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Mirror Symmetry

phenomenon first arose in various forms in string theory

mathematical predictions (Candelas-de la Ossa-Green-Parkes
1991)

mathematically it relates the symplectic geometry of a
Calabi-Yau manifold X d to the complex geometry of its mirror
Calabi-Yau Y d

first aspect is the topological mirror test hp,q(X ) = hd−p,q(Y )

compact hyperkähler manifolds satisfy hp,q(X ) = hd−p,q(X )

(Kontsevich 1994) suggests homological mirror symmetry
Db(Fuk(X , ω)) ∼= Db(Coh(Y , I ))

(Strominger-Yau-Zaslow 1996) suggests a geometrical
construction how to obtain Y from X

many predictions of mirror symmetry have been confirmed -
no general understanding yet
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Hodge diamonds of mirror Calabi-Yaus

Fermat quintic X
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0 1 0
1 101 101 1

0 1 0
0 0

1

X̂ := X/(Z5)3

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

K3 surface X

1
0 0

1 20 1
0 0

1

X̂ mirror K3

1
0 0

1 20 1
0 0

1
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Strominger-Yau-Zaslow

X CY 3-fold

Y mirror CY 3-fold

B is 3-dimensional real manifold - mostly S3

X 6

π
  B

BB
BB

BB
B Y 6

π̂}}||
||

||
||

B3

π and π̂ are special Lagrangian fibrations

for generic x ∈ B3

Lx = π−1(x) ∼= T 3 and L̂x = π̂
−1

(x) ∼= T 3 are dual special
Lagrangian tori

generically Y 6 can be thought of as the moduli space of flat
U(1) connections on a generic fiber Lx (a.k.a. D-branes)
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Langlands duality

the Langlands program aims to describe Gal(Q/Q) via
representation theory
G reductive group, LG its Langlands dual
e.g LGLn = GLn; LSLn = PGLn, LPGLn = SLn

[Langlands 1967] conjectures that
{homs Gal(Q/Q)→G(C)}↔{automorphic reps of LG(AQ)}
G = GL1 ; class field theory
G = GL2 ; Shimura-Taniyama-Weil
function field version: replace Q with Fq(X ), where X/Fq is
algebraic curve

[Ngô, 2008] proves fundamental lemma for Fq(X ) ; FL for Q
geometric version: replace Fq(X ) with C(X ) for X/C
[Laumon 1987, Beilinson–Drinfeld 1995]
Geometric Langlands conjecture
{G-local systems on X}↔{Hecke eigensheaves on BunLG(X )}

[Kapustin–Witten 2006] deduces this from reduction of
S-duality (electro-magnetic duality) in N = 4 SUSY YM in 4d
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Hitchin system

Hamiltonian system: (X 2d , ω) symplectic manifold
H : X → R Hamiltonian function XH Hamiltonian vector field
(dH = ω(XH , .))
f : X → R is a first integral if XH f = ω(Xf ,XH) = 0
the Hamiltonian system is completely integrable if there is
f = (H = f1, . . . , fd ) : X → Rd generic such that
ω(Xfi

,Xfj
) = 0

the generic fibre of f has an action of Rd = 〈Xf1 , . . . ,Xfd
〉 ;

when f is proper generic fibre is a torus (S1)d

examples include: Euler and Kovalevskaya tops and the
spherical pendulum
algebraic version when replacing R by C ; many examples
can be formulated as a version of the Hitchin system
a Hitchin system is associated to a complex curve C and a
complex reductive group G
it arose in the study [Hitchin 1987] of the 2-dimensional
reduction of the Yang-Mills equations
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Topological mirror tests

In these lectures we will discuss the mirror symmetry proposal
of [Hausel–Thaddeus 2003]:
”Hitchin systems for Langlands dual groups satisfy
Strominger-Yau-Zaslow, so could be considered mirror
symmetric; in particular they should satisfy the topological
mirror tests:”

Md
DR(SLn)

χ̌
%%JJJJJJJJJJ

Me
DR(PGLn)

χ̂
yyrrrrrrrrrrr

A0

Conjecture (Hausel–Thaddeus 2003, ”Topological mirror test”)

For all d , e ∈ Z, satisfying (d , n) = (e, n) = 1, we have

E Be

st

(
Md

DR(SLn); x , y
)

= E B̂d

st

(
Me

DR(PGLn); x , y
)
.
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The moduli space of vector bundles on a curve - GLn

C smooth complex projective curve of genus g > 1

fix integers n > 0 and d ∈ Z always assume (d , n) = 1.

N d :=
moduli space of isomorphism classes of

semi-stable rank n degree d vector bundles on C

constructed using geometric invariant theory (GIT)
or gauge theory

vector bundle E is called semi-stable (stable) if every proper
subbundle F satisfies

µ(F ) =
deg(F )

rk(F )

(<)

≤ µ(E ) =
deg(E )

rk(E )

when (d , n) = 1 semi-stability ⇔ stability ;

N d is a non-singular projective fine moduli space
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SLn and PGLn

det : N d → Jacd (C )
[E ] 7→ Λn(E )

fix Λ ∈ Jacd (C ) and let Ň Λ := det−1(Λ) ⊂ N d

the moduli space of (twisted) SLn bundles on C

Ň Λ does not depend on the choice of Λ ∈ Jacd (C ) just write
Ň d := Ň Λ

when (d , n) = 1 ; Ň d is non-singular and projective

Pic0(C ) = Jac0(C ) acts on N d via (L,E ) 7→ L⊗ E . define

N̂ d := N d/Pic0(C )

the moduli space of degree d PGLn bundles on C

Γ := Pic0(C )[n] ∼= Z2g
n ⊂ Pic0(C ) acts on N̂ d and clearly

N̂ d = Ň d/Γ ; N̂ d is a projective orbifold.
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Cohomology of ˆ̌N

The cohomologies H∗(N d ), H∗(Ň d ) and H∗(N̂ d ) are well
understood.

[Harder–Narasimhan 1975] obtained recursive formulae for
#N (Fq) ; formula for Betti numbers via the Weil
conjectures [Deligne 1974]

[Atiyah–Bott 1981] gave different gauge-theoretic proof

Theorem (Harder–Narasimhan, 1975)

The finite group Γ acts trivially on H∗(Ň d ).
In particular H∗(Ň d ) ∼= H∗(N̂ d ).

proof by showing #Ň d (Fq) = #N̂ d (Fq)

[Hitchin, 1987] ⇒ false for moduli space of SL2 Higgs
bundles ; non-triviality of our topological mirror tests
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The Hitchin map - GLn

T ∗N is a (non-projective) algebraic symplectic variety

the ring C[T ∗N ] is known to be finitely-generated

the affinization of T ∗N gives the GLn Hitchin map.

χ : T ∗N → A := Spec(C[T ∗N ])

deformation theory ; T[E ]N = H1(C ,End(E ))
Serre duality ⇒ T ∗[E ]N = H0(C ,End(E )⊗ K )

φ ∈ H0(C ,End(E )⊗ K ) is a Higgs field
locally ”a matrix of one-forms on the curve”

let (E , φ) ∈ T ∗N its characteristic polynomial
χ(φ) = tn + a1tn−1 + · · ·+ an where ai ∈ H0(K n)

χ : T ∗N → A :=
⊕n

i=1 H0(K i )
(E , φ) 7→ (a1, a2, . . . , an)

The affine space A is called the Hitchin base.
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Hitchin map for SLn and PGLn

for SLn

T ∗[E ]Ň
d = H0(End0(E )⊗ K )

that is, a covector at E is given by a trace free Higgs field.

the SLn Hitchin base is

Ǎ = A0 :=
n⊕

i=2

H0(C ,K i ).

the SLn Hitchin map

χ̌ : T ∗Ň d → A0.

the action of Γ = Pic0(C )[n] on T ∗Ň is along the fibers of χ̌
⇒ χ̌ descends to the quotient

the PGLn Hitchin map:

χ̂ : (T ∗Ň )/Γ→ Â = A0.
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The Hitchin map is an integrable system

recall that T ∗N is an algebraic symplectic variety

with canonical Liouville symplectic structure

as the Hitchin map only depends on the cotangent direction
;

Theorem (Hitchin, 1987)

ω(Xχi ,Xχj ) = 0 for any two χi , χj ∈ C[T ∗N ] coordinate
functions.

dim(A) = dim(N ) = dim(T ∗N )/2

generic fibres of χ are open subsets of abelian varieties

; χ is an algebraically completely integrable Hamiltonian system.

Need to projectivize χ to complete the generic fibres to
abelian varieties (compact tori)
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Proper Hitchin map

(E , φ) ∈ T ∗N ; E is stable; to projectivize χ we need to
allow E to become unstable.
A Higgs bundle is a pair (E , φ) where E is a vector bundle on
C and φ ∈ H0(C ,End(E )⊗ K ) is a Higgs field.
a Higgs bundle (E , φ) is (semi-)stable if for every φ-invariant

proper subbundle E we have µ(F )
(≤)
< µ(E )

Md the moduli space of (semi-)stable Higgs bundles, a
non-singular quasi-projective and symplectic variety,
containing T ∗N ⊂Md as an open dense subvariety
extend χ :Md → A in the obvious way

Theorem (Hitchin 1987, Nitsure 1991, Faltings 1993)

χ is a proper algebraically completely integrable Hamiltonian
system. Its generic fibres are abelian varieties.

as dim(Md \ T ∗N d ) ≥ 2 ⇒ C[Md ] ∼= C[T ∗N d ] ⇒ thus

A
by the Theorem∼= Spec(C[Md ]) ∼= Spec(C[T ∗N d ]) 15 / 39



SLn Hitchin system

fix Λ ∈ Jacd (C )

E vector bundle on C with determinant Λ

φ ∈ H0(End0(E )⊗ K ) is trace-free Higgs field

then (E , φ) is an SLn-Higgs bundle

M̌Λ ⊂Md moduli space of (semi-)stable SLn-Higgs bundles

M̌Λ is independent of Λ denote M̌d := M̌Λ

M̌d is a non-singular quasi-projective and symplectic variety

characteristic polynomial of φ gives SLn-Hitchin system

χ̌ : M̌d → A0 := ⊕n
i=2H0(C ; K i )

χ̌ is proper and a completely integrable system
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PGLn Hitchin system over the same Hitchin base

T ∗ Pic0(C ) = Pic0(C )× H0(C ,K ) is a group; it acts on Md

by (L, ϕ)(̇E , φ) 7→ (L⊗ E , ϕ+ φ)

; action of Γ = Pic0[n] on M̌d

M̂d =Md/T ∗ Pic0(C ) ∼= χ−1(A0)/Pic0(C ) ∼= M̌/Γ

M̂d , the PGLn Higgs moduli space, is an orbifold

the Γ action is along the fibers of χ̌ ; PGLn Hitchin map

χ̂ : M̂d = M̌d/Γ→ A0

M̌d

χ̌ !!C
CC

CC
CC

C M̂e

χ̂}}{{
{{

{{
{{

A0

will show generic fibers are dual Abelian varieties;
which are complex Lagrangian due to integrable system

changing complex structure will lead to special Lagrangian
fibrations; and so to SYZ
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Spectral curves

let (E , φ) be a Higgs bundle such that χ(φ) = a ∈ A has the
form

a = tn + a1tn−1 + · · ·+ an,

where ai ∈ H0(K i ).

What should be the spectrum of the Higgs field φ?

at p ∈ C the Higgs field φp : Ep → Ep ⊗ Kp

eigenvalue νp of φp satisfies ∃v ∈ Ep − 0 : Φp(v) = νpv . ;

must have νp ∈ Kp

let X denote the total space of K then Ca := ∪p∈Cν
i
p ⊂ X ,

the set of all eigenvalues of the Higgs field ; spectral curve

scheme structure on Ca?

tautological section λ ∈ H0(X , π∗K ) satisfying λ(x) = x

sa := λn + a1λ
n−1 + · · ·+ an ∈ H0(X , π∗K n)

Ca := s−1
a (0) ⊂ X spectral curve

πa : Ca → C spectral cover of degree n
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Generic fibres of the Hitchin map
assume Ca is smooth ⇔ a ∈ Areg ; (E , φ) ∈ χ−1(a) =:Ma

if νp ∈ Ca ⊂ X then Lνp ⊂ π∗a(E ) νp-eigenspace in Ep ;

L ⊂ π∗a(E ) subsheaf rank 1 ; invertible as Ca is smooth
; L ∈ Jac(Ca) is a line bundle on Ca such that
π∗(L) = E ⊗ det(π∗(OCa )) (eigenspace decomposition of φ)
starting with a line bundle L ∈ Jacd (Ca) we construct
E = π∗(L)⊗ det(π∗(OCa ))−1 rank n degree d torsion free ;

locally free and Higgs field φ := π∗(λ) :
π∗(L)⊗ det(π∗(OCa ))−1 → π∗(L)⊗ det(π∗(OCa ))−1 ⊗ K
pushing forward the tautological map λ : L→ L⊗ π∗(K )
by definition λ solves the characteristic polynomial a on Ca ;

so will φ ; by Cayley-Hamilton χ(φ) = a
the spectral curve of a proper Higgs subbundle of
(E , φ) = (π∗(L)⊗ det(π∗(OCa ))−1, π∗(λ)) would be a
1-dimensional proper subscheme of Ca ⇒ (E , φ) is stable

Theorem (Hitchin 1987, Beauville-Narasimhan-Ramanan 1989)

For a ∈ Areg we have Md
a
∼= Jacd (Ca).
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Generic fibers for SLn and PGLn-Hitchin map

recall (E , φ) SLn-Higgs bundle if tr(φ) = 0 and det(E ) = Λ

define Prymd (C ) ⊂ Jacd (Ca) by

L ∈ Prymd (Ca)⇔ detπ∗(L)⊗ det(π∗(OCa ))−1 = Λ

if a ∈ A0
reg the SLn-Hitchin fibre satisfies

M̌a := χ̌−1(a) ∼= Prymd (Ca).

for PGLn we have M̂a := χ̂−1(a) ∼= M̌a/Γ ∼= Prymd (Ca)/Γ
makes sense since for Lγ ∈ Pic(C )[n] we have
det(π∗(π

∗(Lγ)⊗ L)) = det(Lγ ⊗ π∗(L)) = Ln
γ ⊗ det(π∗L) =

det(π∗L).

alternatively M̂a =Ma/Pic0(C ) ∼= Jacd (Ca)/Pic0(C )

where Pic0(C ) acts on Jacd (Ca) via the homomorphism
π∗a : Pic0(C )→ Pic0(Ca)
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Symmetries of the GLn and PGLn Hitchin fibration

for GLn: fix a ∈ Areg

tensor product gives a simply transitive action of Pic0(Ca) on
Jacd (Ca)

; Ma is a torsor for Pa := Pic0(Ca)

for PGLn: fix a ∈ A0
reg

M̂a =Ma/Pic0(C )

is a torsor for the quotient P̂a := Pa/Pic0(C ) abelian variety
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Symmetries of the SLn Hitchin fibration

recall the spectral cover map π : Ca → C
for an abelian variety A the dual Â := Pic0(A)

Definition

For a ∈ A0
reg the norm map NmCa/C : Pic0(Ca)→ Pic0(C )

is defined in any of the following three equivalent ways:

1 D divisor on Ca, NmCa/C (O(D)) = O(π∗D)

2 For L ∈ Pic0(Ca) define
NmCa/C (L) = det(π∗(L))⊗ det−1(π∗OCa ).

3 the norm map is the dual of the pull-back map
π∗a : Pic0(C )→ Pic0(Ca), that is

NmCa/C = π̌ : Pic0(Ca) ∼= P̌ic
0
(Ca)→ P̌ic

0
(C ) ' Pic0(C ).

the Prym variety Prym0(Ca) := ker(NmCa/C ) acts on

Prymd (Ca) = M̌a ; M̌a is a torsor for P̌a := Prym0(Ca).
for PGLn: M̂a is a torsor for
P̂a = Pic0(Ca)/Pic0(C ) ∼= Prym0(Ca)/Γ ∼= P̌a/Γ 22 / 39



Duality of the Hitchin fibres

short exact sequence of abelian varieties:

0 → Prym0(Ca) ↪→ Pic0(Ca)
NmCa/C

� Pic(C ) → 0

the dual sequence is

0 ← ˇPrym
0
(Ca) � Pic0(Ca)

π∗← Pic(C ) ← 0 ,

;
ˇ̌Pa = Pic0(Ca)/Pic(C ) = P̂a, ⇒ P̌a and P̂a are dual

abelian varieties

Theorem (Hausel-Thaddeus, 2003)

For a regular a ∈ A0
reg M̌a and M̂a are torsors for dual Abelian

varieties (namely P̌a and P̂a).
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Strominger-Yau-Zaslow for M̌DR and M̂DR

M̌d

χ̌ !!C
CC

CC
CC

C M̂e

χ̂}}{{
{{

{{
{{

A0

generic fibers are torsors for dual Abelian varieties

as χ̌ and χ̂ are integrable systems ⇒ the fibers are complex
Lagrangian (i.e. ωc = ωJ + iωK is zero on the fibers)

[Hitchin, 1987] shows that M̌ is hyperkähler and (M̌, J) is
the moduli space M̌DR of (twisted) flat SLn-connections on C

; M̌d
DR

χ̌ ""E
EE

EE
EE

E
M̂e

DR

χ̂||zz
zz

zz
zz

A0

the fibers of χ̌ on M̌DR now are special Lagrangian because
both ωJ and Im((ωK + iωI )2d ) restrict to zero on the fibers

Strominger-Yau-Zaslow is satisfied for M̌DR and M̂DR!
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E-polynomials

(Deligne 1972) constructs weight filtration
W0 ⊂ · · · ⊂Wk ⊂ · · · ⊂W2d = Hd

c (X ; Q) for any complex
algebraic variety X , plus a pure Hodge structure on Wk/Wk−1

of weight k
we say that the weight filtration is pure when
Wk/Wk−1(H i

c (X )) 6= 0 ⇒ k = i ; examples include

smooth projective varieties, ˆ̌Md and ˆ̌Md
DR

define E (X ; x , y) :=
∑
i ,j ,d

(−1)d x i y j hi ,j
(
Wk/Wk−1(Hd

c (X ,C))
)

basic properties:
additive - if Xi ⊂ X locally closed s.t. ∪̇Xi = X then
E (X ; x , y) =

∑
E (Xi ; x , y)

multiplicative - F → E → B locally trivial in the Zariski
topology E (E ; x , y) = E (B; x , y)E (F ; x , y)
when weight filtration is pure then
E (X ;−x ,−y) =

∑
p,q hp,q(Hp+q

c (X ))xpy q is the Hodge
E (X ; t, t) is the Poincaré polynomial
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Stringy E-polynomials

let finite group Γ act on a non-singular complex variety M

Est(M/Γ; x , y) :=
∑

[γ]∈[Γ] E (Mγ/C (γ); x , y)(xy)F (γ)

stringy E-polynomial

F (γ) is the fermionic shift, defined as F (γ) =
∑

wi , where γ
acts on TX |Xγ with eigenvalues e2πiwi , wi ∈ [0, 1)

F (γ) is an integer when M is CY and Γ acts trivially on KM

motivating property [Kontsevich 1995] if f : X → M/Γ
crepant resolution ⇔ KX = f ∗KM/Γ then
E (X ; x , y) = Est(M/Γ; x , y)

if B is a Γ-equivariant flat U(1)-gerbe on M, then on each
Mγ we get an automorphism of B|Mγ ; C (γ)-equivariant
local system LB,γ

we can define
E B

st (M/Γ; x , y) :=
∑

[γ]∈[Γ] E (Mγ , LB,γ ; x , y)C(γ)(xy)F (γ)

stringy E-polynomial twisted by a gerbe
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Topological mirror symmetry conjecture - unravelled

Conjecture (Hausel–Thaddeus, 2003)

(d , n) = (e, n) = 1; B̂ the canonical Γ-equivariant gerbe on M̌e
DR

E (M̌d
DR) = E B̂e

st (M̂e
DR) ⇔ E (M̌d ) = E B̂e

st (M̂e)

Theorem for n = 2, 3 using [Hitchin 1987] and [Gothen 1994].
as Γ acts on H∗(M̌d ) we have ;

H∗(M̌d ) ∼= ⊕κ∈Γ̂H∗κ(M̌d ) ;

E (M̌d ) =
∑

κ∈Γ̂ Eκ(M̌d ) = E0(M̌d ) +

variant︷ ︸︸ ︷∑
κ∈Γ̂∗

Eκ(M̌d )

‖
E Bd

st (M̂e) =
∑

γ∈Γ E (M̌e
γ , LB,γ)Γ = E (M̌d )Γ +

∑
γ∈Γ∗

E (M̌d
γ/Γ, LBd ,γ)︸ ︷︷ ︸

stringy

Γ ∼= H1(C ,Zn) and wedge product induces w : Γ ∼= Γ̂
refined Topological Mirror Test for w(γ) = κ:
Eκ(M̌d ) = E (M̌d

γ/Γ, LB,γ)
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Example SL2

fix n = 2 d = 1
T := C× acts on M̌ by λ · (E , φ) 7→ (E , λ · φ))

Morse
;

H∗(M̌) =
⊕

Fi⊂M̌T H∗+µi (Fi ) as Γ-modules

F0 = Ň where φ = 0; then [Harder–Narasimhan 1975] ⇒
H∗(F0) is trivial Γ-module
for i = 1, . . . , g − 1

Fi = {(E , φ) | E ∼= L1⊕L2, φ =

(
0 0
ϕ 0

)
, ϕ ∈ H0(L−1

1 L2K )}

; Fi → S2g−2i−1(C ) Galois cover with Galois group Γ

Theorem (Hitchin 1987)

The Γ action on H∗(Fi ) is only non-trivial in the middle degree
2g − 2i − 1. For κ ∈ Γ̂∗ we have

dim H2g−2i−1
κ (Fi ) =

(
2g − 2

2g − 2i − 1

)
.
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Example PGL2

γ ∈ Γ = Pic0(C )[2] ; Cγ
2:1→ C with Galois group Z2

M(GL1,Cγ) ∼= T ∗ Jacd (Cγ)
push-forward−→ Md ⊃ M̌d

‖ ↓ det

T ∗ Jacd (Cγ)
Nm(Cγ/C)−→ T ∗ Jacd (C ) 3 (Λ, 0)

let M̌(GL1,Cγ) := Nm(Cγ/C )−1(Λ, 0) endoscopic Hγ-Higgs
moduli space

after [Narasimhan–Ramanan, 1975]
M̌γ = M̌(GL1,Cγ)/Z2

∼= T ∗ Prymd (Cγ/C )

can calculate dim H2g−2i+1(M̌γ/Γ, LB̂,γ) =
( 2g−2

2g−2i−1

)
and 0 otherwise

Theorem (Hausel–Thaddeus, 2003)

when n = 2 and κ = w(γ)
Eκ(M̌; u, v) = E (M̌γ/Γ; LB,γ , u, v)
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Character varieties

the GLn-character variety:
Md

B := {(Ai ,Bi )i=1..g ∈ GL2g
n | [A1,B1] . . . [Ag ,Bg ] = ζd

n In}//PGLn

non-singular, affine
the SLn-character variety:

M̌d
B := {(Ai ,Bi )i=1..g ∈ SL2g

n | [A1,B1] . . . [Ag ,Bg ] = ζd
n In}//PGLn

non-singular, affine
for PGLn note that (C×)2g acts on Md

B and
Γ ∼= (Zn)2g ⊂ (C×)2g acts on M̌d

M̂d
B := M̌d

B/Γ ∼=Md
B/(C×)2g is an affine orbifold

Theorem (Non-Abelian Hodge Theorem; Simpson, Corlette)

ˆ̌Md
Dol

diff∼= ˆ̌MDR

RH∼= ˆ̌MB

RH is complex analytic ∼=; so SYZ satisfied by M̌d
B and M̂d

B

Conjecture (Hausel-Villegas, 2004)

(d , n) = (e, n) = 1 E (M̌d
B ; u, v) = E B̂d

st (Me
B ; u, v) 30 / 39



Arithmetic technique to calculate E -polynomials

E -polynomial of a complex variety X :
E (X ; u, v) =

∑
i ,p,q(−1)i hp,q(Gr W

k H i
c(X ))upv q

where W0 ⊆W1 ⊆ . . . ⊆Wi ⊆ . . . ⊆W2k = Hk
c (X ) is the

weight filtration.
ˆ̌MB have a Hodge-Tate type MHS i.e. hp,q 6= 0 unless p = q

E (X ; u, v) = E (X , uv) :=
∑

i ,k (−1)i dim(Gr W
k H i

c (X ))(uv)k ,

but the MHS is not pure, i.e k 6= i when h(k/2,k/2) 6= 0.
X/Z has polynomial-count, if
E (q) = |X (Fq)| ∈ Q[q] is polynomial in q.

Theorem (Katz, 2006)

When X/Z has polynomial-count E (X/C, q) = |X (Fq)|

C∗ = C\ {0} over Z as the subscheme {xy = 1} of A2. Then
E (C∗; q) = |(F∗q)| = q − 1
since H2

c (C∗) has weight q and H1
c (C∗) has weight 1 ;

checks with Katz
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Arithmetic harmonic analysis on ˆ̌MB

for any finite group G , [Frobenius 1896], . . . , . . . , TQFT
[Freed–Quinn 1993] ;∣∣∣{a1, b1, . . . , ag , bg ∈ G |

∏
[ai , bi ] = z

} ∣∣∣ =
∑

χ∈Irr(G)

|G |2g−1

χ(1)2g−1
χ(z)

when ζn ∈ F∗q, i.e n|q − 1, we get

E (MB; q)
Katz
= |Md

B(Fq)| = (q−1)
∑

χ∈Irr(GLn(Fq))

|GLn(Fq)|2g−2

χ(1)2g−2
·χ(ζd

n · I )

χ(1)

Irr(GLn(Fq)) described combinatorially by [Green, 1955] ;

formula for E (MB; q) [Hausel–Villegas, 2008]
when n|q − 1

E (M̌B; q)
Katz
= |M̌d

B(Fq)| =
∑

χ∈Irr(SLn(Fq))

|SLn(Fq)|2g−2

χ(1)2g−2
· χ(ζd

n · I )

χ(1)

Irr(SLn(Fq)) more difficult; only need value of χ(ζd
n · I ) ;

Clifford theory ; calculation of E (M̌B; q) by [Mereb, 2010]
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Character table of GL2(Fq)
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Character table of SL2(Fq)
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Topological Mirror Test for n = 2

can calculate
Evar (M̌) = E (M̌)− E (M̂) = E (M̌)− E (M)/(q − 1)2g =

(22g − 1)q2g−2
(

(q−1)2g−2−(q+1)2g−2

2

)
=∑g−1

i=1 (22g − 1)
(2g−2

2i−1

)
q2g−3+2i

M̌γ can be identified with (C×)2g−2 and the Γ-equivariant
local system Lβ,γ can be explicitly determined ;

E (M̌γ/Γ, LB,γ) = (q−1)2g−2−(q+1)2g−2

2

⇒ E (M̌B) = E B
st (M̂B) when n = 2 due to certain patterns in

Irr(SL2(Fq)) [Schur, 1907] vs. Irr(GL2(Fq)) [Jordan, 1907]
similar argument works when n is a prime
for general n one can determine E (M̌γ/Γ, LB,γ)
using formulas of Laumon–Ngô and Deligne
seems to check the Betti-TMS ;

work in progress with Villegas and Mereb

E ( ˆ̌MB; 1/q) = qd E ( ˆ̌MB; q) palindromic ⇐ Alvis-Curtis
duality in Irr(G (Fq))
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Hard Lefschetz for Weight and Perverse Filtrations

Weight filtration: W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂W2k = Hk (X )
Alvis-Curtis duality in R(GLn(Fq))
; Curious Hard Lefschetz Conjecture (theorem for PGL2):

Ll : Gr W
d−2l (H i−l (MB))

∼=→ Gr W
d+2l H

i+l (MB)
x 7→ x ∪ αl

,

where α ∈W4H2(MB)
Perverse filtration: P0 ⊂ · · · ⊂ Pi ⊂ . . .Pk (X ) ∼= Hk (X )
for f : X → Y proper X smooth Y affine
(de Cataldo-Migliorini, 2008):
take Y0 ⊂ · · · ⊂ Yi ⊂ . . .Yd = Y
s.t. Yi generic with dim(Yi ) = i then

Pk−i−1Hk (X ) = ker(Hk(X)→ Hk(f−1(Yi)))

the Relative Hard Lefschetz Theorem holds:

Ll : Gr P
d−l (H∗(X ))

∼=→ Gr P
d+l H

∗+2l (X )
x 7→ x ∪ αl

where α ∈ H2(X ) is a relative ample class 36 / 39



P = W conjecture

recall Hitchin map
χ : MDol → A

(E , φ) 7→ charpol(φ)
is proper,

thus induces perverse filtration on H∗(MDol)

Conjecture (”P=W”, de Cataldo-Hausel-Migliorini 2008)

Pk (MDol) ∼= W2k (MB) under the isomorphism
H∗(MDol) ∼= H∗(MB) from non-Abelian Hodge theory.

Theorem (de Cataldo-Hausel-Migliorini 2009)

P = W when G = GL2,PGL2 or SL2.

Define PE (MDol; x , y , q) :=
∑

qk E (Gr P
k (H∗(MDol)); x , y)

PE (MDol; x , y , 1) = E (MDol; x , y) = E (MDR; x , y)
Conjecture P = W ⇒ PE (MDol; 1, 1, q) = E (MB; q)
RHL ; PE (MDol; x , y , q) = (xyq)d PE (MDol; x , y ; 1

qxy ) ;

Conjecture (Topological Mirror test, TMS)

PE Be

st

(
Md

Dol(SLn); x , y , q
)

=(xyq)d PE B̂d

st

(
Me

Dol(PGLn); x , y , 1
qxy

)
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Conclusion

The TMS above unifies the previous Dol,DR,B-TMS
conjectures (Theorem when n = 2)

Fibrewise Fourier-Mukai transform aka S-duality should
identify

S : H r ,s
p (MDol(SLn)) ∼= H

r+d/2−p,s+d/2−p
st,d−p (MDol(PGLn))

this solves the mirror problem
(Theorem over regular locus of χ)

(Ngô 2008) proves the fundamental lemma in the Langlands
program by proving ”geometric stabilisation of the trace
formula” which for SLn and PGLn can be reformulated to
prove TMS over integral spectral curves, which when n is a
prime, can be extended to a proof of TMS everywhere.
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Some open questions

Can fibrewise Fourier-Mukai Transform be extended to integral
spectral curves? For GLn the answer is yes by [Arinkin, 2010]

for reduced, but non-reducible spectral curves? some relevant
work by Esteves, López-Mart́ın, . . .

for non-reduced spectral curves? some recent work by [Drezet,
2009]

Can the cohomology of the Hitchin fibers computed? for
integral (cf. [Ngô, 2008]) reduced but reducible (cf.
[Chaudouard-Laumon, 2009]) non-reduced spectral curves?

Can Gross-Siebert’s approach to mirror symmetry (i.e.
degenerating the CY’s to a reducible one) applied to Hitchin
systems? ; Hitchin systems for singular curves? even only
for ordinary double points and for GL1?

ramifications, other reductive groups?
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