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Over the last 40 years, the study of Hamiltonian and Reeb dynamics has significantly
developed. A relatively recent addition to this field is the exploration of b-symplectic
structures, which can be interpreted as symplectic structures away from a codimension
one submanifold. On this hypersurface, the symplectic form admits a singularity. The
investigation of these structures is motivated by problems arising in celestial mechanics,
raising the question of the extent to which classical results in Hamiltonian dynamics apply
to this realm.

In this mini-course, we will delve into the dynamical study of these manifolds. On the
one hand, we will develop the theory of contact forms with singularities and explore the
dynamical properties of the Reeb vector field. On the other hand, we will investigate the
classical Arnold conjecture concerning the fixed points of Hamiltonian diffeomorphisms
on b-symplectic manifolds.
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1. THE THREE BODY PROBLEM: GOING TO INFINITY

As all of you know, Hamiltonian dynamics originates in classical mechanics, where the
manifold is the phase space of the Euclidean 3-dimensional space E3. One would like
to describe the masses’ motion under the influences of the forces. Guiding examples have
been (and still are) planets moving under the law of gravitation in E3. Newton, Kepler, and
Poincaré understood the case of two planets well, as they consist of an integrable system.
The 3-body problem, however, is not an integrable system anymore, and a lot of research
is still to be done to help understand this puzzling problem. We will quickly review some
basic facts on the 3-body problem, details can be found in [36].

1.1. The planar restricted 3-body problem. The n-body problem is the dynamical system
obtained when n point masses in the Euclidean 3 space are left to interact according to
Newton’s second law of gravitation. Given initial positions and velocities, the problem
consists of predicting the future positions and velocities of the bodies. Mathematically
speaking, let us denote by qi(t) ∈ R3 the position of the body i (for i ∈ {1, . . . , n}) at time t
and by mi its mass. The Hamiltonian is given by

H = K + U,

where K is the kinetic energy given by

K =
1

2

n∑
i=1

|pi(t)|2

mi
,
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where qi(t) = ṗi(t) is the momenta, and U is the potential energy, given by

U = −
∑

1≤i<j≤n

Gmimj

|qi − qj |
.

Here, G denotes the universal gravitational constant. The motion of the n-problem is de-
scribed by Hamilton’s equations given by{

dp
dt = ∂H

∂q
dq
dt = −∂H

∂p .

In what follows, we will assume that n = 3, and therefore the equations simplify consid-
erably. The model to have in mind is given by the earth qE(t), moon qM (t) and a satellite
q(t), moving under the gravitational law in R3. the respective masses are denoted by mE ,
mM and m. The restricted planar circular three body problem, short RPC3BP, is obtained as-
suming the following assumptions:

• Restricted: m = 0. Physically speaking, the satellite has negligible mass compared
to the masses of the Earth and the moon;

• Circular: Under the first assumption, the earth and the moon are governed by the
2-body problem. It is classically known that the possible trajectories for this inte-
grable system are either circular, elliptic, parabolic, or hyperbolic. We assume that
the motion of the earth and the moon is of the first type, meaning circular;

• Planar: The satellite’s motion is subjected to the potential from the Earth and the
moon. Planar means that the satellite’s motion is assumed to be in the plane spanned
by the Earth and the moon.

The restricted planar three-body problem involves understanding the satellite’s motion
under the above assumptions. To do so, the above Hamiltonian can be written as follows
(normalizing G = 1 and mE +mM = 1) :

Ht(q, p) =
1

2
|p|2 − µ

|q − qM (t)|
− 1− µ

|q − qE(t)|
,

where µ = mM
mE+mM

is called the relative mass. Note that the Hamiltonian is not defined
when q = qM or q = qE , that is when the satellite collides with one of the two massive
bodies. In the following, we will not consider collisions, and therefore the phase space
is given by T ∗(R2 \ {qM , qE}). We continue by choosing a suitable reference frame to
simplify the equations further. Under the circular symmetry in the circular three-body
problem, we choose the origin at the center of mass. In this reference frame, the motion of
the earth and the moon are given respectively by qE(t) = (µ cos(t), µ sin(t)) and qM (t) =
((1 − µ) cos(t), (1 − µ) sin(t)). Note that we used the three conditions of the PRC3BP to
deduce this equation.

The Hamiltonian is still time-dependent. This is unfortunate, as time-dependent Hamil-
tonians are not preserved quantities. However, in a rotating coordinate system, we can
assume that the earth and the moon are fixed at qE = (µ, 0) and qM = (1 − µ, 0). The
Hamiltonian thus becomes time-independent, with the Hamiltonian given by

(1) H(q, p) =
1

2
|p|2 − µ

q −M
− µ

q − E
+ p1q2 − p2q1.

This is now a time-independent Hamiltonian - the price to pay. However, it is no longer
a mechanical Hamiltonian, meaning that it is no longer the sum of kinetic and potential
energy. This is because the mixed term L(q, p) = p1q2 − p2q1, which can be interpreted as
the Coriolis force due to the choice of inertial frame.
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There are five critical points of H , which are called the Lagrangian points Li, i = 1, . . . 5,
H(L1) < H(L2) < H(L3) < H(L4) = H(L5).

Given an energy value c, we denote by Σc = H−1(c) ⊂ T ∗R2. As mentioned earlier,
the level-sets Σc are preserved, as H is time-independent. To analyse the position sets of
Σc, consider the natural projection π : T ∗R2 → R2. Using this projection, we find the sets
Ec = π(Σc), which are called the Hill’s region. These represent the positions that can be
obtained by satellites having energy c. For c small enough, namely when c < H(L1), one
can prove that E consists of three connected components: one close to the moon, denoted
by EM , one close to the earth, EE , (both of them are compact sets in R2), and one connected
component far away from the earth and the moon. Exercise. The connected component of
the hypersurface in T ∗R2 lying above EM (respectively ΣE is denoted by ΣM (respectively
ΣE): more precisely π−1(EM ) =: ΣM . When the energy crosses the critical value H(L1), the
two bounded connected components ΣM and ΣE ”become” one connected component, in
fact the topological connected sum between ΣM and ΣE !

It is important to note that, even though EM and EE are compact, ΣM and ΣE are not
compact. This is due to the collision that the satellite can have with the Earth and the
moon.

To resume: in the RC3BP, we obtained two energy level-sets of dimension 3 (non-compact)
for low energy values contained in T ∗R2, provided with the canonical symplectic struc-
ture. This raises the natural question of whether methods from symplectic topology can
be applied to find periodic orbits of this system. As we can see, non-compactness is a
troublemaker. First, let us review some basic facts about symplectic geometry.

1.2. The very basics on symplectic geometry. An excellent reference to get started in sym-
plectic geometry is [13, 34].

Definition 1.1. A manifold M with a non-degenerate closed 2-form ω ∈ Ω2(M) is called a sym-
plectic manifold.

A first trivial example of a symplectic manifold is orientable surfaces:

Example 1.2. Any orientable surface is a symplectic manifold.

The most ’natural’ example, however, is the cotangent bundle of a manifold, as it comes
equipped with a canonical symplectic structure.

Example 1.3. If λ is the Liouville 1-form on T ∗M , then ω = dλ is symplectic. Given coordinates
(p1, . . . , pn) on M , the Liouville 1-form is given by λ =

∑n
i=1 pidqi.

If ω is a symplectic form on a manifold M2n, then ωn is a volume form, and thus M is
always orientable. Nevertheless, not all orientable manifolds admit a symplectic form. For
instance, S4 is an orientable manifold that does not admit any symplectic form: in fact,
H2(M) obstructs the existence of a symplectic form. Assume that there is a symplectic
form ω on M . As ω is closed, [ω] ∈ H2(S4), [ω] ̸= 0. But H2(S4) = 0 contradicts this. More
generally, this proves

Proposition 1.4. If M2n is a compact smooth manifold and admits a symplectic structure, then
H2(M) ̸= 0.

This implies that S2n is not a symplectic manifold for n > 1. Symplectic manifolds have
only one single local invariant: the dimension. This is the content of Darboux’s theorem.

Theorem 1.5 (Darboux theorem). Let (M2n, ω) be a symplectic manifold. Then, for all p ∈ M ,
there exists a local coordinate system (x1, y1, . . . , xn, yn) such that ω =

∑n
i=1 dxi ∧ dyi in a

neighbourhood U of p.
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Given a smooth function H (as the Hamiltonian H in the symplectic manifold (T ∗R2, dλst)
in the previous section), the Hamiltonian vector field is given by the equation

ιXH
ω = −dH.

The function H is called Hamiltonian function.
We can now define the Poisson bracket associated with the symplectic structure.

Definition 1.6. Let f, g ∈ C∞(M) two smooth function on the symplectic manifold (M,ω). The
Poisson bracket is defined by {f, g} = ω(Xf , Xg).

Exercise: Check that the Poisson bracket is a Lie bracket on the space of smooth function
(that is, it is skew-symmetric and defines a Leibniz rule) and [Xf , Xg] = −{f, g}. Further-
more, check that it satisfies Jacobi identity. Check that in Darboux coordinates, it is given
by

(2) {f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂qi

∂g

∂pi

)
.

By the motivating example of the previous section, we are particularly interested in
level sets of the Hamiltonian functions - and, more precisely, in the dynamics that those
Hamiltonian functions generate. Therefore:

Exercise: Given a Hamiltonian function H , check that XH preserves the level-set H−1(c),
where c is a regular value. As in the previous section, one would like to know whether
there are periodic orbits of XH . The previous remark shows that the vector field XH can
be seen as a vector field on the hypersurface Σc := H−1(c). In some cases, where some ad-
ditional geometric structure is given, the existence of periodic orbits of XH can be proved
when there is a transverse Liouville vector field to the hypersurface.

Definition 1.7. A vector field X that satisfies LXω = ω is called a Liouville vector field.

This means that the vector field expands the symplectic form exponentially. In the cotan-
gent bundle (Example 1.3), a Liouville vector field is given by X =

∑n
i=1 pi

∂
∂pi

. Given a
hypersurface Σ in a symplectic manifold (M,ω) that has a transverse Liouville vector field,
it is easy to check that (Σ, ιXω) is a contact manifold, namely that satisfies the following
definition. Exercise.

Definition 1.8. A manifold M2n+1 with a 1-form α ∈ Ω1(M) is called contact if α ∧ dα ̸= 0.

The reference for contact geometry is [21].
A first example of a contact structure is the 1-form α ∈ Ω1(R3), given by α = dx + ydz.

This contact form is called the standard contact form because any contact form locally is
given by the standard one. This is the content of the Darboux theorem for contact forms.

Theorem 1.9. Darboux theorem for contact manifolds Let α be a contact form on M2n+1. Then
locally α = dz +

∑n
i=1 xidyi.

A contact manifold has an intrinsic vector field called the Reeb vector field.

Definition 1.10. The Reeb vector field Rα is the uniquely defined vector field by{
ιRαdα = 0,

ιRαα = 1.

In the case of the standard contact form, the associated Reeb vector field is given by the
linear vector field ∂z .
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In the case of a hypersurface Σ given by the regular level-set of a Hamiltonian function
in a symplectic manifold (M,ω), and a transverse Liouville vector field X , there are thus
two vector fields that are of interest to us: the Hamiltonian vector field on Σ and the Reeb
vector field of the contact form α = ιXω. Exercise: It is easy to check that both agree, up to
reparametrisation. The integral curves of both thus agree, and looking for periodic orbits
of XH means that we are looking for periodic orbits of the Reeb vector field.

A good example to keep in mind is the following:

Example 1.11. Consider the symplectic manifold (R4, dx1 ∧ dy1 + dx2 ∧ dy2). The unit sphere is
the regular level-set given by H−1(1), where H = r2 in radial coordinates. One way to compute the
Hamiltonian vector field XH is as follows: The radial vector field r∂r is a Liouville vector field and
thus transverse to any star-shaped hypersurface. In particular, it is transverse to the unit sphere
S3. This provides S3 thus with a contact form. The Reeb vector field’s integral curves associated
with this contact form are just the fibers of the Hopf fibration of S3. In particular, every Reeb vector
field is periodic. Exercise: Do the explicit computations of this.

Another star-shaped hypersurface is given by the ellipsoid defined by the Hamiltonian Ha,b =
πr21
a +

πr22
b , where r21 = x21 + y21 , and r22 = x22 + y22 . Exercise: Check that if a and b are rationally

dependent, the associated Reeb (or Hamiltonian) only has 2 periodic orbits.

In the previous examples, under the condition that the contact manifold is compact, the
associated Reeb vector field always has a periodic orbit (2 to be more precise). In the
non-compact case, however, as in the case of the standard contact form, such dynamical
invariants do not need to exist: the flow in of Rαst is just the linear flow. This is the content
of the Weinstein conjecture.

Conjecture 1.12 (Weinstein conjecture). Let (M,α) be a compact contact manifold. Then, a
periodic Reeb orbit always exists.

The quest for periodic orbits of the Reeb vector field has a rich history and is, and still is,
a driving force in developing symplectic topology. In particular, the above conjecture has
been the source of an immense amount of research in the last 30 years. In what follows,
we briefly overview some of the most notable results obtained to understand the Reeb
dynamics on contact manifolds better.

Most notably, the conjecture was proved in the following cases (chronologically or-
dered):

• ’86 Viterbo: compact contact hypersurfaces in (R2n, ωst);
• ’93 Hofer: so-called overtwisted contact manifolds;
• ’05: Taubes: general compact M of dimension 3.

The conjecture is still open in general, but much has been done. For instance it is known
that in dimension 3, there are always 2 or inifinitely many periodic Reeb orbits.

1.3. Back to the RPC3BP. Returning to the restricted planar circular planar three-body
problem, we would like to apply the symplectic and contact topology results to predict the
existence of periodic orbits on the energy level-sets Σc. To apply the results from contact
topology, we, therefore, need to show that a Liouville vector field is transverse to these
level sets. If this is the case, then the contraction of this Liouville vector field with canonical
symplectic form gives rise to a contact form. Let us assume that the energy c is below the
first critical value below H(L1), where L1 is the first Lagrange point. In this case, we saw
three connected components: the projections under π of these connected components give
two bounded ones (around the earth, respectively, the moon) and one non-compact one.
Let us focus on the preimage of the compact connected component around the earth. In
other words: the connected component ΣE

c such that the Hill region is π(ΣE
c ) = Ec.



LECTURES ON b-REEB DYNAMICS 7

There is a natural candidate for the Liouville vector field to be transverse to this con-
nected component: we introduce the vector field

X = (q −M)
∂

∂q
.

This is a Liouville vector field for the canonical symplectic structure on T ∗R2. However,
what is not so clear is that this vector field is indeed transverse to ΣE

c .

Proposition 1.13 (Proposition 5.1, [1]). For c < H(L1), X intersects ΣM
c transversally.

The proof of this is that rather tedious computations are omitted here. This means that
we are on an excellent basis to apply the previously mentioned results coming from contact
topology. Indeed, we know that (ΣE

c , ιXωst) is a contact manifold, and that the Hamilton-
ian vector field is a reparametrization of the Reeb vector field associated to this contact
form. However, as mentioned in Section 1.1, this is not a compact hypersurface due to the
collision of the satellite with the moon.

However, the collision of the satellite with the moon is a 2-body collision. It has been
known since Kepler that 2-body collision can be regularized. Intuitively, upon collision,
this reguliarization makes the satellite bounces back from where it came from. Topologi-
cally, this regularization is a compactification of ΣM

c (or ΣE
c ). This regularization is known

as Moser’s regularization. For more information on this, we refer the interested reader to
the original paper [1] and to the book of Augustin Moreno [44].

Theorem 1.14 (Theorem A in [1]). For c < H(L1) both regularized connected components Σ̃M
c

and Σ̃E
c admit a compatible contact form λ.

As it is known that for contact compact 3-dimensional manifolds, there is always a peri-
odic Reeb vector field, it follows thus that there is always at least one periodic orbit of the
satellite in the regularized level-set Σ̃E

c . For physical applications, one would like to know
whether or not this periodic orbit is an orbit that goes through the collision set or is, in fact,
an actual ‘physical’ periodic orbit.

Question 1.15. Does this periodic orbit intersect the collision set?

In these notes, we will propose a strategy to answer this question: namely, we will define
symplectic structure with singularities. These singularities capture the collision set, or more
generally, the sets one would like to avoid for physical applications. The price to pay is
then to develop the necessary tools, similar to the tools in symplectic and contact topology,
to this set-up and analyze the dynamics on these manifolds with symplectic structures that
admit singularities.

As a disclaimer: this strategy is still relatively new, and a lot must be done to adapt
the techniques. This disclaimer should serve as a motivation to join the research on b-
symplectic manifolds.

To give an example of a b-symplectic structure (in fact, it will be b3-symplectic), we will
analyze another connected component of the level-set, namely the connected component
where the satellite can escape to infinity.

1.4. ...and going to infinity. To analyze the connected component of Σc where the satellite
can escape to infinity, we use another regularization known as the McGehee regularization.
This regularization is used to study the dynamical behaviour close to infinity. To describe
it, we first introduce some further changes in coordinates.

As we are in the planar restricted three-body problem, the configuration space is given
by T ∗R2. Furthermore, in the circular RP3BP, we have a circular symmetry, and thus, we
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introduce polar coordinates given by{
q1 = r cosα

q2 = r sinα.

We change the momenta accordingly as follows to have a symplectic change of coordi-
nate, that is, a diffeomorphism that preserves the symplectic form.{

p1 = Pr cosα− Pα sinα

p1 = Pr sinα+ Pα cosα.

In this way, we obtain that dp1 ∧ dq1 + dp2 ∧ dq2 (Exercise). The McGehee change of
coordinates consists of a change of coordinates that is not symplectic. It is given by the
following change of coordinates

(3) r :=
2

x2
, x ∈ R+.

Geometrically, this change of coordinates exchanges the infinity with the origin. This
change of coordinates is thus useful to study the dynamical properties when the satellite
escapes to infinity.

However, this is not a symplectic change of coordinate, meaning that the symplectic
form gets changed. A naive computation of what the canonical ’symplectic form’ looks
like in these new coordinates gives the following: first, observe that dr = −4dx

x3 , and thus,
the obtained geometric structure is given by

(4) ω = −4
dx

x3
∧ dPr + dα ∧ dPα,

and the domain is given by R+×S1×R2. This form is still a symplectic form away from
{x = 0} - however, on the hypersurface {x = 0}, the form has a singularity.

To overcome this singularity, we do the following exercise:
Exercise: Compute that the ’associated’1 Poisson structure by computing ω(df, dg) in the

above coordinates. Check that this is indeed a Poisson structure (see Definition 2.1 for the
definition of Poisson structure).

Continuing, we would like to develop a formal set-up to study the symplectic geometry
of those forms with singularities. The strategy is, therefore, the following:

• Study manifolds with boundary
• study forms with singularities on hypersurfaces
• define what it means to be symplectic for these structures
• study the Hamiltonian dynamics of these structures.

2. b-SYMPLECTIC STRUCTURES

Before diving into symplectic structures with singularities, we dive into a more general
setting of symplectic structures, namely the one of Poisson structures.

2.1. Poisson structures. In this subsection, we give the necessary information about Pois-
son structures. We recommend the references [12, 50] for more details on this.

Recall that given a symplectic structure, there is an associated bracket as in Definition
2.1 that equips the space of smooth function with a Lie bracket that satisfies Jacobi identity.
A Poisson structure imitates this. We, therefore, obtain the following definition.

1We still don’t t know that this is a Poisson structure - but this will be proved in the next pages.
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Definition 2.1. A Poisson structure on a manifold M is a bracket

{·, ·} : C∞(M)× C∞(M) → C∞(M)

(f, g) 7→ {f, g}

that satisfies the following
(1) it s skew-symmetric, i.e. {f, g} = −{g, f},
(2) it is a derivation, i.e. {fg, h} = f{g, h}+ {f, h}g,
(3) and it satisfies Jacobi identity, i.e. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

As already mentioned, given a symplectic manifold (M,ω), we can associated a Poisson
structure defining the Poisson bracket by {f, g} = ω(Xf , Xg). However, Poisson structures
are much more general, as the zero bracket trivially satisfies the definition.

An alternative definition of Poisson structures can be given using bi-vector fields.

Definition 2.2. A multivector field is a section of the bundle ΛkTM .

Given a Poisson bracket, we can define a bi-vector field as follows. Let f, g ∈ C∞(M) be
two smooth functions, and the Poisson bi-vector field is determined by

Π(df, dg) := {f, g}.
For instance, the bi-vector field coming from the symplectic Poisson bracket (as in Equation
2) is given by

Π =

n∑
i=1

(
∂

∂pi
∧ ∂

∂qi

)
.

Note that this looks very much like the standard Darboux symplectic form - just dual in
some sense (this can be made formal!). Vice-versa, given a bi-vector field Π, we can define
a bracket on the space of smooth functions as above. By the definition of the space of
multi-vector fields, this bracket is skew-symmetric and is a derivation; the integrability
condition, however, is not necessarily satisfied. We, therefore, need a way to express the
integrability condition in the space of multivector fields. To do so, we need to define how
to derive a multivector field concerning another one. This is a generalization of the Lie
bracket for vector fields to the set-up of multivector fields.

Given vector fields X1, . . . , Xn, Y ∈ X(M), it is natural to define the following operation:

(5) [X1 ∧ · · · ∧Xn, Y ] :=

n∑
i=1

(−1)i+1X1 ∧ · · · ∧Xi−1 ∧ X̂i ∧Xi ∧ · · ·Xn ∧ [Xi, Y ],

where [Xi, Y ] is just the usual Lie bracket, and the hat symbol denotes the absence of this
term.

Theorem 2.3 (Schouten bracket). There exists a unique R-linear extension of the Lie derivative
LX to the operation

[·, ·] : Xp(M)× Xq(M) → Xp+q(M)

such that (5) holds.

Exercise: Prove this. Furthermore, one can check that the following properties hold.

Proposition 2.4. Given X,Y, Z multivector fields of respective degree p, q, r, the following holds:
(1) [X,Y ] = (−1)pq[Y,X]
(2) [X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)pq+qY ∧ [X,Z]
(3) (−1)pr[X, [Y, Z]] + (−1)pq[Y, [Z,X]] + (−1)qr[Z, [X,Y ]] = 0, for X ∈ Xp(M), Y ∈

Xq(M), Z ∈ Xr(M).
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Exercise: Prove this. The reader may read more about the Schouten-Bracket in [12].
Having to our disposal this bracket, one can now prove that the following integrability
condition describes the Jacobi identity:

Proposition 2.5. A bi-vector field Π defines a Poisson bracket if [Π,Π] = 0.

Exercise: Prove this. A Poisson structure can thus be described equivalently by a bi-
vector field that satisfies [Π,Π] = 0. Such a bi-vector field is called a Poisson bi-vector field.
Surfaces equipped with a bi-vector field are always Poisson manifolds - for dimensional
reasons.

Example 2.6. Consider a surface Σ with a bi-vector field Π. As [Π,Π] is a 3-vector field on a
2-dimensional manifold, it is automatically zero. Thus, Π is a Poisson bi-vector field.

In this mini-course, a leading example is given by the following example:

Example 2.7. Consider R2n equipped with the bi-vector field Π = x1
∂

∂x1
∧ ∂

∂y1
+
∑n

i=2
∂
∂xi

∧ ∂
∂yi

.
Exercise: Check that this is a Poisson bi-vector field, i.e., that [Π,Π] = 0.

Naively speaking, the dual of this Poisson vector field is given by 1
x1
dx1∧dy1+

∑n
i=2 dxi∧

dyi. This is, of course, not well-defined on x1. But this strongly resembles the geometric
structure we encountered in Equation (4)! But before giving more information about these
geometric structures, we turn attention to a central theorem theorem in Poisson geometry,
that will be useful to describe an associated foliation to a Poisson structure.

It turns out that Poisson structures are suitable geometric structures for studying classi-
cal mechanics. This is mainly because Hamiltonian vector fields can easily be defined on
Poisson manifolds.

Definition 2.8. The Hamiltonian vector field associated with a smooth function f is given by
Xf = Π(df, ·).

Alternatively, associated with a Poisson structure, we obtain a map Π♯ : Ω1(M) →
X(M), defined by β(Π♯(α)) := Π(α, β), where α, β ∈ Ω1(M). The Hamiltonian vector
field is thus just the image of df under Π♯.

The distribution given by all the Hamiltonian vector fields, that is, D := Π♯
(
Ω1(M)

)
, is

called the symplectic foliation. This comes from proving that the distribution D is integrable.
However, this has to be understood in a more general sense than in the sense of Frobenius
theorem because the rank of this distribution is not constant. The rank of the distribution
at a point p is the dimension of the image of Π at p and is always even-dimensional Exer-
cise: Check this (but once more, to be clear: the rank can change). Furthermore, one can
prove that the Poisson bi-vector field induces a symplectic structure on the leaves. This
thus motivates the name of symplectic foliation, for more information see [12, Chapter 4].
Loosely speaking, one can thus think of a Poisson structure as a foliation of symplectic
leaves of different ranks being glued together. A more precise description is given by the
Weinstein splitting theorem.

Theorem 2.9 (Weinstein splitting theorem). Let (M,Π) be a Poisson manifold. Around a point
x ∈ M , where rankΠx = 2k, there exists a coordinate chart (x1, y1, · · · , xk, yk, z1, · · · , zl), where
2k + l = dimM , such that

Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+
∑

φij(z)
∂

∂zi
∧ ∂

∂zj
,

which φ(0) = 0.
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We omit the proof of this fundamental theorem in Poisson geometry. Note that this
theorem says that locally, the manifold M can be split into a product of a manifold N2n

and Zr, with coordinates (x1, y1, · · · , xk, yk) on N and coordinates (z1, · · · , zl) where the
manifold N is equipped with a symplectic structure. This is thus the formal statement that
Π induces a symplectic foliation.

Two trivial examples on which we can ’see’ Weinstein splitting theorem is
• any manifold with the zero Poisson structure: the leaves are 0-dimensional mani-

folds
• a symplectic manifold: there is only one left, that is the whole manifold. Note

that Weinstein’s splitting theorem is thus a generalization of the classical Darboux
theorem!

The above examples are not very interesting (from a Poisson point of view, at least).
Here, we present the first non-trivial examples and describe their associated symplectic
foliation.

Example 2.10. Consider the Poisson bi-vector field Π = x1
∂

∂x1
∧ ∂

∂y1
+
∑n

i=2
∂
∂xi

∧ ∂
∂yi

on R2n.
Away from the hypersurface Z = {x1 = 0}, the bi-vector field satisfies that Πn ̸= 0, meaning
that it defines a symplectic structure away from Z = {x1 = 0}. Alternatively, the hypersurface Z
can be defined by Z = {Πn = 0}. The hypersurface Z is foliated by leaves Lc = {y1 = c|}. The
restriction of the Poisson bi-vector field yields to those leaves yields

∑n
i=2

∂
∂xi

∧ ∂
∂yi

, which yields
a symplectic structure on these yields. Resuming, the symplectic foliation given by the Poisson
bi-vector field Π admits two leaves of maximal rank Z± = {±z > 0} and a family of codimension
2 symplectic leaves given by {y1 = c, x1 = 0}.

The following example consists of a compact example that the reader can visualize eas-
ily.

Example 2.11. Consider the 2-dimensional sphere S2, equipped with cylindrical coordinates (θ, h)
with the bi-vector field Π = h ∂

∂h∧
∂
∂θ . As we have observed in Example 2.6, this is a Poisson bivector

field for dimensional reasons. Away from the equator Z = {h = 0}, the bi-vector field defines a
symplectic structure because here Π ̸= 0. The equator Z is foliated by symplectic leaves given by
{θ = c}, which are just 0-dimensional symplectic manifolds. The symplectic foliation is thus given
by two leaves of dimension 2, S2

± = {±h > 0}, and by a family of codimension 2 ’symplectic’
leaves, which are just 0-dimensional symplectic points.

The two last examples satisfy the following:

Definition 2.12. A b-Poisson manifold is a Poisson manifold (M,Π) of dimension 2n that satisfies
Πn ⋔ 0.

This means that Πn defines a section of
∧2n TM . The latter is a 1-dimensional bun-

dle (because the dimension of the manifold M is 2n). Thus, here, Πn ⋔ 0 means that the
1-dimensional bundle is transverse to the zero-section of the bundle

∧2n TM . By transver-
sality, it thus follows that Z := {x ∈ M |Πn

x = 0} is a codimenison 1-submanifold. This
hypersurface is called critical set, or critical hypersurface. The nomenclature will be clarified
in the next subsection, but here is already a spoiler: b stands for boundary, because the
critical set can be viewed as the boundary of a connected component of M \ Z.

One can apply the Weinstein splitting theorem (Theorem 2.9) for Poisson manifolds to
the case of b-Poisson structures and show that any b-Poisson structure is given around a
point p ∈ Z as in Example 2.10. We thus obtain local normal forms for b-Poisson manifolds.
This has been done in [25, Proposition 20].

As we saw, Poisson structures are very flexible: any manifold is Poisson and equipped
with the zero Poisson structure. Symplectic structures (which form a particular class of
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Poisson structures) are very far away and form a much more rigid behavior. For instance,
only an orientable, even dimensional manifold admits a symplectic structure. Or even
stronger topological conditions obstruct the existence of symplectic structures: a 2-form ω
that is closed on a closed manifold defines a cohomology class. If this cohomology class
is zero, that ω cannot be symplectic for topological reasons. Exercise: Prove this. In this
sense, b-symplectic manifolds represent the next nicest family of Poisson manifold - after
symplectic manifolds of course. Many natural questions arise from the very definition:

(1) How flexible are b-Poisson manifolds, i.e. when does an even dimensional mani-
fold admit a b-Poisson structure?

(2) b-Poisson manifolds are not too far from symplectic structures: they are symplectic
away from the critical hypersurface. Can symplectic techniques employed in this
set-up?

(3) Related to the previous question: What about the known results for chasing peri-
odic orbits of Hamiltonian XH? Can those questions be handled in this setup?

(4) More precisely, given a hypersurface in a b-Poisson manifold that admits a trans-
verse ”Liouville” vector field, can one prove the existence of periodic Reeb orbits?

(5) As the first motivating example, as in Section 1, comes from celestial mechanics,
can those techniques be used to prove the existence of periodic orbits in the 3BP,
and additionally, ’localize’ them, in the sense that they do not collide with the
earth/moon?

To deal with these questions, one would like to view b-Poisson manifolds as a symplectic
structure. A naive way to do this is to take the dual of these structures: for instance, the
dual to the b-Poisson structure given in Example 2.10 yields

dx1
x1

∧ dy1 +

n∑
i=2

dxi ∧ dyi,

whereas the one dual to the b-Poisson of Example 2.11 yields

dh

h
∧ dθ.

The ‘problematic’ terms in these expressions are dx1
x1

, respectively dh
h . We will see in the

next subsection that the singularities can be hidden in a vector bundle - not the tangent
bundle, but the b-tangent bundle. We will then proceed to do symplectic geometry over
this b-tangent bundle. But one thing after the other: we will define the b-tangent bundle.

2.2. The b-tangent bundle. In this section, we will detail the construction of the b-tangent
bundle. The b-tangent bundle was initially defined by Melrose in his proof of the Atiyah-
Index-Singer theorem for manifolds with boundary [35]. The b’s that we will encounter
thus stand all for boundary.

Definition 2.13. A b-manifold is a closed manifold M with a hypersurface Z, called critical hy-
persurface

The ’problematic’ terms mentioned at the end of Subsection 2.1 are the duals of vector
fields that are tangent to the critical hypersurface. We would thus like to define a vector
bundle whose sections are the vector fields tangent to Z. To construct this vector bundle,
we will use the following theorem by Serre-Swan:

Theorem 2.14 (Serre-Swann theorem). Given a finitely generated C∞(M)-module M, there
exists a vector bundle whose sections equal M.

In our case, the module we consider is the set of vector fields that are tangent to Z.
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Definition 2.15. A b-vector field is a vector field tangent to Z. The set of vector fields that is
tangent to Z is denoted by bX(M).

Locally, the hypersurface Z is given by the zero-level set of a locally defined function
z : M → R, i.e. Z = {z = 0}. Around a point p ∈ Z, we can complete this to a coordinates
chart (z, x2, . . . , xn). In these coordinates, the b-vector fields, which are the vector fields
that are tangent to Z, are spanned by

⟨z ∂

∂z
,

∂

∂x2
, . . . ,

∂

∂xn
⟩.

Any vector field X tangent to Z can be written as

X = f1z
∂

∂z
+ f2

∂

∂x2
· · ·+ fn

∂

∂xn
,

where f1, . . . , fn ∈ C∞(M). It follows that the set of b-vector fields is a C∞(M)-finite
module, as every b-vector field can be written as a combination of the above generators.
Serre-Swann theorem (Theorem 2.14) thus yields the existence of a vector bundle E whose
sections are the b-vector fields. In what follows, we will denote this vector bundle bTM
and call it the b-tangent bundle.

It follows by the definition that away from Z, the b-tangent bundle and the tangent
bundle agree, i.e.

(6) bTpM = TpM for p ∈ M \ Z.

This ceases to remain true on the critical hypersurface Z. At a point p ∈ Z, this does not
remain true anymore: the b-tangent bundle on Z can be described as

(7) bTpM = TpZ ⊕ ⟨
(
z
∂

∂z

)
p

⟩.

Important observation: The rank of the b-vector bundle is of rank dimM = m. At
the point p, the vector field z ∂

∂z is a non-vanishing b-vector field, even though, after
the inclusion of b-vector fields in the set of smooth vector fields, i.e. i : bX(M) ↪→
X(M), it is vanishing: i(z ∂

∂z )|p = 0.

The above equations explain the local picture of the b-tangent bundle. Thus, under-
standing this vector bundle locally is relatively easy. However, as is often the case, the
global picture makes these vector bundles interesting. Before giving a more intuitive pic-
ture, that allows to understand this vector bundle globally, we briefly mention more gen-
eral way of looking at b-tangent bundle.

The b-tangent bundle is an example of a Lie algebroid over the tangent bundle. A Lie
algebroid is a triple (A, [·, ·], ρ), where A is a vector bundle, [·, ·] is a Lie bracket on the space
of sections over A and ρ : A → TM is a morphism, called anchor map such that the bracket
and anchor map satisfy the Leibniz rule, meaning that [X, fY ] = f [X,Y ]+ρ(X)(f) ·Y , for
X,Y ∈ Γ(A) and f ∈ C∞(M). As the inclusion map i : bX(M) ↪→ X(M) is C∞(M)-linear,
it comes from a vector bundle map

(8) ρ : bTM → TM.

Furthermore, the Lie bracket of two tangent vector fields to Z is still a vector field tangent
to Z. Thus, the Lie bracket on Γ(bTM) is just the usual Lie bracket. Exercise: Check the



14 CÉDRIC OMS

Leibniz formula. A deeper look into Lie algebroids can be found in [20]. From Z, ρ is the
identity, as seen in Equation (7). On Z, however, the anchor map is no longer the identity:

ρ|Z : bTM |Z → TZ

admits a 1-dimension kernel that is spanned by ⟨z ∂
∂z ⟩. Exercise: Check that this does not

depend on the choice of defining function. We have thus a 1-dimensional line bundle over
Z that we denote by LZ . A non-vanishing section of LZ is called normal b-vector field. The
b-vector field z ∂

∂z is an example of such a vector field.
Another way of looking at the b-tangent bundle can be obtained as follows: let us as-

sume that the hypersurface is globally defined, that is that there exists a globally defined
function z : M → R such that z−1(0) = Z. This means that the manifold M can be split as
M = M+∪M−∪Z, where M± = {±z > 0}. The vector field ∂

∂z is a transverse normal vec-
tor field, pointing from M− towards M+. The case of the b-tangent bundle is very much
different: the vector field z ∂

∂z is transverse to the hypersurfaces {z = ±ϵ} for ϵ > 0 small
enough, but pointing away from Z. This means that to construct the b-tangent bundle out
of TM , we can glue the smooth tangent bundles around a connected component of Z in
the following way. For {z > ϵ} we consider the vector field ∂

∂z and we glue it to the vector
field − ∂

∂z . Mathematically speaking, this can be described as follows:
The b-tangent bundle of M is the vector bundle obtained by gluing

TM |M\M− → TM |M\M+

by the constant diagonal map

Id⊕ (−1) : Z → GL(TZ ⊕ ⟨ ∂

∂z
⟩).

Some examples are in order.

Example 2.16. Consider S1 with one marked point p, thus (S1, p) is a b-manifold. The b-tangent
bundle bTS1 is isomorphic to the Moebius strip.
However, if we consider S1 with two marked points p, q, the b-tangent bundle associated to the
b-manifold (S1, p ∪ q) is isomorphic to TS1 ∼= S1 × R.

The above examples are easy to understand. For higher dimensional examples, the
global understanding of the b-tangent bundle becomes trickier.

Proposition 2.17 (Brugués, [43]). The b-tangent bundle associated to (S2, S1) is parallelizable.

Thus, in the above case, the b-tangent bundle is not isomorphic to TS2. To conclude this
subsection, we mention the following:

Proposition 2.18 ([9]). Let M3 be a three-dimensional manifold with a separating hypersurface Z
defined by the zero-level set of a global defining function f . Then the b-tangent bundle associated
with (M,Z) is isomorphic to TM .

2.3. b-geometry. Equipped with the tool of b-tangent bundle, we would like to do geome-
try over this vector bundle and, ultimately, talk about the dynamics of this vector bundle.
To do so, the first step is to define differential forms; the second is to define an extension
of the exterior derivative to this bundle. The first one will be straightforward: this follows
from the usual definitions of vector bundles:

Definition 2.19. The b-cotangent bundle is the dual of the b-tangent bundle and is denoted by
bT ∗M . A b-differential form of degree k is a section of

∧k bT ∗M . The set of b-forms of degree k is
denoted by bΩk(M).
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To grasp what b-forms look like, we make use of our understanding of the b-tangent
bundle. In fact, away from Z, we know by Equation (7) that the b-cotangent bundle is
isomorphic to the b-tangent bundle, and therefore

bΩk
p(M) = Ωk

p(M), p ∈ M \ Z.

On a point p ∈ Z, the map ρp :
bTpM → TpZ as in Equation (8) is surjective, meaning that

the dual ρ∗p : T ∗
pZ → bT ∗

pM is injective and the image of ρ∗p is given by {α ∈ bT ∗
pM |α(z ∂

∂z ) =
0}.

Away from Z, the one-form dz
z defines a well-defined 1-form. The evaluation of this

one-form on b-vector fields can still be smoothly extended over Z, and the 1-form can be
interpreted as a smooth section of bT ∗M . Moreover, dz

z (z
∂
∂z ) = 1, and thus dz

z /∈ Imρ∗p. We
get thus a splitting at p ∈ Z

(9) bT ∗
pM = T ∗

pZ ⊕ ⟨
(
dz

z

)
p

⟩

A b-form of degree one, that is a section over bT ∗M can thus be written as α = f dz
z + β,

where f is a smooth function over M and β is a smooth 1-form.
In the above arguments, we chose a preferred section of the line bundle LZ . How-

ever, one can choose that the above constructions are independent of the choice of a non-
vanishing section of LZ .

A b-form of degree ω ∈ bΩ1(M) can thus be decomposed as ω = f dz
z + α, where α ∈

Ω1(M) and f ∈ C∞(M). These arguments generalize to higher wedges of bT ∗M , and we
thus obtain that a b-form of degree k can be written as

(10) ω = α ∧ dz

z
+ β, α ∈ Ωk−1(M), β ∈ Ωk(M).

This decomposition lets us define an exterior derivative on the space bΩk(M).

Definition 2.20. The exterior derivative is defined on bΩk(M) by

dω = d(α ∧ dz

z
+ β) := dα ∧ dz

z
+ dβ

This turns bΩk(M) in a differential graded algebra. It follows from the definition that the
exterior derivative on bΩk(M) is an extension of the usual exterior derivative. Note that a
Lie algebroid comes already equipped with an exterior derivative, and one can check that
the exterior derivative we define here is, the one, coming from the general Lie algebroid
construction.

Equipped with the b-differential forms and the exterior derivative, we are ready to start
to symplectic geometry over bTM .

2.4. b-symplectic geometry.

Definition 2.21. An even dimension b-manifold (M2n, Z) with a b-form of degree 2, ω ∈ bΩ2(M)
is a b-symplectic manifold if

• ω is non-degenerate as a form over bTM ,
• ω is closed for the differential defined in Definition 2.20.

We continue with two examples:
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Example 2.22. Consider the b-form of degree 2 given by ω = dx1
x1

∧ dy1 +
∑n

i=2 dxi ∧ dyi on R2n.
From the definition of the exterior derivative, dω = 0. Away from the hypersurface Z = {x1 = 0},
the b-form satisfies that ωn ̸= 0, meaning that it defines a symplectic structure away from Z =
{x1 = 0}. A direction computation yields that

ωn =
dx1
x1

∧ dy1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ · · · dxn ∧ dyn,

and therefore ω is non-degenerate as a b-form.

The following example consists of a compact example.

Example 2.23. Consider the 2-dimensional sphere S2, equipped with cylindrical coordinates (θ, h)
with the b-form of degree 2 given by ω = dh

h ∧ dθ. For dimensional reasons, this is a closed b-
form. Furthermore, this b-form is non-vanishing as a b-form, and therefore it defines a b-symplectic
structure on S2.

The last two examples are very close, almost identical to Example 2.10 and Example
2.11, examples of b-Poisson structures. This is no coincidence.

Proposition 2.24 (Guillemin–Miranda–Pires, Proposition 20 in [25]). A b-form is b-symplectic
if its dual bi-vector field is b-Poisson.

The proof is mainly using Weinstein’s splitting theorem.
In contrast to the two examples presented from the b-symplectic point of view, Example

2.10 and Example 2.11 present a codimension 1 foliation on the critical set. This codimen-
sion 1-foliation can be seen from the point of b-symplectic geometry, which we will see in
a second.

Proposition 2.25 (Proposition 10 in [25]). Let (M2n, Z) be a b-manifold with b-symplectic form
ω. By Equation 10, we can decompose ω = α ∧ dz

z + β. Denote by i : Z ↪→ M the inclusion of the
critical hypersurface to M . Then the forms α̃ = i∗α ∈ Ω1(Z) and β̃ := i∗β ∈ Ω2(Z) are closed
forms. Furthermore

(1) α̃ does not depend on the choice of defining function for Z and is nowhere vanishing. It
thus defines a codimension 1 foliation on Z.

(2) Let L be a leaf of the foliation defined by ker α̃. Then the form β̃|L defines a symplectic form
on the leaf L.

(3) In the decomposition of Equation (10), α ∧ β ∧ dz
z is nowhere vanishing.

This proposition gives a neat description of the critical set Z: the b-symplectic structure
induces a regular codimension 1 symplectic foliation. An (2n − 1) dimensional manifold
equipped with a closed 1-form and a closed 2-form β such that α ∧ βn−1 is a volume
form is called a cosymplectic structure. Thus, the induced structure on the critical set is a
cosymplectic structure.

Codimension 1-symplectic foliations are rigid: in particular, Proposition 2.25 shows that
there are some topological conditions on a given manifold for it to admit a b-symplectic
structure.

For instance, there is no b-symplectic structure on S4. Exercise: Show this.
As mentioned earlier, using the Weinstein splitting theorem, one can show that locally

around a point p ∈ Z, a b-Poisson manifold is locally given as in Example 2.10. The cor-
respondence between b-Poisson and b-symplectic manifolds proves a local standard form
theorem for b-symplectic manifolds as well. However, using Moser’s path method, one
can prove the same using the same approach as for symplectic manifolds.
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Proposition 2.26 (b-Darboux theorem, Theorem 37 in [25]). Let (M,Z) be a b-symplectic
manifold and p ∈ Z. Then there exists local coordinates around p such that

(11) ω =
dz

z
∧ dy1 +

n∑
i=2

dxi ∧ dyi.

This means that b-symplectic manifolds are locally well understood. But even the semi-
local understanding of Z is well-understood. Recall that it follows from Proposition 2.25
that a codimension 1 symplectic foliation exists on Z. If one of the symplectic leaves is
compact, all of them are symplectomorphic, and Z is topologically a mapping torus.

Proposition 2.27. Let (M,ω) be a b-symplectic manifold. Assume that Z is compact and a com-
pact leave of the symplectic foliation L exists. Then Z ∼= L × [0, T ]/{(x, 0) = (ϕ(x), T )}, for a
symplectomorphism ϕ and T > 0.

The above isomorphism is called a mapping torus. This proposition follows from the ex-
istence of a transverse vector field to the symplectic foliation on Z. In the above statement,
ϕ is the flow of this vector field and T the return time. This vector field is the modular vec-
tor field in Poisson geometry. First, let us give a general definition of an oriented Poisson
manifold.

Definition 2.28 (Proposition 49 in [25]). Let (Mm,Π) a Poisson manifold with a volume form
Ω ∈ Ωm(M). The modular vector field is defined as the derivation

vΩmod : f 7→
LXf

Ω

Ω
.

In local Darboux coordinates as in Proposition 2.26, the modular vector field is given by
vΩmod = ∂

∂y1
, and therefore it is tangent to Z, but transverse to the leaves. To be precise,

we need to specify the volume form Ω, which is given here by Ω = dz ∧ dy1 ∧ dx2 ∧ dy2 ∧
· · · dxn∧dyn. However, the choice of volume form is irrelevant: Exercise two different vol-
ume forms lead to the same modular vector field, up to addition of a Hamiltonian vector
field. The Hamiltonian vector field is by definition tangent to the foliation, and therefore,
any modular vector field is tangent to Z but transverse to the symplectic foliation. Fur-
thermore, the flow of this vector field preserves the symplectic structure Exercise and is,
therefore, a symplectic flow. This shows that all the leaves are symplectomorphic as there
is always a fixed point of the symplectomorphism after a finite time T > 0, Proposition
2.27 follows.

We will continue investigating a further generalization of b-symplectic structures.

2.5. bm-symplectic structures. The structure of b-symplectic structures is based on study-
ing the symplectic geometry of the b-tangent bundle. This bundle is constructed so that its
sections are tangent to the given hypersurface Z. From the Poisson point of view, this thus
yields a transversality condition in the definition of the maximum wedge of the Poisson
bi-vector field. The tangency of the vector fields can, of course, be easily generalized by
asking that the vector fields are tangent to order k. This has first been studied in [46].

Definition 2.29. A bm-vector field is a vector field v on a b-manifold (M,Z) tangent of order m
at Z.

One would, therefore, like to define the bm-tangent bundle similarly as one defines the
b-tangent bundle—however, the order of vanishing depends on the choice of defining func-
tion.
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Example 2.30. Consider the b-manifold (R2, Z = {y = 0}). The critical set Z is defined by the
defining function f1 = y and by the defining function f2 = exy. The vector field X = ∂

∂x satisfies
that LXf1 = 0 and LXf2 = exy. This means that the order of tangency is not well-defined.

Definition 2.29 is therefore not well-defined and has to be replaced by a slightly more
subtle definition, as one has to fix the data of a (k−1)-jet of Z. For the definition to be well-
defined, we must ask that the defining function be an element of this (k − 1)-jet bundle.
We will not detail this; the reader is referred to [46, Definition 2.11].

Given this definition, we obtain the bm-tangent bundle. One can prove that the results of
the Subsection 2.4 generalize to this set-up: out of the bm-tangent bundle, one can produce
bm-symplectic forms, and loosely speaking, Subsection 2.4 can be adapted mutatis mutandis
by replacing b, by bm (up to the additional data of (k − 1)-jet bundle, of course).

2.6. Relation to smooth symplectic structures. To what extent are bm-symplectic struc-
tures and smooth symplectic structures related? Of course, away from the critical set, a
bm-symplectic structure is symplectic. The question does, therefore, ask for global con-
siderations of the manifold. An approach to tackle this question is to change the singular
term dz

z to a smooth term and thus ’desingularize’ the bm-symplectic structure. This is the
content of [27] and [10]. However, this strongly depends on the parity of the bm-symplectic
structure: b2k-symplectic structures can be desingularized to symplectic structures, while
b2k+1-symplectic structures can be desingularized to so called folded symplectic structures.

Theorem 2.31 ([?, Theorem 3.1 and 5.1]). Let (M,Z, ω) be a bm-symplectic manifold.

(1) If m = 2k, then there exists a family of symplectic forms ωε which coincide with the
b2k-symplectic form ω outside an ε-neighborhood of Z.

(2) If m = 2k+1, then there exists a family of folded symplectic forms ωε which coincides with
the b2k+1-symplectic form ω outside an ε-neighbourhood of Z.

Here folded symplectic means that there is a non-degenerate 2-form such that ωn ⋔ 0.
A direct corollary of this theorem is that if a manifold admits a b2m-symplectic structure,
then it admits a symplectic structure.

2.7. A guide through b-symplectic literature. The first instance of these geometric struc-
tures can be found in Melrose’s book [35], where he studied the Atiyah–Patodi–Singer
index theorem on manifolds with boundaries, followed by the work of Tsygan–Nest [47]
on formal deformations.

The study of these geometric structures was picked up again by Radko [45], the first
instance of b-symplectic structures - even though the name b-symplectic does not appear
there. The reason for this is that in this paper, these structures were dealt with more from
the point of view of Poisson geometry. The first ones to study these structures using Mel-
rose’s b-tangent bundle are Eva Miranda, Victor Guillemin, and Ana Rita Pires in [25].
Many of their results are based on their previous paper [24]. The present lecture notes are
based on their description, and many of the results can be found here.

Almost simultaneously, the here described object was studied under the name of log-
symplectic structures in [23].

A practical guide through the literature of b-symplectic geometry can be found in [4] -
even though the literature has expanded since then!

Their description gave rise to a series of new developments. Here is an overview of
what has been studied; however, this list is far from exhaustive and will probably (and
hopefully!) continue to grow in the future.
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• The obstructions to the existence were studied in [32], and later further developed
in [10] and [31]. More on the topology, particular applications of the h-principle
can be found in [19].

• Hamiltonian actions were considered in [26], where a Delzant-type theorem for
toric b-symplectic manifolds was proved.

• KAM and action-angle coordinates have been studied in [29].
• Higher order singularities were initiated in [46], and continued in [3].
• Marsden–Weinstein reduction theory on bm-symplectic manifolds is investigated

in [33].
• The relation to smooth symplectic structures was studied in [27].
• The geometric quantization was studied in [28, 5], see also [37] for lecture notes on

this.
• The symplectic geometry of more general Lie algebroids has been initiated in [42].
• For more on the deformation of Lagrangian submanifolds, see [22], and for La-

grangian Floer theory [30].
• The relation with dissipative systems is described in [11].
• Floer theory in b-symplectic manifolds was initiated in [7].
• For Gauge theories in b-symplectic manifolds and their generalizations, see [38].

Having a good understanding of b-symplectic manifolds, we will now verge into the
study of its odd-dimensional sibling.

3. REEB DYNAMICS ON b-CONTACT MANIFOLDS

3.1. b-contact manifolds. Having gone through the definition of b-symplectic, the follow-
ing definition should not be a surprise:

Definition 3.1. Given an odd dimensional manifold (M2n+1, Z), a b-form of degree 1, α ∈
bΩ1(M) is a b-contact form if α ∧ (dα)n ̸= 0.

We start with a couple of examples.

Example 3.2. Consider the b-manifold (R3, Z = {z = 0}).
• The b-form α1 =

dz
z + xdy is a b-contact form.

• Another example of a b-contact form is given by α2 = dx+ y dz
z .

The codimension 1 distribution ξ ⊂ bTM given by ξ = kerα is called the b-contact
structure.

Recall that when viewed as a b-vector field, the vector field z ∂
∂z is a non-vanishing vector

field. Therefore:

Important observation: ξ is a codimension 1 regular distribution in bTM . At the
point p, we can look at the inclusion of ξ under the map ρ as defined in Equation (8),
and ρ(ξ) is a distribution of TM .

The b-contact distribution ξ, viewed as a smooth distribution, i.e., ρ(ξ), is a distribution
that consists of a distribution that is tangent to Z. Away from Z, we have an honest codi-
mension 1-plane distribution (given by a contact structure). On Z, however, the rank of
the smooth distribution ρ(ξ) may drop. Exercise: Check this.

We include here one more example. displace?
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Example 3.3. Consider the torus T2 as a b-manifold where the boundary component if given by
two disjoint copies of S1. The unit cotangent bundle S∗T2, diffeomorphic to the 3-torus T3 is a b-
contact manifold with b-contact form given by α = sinϕ dx

sin(x) +cosϕdy, where ϕ is the coordinate
on the fiber and (x, y) the coordinates on T2.

Associated to a b-contact form α, we can define a unique b-vector field, the b-Reeb vector
field. We omit the ’b’ whenever it is clear that we talk about a b-contact form and not a
smooth contact form.

Definition 3.4. The Reeb vector field associated to a b-contact form α is a b-vector field, defined by{
ιRαdα = 0

ιRαα = 1.

By definition, the b-Reeb vector field is a b-vector field. The computation of the b-Reeb
vector field of the b-contact forms in Example 3.2 yields

• Rα1 = z ∂
∂z

• Rα2 = ∂
∂x .

Under the inclusion of b-vector fields in the set of smooth vector field i : bX(M) ↪→
X(M), the above example thus shows that the b-vector field looked at as a smooth vector
field, or more precisely, the image under the inclusion map i as above, is vanishing when
restricted to Z.

Using the flow of the vector field Rα, we can prove a local normal form, similar to the
Darboux theorem for contact forms (Theorem 1.9). Loosely speaking, the Reeb vector field
together with the rank of the smooth distribution ρ(kerα) determines the local normal
form of the b-contact form. For simplicity, we include the statement only in dimension 3:

Theorem 3.5 (b-Darboux theorem, Theorem 5.4 in [40]). Let α be a b-contact form inducing a
b-contact structure ξ on a b-manifold (M3, Z) and p ∈ Z. We can find a local chart (U , z, x, y)
centered at p such that on U the hypersurface Z is locally defined by {z = 0} and

(1) if i(Rp) ̸= 0, where i : bX(M) ↪→ X(M),
(a) and ξp is singular, then

α|U = dx+ y
dz

z
,

(b) and ξp is regular, then

α|U = dx+ y
dz

z
+

dz

z

(2) if i(Rp) = 0, then α̃ = fα for f(p) ̸= 0, where

α̃p =
dz

z
+ xdy.

For higher dimensional b-contact manifold, say of dimension (2n + 1), the same holds
by adding ’regular terms’ given by

∑n
i=2 xidyi to the above expressions. This theorem can

be helpful when doing local computations.
We end this subsection with two more constructions that explain the relation between

b-contact and b-symplectic manifolds.
Given a b-contact manifold (M,α), we obtain a b-symplectic structure by going to the

symplectization: it follows from the definitions that (M ×R, Z×R) is a b-manifold and the
b-form of degree 2 given by ω = d

(
etα
)

is a b-symplectic form.
Vice-versa, having a b-symplectic manifold (M,ω) with a given hypersurface Σ trans-

verse to Z and a b-vector field X that satisfies
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• dιXω = ω,
• X is transverse to Σ,

then (Σ, ιXω) is a b-contact manifold, with critical set given by Z ∩ Σ. By analogy to the
smooth symplectic set-up, a vector field satisfying the above conditions is called Liouville
vector field. Exercise: Proof this.

An example is given as follows:

Example 3.6. Consider the unit sphere S3 in the standard b-symplectic manifold (R4, dzz ∧ dy1 +

dx2 ∧ dy2). The vector field X = 1
2z

∂
∂z + y1

∂
∂y1

+ r ∂
∂r , where r2 = x22 + y22 is a Liouville vector

field. Exercise: This vector field is transverse to the S3 and therefore (S3, ιXω =: α) is a b-contact
manifold. The b-contact form is explicitly given by

α =
1

2

(
dy1 − 2y1

dz

z
+ x2dy2 − y2dx2

)
.

The above example will be important when studying the global behavior of the b-Reeb
vector field. Before doing so, we will look deeper at the critical set of a b-contact manifold.

3.2. Jacobi structures. As we observed in Subsection 2.1, the symplectic manifolds can be
seen as a particular case of Poisson manifolds, and the associated Poisson bi-vector field
is non-degenerate. In between lie b-symplectic manifolds, where the maximum wedge of
the bi-vector field is asked to be transverse to the zero-section. This description allowed
us to use Poisson geometry tools to describe the critical set’s symplectic foliation. When
wanting to do a similar construction for b-contact, one runs into the following problem.

Contact manifolds do not fit into this picture: they are not an example of Poisson mani-
folds. However, contact manifolds are a particular case of the following geometry.

Definition 3.7. A Jacobi structure on a manifold M is a couple (Λ, R) of a bi-vector field Λ ∈
X2(M) and a vector field R ∈ X(M) that satisfy the following equations:

(1) [Λ,Λ] = 2Λ ∧R,
(2) LRΛ = 0. The couple (M,Λ, R) is called a Jacobi structure.

A good reference for more information about Jacobi structure is [49]. Here, we will only
deal with the necessary basics to describe the geometry of the critical set. This definition
has a few equivalent descriptions. Similar to the description of Poisson manifolds, a Jacobi
structure can be described in terms of a bracket on the space of smooth function C∞(M),
that is skew-symmetric, satisfies Jacobi identity, and is a local derivation, meaning that it is
a bi-linear, bi-differential operator. This bracket can be described as

{f, g} := Λ(df, dg) + f(R(g))− g(R(f)).

From this definition, it should be clear that Poisson manifolds are a particular type of Ja-
cobi manifolds, namely when the bracket is not only a local derivation but satisfies Leibniz
rule, or equivalently speaking, that R in Definition 3.7 is zero.

Another example of Jacobi structure are - as announced just above - contact manifolds.

Example 3.8. Let (M2n+1, α) be a contact manifold. Given a smooth function f ∈ C∞(M), the
contact Hamiltonian vector field Xf is defined by the equations{

ιXf
dα = −df +Rα(f)α

ιXf
α = f.

We can define the following bi-vector field Λ(df, dg) = dα(Xf , Xg) and R = Rα. Exercise: Then
(M,Λ, R) is a Jacobi structure. Furthermore, Λn ∧R ̸= {0}.
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As in the case of Poisson manifolds, associated with a Jacobi manifold, a singular folia-
tion is generated by the Hamiltonian vector fields. The Hamiltonian vector field associated
with f is defined by Xf = Λ(df, ·)+fR. The distribution D(M) = {Xf |f ∈ C∞(M)} can be
shown to be integrable (Exercise, see [49]). In contrast to the foliation in Poisson geometry,
the leaves of this foliation are even dimensional if R ∈ ImΛ♯, but odd dimensional when
R /∈ ImΛ♯. The Jacobi structure induces the following structure on the leaf:

(1) If the leaf is odd-dimensional, then the induced structure is a contact structure
(2) If the leaf is even-dimensional, then the induced structure is a locally conformally

symplectic structure.

Here locally conformally symplectic, short lcs, means that locally, it is a symplectic structure
up to the multiplication of a locally defined function.

Contact manifolds are a particular case of Jacobi manifolds and the non-degenerate odd-
dimensional Jacobi manifolds. In this sense, the following definition and proposition
should not be a surprise.

Definition 3.9. An odd dimensional Jacobi manifold (M2n+1,Λ, R) is b-Jacobi if Λn ∧R ⋔ {0}.

Proposition 3.10. There is a one-to-one correspondence between b-Jacobi and b-contact manifolds.

As a result of this, we understand the associated foliation on the critical set. By the
transversality condition of b-Jacobi structures, the leaves on the critical set can either be of
dimension 2n (and thus have an induced locally conformally symplectic structure) or of
dimension (2n− 1) and have an induced contact structure on this leaf.

Having a good understanding of the geometry of b-contact manifolds, we dive now into
the central theme of this mini-course: studying the dynamics of the b-Reeb vector field.

3.3. The Singular Weinstein conjecture. In this section, we study the b-Reeb vector field
dynamics. More precisely, given the Reeb vector field associated with a b-contact form α as
in Equation 3.4, we regard Rα as a smooth vector field, meaning we take into consideration
i(Rα) where i : bX(M) ↪→ X(M). In particular, we would like to know if i(Rα) admits
periodic orbits. However, we will omit i in the notation whenever we discuss the dynamics
of the b-Reeb vector field.

We start by comping the Reeb vector field in a couple of examples.

Example 3.11. Consider (T3, sinx dϕ
sinϕ + cosxdy). The Reeb vector field is given by Rα =

sinx sinϕ ∂
∂ϕ + cosx ∂

∂y . The critical set is given by two disjoint copies of the 2-torus T2, and
the Reeb flow restricted to it is given by cosx ∂

∂y . As in the last example, the critical set Z is given
by periodic orbits (except when cosx = 0, where the Reeb vector field is singular).

Example 3.12. Consider the b-contact 3-sphere (S3, α) as in Example 3.6. The associated Reeb
b-vector field can be computed to be Exercise

(12) Rα =
2

1 + y21
(−y1z∂z + z2∂y1 − y2∂x2 + x2∂y2).

Up to the conformal factor, the vector field is given by

(13) −y1z∂z + z2∂y1 − y2∂x2 + x2∂y2

and therefore defines the same orbits as the vector field Rα. In cylindrical coordinates (h, θ) on
Z = S2, this vector field is the Hamiltonian vector field for the Hamiltonian function H = h given
by the symplectic form dh ∧ dθ.



LECTURES ON b-REEB DYNAMICS 23

Remark: We do not know if there exists a b-contact form on S3 which produces the
vector field of Equation (13) as a Reeb vector field (i.e. Rα, but without the conformal
factor).

Observations: In the above 3-dimensional examples, we observe that
• there a points on Z where the Reeb vector field vanishes;
• The critical set has infinitely many periodic orbits.

We will see that we can turn this observation, in fact, into a proposition.
More precisely, the following will allow us to thoroughly understand the dynamics of

the critical set in dimension 3.

Proposition 3.13 (Theorem 5.7 in [40]). Let (M,α = udz
z + β) be a b-contact manifold of

dimension 3. Then the restriction to Z of the 2-form

(14) Θ = udβ + β ∧ du

is symplectic and the Reeb vector field is Hamiltonian with respect to Θ with Hamiltonian function
u, i.e. ιRαΘ = du.

Proof. In the decomposition, α is given by α = udz
z + β. We compute

α ∧ dα =

(
u
dz

z
+ β

)
∧
(
du ∧ dz

z
+ dβ +

∂β

∂z
∧ dz

)
=

(
udβ + β ∧ du+ zβ ∧ ∂β

∂z

)
∧ dz

z
̸= 0.

When restricting to Z, we obtain that the 2-form Θ := udβ + β ∧ du on Z has to be non-
vanishing, meaning that it is a symplectic form. In the same decomposition, let us write
the Reeb vector field as Rα = g · z ∂

∂z + X , where g ∈ C∞(M) and X ∈ X(Z). The Reeb
vector field has to satisfy the equations as in Definition 3.4, and we therefore obtain the
following equations:

g · u+ β(X) = 1,

−gdu+ ιXdβ = 0,

ιXdu = 0.

A straightforward computation using those equations yields that ιXΘ = du, hence the
restriction of Rα to Z is the Hamiltonian vector field for the function −u. □

Note that this proposition breaks down in higher dimensions: one obtains a volume
form on the even dimensional hypersurface - and of course in dimension 2, volume form
and symplectic form coincides.

In the compact case, we obtain a first corollary, proving that the second observation we
remarked higher up is true.

Corollary 3.14. Let (M,α) be a 3-dimensional compact b-contact manifold. Then, there are at
least two points where the Reeb vector field vanishes.

The 2-form Θ of Equation 14 is closed in dimension 3, and by Stokes theorem, if Z is
closed, then Θ cannot be exact. Thus, the function u|Z cannot be constant, as otherwise,
the form Θ would be written as udβ, which is exact if u|Z is constant. We will prove that
infinitely many periodic orbits exist around the function’s critical points u.
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Proposition 3.15 (Proposition 2.6 in [39]). Let (M,α = udz
z + β) be a 3-dimensional b-contact

manifold with a closed critical hypersurface Z, where u ∈ C∞(M) and β ∈ Ω1(M) as before. Then
the function u|Z is non-constant. Furthermore, there exists infinitely many periodic Reeb orbits on
Z.

Note that the critical hypersurface Z is closed if a global function defines Z and the
ambient manifold M is compact.

Proof. We have already checked and proved that the function u is non-constant. By Propo-
sition 3.13, we know that the Reeb vector field is the Hamiltonian vector field on Z for
the function −u. Let p ∈ Z be a point such that dup ̸= 0 (which exists because u is non-
constant). As the preimage of a closed topological set is closed and a closed set of a compact
manifold is compact, circles give the level sets, and the Reeb vector field, contained in the
level-set, is non-vanishing in view of

ιRα(udβ + β ∧ du) = du.

Hence, the Reeb vector field is periodic on u−1(p). □

Short: in three dimensions and when Z is compact, there always exist zeros of the vec-
tor field and infinitely many periodic Reeb orbits on the critical set around the zeros of
the vector field. But what about the periodic orbits away from Z? We will return to the
previous examples and analyze the dynamics away from Z to answer this question.

Example 3.16. The Reeb vector field on the 3-torus equipped with the b-contact form as in Example
3.11 is given by Rα = sinx sinϕ ∂

∂ϕ + cosx ∂
∂y . Applying Proposition 3.13, we find that the Reeb

vector field on Z is described by the Hamiltonian vector field given by the Hamiltonian function
H(x, y) = H(x) = − sinx associated to the area form dx ∧ dy. To analyze the flow of Rα away
from Z, notice that Rα preserves H . Hence the integral curve of Rα through a point (x0, y0, ϕ0)
satisfies

ϕ̇(t) = H(x, y) sinϕ(t) = H(x0, y0) sinϕ(t).

We can integrate this differential equation: the explicit solutions are given by

ϕ(t) = 2 cot−1 (exp (c−H(x0, y0)t)) ,

where c is the constant such that ϕ(0) = ϕ0. Thus, no periodic orbits away from Z exist for this
vector field. However, we can observe another dynamical phenomenon.

Taking as initial condition {x0 = ±π
2 }, the differential of H is zero at (x0, y0), and therefore this

integral curve satisfies thus that limt→±∞ ϕ(t) is at a zero of the restriction of Rα in Z.

In the above example, we have thus an orbit that comes ’out’ of the zero of Rα on Z and
limits to one of those zeros of Rα on Z. We call such an orbit singular periodic orbit.

Definition 3.17. Let (M,Z, α) be a b-contact manifold. A singular periodic orbit is an integral
curve γ : R → M \ Z of the Reeb b-vector field such that limt→±∞ γ(t) = p± ∈ Z, where p± is a
zero of the Reeb vector field on Z, i.e.R(p±) = 0.

We continue to analyze the dynamics of the Reeb vector field on S3.

Example 3.18. The Reeb vector field on S3 equipped with the b-contact form as in Example 3.12
is given by Rα = 2

1+y21
(−y1z∂z + z2∂y1 − y2∂x2 + x2∂y2). Once again, this vector field cannot

have periodic orbits away from Z, since the flow satisfies the equation ẏ1(t) = z2(t), which is
strictly positive away from Z. The flow can thus not be periodic. However, in what follows we will
understand the flow away from Z.
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We can use the stereographic projection onto R3 from the north pole (1, 0, 0, 0) of S3 to visualize
the flow. The stereographic projection is given by

Ψ : S3 \ {(1, 0, 0, 0)} → R3

(x1, y1, x2, y2) 7→
(

x2
1− x1

,
y2

1− x1
,

y1
1− x1

)
.

The stereographic projection of the usual Hopf vector field −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 can be
written in cylindrical coordinates (ρ, ϕ, z) as

(15) −zρ∂ρ −
1− ρ2 + z2

2
∂z + ∂ϕ.

The stereographic projection of the b-vector field −zy1∂x1 + z2∂y1 − y2∂x2 +x2∂y2 is in cylindrical
coordinates, and letting r2 = x2 + y2 + z2 given by (Exercise)

(16)
r2 − 1

r2 + 1

(
−zρ∂ρ −

1− ρ2 + z2

2
∂z

)
+ ∂ϕ.

We will call this vector field the b-Hopf field, because of the analogy to the usual Hopf field. Notice
that the only difference between Equations (15) and (16) is the r2−1

r2+1
factor, which multiplies the

∂ρ and ∂z components, but crucially not the ∂ϕ component, of the Hopf b-vector field. Figure 1
shows the flow of the Hopf b-vector field on the y = 0 plane. Notice the white circle representing
stationary points at the critical surface r = 1. The points on this circle rotate. according to ∂ϕ along
the parallels of the critical S2.

Observation: In the above 3-dimensional examples, we observe that
• there can be no periodic orbit away from Z on a compact b-contact manifold.

From the point of contact geometry, M\Z is a non-compact contact manifold,
and therefore this makes sense. However, from a ’b-contact geometry’ point
of view, it would be nice to have the existence of periodic orbits on b-contact
manifolds;

• there exists an orbit that comes from the zero of Rα on Z and returns to
another zero on Z, which we called in Definition 3.17 a singular periodic orbit.

It follows that all hope for the Weinstein conjecture to hold for the existence of periodic
orbits away from Z is gone: some examples do not satisfy this. However, a new dynamical
invariant appears in the above examples: singular periodic Reeb orbits. They seem to exist
- at least in all of the examples we have encountered. We thus conjecture

Conjecture 3.19 (Singular Weinstein Conjecture). On a compact b-contact manifold, singular
periodic Reeb orbits exist or a periodic Reeb orbit outside the critical set.

In what follows, we will analyze this conjecture. This conjecture is of global nature: it
asks for a globally defined integral curve coming and going to a singular point of the Reeb
vector field on Z. We will start by analyzing this conjecture from a semi-local point of view.
Namely, we will analyze the behavior of the Reeb vector field in a tubular neighborhood
around the critical set. To do so, we need to take a detour to the world of hydrodynamics,
more precisely to the one of Euler flows.

3.4. Euler flows and the contact/Beltrami mirror. In [15], a correspondence between con-
tact forms and Beltrami vector fields was shown. This gives an exciting reinterpretation
of both fields that we will analyze in this subsection in the set-up of b-geometry. Here, we
first define what Beltrami vector fields are.
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FIGURE 1. Illustration of the Hopf b-vector field on the y = 0 section. It is
essentially the smooth Hopf vector field rescaled as it approaches r = 1, see
[17].

Given a 3-dimensional Riemannian manifold (M, g), the curl of a vector field X ∈ X(M)
is defined to be the vector field that satisfies dιXg = ι∇×Xµ, where µ is a volume form
(possibly the volume form associated to the metric g).

Definition 3.20. A vector field is said to be Beltrami if it is tangent to its own curl, that is

(17) ∇×X = fX

for some f ∈ C∞(M). A Beltrami vector field is said to be rotational if f ̸= 0, meaning it has a
nonzero curl.

Beltrami vector fields have their origin in fluid dynamics, as they are time-independent
solutions to Euler’s equation for a perfect incompressible fluid, see [15].

The so-called ABC vector fields give an example of Beltrami vector fields.

Example 3.21. Consider the flat Riemannian metric on the 3-torus T3. The vector field

X(x, y, z) = [A sin z + C cos y]
∂

∂x
+ [B sinx+A cos z]

∂

∂y
+ [C sin y +B cosx]

∂

∂z

for A,B,C ∈ R are real parameters is a Beltrami vector field Exercise. Furthermore, α = gflat(X, ·)
is a contact form and the integral curves of its Reeb vector field and of X coincide.

The fact that the above Beltrami vector field is a Reeb vector field (up to reparametriza-
tion) is not a coincidence.
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For time-independent Euler vector fields that are not everywhere tangent to its curl (so
not Beltrami), the famous structure theorem of Arnold [2] says that the manifold can be
into solid tori where the tori are invariant sets for the flow of X . Beltrami vector fields
do not satisfy this, and geometrically, the condition (17) says that the vector fields twist
about themselves. This is reminiscent of the notion of the everywhere ’twisting’ plane
field given by a contact structure. Etnyre–Ghrist formalized this observation: a rotational
Beltrami vector field is a Reeb vector field for some contact form on M !

Theorem 3.22 (Theorem 2.1 in [15]). Any rotational Beltrami field on M is a Reeb vector field
(up to rescaling) for some contact form on M . Conversely, given a contact form α with Reeb vector
field Rα, any nonzero rescaling of X is a rotational Beltrami field for some metric and volume form
on M .

This theorem thus opens the door to apply known techniques from contact topology to
the field of Beltrami vector fields, and vice-versa.

Given a 3-dimensional manifold with boundary (M,∂M) and a vector field X that is
Beltrami on M \ ∂M , a natural condition is to ask that the Beltrami vector field is tan-
gent to the boundary. But this is precisely what b-vector fields were defined for! In what
follows, we will thus describe the above description for b-manifolds. Spoiler-alert: Theo-
rem 3.22 still holds in this set-up. To do this, we need to describe the metrics to take into
consideration.

Definition 3.23 (b-metrics). A b-metric is a bilinear positive-definite form Γ(bT ∗M ⊗ bT ∗M) .

A b-metric naturally induces a b-form of a maximal degree called b-volume form.

Definition 3.24. A b-Beltrami vector field X is a vector field on a Riemannian b-manifold (M,Z, g)
such that curlX = λX , for some nonzero constant λ, where the curl operator is defined with respect
to the b-metric g.

Here is an example of a b-Beltrami vector field on T3.

Example 3.25. Consider the b-manifold (T3,T2) with b-metric given by g = dx2 + dy2 + dz2

sin2 z
.

The b-vector field

X(x, y, z) = C cos y
∂

∂x
+B sinx

∂

∂y
+ [C sin y +B cosx] sin z

∂

∂z

for A,B ∈ R real parameters is a b-Beltrami vector field. Exercise

Note that this vector field looks similar to the Reeb vector field in Example 3.16. Once
more, this is not a coincidence, as similar to the smooth case, any non-vanishing b-Beltrami
vector field is a reparametrization of the Reeb field associated with a b-contact form. More
precisely, we have the following:

Theorem 3.26 ([8]). Let (M,Z) be a b-manifold of dimension three. Any b-Beltrami vector field
that is non-vanishing as a section of bTM on M is a Reeb field (up to rescaling) for some b-contact
form on (M,Z). Conversely, given a b-contact form α with Reeb field X , then any nonzero rescaling
of X is a b-Beltrami vector field for some b-metric and b-volume form on M .

When looking closely at the proof of Theorem 3.26, one sees that if X is a b-Beltrami
vector field on (M,Z, g), the Reeb field associated to the b-contact form α := g(X, ·) is
given by 1

∥X∥2X , where the norm is computed using the b-metric g.
The b-Beltrami vector field in Example 3.25 is thus the Reeb vector field b-contact form

on T3 given by α = g(X, ·). The dynamics of this vector field can be explicitly computed,
similar to the computations we did in Example 3.16. Exercise: Prove that there are 8 sin-
gular periodic orbits in Example 3.25 (see Example 1.2 in [41]). This example gives thus
further evidence to the singular Weinstein conjecture.
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3.5. The existence of escape orbits. The first step in studying the singular Weinstein con-
jecture is to examine the semi-local behavior of the b-Reeb vector field around the critical
set. We will consider a more general type of orbit, which will be proven to exist.

Definition 3.27. Let (M,Z, α) be a b-contact manifold. An escape orbit is an integral curve of Rα

such that at least one of the semi-orbits has a stationary limit point on Z.

Here, we include a comic about spos and escape orbits.

Z1
Z2

FIGURE 2. Examples of an escape orbit (on the left, tending to a point on the
critical torus) and two singular periodic orbits. The critical set is a disjoint
union of a torus Z1 and a sphere Z2, and a b-Reeb orbit on the critical torus
is depicted in black.

It is clear from the definition that the existence of escape orbits is a necessary condition
for the proof of the singular Weinstein conjecture. We will prove the following theorem.

Theorem 3.28 (Theorem 3.1 in [17]). Let α be a b-contact form on a 3-dimensional manifold
(M,Z) without boundary, with Z a closed embedded surface in M . Then there exists a b-contact
form C∞-close to α, such that the associated b-Reeb vector field has either

(1) infinitely many escape orbits if b1(Z) > 0, or
(2) at least 2N escape orbits if b1(Z) = 0, where N is the number of connected components of

Z.
Moreover, the set of b-contact forms exhibiting these properties is open in the C∞-topology.

Here b1(Z) denotes the first Betti number of the critical surface Z.

Proof. By Equation (10), a b-contact form in a tubular neighbourhood around the critical
set Z, denoted by N (Z), is given by

α = f
dz

z
+ β,

where f ∈ C∞(N (Z)) and β ∈ Ω1(N (Z)).
By a C∞-small perturbation, we can assume that the function f in the above decompo-

sition for α restricts to a Morse function on Z. Indeed, we choose a b-contact form that is
C∞-close to α as

(18) α̃ := (f + ϵh)
dz

z
+ β,

h is a C∞-small function, supported in a tubular neighborhood of the critical set, such
that (f + ϵh)|Z is a Morse function. For ϵ is small enough, this is still a b-contact form,
as this being contact is an open condition. The reason for perturbing f to become Morse
will become apparent from the analysis carried out around a tubular neighborhood of the
associated b-Reeb vector field. Thus, we will assume that α satisfies this condition.
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The associated b-Reeb vector field in this tubular neighborhood is given by

Rα = gz
∂

∂z
+ Y,

where g ∈ C∞(N (Z)) and Y ∈ X(N (Z)) such that ιY (dz) = 0.
As in Equation (14), the restriction of the smooth 2-form

Θ := fdβ + β ∧ df

to Z is symplectic. This implies that at a critical point p ∈ Z of f |Z , f(p) ̸= 0, i.e. 0 is a
regular value of f |Z .

By Proposition 3.13, Rα|Z is a Hamiltonian vector field with respect to ω|Z , and the
exceptional Hamiltonian is given by H := −f |Z . We denote this Hamiltonian vector field
by

R := Rα|Z = Y |Z .
It follows that at a critical point p ∈ Z of H , we have a zero of the b-Reeb vector field,

that is, (Rα)p = Rp = 0. Thus, by the assumption that Z is closed, R admits at least two
zeroes (corresponding to the maximum and minimum values of H). Furthermore, at a
critical point p ∈ Z, we have g(p) ̸= 0 because the Reeb condition α(Rα) = 1 yields

1 = α(Rα)|p = f(p)g(p) + βp(Yp) = f(p)g(p).

We now study the linear stability of Rα around the critical points. At a critical point p, the
differential of Rα is given by

DR(p) =

(
DR ∗
0 g

)∣∣∣∣
p

.

We choose a Darboux chart around the critical point in Z so that in local coordinates with
ω = −dx ∧ dy, we obtain

DR(p) =

 Hxy Hyy ∗
−Hxx −Hxy ∗

0 0 g

∣∣∣∣∣∣
p

.

It is now easy to determine the linear stability at p by looking at the eigenvalues of this
matrix. The eigenvalues are λ+, λ− and λz , where λ+ and λ− are eigenvalues of the first
2× 2 minor,

λ± = ±
√

−HessH(p),

and λz = g(p) ̸= 0. Notice λ± ̸= 0 because we assume that f |Z (and hence H) is a Morse
function.

There are two situations to consider, according to the sign of HessH(p):
• HessH(p) < 0: In this case, the critical point of R is hyperbolic, and there is a two-

dimensional stable or unstable (depending on the sign of g(p)) manifold at p that is
transverse to Z.

• HessH(p) > 0: In this case, the critical point of R is non-hyperbolic, and there is
a one-dimensional stable or unstable (depending on the sign of g(p)) manifold at p
that is transverse to Z, the center manifold being Z.

When the transverse invariant manifold is of dimension two, all of the orbits lying
within it (of which there are infinitely many) are escape orbits with limit point p (see Figure
3). A transverse invariant manifold of dimension one guarantees two escape orbits (one
on each side of Z) with limit point p.

Let Ck be the number of critical points of H of index k on Z and bk the k-th Betti number.
We will use the Morse inequality

(19) Ck ≥ bk(Z)
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p

Z

Transverse Stable Manifold

Unstable Manifold

FIGURE 3. Example of case HessH(p) < 0 and g(p) < 0, so there is a trans-
verse 2-dimensional stable manifold containing infinitely many escape or-
bits, which are colored red.

to conclude the proof.
Case b1(Z) > 0. In this case, there is at least one critical point of H of index one (in fact at

least two because the first Betti number is even), so there is a saddle point and, therefore,
infinitely many escape orbits.

Case b1(Z) = 0. This corresponds to Z consisting of N ≥ 1 disjoint surfaces all diffeo-
morphic to S2. In this case, there are at least two escape orbits for each critical point (one
escape orbit on each side of the corresponding sphere), some of which may coincide to
form singular periodic orbits. In any case, since there are at least 2N critical points, there
must be at least 2N distinct escape orbits. Note that it can still be that the exceptional
Hamiltonian has a saddle point on Z, in which case there would be infinitely many escape
orbits.

Finally, notice that Morse and the sign conditions presented above are open in the C∞-
topology, so we conclude that the set of b-forms for which the theorem applies is not only
dense but also open. □

A remark on the chronology is in order: previous to Theorem 3.28, it was proved that
given a b-Beltrami vector field on a b-manifold equipped with a b-metric that can be written
around Z as

(20) g = P ∗h+
dz2

z2
,

where h is a smooth metric on Z, the b-Beltrami vector field X = Y +Xzz
∂
∂z (Y ∈ X(Z), and

Xz smooth function) satisfies that Xz|Z is an eigenvalue of the Laplacian with respect to
the metric h. Exercise. Eigenfunctions of the Laplacians are well-studied, and generically,
they are Morse functions as was proved by Uhlenbeck [48]. The same analysis as in the
proof of Theorem 3.28 holds, but the genericity is less general (as in the proof of Theorem
3.28, the b-contact form is directly perturbed), whereas the in [41], metric h is perturbed.
However, splitting the metric under the form of Equation (20) is a strong assumption.
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Theorem 3.28 gives, as previously said, further evidence to the singular Weinstein con-
jecture: around the critical set, there do exist (at least generically) escape orbits, which are
a generalization of spos (=singular periodic orbits). However, as will be seen in the following
subsection, this result tricked us: in fact, we will construct an example where the singular
Weinstein conjecture does not hold, i.e., a compact b-contact manifold, without periodic
orbits away from Z, nor spos.

3.6. A counter-example to the singular Weinstein conjecture. Recall that the singular We-
instein conjecture (Conjecture 3.19) claims that on a compact b-compact manifold, there
exists always a singular periodic Reeb orbit or a periodic Reeb orbit away from the critical
set. The conjecture was supported by several examples presented in Subsection 3.3 and
a ’semi-local’ version, namely Theorem 3.28. We will revise in this section Example 3.18:
in this example, we showed that there are no periodic orbits away from Z and that there
exists exactly two spos. Furthermore, one can see from Figure 1 that any orbit away from Z
(except for the two spos) tend in positive or negative time to a non-trivial periodic orbit in
Z = S2. We will see that using results from smooth contact topology, each of the spos can
be broken. By this, we mean that the b-contact structure of Example 3.18 can be changed
outside Z to a different b-contact structure, such that there are no spos and no periodic
orbits away from Z.

We thus obtain the following:

Theorem 3.29 (Theorem 4.3 in [16]). There is a b-contact form on the b-manifold (S3,S2), which
has no singular periodic orbits and no periodic orbits away from the critical set.

The strategy will be to perturb the contact form in a Darboux neighborhood away from
Z where the spo goes through. The spo will be deviated by choosing a suitable perturbation.
The spo will thus be broken in this process, and instead of the spo, we will obtain two orbits
γ± such that limt→±∞ γ±(t) = p ∈ Z be a singular point, and γ± will have α-set given by a
circle (periodic orbit) on Z.

Proof. Let p ∈ M\Z be a point on a singular periodic orbit, and U a Darboux neighborhood
containing p and intersecting no other escape orbits. We assume that p is sufficiently close
to the origin but not on the z-axis of this chart. Endowing U with cylindrical coordinates
(and after rescaling the z direction), the contact form α|U has the expression

α|U =
1

2
dz + r2dφ ,

and its associated Reeb vector field in this chart is Rα = 2∂z , so all orbits are vertical lines
(we refer to α|U as simply α to simplify notation). In particular, the singular periodic orbit
passing through p is a vertical line in U that does not contain the origin. Now consider
another contact form on U ,

(21) α′ = zrdr +
1

2
(1 + z2 − r2)dz + r2dφ ,

whose Reeb vector field is proportional to ∂z +∂φ. We will use this contact form to perturb
α. The result of this perturbation is shown in Figure 4.

To this end, it is convenient to introduce a compact set K ⊂ U , with p ∈ K, of the form
Dδ × [−δ, δ] in cylindrical coordinates, where Dδ is a closed 2-disk of radius δ > 0. Take a
smooth bump function f : R → [0, 1] which is equal to 1 in Ict := [−δ/2, δ/2], and whose
support is contained in (−δ, δ). Without loss of generality, we assume that the singular
periodic orbit is a vertical line whose r-coordinate is in the interior of the interval Ict. For
any small ε > 0, consider the 1-form

α̃ = (1− εf(r)f(z))α+ εf(r)f(z)α′,
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defined on M , which coincides with α on M\K, and is C∞-close to α on K provided that
ε is small enough. Obviously, α̃ is a b-contact form on M .

We claim that α̃ has one singular periodic orbit less than α. We compute the Reeb field
Rα̃ to show this. Since we are only interested in the singular periodic orbit, we can restrict
our study to the set Dδ/2 × (−δ, δ) ⊂ K, which contains the point p. A straightforward
computation shows that on the set Dδ/2 × (−δ, δ) we have

α̃ = εf(z)zrdr +
1

2
(1 + εf(z)(z2 − r2))dz + r2dφ,

and

dα̃ = ε(f ′z + f)rdz ∧ dr − εfrdr ∧ dz + 2rdr ∧ dφ =

= ε(f ′z + 2f)rdz ∧ dr + 2rdr ∧ dφ.

To find the corresponding Reeb vector field Rα̃ = R̃r∂r+R̃φ∂φ+R̃z∂z , we see immediately
that R̃r = 0, and that R̃φ and R̃z satisfy

ε(
1

2
f ′z + f)R̃z = R̃φ.

If ε is small enough, we can compute the vector field Rα̃ in terms of an ε-expansion, which
yields:

R̃r = 0 , R̃φ = ε(f ′(z)z + 2f(z)) +O(ε2) , R̃z = 2 +O(ε) .

Therefore, we can integrate approximately the integral curves of Rα̃. In the particular
case of the trajectory that corresponds to the singular periodic orbit of Rα, taking as initial
condition the point r0 = δ0 < δ/2, φ0 = 0, z0 = −δ, we obtain

r(t) = r0 , φ(t) =
1

2
ε

∫ −δ+2t

−δ

(
f ′(s)s+2f(s)

)
ds+O(ε2t) , z(t) = −δ+(2+O(ε))t .

Since the time taken from the perturbed orbit to go from {z = −δ} to {z = δ} is T =
δ +O(ε), we finally conclude that

φ(T ) =
1

2
ε

∫ δ

−δ

(
f ′(s)s+ 2f(s)

)
ds+O(ε2δ) =

1

2
ε

∫ δ

−δ
f(s)ds+O(ε2δ) ,

where we have integrated by parts and used that f(z) = 0 near z = ±δ. It then follows
from the fact that f is a non-negative function that

φ(T ) =
C

2
εδ +O(ε2δ) > 0,

for some C > 0, and hence the continuation of the singular periodic orbit along the flow
of Rα̃ rotates slightly within a small cylindrical neighborhood of the origin, in addition to
moving upwards (see Figure 4).

The upshot is that the semi-orbit of the singular periodic orbit coming into the cylindri-
cal set K from below no longer matches the semi-orbit coming out from above. Thus, the
singular periodic orbit is broken into two orbits such that each of those new orbits limits in
positive (resp. negative) time to a non-trivial periodic orbit in Z. Furthermore, these semi-
orbits do not coincide with any other semi-orbits of escape orbits, as the neighborhood we
had taken had no other escape orbits.

□

Summarizing, in this proof, we traded the spo with two orbits such that for t → ∞
(respectively t → −∞) tend to a singular point of the Reeb vector field on Z, but for
t → −∞ (resp. t → ∞), they spiral around a periodic orbit of the Reeb vector field on Z;
more precisely, the α (or ω-)set is given by a non-trivial periodic orbit on Z. We call such
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D2 × [0, 1]
rotation

{r ∈ Ict}∼=

FIGURE 4. Illustration of the perturbation used to break singular periodic
orbits. The circles represent the critical spheres. On the left, a singular
periodic orbit is shown. On the right, it is broken into two escape orbits
after a small perturbation of the b-contact form.

an orbit a generalized singular periodic orbit. We include a cartoon of the different types
of orbits in the cartoon given by Figure 5.

Z1

Z2

γ1

Z3

Z4

γ2

γ3

FIGURE 5. Different types of escape and singular periodic orbits: γ1 is a
generalized singular periodic orbit, γ2, γ3 are singular periodic orbits

The proof of Theorem 3.29 inspired us to prove that given a smooth contact manifold of
dimension 3, we can change the contact form to a b-contact form that has critical sets given
by the disjoint union of S2 where the number of singular periodic orbits is controlled. The
precise statement is the following:

Theorem 3.30 (Theorem 3.1 in [16]). Let (M, ξ) be a co-orientable 3-dimensional contact man-
ifold. Then, for any integers 0 ≤ k ≤ N , there exists a b-contact form on M whose critical set Z
consists of N components diffeomorphic to S2 and the number of singular periodic orbits is exactly
k. The associated b-contact structure coincides with ξ outside a neighborhood of the balls enclosed
by Z. Furthermore, there is an infinite number of generalized escape orbits converging to each
component of Z (i.e., orbits whose α- or ω-limit sets are on Z but are not singular points).
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The proof consists of inserting N copies of S2 in Darboux neighborhoods, where the
Reeb dynamics is given around each of the S2 as in the Example 3.18. We will not include
the proof here.

3.7. A guide through b-contact geometry. We finish this section with a guide through the
literature of other known results in b-contact geometry.

Contrary to b-symplectic, respectively log-symplectic geometry literature as resumed in
Subsection 2.7, the literature related to b-contact structures has a relatively manageable
size.

• To learn more about the local geometry of b-contact manifolds and their associated
Jacobi structures, see [40].

• The singular Weinstein conjecture was formulated in [39].
• The Beltrami-contact correspondence in the set-up of b-contact forms was proved

in [8].
• The existence of escape orbits was proved first in [41]. The results were later gen-

eralized in [17].
• Regularizations of bk-contact manifolds are explored in [14]
• The topology of b-contact manifolds and the h-principle are investigated in [9].
• The equivariant version of the Beltrami-contact correspondence can be found in

[18] - and its relation to the Euler–Kepler flow.
• Finally, the counterexample to the singular Arnold conjecture can be found in [16].
• Related to the material is the preprint [6] on folded symplectic forms in contact

topology.

4. BACK TO INFINITY...

In this section, we will briefly go back to the RPC3BP. Recall that in Subsection 1.4, we
introduced in (3) the McGehee change of variables

r :=
2

x2
, x ∈ R+,

which pulls back the standard symplectic form to the b3-symplectic form given as in Equa-
tion (4) by

ω = −4
dx

x3
∧ dPr + dα ∧ dPα,

and the domain is given by R+×S1×R2. In Theorem 1.14, the authors considered regular
level-sets of the Hamiltonian Σc for energies small enough (more precisely, for c below the
energy of the first Lagrange point). Recall that these level-sets where not compact due to
possible collisions with the one of the two massive bodies, the projection to the position
space of these level-sets (which are called the Hill’s region) are compact sets in R2.

This section will consider different level-sets, namely, whose Hill’s region is non-compact,
i.e., the satellite can escape to infinity. This is the case when the energy is positive, that is,
when H = c > 0. First, let us consider the vector field Y =

∑2
i=1 pi

∂
∂pi

in the cotangent
bundle of R2. We will see that this vector field is transverse to Σc for positive energies.

Lemma 4.1 (Lemma 4.3. in [39]). The vector field Y = p ∂
∂p is a Liouville vector field and is

transverse to Σc for c > 0.

Proof. The vector field Y is a Liouville vector field as LY

(∑2
i=1 dpi ∧ dqi

)
= ω and is

transverse to Σc for c > 0. Indeed
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Y (H) = |p|2 + p1q2 − p2q1 =
|p|2

2
+

1− µ

|q − qE |
+

µ

|q − qM |
+H(q, p).

Hence Y (H)|H=c =
|p|2
2 + 1−µ

|q−E|+
µ

|q−M |+c, which is a sum of positive terms when c > 0. □

We now prove that the vector field Y is also transverse to the level sets of the Hamilton-
ian at infinity. This strategy is to do the McGehee change of coordinates and to check that
the vector field defined in Lemma 4.1 is still transverse to the level-set of the Hamiltonian.

Theorem 4.2. After the McGehee change, the Liouville vector field Y = p ∂
∂p is a b3-vector field

that is everywhere transverse to Σc for c > 0 and the level-sets (Σc, ιY ω) for c > 0 are b3-contact
manifolds. Topologically, the critical set is a cylinder, and the Reeb vector field admits infinitely
many non-trivial periodic orbits on the critical set.

Proof. First, let us compute the Hamiltonian of the PRC3BP, given by Equation (1), in polar
coordinates. We will then perform the McGehee change of coordinate. The polar coordi-
nates are defined by the position q = (r cosα, r sinα), (r, θ) ∈ R+ × S1, and the momenta
p = (Pr cosα − Pα

r sinα, Pr sinα + Pα
r cosα), (Pr, Pα) ∈ R2. Under this coordinate change,

the resulting Hamiltonian is given by the following expression:

H (r, α, Pr, Pα)

=
1

2

(
P 2
r −

(
Pα

r

)2
)

− 1− µ

r2 − 2µr cosα+ µ2
− µ

r2 − 2 (1− µ) r cosα+ (1− µ)2
− Pα.

The coordinate change is symplectic, and therefore, the symplectic form is given by
dr ∧ dα+ dPr ∧ dPα, and the Liouville vector field writes down Y = Pr

∂
∂Pr

+ Pα
∂

∂Pα
.

After the McGehee change of coordinates r = 2
x2 , the Hamiltonian is given by

H (x, α, Pr, Pα)

=
1

2

(
P 2
r − 1

4
x4P 2

α

)
− x4

1− µ

4− 4µx2 cosα+ µ2x4
− x4

µ

4− 4x2 (1− µ) cosα+ (1− µ)2 x4
− Pα.

The Liouville vector field does not change under the McGehee change of coordinates.
Still, instead of a symplectic form, the underlying geometric structure is a b3-symplectic
structure with a critical set given by {x = 0} given by ω = −4dx

x3 ∧ dPr + dα ∧ dPα. We
already checked that the Liouville vector field is everywhere transverse to the level-set of
H , and we now check that it is also transverse to the critical set.

On the critical set, the Hamiltonian is given by H = 1
2P

2
r − Pα, so that Y (H) = P 2

r − Pα.
On the level-set H = c > 0, we obtain Y (H) = 1

2P
2
r + c > 0. Hence, it is transverse to the

critical set as well, and therefore, the induced b3-contact form on the critical set is given by
α = (Pr

dx
x3 + Pαdα)|H=c.

The critical set of the b3-contact manifold is defined by the equations

Z = {(x, α, Pr, Pα) |x = 0,
1

2
P 2
r − Pα = c}.

Topologically, the critical set is a cylinder, as solutions for 1
2P

2
r − Pα = c are given by

Pα = 1
2P

2
r − c := Pα (Pr). The cylinder is described by Z = {0, α, Pr, Pα (Pr)} and hence

non-compact.
According to the decomposition lemma, the b3-contact form decomposes as α = udx

x3 +β
and by Proposition 3.13, the Reeb vector field on the critical set is Hamiltonian for the
Hamiltonian function u. The Hamiltonian function here is given by Pr. As the Hamiltonian
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vector field is contained in the level-set of the Hamiltonian, we obtain that both cylinders
are foliated by non-trivial periodic orbits away from Pr = 0. □

A reformulation of Theorem 4.2 from the viewpoint of a dynamical system is the follow-
ing:

Corollary 4.3. After the McGehee change in the RPC3BP, there are infinitely many non-trivial
periodic orbits at the manifold at infinity for energy values of H = c > 0 (hyperbolic motion).

We conclude the lecture notes with a series of open questions and problems.

5. OPEN QUESTIONS

5.1. More general singular contact structures. In these notes, we developed techniques
to study the Reeb dynamics for contact forms over the b-tangent bundle. The b-tangent
bundle can be constructed thanks to the b-vector fields satisfying Serre–Swan’s theorem;
that is, they consist of a finitely generated C∞(M)-module.

Question 5.1. Can one study the Reeb dynamics over more general Lie algebroids? What are the
corresponding dynamics?

Of course, many other C∞(M)-modules are finitely generated. The geometry of such
vector bundles has been initiated in [42], and the dynamics have been studied in some
cases in [14]. Still, the dynamics are far from being understood.

5.2. Hofer’s method. As we saw in this mini-course, compact b-contact manifolds can
be seen as non-compact contact manifolds, equipped with an additional behavior on the
boundary. This non-compactness is the troublemaker when trying to apply general results
on Reeb dynamics. In general, very little is known about the Reeb dynamics when the
manifold is open: for instance, the linear dynamics in R3 is, of course, Reeb (the Darboux
contact form). The situation we are facing here is different because the ambient manifold
is compact, but M \ Z is not. Furthermore, we have the additional geometric structure on
the boundary (see Subsection 3.2). It is reasonable to think that more can be said about
the dynamics on M \ Z, at least when M \ Z is overtwisted contact. As is proved in [39],
for overtwisted b-contact manifold, which satisfies additionally that the contact form is
invariant with respect to the action of a transverse contact vector field. There exists a 1-
parametric family of periodic Reeb orbits on M \Z. The condition of the invariant b-contact
form is strong; therefore, one may ask if this condition can be removed.

Question 5.2. Do overtwisted b-contact manifolds admit a periodic Reeb orbit away from Z?

This would imply that Examples 3.11 and 3.12 would be tight b-contact manifolds.

5.3. Generalized Weinstein conjecture. Periodic Reeb orbits yield topological invariants
of contact manifolds. This is the content of contact homology, a homology generated by the
periodic Reeb orbits. Compact three-dimensional b-contact manifolds do not always admit
periodic orbits - and therefore, constructing a homology for compact b-contact manifolds
is hopeless. The singular Weinstein conjecture was the first attempt to ’enlarge’ the class of
generators for a possible candidate for contact homology. However, as we saw in Theorem
3.29, there are also counter-examples to the singular Weinstein conjecture, and thus the
quest for a b-contact homology failed - again! The question, therefore, is whether b-contact
manifolds do admit dynamical invariants, and if so, if they can be used to construct a
homology out of them.

Question 5.3. Are there dynamical invariants on compact b-contact manifolds?

Given a positive answer, the natural continuation is therefore:
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Question 5.4. Can one construct a b-contact homology?

5.4. Traps and plugs. TBD

5.5. Applications to celestial mechanics. As we have seen in the previous section, in the
RCP3BP, after the McGehee changes, the induced geometric structure on the level-set for
positive energy is equipped with a b3-symplectic structure. The McGehee is only one of
many possible regularizations used to study the dynamics of the three problems. We men-
tioned Moser’s regularization, as was used to study the contact geometry in the RPC3BP in
[1]; other ones are, for instance, the Levi-Civita and Kustaanheimo-Stiefel regularization.

Question 5.5. Which singular geometric geometric appears when applying the regularizations in
celestial mechanics? Can one use the techniques developed in Question 5.1 to this setup?

In particular, given a potential regularization that yields a compact three-dimensional b-
manifold, one could apply the results from Subsection 3.5 regarding the existence of escape
orbits.

Question 5.6. Can the examples of the existence of escape orbits be applied to the problems in
celestial mechanics?

5.6. The singular Arnold conjecture. This section here will only be dealt with in the mini-
course if all of the previous sections are handled in the mini-course. Many interesting open
questions still remain to be fully understood, for instance.

Question 5.7. Can the Floer homology as defined in [7] be shown to be independent of the choice
of almost complex structure, t, class of Hamiltonian?

Question 5.8. Is there a more general definition of Floer homology (i.e., b-Floer homology for
general b-Hamiltonians, or smooth Hamiltonian)?
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