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Motivation

Gromov's main inequality

For every dimension d there is a constant C(d) > 0 such that every
closed d-dimensional Riemannian manifold M satisfies

M| < C(d) - vol(M)

provided the Ricci curvature is bounded from below by —1.
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Motivation

Gromov's main inequality

For every dimension d there is a constant C(d) > 0 such that every
closed d-dimensional Riemannian manifold M satisfies

IM]| < C(d) - vol(M)
provided the Ricci curvature is bounded from below by —1.

Conjecture — sometimes question (Gromov)

For every dimension d there is a constant C(d) > 0 such that every
closed d-dimensional aspherical manifold M satisfies

BA(M) < C(d)||M||  for every p > 0.
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Status & Goals

» No conceptual strategy for proving the conjecture — so far.

» Focus on (conjectural) corollaries instead.

» Expand scope to other invariants (£2-torsion, homology growth)
» Expand scope by relaxing geometric conditions.

3/12



Status & Goals

» No conceptual strategy for proving the conjecture — so far.
» Focus on (conjectural) corollaries instead.
» Expand scope to other invariants (£2-torsion, homology growth)

» Expand scope by relaxing geometric conditions.

Prototypical result

For every dimension d there is a constant C(d) > 0 such that every
closed aspherical d-dimensional Riemannian manifold M satisfies

B;(,z)(/\/l) or other homological invariant < C(d) - vol(M)

provided some curvature condition holds.

3/12



A method for bounding homology of M

® Cover M by open balls I/ (using geometry of M).
@® Control Lipschitz constant of nerve map f: M — nerve(Uf).

Ce

Figure: R. Ghrist: Barcodes: The persistent topology of data
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A method for bounding homology of M

® Cover M by open balls I/ (using geometry of M).
@® Control Lipschitz constant of nerve map f: M — nerve(Uf).

.
Figure: R. Ghrist: Barcodes: The persistent topology of data

® Homotope f to d-skeleton keeping Lipschitz control.
@ Number of d-simplices hit by f is < Lip(f)? - vol(M).
® Using asphericity we construct:

M — 5 nerve(U) gof~idy

N~

g

@ Betti numbers of M bounded by < Lip(f)d-vol(/\/l).
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Adjusting the method to ¢?-Betti numbers

Differences

» For 52—Be'§ci number we have to work equivariantly on the universal
covering M. This will be harder.

» For finding a left homotopy inverse this makes life slightly easier.

Covers versus packings

» Qur covers often arise from maximal packings on M by balls (e.g. of
a fixed radius r) by taking concentric balls 3 times as big.

» No equivariant packing by r-balls if r > injectivity radius!
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Adjusting the method to ¢?-Betti numbers

Differences

» For 62—Be'§ci number we have to work equivariantly on the universal
covering M. This will be harder.

» For finding a left homotopy inverse this makes life slightly easier.

Covers versus packings
» Qur covers often arise from maximal packings on M by balls (e.g. of
a fixed radius r) by taking concentric balls 3 times as big.

» No equivariant packing by r-balls if r > injectivity radius!

Randomization

» Consider equivariant random covers, i.e. a w1 (M)-invariant
probability measure on the space of covers of M and the resulting
random field of nerves.

» Then use Gaboriau’s theory to push through the method before.
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Two theorems based on this method

Theorem
For every dimension d there is a constant C(d) > 0 such that every
closed d-dimensional aspherical Riemannian manifold M satisfies

ﬁl(f)(M) < C(d) - vol(M) for every p > 0.
provided the Ricci curvature is bounded from below by —1.

Theorem
For every dimension d there is a constant €(d) > 0 such that every closed
d-dimensional aspherical Riemannian manifold M with vol(M) < e(d)
satisfies

Bgz)(M) =0 forp>0

provided the Ricci curvature is bounded from below by —1.
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Equivariant random covers

First Theorem

> Let (X, u) be any probability space with an essentially free,
measure-preserving action of my(M).

» Take maximal equivariant packing of X x M by sets of the form
(Borel set)x 1-ball. This is also maximal non-equivariantly!

> Take push-forward of  under X — {Packings by 1-balls on M}.
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Equivariant random covers

First Theorem

> Let (X, u) be any probability space with an essentially free,
measure-preserving action of my(M).

» Take maximal equivariant packing of X x M by sets of the form
(Borel set)x 1-ball. This is also maximal non-equivariantly!

> Take push-forward of  under X — {Packings by 1-balls on M}.

Second Theorem

» Margulis lemma for Ricci curvature: M is covered by amenable
(virtually nilpotent) subsets U; with multiplicity < d.
» Assemble packings on each X x pr=1(U;).

> May assume (M) amenable. Then take packing of
X x M ~ X x w1(M) from Ornstein-Weiss-Rokhlin lemma.
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More recent developments

Next we want to expand the scope by
@ by relaxing the Ricci curvature condition,

® by considering torsion homology growth.

Status & Goals

» No conceptual strategy for proving the conjecture — so far.
» Focus on (conjectural) corollaries instead.

» Expand scope to other invariants (£?-torsion, homology growth)

> Expand scope by relaxing geometric conditions.

Prototypical result

For every dimension d there is a constant C(d) > 0 such that every
closed aspherical d-dimensional Riemannian manifold M satisfies

ﬁ,‘f)(M) or other homological invariant < C(d) - vol(M)

provided some curvature condition holds.

32
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The role of curvature

Sectional (metric, macroscopic)

Ricci (metric-measure, macroscopic)

» The Ricci curvature of a tangent vector is
an average of sectional curvatures.

» Bishop-Gromov inequality
~ Packing inequality (1-balls in 5-ball)
~~ Bound on dimension of nerve

Scalar (measure, microscopic)

» Scalar curvature at a point is an average of Ricci curvatures.
» Volume of small balls:

vol(B(r; p)) = voI(Be(r))(l - %ﬁ + o(r2))

» Conjecture: scalar curvature version of main inequality.
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Macroscopic scalar curvature and 2

Macroscopic scalar curvature

The macroscopic scalar curvature at p € M at scale r is the real
number S such that the r-ball in the (scaled) model space (HY, E¢, S%)

with scalar curvature S has the same volume as the r-ball around p in M.
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Macroscopic scalar curvature and 2

Macroscopic scalar curvature

The macroscopic scalar curvature at p € M at scale r is the real
number S such that the r-ball in the (scaled) model space (HY, E¢, S%)

with scalar curvature S has the same volume as the r-ball around p in M.

The general case of the following theorem will appear in the PhD thesis
of Sabine Braun.

Theorem
For every dimension d there is a constant C(d) > 0 such that for every
closed aspherical Riemannian manifold M we have

ﬂ,(f)(M) < C(d) - vol(M) for every p > 0.

provided the macroscopic scalar curvature at scale 1 is > —1.
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On the proof

Good covers

A ball B(r) is good if
@ vol(B(100r)) < 104d+3)B(100~1r),
@ vol(B(r)) < V(1)rd+3,
© r < 1/100.

Apply Vitali covering lemma to the set of all
good balls (— Gromov).

Some features

» Randomized equivariant version.
» Random field of nerve which are metric
cube complexes.

» Field of nerve maps is Lipschitz-controlled Figure.: created' l?y
on a high volume set (— Guth). Claudio Rocchini
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Torsion

All the theorems before possess a version where you replace ﬁf,z)(/\/l) by

- log | tors H,(M;; Z)|
i—00 deg(/\/l,- — M)

with (M;) being a residual tower of regular finite coverings of M.

Conjecture

All theorems are true when one replaces ¢?-Betti numbers by ¢>-torsion in
the case of £2-acyclic manifolds.
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