is trivial Γ -module

• for
$$i=1,\ldots,g-1$$

$$F_i = \{ (E, \phi) \mid E \cong L_1 \oplus L_2, \phi = \begin{pmatrix} 0 & 0 \\ \varphi & 0 \end{pmatrix}, \varphi \in H^0(L_1^{-1}L_2K) \}$$

 $\rightsquigarrow {\it F}_i \rightarrow S^{2g-2i-1}({\it C})$ Galois cover with Galois group ${\sf \Gamma}$

Theorem (Hitchin 1987)

The Γ action on $H^*(F_i)$ is only non-trivial in the middle degree 2g - 2i - 1. For $\kappa \in \hat{\Gamma}^*$ we have

$$\dim H^{2g-2i-1}_{\kappa}(F_i) = \binom{2g-2}{2g-2i-1}.$$

$\mathsf{Example}\;\mathrm{PGL}_2$

- let M̃(GL₁, C_γ) := N_m(C_γ/C)⁻¹(Λ, 0) endoscopic H_γ-Higgs moduli space
- after [Narasimhan–Ramanan, 1975] $\check{\mathcal{M}}_{\gamma} = \check{\mathcal{M}}(GL_1, C_{\gamma})/\mathbb{Z}_2 \cong T^* \operatorname{Prym}^d(C_{\gamma}/C)$
- can calculate dim $H^{2g-2i+1}(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{\hat{B},\gamma}) = \binom{2g-2}{2g-2i-1}$ and 0 otherwise

Theorem (Hausel–Thaddeus, 2003)

when n = 2 and $\kappa = w(\gamma)$ $E_{\kappa}(\check{\mathcal{M}}; u, v) = E(\check{\mathcal{M}}_{\gamma}/\Gamma; L_{B,\gamma}, u, v)$ the GL_n-character variety:
\$\mathcal{M}_B^d\$:= {(A_i, B_i)_{i=1..g} ∈ GL_n^{2g} | [A₁, B₁] ... [A_g, B_g] = ζ_n^d I_n}//PGL_n non-singular, affine
the SL_n-character variety:
\$\mathcal{M}_B^d\$:= {(A_i, B_i)_{i=1..g} ∈ SL_n^{2g} | [A₁, B₁] ... [A_g, B_g] = ζ_n^d I_n}//PGL_n non-singular, affine
for PGL_n note that (C[×])^{2g} acts on \$\mathcal{M}_B^d\$ and \$\Gamma \approx (\mathcal{Z}_n)^{2g} ⊂ (\mathcal{C}^×)^{2g}\$ is an affine orbifold

Theorem (Non-Abelian Hodge Theorem; Simpson, Corlette)

$$\hat{\check{\mathcal{M}}}^{d}_{\mathrm{Dol}} \stackrel{\textit{diff}}{\cong} \hat{\check{\mathcal{M}}}_{\mathrm{DR}} \stackrel{\textit{RH}}{\cong} \hat{\check{\mathcal{M}}}_{\mathrm{B}}$$

• RH is complex analytic \cong ; so SYZ satisfied by $\check{\mathcal{M}}^d_{\mathrm{B}}$ and $\hat{\mathcal{M}}^d_{\mathrm{B}}$

Conjecture (Hausel-Villegas, 2004)

$$(d,n) = (e,n) = 1 \qquad E(\check{\mathcal{M}}_B^d; u, v) = E_{st}^{\hat{B}^d}(\mathcal{M}_B^e; u, v)$$

0/39

Arithmetic technique to calculate *E*-polynomials

- *E*-polynomial of a complex variety *X*: $E(X; u, v) = \sum_{i,p,q} (-1)^i h^{p,q} (Gr_k^W H_c^i(X)) u^p v^q$ where $W_0 \subseteq W_1 \subseteq \ldots \subseteq W_i \subseteq \ldots \subseteq W_{2k} = H_c^k(X)$ is the weight filtration.
- \mathcal{M}_B have a Hodge-Tate type MHS i.e. $h^{p,q} \neq 0$ unless p = q $E(X; u, v) = E(X, uv) := \sum_{i,k} (-1)^i \dim(Gr_k^W H_c^i(X))(uv)^k$, but the MHS is not pure, i.e $k \neq i$ when $h^{(k/2,k/2)} \neq 0$.
- X/\mathbb{Z} has polynomial-count, if $E(q) = |X(\mathbb{F}_q)| \in \mathbb{Q}[q]$ is polynomial in q.

Theorem (Katz, 2006)

When X/\mathbb{Z} has polynomial-count $E(X/\mathbb{C},q) = |X(\mathbb{F}_q)|$

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ over \mathbb{Z} as the subscheme $\{xy = 1\}$ of \mathbb{A}^2 . Then $E(\mathbb{C}^*; q) = |(\mathbb{F}_q^*)| = q 1$
- since H²_c(ℂ*) has weight q and H¹_c(ℂ*) has weight 1 → checks with Katz

Arithmetic harmonic analysis on $\check{\mathcal{M}}_{\mathrm{B}}$

 for any finite group G, [Frobenius 1896], ..., TQFT [Freed–Quinn 1993] →

$$\left\{a_1, b_1, \dots, a_g, b_g \in G | \prod[a_i, b_i] = z\right\} = \sum_{\chi \in Irr(G)} \frac{|G|^{2g-1}}{\chi(1)^{2g-1}} \chi(z)$$

• when $\zeta_n \in \mathbb{F}_q^*$, i.e n|q-1, we get

$$E(\mathcal{M}_{\mathrm{B}};q) \stackrel{\textit{Katz}}{=} |\mathcal{M}_{\mathrm{B}}^{d}(\mathbb{F}_{q})| = (q-1) \sum_{\chi \in \mathit{Irr}(\mathrm{GL}_{n}(\mathbb{F}_{q}))} \frac{|\mathrm{GL}_{n}(\mathbb{F}_{q})|^{2g-2}}{\chi(1)^{2g-2}} \cdot \frac{\chi(\zeta_{n}^{d} \cdot I)}{\chi(1)}$$

 $Irr(\operatorname{GL}_n(\mathbb{F}_q))$ described combinatorially by [Green, 1955] \rightsquigarrow formula for $E(\mathcal{M}_{\mathrm{B}}; q)$ [Hausel–Villegas, 2008] • when n|q-1

$$E(\check{\mathcal{M}}_{\mathrm{B}};q) \stackrel{\textit{Katz}}{=} |\check{\mathcal{M}}_{\mathrm{B}}^{d}(\mathbb{F}_{q})| = \sum_{\chi \in \mathit{Irr}(\mathrm{SL}_{n}(\mathbb{F}_{q}))} \frac{|\mathrm{SL}_{n}(\mathbb{F}_{q})|^{2g-2}}{\chi(1)^{2g-2}} \cdot \frac{\chi(\zeta_{n}^{d} \cdot I)}{\chi(1)}$$

 $Irr(\mathrm{SL}_n(\mathbb{F}_q))$ more difficult; only need value of $\chi(\zeta_n^d \cdot I) \rightsquigarrow$ Clifford theory \rightsquigarrow calculation of $E(\check{\mathcal{M}}_{\mathrm{B}}; q)$ by [Mereb, 2010]

Character table of $\operatorname{GL}_2(\mathbb{F}_q)$

Table 1: characters of $\operatorname{GL}_2(\mathbb{F}_q)$ (note that $ \operatorname{GL}_2(\mathbb{F}_q) = q(q-1)^2(q+1)$)						
Classes	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \\ a \in \mathbb{F}_q^{\times}$	$ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \\ a, b \in \mathbb{F}_q^{\times} \\ a \neq b $	$ \begin{pmatrix} x & 0 \\ 0 & {}^{F}x \end{pmatrix} $ $ x \in \mathbb{F}_{q^{2}}^{\times} $ $ x \neq {}^{F}x $	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \\ a \in \mathbb{F}_q^{\times}$		
Number of classes of this type	q - 1	$\frac{(q-1)(q-2)}{2}$	$\frac{q(q-1)}{2}$	q-1		
Cardinal of the class	1	q(q+1)	q(q-1)	$q^{2} - 1$		
$\begin{array}{l} R^{\mathbf{G}}_{\mathbf{T}}(\alpha,\beta) \\ \alpha,\beta \in \operatorname{Irr}(\mathbb{F}_q^{\times}) \\ \alpha \neq \beta \end{array}$	$(q+1)\alpha(a)\beta(a)$	$\begin{array}{c} \alpha(a)\beta(b) + \\ \alpha(b)\beta(a) \end{array}$	0	$\alpha(a)\beta(a)$		
$ \begin{aligned} &-R_{\mathbf{T}_s}^{\mathbf{G}}(\omega) \\ &\omega \in \mathrm{Irr}(\mathbb{F}_{q^2}^{\times}) \\ &\omega \neq \omega^q \end{aligned} $	$(q-1)\omega(a)$	0	$-\omega(x) - \omega({}^{F}x)$	$-\omega(a)$		
$ \begin{aligned} &\operatorname{Id}_{\mathbf{G}} . (\alpha \circ \det) \\ &\alpha \in \operatorname{Irr}(\mathbb{F}_q^{\times}) \end{aligned} $	$\alpha(a^2)$	$\alpha(ab)$	$\alpha(x.^F x)$	$\alpha(a^2)$		
$\begin{array}{l} \operatorname{St}_{\mathbf{G}}.(\alpha \circ \operatorname{det}) \\ \alpha \in \operatorname{Irr}(\mathbb{F}_q^{\times}) \end{array}$	$q\alpha(a^2)$	$\alpha(ab)$	$-\alpha(x.^Fx)$	0		

Character table of $SL_2(\mathbb{F}_q)$

Table 2: characters of $\mathbf{SL}_2(\mathbb{F}_q)$ for q odd (note that $|\mathbf{SL}_2(\mathbb{F}_q)| = q(q-1)(q+1)$)

Classes	$\begin{pmatrix} a & 0\\ 0 & a \end{pmatrix}$ $a \in \{1, -1\}$	$ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \\ a \in \mathbb{F}_q^{\times} \\ a \neq \{1, -1\} $	$ \begin{pmatrix} x & 0 \\ 0 & {}^{F}x \end{pmatrix} \\ x \cdot {}^{F}x = 1 \\ x \neq {}^{F}x \end{cases} $	$ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \\ a \in \{1, -1\}, \\ b \in \{1, x\} \text{ with } \\ x \in \mathbb{F}_q^{\times} - (\mathbb{F}_q^{\times})^2 $
Number of classes of this type	2	(q-3)/2	(q-1)/2	4
Cardinal of the class	1	q(q+1)	q(q-1)	$(q^2 - 1)/2$
$\begin{array}{l} R^{\mathbf{G}}_{\mathbf{T}}(\alpha) \\ \alpha \in \operatorname{Irr}(\mathbb{F}_q^{\times}) \\ \alpha^2 \neq \operatorname{Id} \end{array}$	$(q+1)\alpha(a)$	$\alpha(a) + \alpha(\frac{1}{a})$	0	$\alpha(a)$
$ \begin{aligned} \chi^{\varepsilon}_{\alpha_0} \\ \varepsilon \in \{1, -1\} \end{aligned} $	$\frac{q+1}{2}\alpha_0(a)$	$\alpha_0(a)$	0	$\frac{\alpha_0(a)}{2}(1-\\\varepsilon\alpha_0(ab)\sqrt{\alpha_0(-1)q})$
$\begin{array}{l} -R_{\mathbf{T}_{s}}^{\mathbf{G}}(\omega) \\ \omega \in \operatorname{Irr}(\mu_{q+1}) \\ \omega^{2} \neq \operatorname{Id} \end{array}$	$(q-1)\omega(a)$	0	$-\omega(x) - \omega({}^{F}x)$	$-\omega(a)$
$\overset{\chi_{\omega_0}^{\varepsilon}}{\varepsilon\in\{1,-1\}}$	$\frac{q-1}{2}\omega_0(a)$	0	$-\omega_0(x)$	$\frac{\frac{\omega_0(a)}{2}(-1+}{\varepsilon\alpha_0(ab)\sqrt{\alpha_0(-1)q})}$
$\mathrm{Id}_{\mathbf{G}}$	1	1	1	1
St_{G}	q	1	-1	0

Topological Mirror Test for n = 2

- can calculate $E_{var}(\check{\mathcal{M}}) = E(\check{\mathcal{M}}) - E(\hat{\mathcal{M}}) = E(\check{\mathcal{M}}) - E(\mathcal{M})/(g-1)^{2g} =$ $(2^{2g}-1)q^{2g-2}\left(\frac{(q-1)^{2g-2}-(q+1)^{2g-2}}{2}\right) =$ $\sum_{i=1}^{g-1} (2^{2g}-1) {\binom{2g-2}{2i-1}} q^{2g-3+2i}$ • $\check{\mathcal{M}}_{\gamma}$ can be identified with $(\mathbb{C}^{\times})^{2g-2}$ and the Γ -equivariant local system $L_{eta,\gamma}$ can be explicitly determined \rightsquigarrow $E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma}) = \frac{(q-1)^{2g-2}-(q+1)^{2g-2}}{2}$ • $\Rightarrow E(\check{\mathcal{M}}_{\mathrm{B}}) = E^{B}_{ct}(\hat{\mathcal{M}}_{\mathrm{B}})$ when n = 2 due to certain patterns in $Irr(SL_2(\mathbb{F}_q))$ [Schur, 1907] vs. $Irr(GL_2(\mathbb{F}_q))$ [Jordan, 1907] similar argument works when n is a prime • for general *n* one can determine $E(\tilde{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$ using formulas of Laumon-Ngô and Deligne • seems to check the Betti-TMS \sim
 - work in progress with Villegas and Mereb
- $E(\mathring{\mathcal{M}}_{\mathrm{B}}; 1/q) = q^d E(\mathring{\mathcal{M}}_{\mathrm{B}}; q)$ palindromic \leftarrow Alvis-Curtis duality in $Irr(G(\mathbb{F}_q))$

Hard Lefschetz for Weight and Perverse Filtrations

- Weight filtration: $W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H^k(X)$
- Alvis-Curtis duality in R(GL_n(𝔽_q))
 → Curious Hard Lefschetz Conjecture (theorem for PGL₂):

$$\begin{array}{rccc} L': & Gr^W_{d-2l}(H^{i-l}(\mathcal{M}_{\mathrm{B}})) & \xrightarrow{\cong} & Gr^W_{d+2l}H^{i+l}(\mathcal{M}_{\mathrm{B}}) \\ & x & \mapsto & x \cup \alpha' \end{array},$$

where $\alpha \in W_4H^2(\mathcal{M}_{\mathrm{B}})$

• Perverse filtration: $P_0 \subset \cdots \subset P_i \subset \ldots P_k(X) \cong H^k(X)$ for $f: X \to Y$ proper X smooth Y affine (de Cataldo-Migliorini, 2008): take $Y_0 \subset \cdots \subset Y_i \subset \ldots Y_d = Y$ s.t. Y_i generic with dim $(Y_i) = i$ then

$$P_{k-i-1}H^{k}(X) = \ker(\mathrm{H}^{k}(X) \to \mathrm{H}^{k}(\mathrm{f}^{-1}(\mathrm{Y}_{\mathrm{i}})))$$

• the Relative Hard Lefschetz Theorem holds:

$$L': Gr^{P}_{d-l}(H^{*}(X)) \xrightarrow{\cong} Gr^{P}_{d+l}H^{*+2l}(X)$$
$$x \mapsto x \cup \alpha^{l}$$

where $\alpha \in H^2(X)$ is a relative ample class

P = W conjecture

• recall Hitchin map
$$\begin{array}{ccc} \chi : & \mathcal{M}_{\mathrm{Dol}} & \rightarrow & \mathcal{A} \\ & (E,\phi) & \mapsto & \mathrm{charpol}(\phi) \end{array}$$
 is proper, thus induces perverse filtration on $H^*(\mathcal{M}_{\mathrm{Dol}})$

Conjecture ("P=W", de Cataldo-Hausel-Migliorini 2008)

 $P_k(\mathcal{M}_{\mathrm{Dol}}) \cong W_{2k}(\mathcal{M}_{\mathrm{B}})$ under the isomorphism $H^*(\mathcal{M}_{\mathrm{Dol}}) \cong H^*(\mathcal{M}_{\mathrm{B}})$ from non-Abelian Hodge theory.

Theorem (de Cataldo-Hausel-Migliorini 2009)

P = W when $G = GL_2, PGL_2$ or SL_2 .

- Define $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, q) := \sum q^k E(Gr_k^P(\mathcal{H}^*(\mathcal{M}_{\mathrm{Dol}})); x, y)$
- $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, 1) = E(\mathcal{M}_{\mathrm{Dol}}; x, y) = E(\mathcal{M}_{\mathrm{DR}}; x, y)$
- Conjecture $P = W \Rightarrow PE(\mathcal{M}_{\text{Dol}}; 1, 1, q) = E(\mathcal{M}_{\text{B}}; q)$
- RHL \rightsquigarrow $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, q) = (xyq)^d PE(\mathcal{M}_{\mathrm{Dol}}; x, y; \frac{1}{qxy}) \rightsquigarrow$

Conjecture (Topological Mirror test, TMS)

$$PE_{\rm st}^{B^e}\left(\mathcal{M}_{\rm Dol}^d({\rm SL}_n); x, y, q\right) = (xyq)^d PE_{\rm st}^{\hat{B}^d}\left(\mathcal{M}_{\rm Dol}^e({\rm PGL}_n); x, y, \frac{1}{qxy}\right)$$

Conclusion

- The TMS above unifies the previous Dol,DR,B-TMS conjectures (Theorem when *n* = 2)
- Fibrewise Fourier-Mukai transform aka S-duality should identify

 $S: H_p^{r,s}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{SL}_n)) \cong H_{st,d-p}^{r+d/2-p,s+d/2-p}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{PGL}_n))$ this solves the mirror problem (Theorem over regular locus of χ)

 (Ngô 2008) proves the fundamental lemma in the Langlands program by proving "geometric stabilisation of the trace formula" which for SL_n and PGL_n can be reformulated to prove TMS over integral spectral curves, which when n is a prime, can be extended to a proof of TMS everywhere.

Some open questions

- Can fibrewise Fourier-Mukai Transform be extended to integral spectral curves? For GL_n the answer is yes by [Arinkin, 2010]
- for reduced, but non-reducible spectral curves? some relevant work by Esteves, López-Martín, ...
- for non-reduced spectral curves? some recent work by [Drezet, 2009]
- Can the cohomology of the Hitchin fibers computed? for integral (cf. [Ngô, 2008]) reduced but reducible (cf. [Chaudouard-Laumon, 2009]) non-reduced spectral curves?
- Can Gross-Siebert's approach to mirror symmetry (i.e. degenerating the CY's to a reducible one) applied to Hitchin systems? → Hitchin systems for singular curves? even only for ordinary double points and for GL₁?
- ramifications, other reductive groups?