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Motivation

Gromov’s main inequality
For every dimension d there is a constant C (d) > 0 such that every
closed d-dimensional Riemannian manifold M satisfies

M ≤ C (d) · vol(M)

provided the Ricci curvature is bounded from below by −1.

Conjecture – sometimes question (Gromov)
For every dimension d there is a constant C (d) > 0 such that every
closed d-dimensional aspherical manifold M satisfies

β(2)
p (M) ≤ C (d)M for every p ≥ 0.
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Status & Goals

◮ No conceptual strategy for proving the conjecture – so far.
◮ Focus on (conjectural) corollaries instead.
◮ Expand scope to other invariants (ℓ2-torsion, homology growth)
◮ Expand scope by relaxing geometric conditions.

Prototypical result
For every dimension d there is a constant C (d) > 0 such that every
closed aspherical d-dimensional Riemannian manifold M satisfies

β(2)
p (M) or other homological invariant ≤ C (d) · vol(M)

provided some curvature condition holds.
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A method for bounding homology of M
1 Cover M by open balls U (using geometry of M).
2 Control Lipschitz constant of nerve map f : M → nerve(U).
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Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex Cϵ [lower left] or to a Rips complex Rϵ [lower
right] based on a proximity parameter ϵ [upper right]. This Čech
complex has the homotopy type of the ϵ/2 cover (S1 ∨ S1 ∨ S1),
while the Rips complex has a wholly different homotopy type (S1∨
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of E

n nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ϵ? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ϵ. For ϵ sufficiently small,
the complex is a discrete set; for ϵ sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ϵ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ϵ, if it exists, is rare: by the time ϵ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of
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Figure: R. Ghrist: Barcodes: The persistent topology of data

3

Homotope f to d-skeleton keeping Lipschitz control.

4

Number of d-simplices hit by f is ≤ Lip(f)d · vol(M).

5

Using asphericity we construct:

M nerve(U)

f

g

g ◦ f ≃ idM

6

Betti numbers of M bounded by ≤ Lip(f)d · vol(M).
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Adjusting the method to ℓ2-Betti numbers

Differences
◮ For ℓ2-Betti number we have to work equivariantly on the universal

covering M. This will be harder.
◮ For finding a left homotopy inverse this makes life slightly easier.

Covers versus packings
◮ Our covers often arise from maximal packings on M by balls (e.g. of

a fixed radius r) by taking concentric balls 3 times as big.
◮ No equivariant packing by r -balls if r > injectivity radius!

Randomization
◮ Consider equivariant random covers, i.e. a π1(M)-invariant

probability measure on the space of covers of M and the resulting
random field of nerves.

◮ Then use Gaboriau’s theory to push through the method before.
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Two theorems based on this method

Theorem
For every dimension d there is a constant C (d) > 0 such that every
closed d-dimensional aspherical Riemannian manifold M satisfies

β(2)
p (M) ≤ C (d) · vol(M) for every p ≥ 0.

provided the Ricci curvature is bounded from below by −1.

Theorem
For every dimension d there is a constant (d) > 0 such that every closed
d-dimensional aspherical Riemannian manifold M with vol(M) < (d)
satisfies

β(2)
p (M) = 0 for p ≥ 0

provided the Ricci curvature is bounded from below by −1.
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Equivariant random covers

First Theorem
◮ Let (X , µ) be any probability space with an essentially free,

measure-preserving action of π1(M).
◮ Take maximal equivariant packing of X × M by sets of the form

(Borel set)× 1-ball. This is also maximal non-equivariantly!
◮ Take push-forward of µ under X → {Packings by 1-balls on M}.

Second Theorem
◮ Margulis lemma for Ricci curvature: M is covered by amenable

(virtually nilpotent) subsets Ui with multiplicity ≤ d .
◮ Assemble packings on each X × pr−1(Ui ).
◮ May assume π1(M) amenable. Then take packing of

X × M ∼ X × π1(M) from Ornstein-Weiss-Rokhlin lemma.
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More recent developments

Next we want to expand the scope by
1 by relaxing the Ricci curvature condition,
2 by considering torsion homology growth.

Status & Goals

◮ No conceptual strategy for proving the conjecture – so far.
◮ Focus on (conjectural) corollaries instead.
◮ Expand scope to other invariants (ℓ2-torsion, homology growth)
◮ Expand scope by relaxing geometric conditions.

Prototypical result
For every dimension d there is a constant C (d) > 0 such that every
closed aspherical d-dimensional Riemannian manifold M satisfies

β(2)
p (M) or other homological invariant ≤ C (d) · vol(M)

provided some curvature condition holds.
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The role of curvature
Sectional (metric, macroscopic)

Ricci (metric-measure, macroscopic)
◮ The Ricci curvature of a tangent vector is

an average of sectional curvatures.
◮ Bishop-Gromov inequality

⇝ Packing inequality (1-balls in 5-ball)
⇝ Bound on dimension of nerve

Scalar (measure, microscopic)

◮ Scalar curvature at a point is an average of Ricci curvatures.
◮ Volume of small balls:

vol(B(r ; p)) = vol(Be(r))

1 − scal(p)

6(d + 2)
r2 + o(r2)



◮ Conjecture: scalar curvature version of main inequality.
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Macroscopic scalar curvature and ℓ2

Macroscopic scalar curvature
The macroscopic scalar curvature at p ∈ M at scale r is the real
number S such that the r -ball in the (scaled) model space (Hd , Ed , Sd)
with scalar curvature S has the same volume as the r -ball around p̃ in M.

The general case of the following theorem will appear in the PhD thesis
of Sabine Braun.

Theorem
For every dimension d there is a constant C (d) > 0 such that for every
closed aspherical Riemannian manifold M we have

β(2)
p (M) ≤ C (d) · vol(M) for every p ≥ 0.

provided the macroscopic scalar curvature at scale 1 is ≥ −1.
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On the proof

Good covers
A ball B(r) is good if

1 vol(B(100r)) ≤ 104(d+3)B(100−1r),
2 vol(B(r)) ≤ V (1)rd+3,
3 r ≤ 1/100.

Apply Vitali covering lemma to the set of all
good balls (→ Gromov).

Some features
◮ Randomized equivariant version.
◮ Random field of nerve which are metric

cube complexes.
◮ Field of nerve maps is Lipschitz-controlled

on a high volume set (→ Guth).
Figure: created by
Claudio Rocchini
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Torsion

All the theorems before possess a version where you replace β
(2)
p (M) by

lim
i→∞

log | torsHp(Mi ;Z)|
deg(Mi → M)

with (Mi ) being a residual tower of regular finite coverings of M.

Conjecture
All theorems are true when one replaces ℓ2-Betti numbers by ℓ2-torsion in
the case of ℓ2-acyclic manifolds.
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