
MOD-p METHODS AND THE p-GRADIENT

ANDREI JAIKIN-ZAPIRAIN

Abstract. This is a preliminary draft of the course “Mod-p methods and the
p-gradient” imparted during the school of the thematic program “L2-invariants

and their analogues in positive characteristic” (Madrid, 19 Febraury - 15 June,
2018).

Let G be a group, K a field and A a n by m matrix over the group ring

K[G]. Let G = G1 > G2 > G3 · · · be a sequence of normal subgroups of G of
finite index with trivial intersection. The multiplication on the right side by

A induces linear maps

φA
G/Gi

: K[G/Gi]
n → K[G/Gi]

m

(v1, . . . , vn) 7→ (v1, . . . , vn)A.

We are interested in properties of the sequence {
dimK kerφA

G/Gi
|G:Gi|

}. These

numbers appear naturally in the study of dimensions of the homology groups
Hp(Gi\X,K) where X is G-CW -complex of finite type. In particular, we

would like to address the following questions:

(1) Is there the limit limi→∞
dimK kerφA

G/Gi
|G:Gi|

?

(2) If the limit exists, how does it depend on the chain {Gi}?

(3) How can we express limi→∞
dimK kerφA

G/Gi
|G:Gi|

in terms of G?

It turns out that the answers on these three questions are known if we assume

that K is of characteristic 0.
In this course I will present what is known in the case where K is of positive

characteristic.
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1. The p-gradient, examples and motivations

In this note p will always denote a prime natural number. Let G be a finitely
generated group and let G = G1 > G2 > G3 > . . . be a chain of subgroups. In
this course we will always assume that all the subgroups Gi are of finite index in
G. We will say that the chain {Gi} is normal if all the subgroups Gi are normal
in G, subnormal if for all i ≥ 1, Gi+1 is normal in Gi and exhausting if the
intersection of Gi is trivial. A normal chain {Gi} is called pro-p if the profinite
completion of G with respect to {Gi} is a pro-p group. In the same way we can
define a p-adic chain or a virtually pro-p chain.

The first homology group of G with coefficients in a field K is defined as

H1(G,K) = K ⊗Z G/[G,G].

The p-gradient of G with respect to a chain {Gi} is the limit

lim
i→∞

dimFp H1(Gi,Fp)
|G : Gi|

,

if such limit exists. We will denote it by RGp(G, {Gi}). The notion of p-gradient
was introduced by Marc Lackenby in his study of 3-manifold groups. He was first
who realized that this invariant may reflect structural properties of finitely pre-
sented groups. Let us show one such example.

Recall that a group G is called large if a subgroup of finite index of G maps
onto a non-abelian free group. The following interesting criterion of largeness was
proved by M. Lackenby in [14].

Theorem 1.1. Let G be a finitely presented group and let {Gi} be a subnormal
chain of subgroups of G of p-power index. Assume that

(1) G does not have property (τ) with respect to {Gi} and
(2) RGp(G, {Gi}) > 0.

Then G is large.

As an immediate consequence of the previous result we obtain the following
well-known statement.

Corollary 1.2. A finitely presented group is large if and only if a subgroup of finite
index maps on the wreath product Z o Cp.

Proof. The “if only” part is clear. Let us show the “if” part.
Assume that a finitely presented group G maps onto Z oCp. Then it maps on Z.

Let Gi be the preimage of piZ. It is clear that G does not have property (τ) with
respect to {Gi} and an easy calculation in the wreath product Z o Cp shows that
RGp(G, {Gi}) ≥ 1. Thus, by the previous theorem G is large. �
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This example shows the importance of the p-gradient. Unfortunately, its calcu-
lation is not always an easy task. I will present now one example, which motivates
a lot of research in the subject.

Let G be an arithmetic lattice in SL2(C). These groups will be studied in more
detail in the second half of the school in the courses of Steffen Kionke and Haluk
Sengun. For our purposes we can think that G is SL2(Z[i]) or the fundamental
group of the figure eight knot (which can be embedded as a subgroup of finite

index in SL2(Z[ 3
√

1])).
Using the arithmetic structure of G we can define the subgroups

Gi = G(pi) = {A ∈ G : A ≡ I (mod pi)}.
Then {Gi} is a p-adic exhausting chain. In [5] F. Calegari and M. Emerton con-
jectured that RGp(G, {Gi}) = 0. Their interest in this invariant comes from the
theory of automorphic forms and Galois representations [6] (this will be explained
in more detail in the course of Haluk Sengun). Another motivation is the paper
[11], where it is shown that if the Calegari-Emerton conjecture holds, then the con-
gruence kernel of any arithmetic lattice in SL2(C) is a projective profinite group.
There exists some heuristic explanation for the equality RGp(G, {Gi}) = 0 (see
for example [3]). In the last section we will come back to this conjecture and will
provide an algebraic “evidence” for this equality.

The study or the p-gradient of a finitely presented group has the following natural
generalization which we will describe now. Let G be a finitely presented group and
let {Gi} be a normal exhausting chain. Any presentation of a group G with d
generators and r relations induces a resolution of the trivial (left) Z[G]-module Z,
which we can use to calculate H1(G,K) (for some field K).

(1) Z[G]r
φA→ Z[G]d → Z[G]→ Z→ 0.

Here φA denotes the homorphism realizing the multiplication by a matrix A. After
tensoring (1) with K[G/Gi] over Z[G], we obtain the sequence

K[G/Gi]
r
φA
G/Gi→ K[G/Gi]

d αi→ K[G/Gi]→ K → 0

and H1(G,K) ∼= kerαi/ ImφAG/Gi
. A direct calculation implies that

dimK H1(Gi,Fp) = dimK kerφAG/Gi
+ (d− r − 1)|G : Gi| − 1.

In particular, when K = Fp,

RGp(G, {Gi}) = d+ r − 1 + lim
i→∞

dimFp
kerφAG/Gi

|G : Gi|
.

From now on, we will consider lim
i→∞

dimK kerφAG/Gi

|G : Gi|
for a general matrix A ∈

Matn×m(K[G]) over K[G] (we also will not assume that G is finitely presented).
However, we would like to warn the reader that any approach in the study of the
p-gradient, that does not take into account additional properties of matrices pro-
ceeding from a presentation of the group G, may loss some useful information that
can be essential, for example, in the solution of the Calegari-Emerton conjecture.

In this general situation we would like to consider the following three questions.

(1) Is there the limit lim
i→∞

dimK kerφAG/Gi

|G : Gi|
?
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(2) If the limit exists, how does it depend on the chain {Gi}?
(3) How can we express limi→∞

dimK kerφA
G/Gi

|G:Gi| in terms of G?

It turns out that the answers on these three questions are known if we assume that
K is of characteristic 0. The limit is always exists and it does not depend on the
chain. Since A has only finitely many entries, we may assume that K is a finitely
generated filed. Consider any embedding of K into C, so A becomes a matrix over
C. Then we also have the equality

lim
i→∞

dimK kerφAG/Gi

|G : Gi|
= dimG kerφAG.

where dimG is the von Neumann dimension of G-Hilbert module kerφAG and φAG :
l2(G)n → l2(G)m is the morphism induced by the right multiplication by A.

This was proved when K = Q by W. Lück [16], when K = Q̄ by J. Dodziuk,
P. Linnell, V. Mathai, T. Schick and S. Yates [8] and when K is an arbitrary field
of characteristic 0 by A. Jaikin-Zapirain [12]. The fourth advanced course of the
thematic program will be dedicated to the proof of this result.

We conjecture that the two first questions have the same answers in positive char-
acteristic as in the characteristic 0. This already will imply the Calegari-Emerton
conjecture. Indeed, let G be an arithmetic lattice in SL2(C) and let Gi = G(pi).
By recent advances in the theory of 3-manifolds [2, 22], we know that G is virtual
finitely generated by cyclic. This, in particular, implies that there exists a normal
exhausting chain {G′i} in G such that RGp(G, {G′i}) = 0. (In fact, the existence
of such chain can be also showing using less sophisticated methods which are pre-
sented in [11]). Thus, the independence of the p-gradient of the normal exhausting
chain would imply that RGp(G, {Gi}) = 0 as well.

At this moment we can prove the existence of the limit lim
i→∞

dimK kerφAG/Gi

|G : Gi|
and

its independence of the normal exhausting chain {Gi} only when G is amenable.
This will be explained in Section 3. Also we can show that if the chain {Gi} is
virtually pro-p then the limit in the first question always exists. We will see it
in Section 4. It is not clear what should be the answer in general on the third
question when K is of positive characteristic. We will answer the third question
when G is elementary amenable such that there exists a bound of the orders of finite
subgroups (see Section 3) or the chain {Gi} is p-adic (see Section 4). We have a good
candidate for the answer on the third question when G is a free group. In Section 5
we will explain how this is already enough in order to solve the Calegari-Emerton
conjecture.

2. Preliminaries

In this section we collect some basic notions and results that will be used later
on in the paper.

2.1. Amenable and elementary amenable groups. The group G is amenable
if there exists a family of finite subsets {Fi} such that for every g ∈ G,

lim
i→∞

|Fi ∩ Fig|
|Fi|

= 1.
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Elementary amenable groups form a large subclass of amenable groups. They
form the smallest subclass of the class of all groups that closed under isomorphisms,
contains all finite and all abelian groups, closed under the operations of taking
subgroups, forming quotients, and forming extensions and closed under directed
unions.

2.2. Sofic groups. Let F be a free finitely generated group and assume that it is
freely generated by a set S. Recall that an element w of F has length n if w can
be expressed as a product of n elements from S∪S−1 and n is the smallest number
with this property.

Let N be a normal subgroup of F and G = F/N . We say that G is sofic if there
is a family {Xk}k∈N of finite F -sets (F acts on the right) such that if we put

Tk,s = {x ∈ Xk : x = x · w if w ∈ Bs(1F ) ∩N, and x 6= x · w if w ∈ Bs(1F ) \N},
then for every s,

lim
k→∞

|Tk,s|
|Xk|

= 1.

The family of F -sets {Xk} is called a sofic approximation of G.
This is one of many equivalent definitions of soficity for a finitely generated

group. We reccommend [21] where many different definitions of soficity can be
found.

Our definition has the following geometric meaning. The action of F on Xk

converts Xk in an S±1-labeled graph. Let T ′k,s be the set of vertices x of Xk

such that the s-ball Bs(x) in Xk and the s-ball Bs(1G) in G are isomorphic as
S±1-labeled graphs. It is clear that

T ′k,s ⊆ Tk,s ⊆ T ′k,2s.
Thus, the soficity condition says that for every s most of the vertices of Xk are in
T ′k,s when k tends to infinity.

For an arbitrary group G we say that G is sofic if every finitely generated
subgroup of G is sofic. Amenable groups and residually finite groups are sofic. It
is important to note that no nonsofic group is known at this moment.

2.3. The Ore rings of fractions. In this subsection we recall the definition of
the left Ore condition and the construction of the Ore ring of fractions.

An element r ∈ R is a non-zero-divisor if there exists no non-zero element
s ∈ R such that rs = 0 or sr = 0. Let T be a multiplicative subset of non-zero-
divisors of R. We say that (T,R) satisfies the left Ore condition if for every
r ∈ R and every t ∈ T , the intersection Tr ∩ Rt is not empty. If T consists of all
the non-zero-divisors we simply say that R satisfies the left Ore condition.

The goal is to construct the left Ore ring of fractions T−1R. Let us recall
briefly this construction. For more details the reader may consult [18, Chapter 2].
As a set, T−1R coincides with the set of equivalence classes in T ×R with respect
to the following equivalence relation:

(t1, r1) ≡ (t2, r2) if and only if there are

r′1, r
′
2 ∈ R such that r′1t1 = r′2t2 ∈ T and r′1r1 = r′2r2.

The equivalence class of (t, a) is denoted by t−1a. Note that there is no obvious
interpretation for the sum s−1a + t−1r and the product (t−1r)(s−1a) (a, r ∈ R,
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s, t ∈ T ). In order to sum s−1a and t−1r, we observe that for every s, t ∈ T there
exists s′, t′ ∈ R such that s′s = t′t ∈ T . Hence,

s−1a+ t−1r = (s′s)−1s′a+ (t′t)−1t′r = (s′s)−1(s′a+ t′r)

In order to multiply s−1a and t−1r, we rewrite rs−1 as a product (s0)−1r0 with
r0 ∈ R and s0 ∈ T . The condition Tr∩Rs is not trivial implies exactly the existence
of s0 ∈ T and r0 ∈ R such that s0r = r0s, and so rs−1 = (s0)−1r0. Hence,

(t−1r)(s−1a) = (t−1)(s0)−1r0a = (s0t)
−1r0a.

When T consists of all the non-zero-divisors of R and (T,R) satisfies the left Ore
condition, we denote T−1R by Ql(R) and we call it the left classical ring of
fractions of R.

2.4. Sylvester module rank functions. A Sylvester rank function dim is
a function that assigns a non-negative real number to each finitely presented R-
module and satisfies the following conditions.

(SMod1) dim({0}) = 0, dim(R) = 1;
(SMod2) dim(M1 ⊕M2) = dimM1 + dimM2;
(SMod3) if M1 →M2 →M3 → 0 is exact then

dimM1 + dimM3 ≥ dimM2 ≥ dimM3.

Let K be a field. If G is a group and N a normal subgroup of G of finite index,
then we denote by dimG/N the Sylvester module rank function on K[G] by means
of

dimG/N (M) =
dimK K[G/N ]⊗K[G] M

|G : N |
.

Then we can reformulate the first question raised in Section 1 in the following way.
Let {Gi} be a normal exhausting chain in G and let M be a finitely presented
K[G]-module Is there the limit lim

i→∞
dimG/Gi

(M)? Observe if such limit exists for

all M , then lim
i→∞

dimG/Gi
is again a Sylvester module rank function on K[G]. Thus,

we can expect that if the limit does not depend on the chain {Gi}, this Sylvester
module rank function should be “canonical”.

There exists a natural generalization of the notion dimG/N . Assume G acts (on
the right) on a finite set X. Then if M is a finitely presented K[G]-module we put

dimX(M) =
dimK K[X]⊗K[G] M

|X|
.

The set of Sylvester module rank functions of a ring R is denoted by P(R). For
any morphism α : R → S we denote by α# : P(S) → P(R) the map defined by
means of

α#(dim)(M) = dim(S ⊗RM).

In this note we will call a Sylvester module rank function dim dimension if it
satisfies

(SMod3′) given a surjection φ : M � N between two finitely presented R-modules,

dimM − dimN = inf{dimL : L� kerφ and L is finitely presented}.
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For example, a simple Artinian ring has a unique Sylvester module rank function
that is also a dimension.

An equivalent way to introduce a Sylvester rank functionon a ring R is to present
a Sylvester matrix rank function, which is a function rk that assigns a non-
negative real number to each matrix over R and satisfies the following properties.

(SMat1) rk(A) = 0 if A is any zero matrix and rk(1) = 1;
(SMat2) rk(A1A2) ≤ min{rk(A1), rk(A2)} for any matrices A1 and A2 which can be

multiplied;

(SMat3) rk

(
A1 0
0 A2

)
= rk(A1) + rk(A2) for any matrices A1 and A2;

(SMat4) rk

(
A1 A3

0 A2

)
≥ rk(A1) + rk(A2) for any matrices A1, A2 and A3 of

appropriate sizes.

Given a Sylvester module rank function dim on a ring R, the associated Sylvester
matrix rank function rk is defined as follows. If A ∈ Matn×m(R) then

rk(A) = m− dim(Rm/(Rn)A).

2.5. Cohn’s theory of epic division R-rings. Let R be a ring. A R-ring is
a homomorphism f : R → S of rings. If f is clear from the context, we will
simply say that S is a R-ring. We will say that two R-rings (S1, f1) and (S2, f2)
are isomorphic if there exists an isomorphism α : S1 → S2 for which the following
diagram is commutative:

R →Id R
↓ f1 ↓ f2

S1 →α S2.

We will say that f : R → D is a an epic division R-ring if D is generated by
f(R) as a division algebra. (The reader may consult [13] for explanation of the
word epic in this definition.)

If R is a commutative ring, then there exists a natural bijection between Spec(R)
and the isomorphism classes of division R-rings: a prime ideal P ∈ Spec(R) corre-
sponds to the field of fractions Q(R/P ) of R/P and f : R→ Q(R/P ) is defined as
f(r) = r + P for any r ∈ R.

If R is a domain and satisfies the left Ore condition then its classical left ring
of fractions Ql(R) is a division ring. Moreover, as in the commutative case, the
division R-ring Ql(R) is the unique (up to R-isomorphism) faithful division R-ring.
Thus, if R is a left Noetherian ring, then there exists a natural bijection between
the strong prime ideals of R (ideals P such that R/P is a domain) and the
isomorphism classes of division R-rings.

For an arbitrary ring R, P. Cohn proposed the following approach to classify
division R-rings. If D is a division ring, let dimD be the dimension on D-modules.
If D is also a R-ring, abusing the notation, we denote by dimD the Sylvester module
rank function on R defined as follows

dimD(M) = dimD(D ⊗RM).

We denote by rkD the Sylvester matrix rank function associated with dimD-

Theorem 2.1. [7, Theorem 4.4.1] Let (D1, f1) and (D2, f2) be two epic division
R-rings. Then the following is equivalent

(1) (D1, f1) and (D2, f2) are isomorphic.
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(2) For each matrix A over R

rkD1(A) = rkD2(A).

(3) For each finitely presented R-module M

dimD1
(M) = dimD2

(M).

(4) For each matrix A over R, f1(A) is invertible over D1 if and only if f2(A)
is invertible over D2.

It is clear that a Sylvester rank functions associated with a division R-algebra
takes integer values. P. Malcolmson [19] proved the converse of this assertion.

Given a ring R and a n by m matrix over A over R, the inner rank of A is the
smallest k such that A = BC where B ∈ Matn×k(R) and C ∈ Matk×m. In general
the inner rank is not a Sylvester matrix rank function. The rings where it happens
are called Sylvester domains. In this case this Sylvester matrix rank function is
associated with an embedding of the ring R into a division algebra D, that is called
universal division R-ring. If R is the free K-algebra on the set X, then R is a
Sylvester domain and its universal division algebra is isomorphic to a free division
K-algebra over X:

2.6. Limit with respect to an ultrafilter. Given a set X, an ultrafilter on X
is a set ω consisting of subsets of X such that

(1) the empty set is not an element of ω;
(2) if A and B are subsets of X, A is a subset of B, and A is an element of ω,

then B is also an element of ω;
(3) if A and B are elements of ω, then so is the intersection of A and B;
(4) if A is a subset of X, then either A or X \A is an element of ω.

If a ∈ X, we can define ωa = {A ⊆ X : a ∈ A}. It is a ultrafilter, called a
principal ultrafilter. It is a known fact that if X is infinite, then the axiom of
choice implies the existence of a non-principal ultrafilter.

Let ω be a ultrafilter on X and {ai ∈ R}i∈X a family of real numbers. We write
a = lim

ω
ai if for any ε > 0 the set {i ∈ X : |a − ai| < ε} is an element of the

ultrafilter w. It is not difficult to see that for any bounded family {ai ∈ R}i∈X
there exists a unique a ∈ R such that a = lim

ω
ai.

The limit with respect to an ultrafilter will be used in several situations in this
paper. For example, let {Xi}i∈N be a collection of finite G-sets. Then, in general,
there is no dimi→∞ dimXi . However, if ω is a ultrafilter on N the lim

ω
dimXi make

sense and it is a Sylvester module rank function on K[G].

3. The case of amenable groups

In this section we explain the proof of the following theorem.

Theorem 3.1. Let K be a field and F a finitely generated free group. Let {Xk}k∈N
be a family of finite F -sets. Assume that {Xk} approximates an amenable group
G = F/N .

(1) For every finitely presented module M of K[F ], there exists the limit

lim
k→∞

dimXk
(M),

which does not depend on the sofic approximation {Xk} of G.
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(2) Assume, in addition, that G is elementary amenable and the orders of finite
subgroups of G are bounded. Then K[G] satisfies the left Ore condition, the
ring Q = Ql(K[G]) is Artinian and there exists a dimension dimQ on Q
such that

lim
k→∞

dimXk
(M) = dimQ(Q⊗K[F ] M).

Observe that if α : K[F ] → K[G] denotes the natural homomorphism Then,
α# : P(K[G])→ P(K[F ]) is injective and lim

k→∞
dimXk

∈ Imα#.

The first part of Theorem 3.1 is [13, Theorem 7.1] and the second part is [13,
Corollary 9.4]. See [13] for some more details on the history behind this result. In
this note we will only consider the first part of Theorem 3.1 .

3.1. Sofic approximations of amenable groups. The main idea of the proof
of the first part of Theorem 3.1 is to show that any two sofic approximations of a
given amenable group are very similar. This was proved by G. Elek and E. Szabó
in [9]. Let us formulate their result.

Let X be a finite set. The Hamming distance on Sym(X) is defined as follows.

dH(σ, τ) =
|{x ∈ X : σ(x) 6= τ(x)}|

|X|
.

Assume now that F is a finitely generated free group and let {Xi} be a sofic
approximation of G = F/N . Fix a non-principal ultrafilter on N and let dω be the
pseudo-distance on

∏
i Sym(Xi):

dω((σi), (τi)) = lim
ω

dH(σi, τi).

We put Nω = {σ ∈
∏
i Sym(Xi) : dω(σ, 1) = 0} and Σω =

∏
i Sym(Xi)/Nω.

The actions of F on Xi induce a homomorphism ψ{Xi},ω : F → Σω. Clearly
kerψ{Xi},ω = N .

Now, let {X1
i } and {X2

i } be two sofic approximations of G = F/N . We put
Y 1
i = Y 2

i = X1
i × X2

i and let F act on Y 1
i by acting only on the first coordinate

and F act on Y 2
i by acting only on the second coordinate. Then {Y 1

i } and {Y 2
i }

are two approximations of F/N .

Theorem 3.2. ([9, Theorem 2]) The representations ψ{Y 1
i },ω and ψ{Y 2

i },ω are con-
jugate.

The proof of this theorem uses in an essential way the results of a fundamental
work of D. Ornstein and B. Weiss [20] on amenable groups.

3.2. Proof of the first part of Theorem 3.1. Observe that an infinite subfamily
of a family that approximates a group G also approximates G. Thus, if the limit
lim
k→∞

dimXk
(M) does not exists or it depends on the sofic approximation {Xi},

we will be able to find two families {X1
i }i∈N and {X2

i }i∈N such that the limits
lim
i→∞

dimX1
i
(M) and lim

i→∞
dimX2

i
(M) exist but they are different.

Let us use the notation of Theorem 3.2. Then clearly

dimX1
i

= dimY 1
i

and dimX2
i

= dimY 2
i
.

On the other hand, Theorem 3.2 implies that

lim
ω

dimY 1
i

(M) = lim
ω

dimY 2
i

(M)
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for any non-principal ultrafilter ω on N (prove this! or look at the proof of [13,
Theorem 7.1]). Thus,

lim
i→∞

dimX1
i
(M) = lim

ω
dimY 1

i
(M) = lim

ω
dimY 2

i
(M) = lim

i→∞
dimX2

i
(M).

We have obtained a contradiction.

4. Virtually pro-p and p-adic analytic chains

In this section we will see that the first question asked in Section 1 has a positive
answer for virtually pro-p chains if charK = p. This suggests that probably in
the case where charK = p, then the second and third questions should be also
considered under this additional condition.

4.1. The case of virtually pro-p chains. Let K be a field. Let G be a profinite
group and N a normal open subgroup of G. Then the Sylvester module rank
function dimG/N can be thought also as a Sylvester module rank function on K[[G]]:

dimG/N (M) =
dimK K[G/N ]⊗K[[G]] M

|G : N |
.

In this subsection we show the following.

Theorem 4.1. Let K be a field of characteristic p. Let G be virtually pro-p group
and G = G0 > G1 > G2 an exhausting chain of open normal subgroups of G. Then
for every finitely presented K[[G]]-module M , there exists lim

i→∞
dimG/Gi

(M) and

this limit does not depend on the chain {Gi}.

The proof of Theorem 4.1 depends on the following well-known fact.

Lemma 4.2. Let K be a field of characteristic p and let A be a finitely generated
K[Cp]-module. Then

dimK A

|Cp|
≤ dimK K ⊗K[Cp] A.

Proof. Decompose A as a direct sum of cyclic K[Cp]-modules. Since K has charac-
teristic p, dimK K ⊗K[Cp] A is equal to the number of non-trivial cyclic summands.
Since the dimension of each cyclic K[Cp]-module is at mpst p, we obtain the in-
equality

dimK A ≤ p · dimK K ⊗K[Cp] A.

�

Corollary 4.3. Let K be a field of characteristic p and let P be a finite p-group.
Let A be a finitely generated K[P ]-module. Then

dimK A

|P |
≤ dimK K ⊗K[P ] A.

Proof. We prove the statement by the induction on |P |. By Lemma 4.2, it holds if
|P | ≤ p. Assume that |P | > p. Let Q be a normal subgroup of P of order p. Then

dimK A
Lemma 4.2
≤ p · dimK K ⊗K[Q] A.
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Observe that dimK K ⊗K[Q] A is a K[P/Q]-module. Hence using the induction
hypothesis, we obtain

dimK A ≤ p · |P/Q|dimK K ⊗K[P ] A = |P |dimK K ⊗K[P ] A.

�

Corollary 4.4. Let G be a profinite group and let N1 ≤ N2 two normal open
subgroups of G. Assume that N2/N1 is a p-group. Then for every finitely presented
Fp[[G]]-module,

dimG/N1
(M) ≤ dimG/N2

(M).

Proof of Theorem 4.1. By Corollary 4.4, the limit lim
i→∞

dimG/Gi
(M) exists. If {Hi}

is another exhausting chain of open normal subgroups of G, then for every i there
exists j such that Gj ≤ Hi and Hj ≤ Gi. Hence, Corollary 4.4 implies also that
lim
i→∞

dimG/Gi
(M) = lim

i→∞
dimG/Hi

(M). �

In view of Theorem 4.1, if G is virtually pro-p group, we will denote by dimG the
Sylvester module rank function on Fp[[G]] that is equal to the limit lim

i→∞
dimG/Gi

,

where {Gi} is a exhausting chain of open normal subgroups in G.

4.2. Interpretations of dimG in terms of division K[[G]]-algebras. Let Γ be
a group and let Γ = Γ1 > Γ2 > Γ3 > . . . be a exhausting virtually pro-p chain.
Let G be the completion of Γ with resect to the chain {Γi}. In this subsection we
will give a general criterion which relates dimG with an embedding of Fp[Γ] into a
division algebra.

We say that a homomorphism V : D∗ → Z of the multiplicative group of
a division K-algebra D is a valuation on D if for any a, b ∈ D, V (a + b) ≥
max{V (a), V (b)} and V (k) = 0 for every k ∈ K∗. We will also put V (0) = +∞.

Remark. It is useful to extend the valuation from D to E = Ql(D[t]) by defining

V (
∑

ait
i) = max

i
{V (ai) + i}(ai ∈ D) and V (

a

b
) = V (a)− V (b) (a, 0 6= b ∈ E).

For every i ≥ 0 we put Ri = {a ∈ D : V (a) ≥ i}. Then Ri are principal ideals in
R0. Moreover, R0 is a local field and R1/R0 is a division algebra.

Theorem 4.5. Let K be a field of characteristic p. Let D be a division K-algebra
and let V a be valuation on D. Let Γ be a finitely generated subgroup of 1 + R1.
Let M be a finitely presented K[Γ]-module. Put Γi = (1 +Ri) ∩ Γ.

(1) {Γi} is a exhausting pro-p-chain in Γ.
(2) Denote by G the profinite completion of Γ with respect of {Γi}. Then

dimG(M) ≤ dimD(M).

(3) Let Di denotes the division subalgebra of D generated by Γi. If for every
i ≥ 1, dimDi

D1 = |Γ : Γi|, then

dimG(M) = dimD(M).

Proof. (1) The first claim is clear.
(2) We say that a n by n matrix A over D of full D-rank if rkD(A) = n. Observe

that for an arbitrary matrix A over D, rkD(A) is equal to the maximal size of a
square matrix having full D-rank y obtained from A by removing some of its rows
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or columns. Thus, in order to prove (2) it is enough to show that if dimD(M) = 0,
then dimG(M) = 0.

Thus, from now on we assume that dimD(M) = 0. In particular, R0 ⊗K[Γ] M is
a R0-module of finite length l = lR0(R0 ⊗K[Γ] M). Observe that

dimΓ/Γi
(M) =

dimR0/R1
(R0/R1 ⊗K[Γi] M)

|Γ : Γi|
.

Thus, we are done once we prove the following two claims.

Lemma 4.6. Let H be a normal subgroup of Γ of p-power index.

(a)
lR0

(R0⊗K[H]M)

|Γ:H| ≤ lR0(R0 ⊗K[Γ] M).

(b) If H ≤ Γi, then lR0
(R0 ⊗K[H] M) ≥ i(dimR0/R1

(R0/R1 ⊗K[H] M).

Proof. (a) We will prove the statement by induction on |Γ : H|. Assume first that
|Γ : H| = p and let g ∈ Γ\H. Put L = R0⊗K[H]M . Let φ be an R0-endomorphism
of N defined as follows

φ(a⊗ b) = ag ⊗ g−1b− a⊗ b.
It is well defined (exercise!) and φp = 0. Since φi(L)/φi+1(L) is a quotient of
L/φ(L) ∼= R0 ⊗K[Γ] M and lR0

is additive on torsion R0-modules, we obtain that

lR0(R0 ⊗K[H] M) ≤ plR0(R0 ⊗K[Γ] M).

This proves the base of the induction.
Now assume that |Γ : H| > p. Let H0 be a normal subgroup of Γ of index p

containing H. Then we obtain the following

lR0
(R0 ⊗K[H] M)

Induction
≤

|H : H0|lR0(R0 ⊗K[H0] M)
Induction
≤ |G : H|lR0(R0 ⊗K[Γ] M).

(b) As we have explained at the beginning of the subsection, we can assume that
R0 contains a central element t such that V (t) = 1. Thus, R1 = (t).

There exists a matrix A ∈ Matn×m(K[H]) such that M ∼= K[H]m/(K[H]n)A as
K[H]-modules. Since dimD(M) = 0, m ≤ n. Observe also that

L = R0 ⊗K[H] M ∼= Rm0 /(R
n
0 )A.

Clearly, the choice of A is not unique. In fact, we can choose A such that

A =

(
Ia +B1 B2

B3 B4

)
,

where Ia ∈ Mata(K) is the identity matrix and B1, B2, B3 and B4 are matrices
with entrance in the augmentation ideal of K[H]. Observe that

dimR0/R1
(R0/R1 ⊗K[H] M) = m− a.

We can express as A as a product of two matrices(
Ia +B1 B2

B3 B4

)
=

(
Ia +B1 B′2
B3 B′4

)(
Ia 0
0 tiIm−a

)
=: A1A2,

where B′2 and B′4 are matrices over R0. Thus Rm0 /(R
m
0 )A2 is a quotient of L. Hence

lR0
(L) ≥ i(m− a) = i dimR0/R1

(R0/R1 ⊗K[H] M).

�
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(3) Observe that

dimΓ/Γi
(M) =

dimR0/R1
(R0/R1 ⊗K[Γi] M)

|Γ : Γi|
≥

dimD(D ⊗K[Γi] M)

|Γ : Γi|
=

dimDi
(Di ⊗K[Γi] M)

|Γ : Γi|
=

dimDi((Di ⊗K[Γi] K[Γ])⊗K[Γ] M)

|Γ : Γi|
.

Now, the condition dimDi D1 = |Γ : Γi|, implies that Di ⊗K[Γi] K[Γ] is isomorphic
to D1 as (Di,K[Γi])-bimodule (exercise!). Hence

dimΓ/Γi
(M) ≥

dimDi(D1 ⊗K[Γ] M)

|Γ : Γi|
= dimD1

(D1 ⊗K[Γ] M) = dimD(M).

�

The following pro-p version of the previous theorem can be proved using similar
arguments.

Theorem 4.7. Let D be a division ring of characteristic p and let V a be valuation
on D. Let G be a profinite subgroup and assume that Fp[[G]] is a subring of R0.
Put Gi = G ∩ 1 + Ri and assume that they are open in G. Let M be a finitely
presented Fp[[G]]-module. Then

dimG(M) ≤ dimD(M).

If, moreover, dimDi
D0 = |G : Gi|, where Di denotes the division subalgebras of D

generated by Gi, then

dimG(M) = dimD(M).

4.3. P -adic chains. A profinite group G is said to be p-adic if it is a subgroup
of GLn(Zp) for some n. Any finitely generated group which is linear over a field of
characteristic 0 can be embedded in a p-adic profinite group. The completed group
algebra Fp[[G]] of a p-adic profinite group G is Noetherian and satisfies the left Ore
condition. We put ΩG = Ql(Fp[[G]]).

Any p-adic subgroup contains a torsion-free pro-p group P . The completed group
algebra Fp[[P ]] is a domain. Thus, ΩP is a division algebra. We define by dimΩG

the dimension function on Fp[[G]]-modules associated with the embedding of Fp[[G]]
into ΩG:

dimFp[[G]](M) =
dimΩP

ΩP ⊗Fp[[P ]] M

|G : P |
.

This definition does not depend on the choice of P .

Theorem 4.8. Let G be p-adic profinite group. Then dimFp[[G]] = dimG. In
particular, dimG takes only rational values and if, moreover, G is torsion free, then
dimG takes integer values.

Proof. Recall that a finitely generated pro-p group P is called uniform if P satisfies
[P, P ] ≤ P 2p and P is torsion free. Every p-adic profinite group contains a uniform
subgroup.
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If P is uniform, then ΩP has a valuation that can be defined as follows. Let I
be the augmentation ideal of Fp[[P ]], then we put V (a) = k if 0 6= a ∈ Ik \ Ik+1

and V (ab−1) = V (a)− V (b) for an arbitrary non-zero element ab−1 of ΩP .
Then we can apply Theorem 4.7 and obtain that dimP = dimΩP

. This implies
that dimG = dimΩG

.
�

Remark. The last part of the theorem is the characteristic p analog of a result
of Farcas and Linnell [10], where they prove the Atiyah conjecture for torsion-free
p-adic pro-p groups.

4.4. Free pro-p groups. In this section we prove the following.

Theorem 4.9. Let F be a finitely generated free pro-p. Then rkF is equal to the
inner rank on Fp[[F ]].

Proof. Let {g1, . . . , gn} be free generators of F . Let X = {x1, . . . , xn} be a set
and let E be the universal division Fp〈X〉-algebra. Put D = E((t))−1 and define
a valuation V on D such that V (e) = 0 for every e ∈ E and V (t) = 1. Then
R0 = E[[t]]. We can embed Fp[[F ]] into R0 by sending gi to 1 + txi. By results on
universal division algebras [7], we know that rkD restricted on matrices over Fp[[F ]]
is equal to its inner rank. Thus, we have only to show that rkD = rkF as Sylvester
matrix rank functions on Fp[[F ]]. This follows from Theorem 4.7.

�

Let G be a pro-p group. By induction we denote γ1(G) = G and γn+1(G) =
[γn(G), G]. If F is a free pro-p group, then F/γn(F ) is a torsion-free p-adic group.
Combining Theorem 4.8 and Theorem 4.9 we obtain the following corollary.

Corollary 4.10. Let F be a finitely generated free pro-p. Then lim
i→∞

rkFp[[F/γn(F )]]

is equal to the inner rank of Fp[[F ]].

5. The case of free groups and posible applications to the
Calegari-Emerton conjecture

As a consequence of Theorem 4.9 we obtain.

Corollary 5.1. Let F be a finitely generated free group and let I be the augmen-
tation ideal of Fp[F ]. For any k ≥ 1, we denote Fk = F ∩ 1 + Ik. Then there exists
the limit

lim
i→∞

rkF/Fi

and it is equal to the inner rank of matrices over Fp[F ].

Proof. Observe that the profinite completion of F with respect of {Fi} is a free
pro-p group. Now, the corollary follows from the fact that the inner rank of a
matrix over Fp[F ] is the same as a matrix over Fp[[F ]] and Theorem 4.9.

Also one can argue as in the proof Theorem 4.9. and use Theorem 4.5 instead
of Theorem 4.7. �

This corollary suggests the following conjecture.



MOD-p METHODS AND THE p-GRADIENT 15

Conjecture 1. Let F be a finitely generated free group and let {Fi} be an exhaust-
ing p-adic chain in F . Then there exists the limit

lim
i→∞

rkF/Fi

and it is equal to the inner rank of matrices over Fp[F ].

We finish this note with a result that relates the previous conjecture with the
Calegari-Emerton conjecture.

Theorem 5.2. Conjecture 1 implies the Calegari-Emerton conjecture
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