On some identities involving exponentials

Fernando Casas
Fernando.Casas@mat.uji.es
www.gicas.uji.es/Fernando/fernando.html

Departament de Matemàtiques
Institut de Matemàtiques i Aplicacions de Castelló (IMAC)
Universitat Jaume I
Castellón

ICMAT, May 2015
Based on work done (along the years) with
- Ander Murua
- Sergio Blanes
- José Ros
- José Ángel Oteo
0. INTRODUCTION
\[A = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \]

\[Y' = AY, \ Y(0) = I \]

Solution: \(Y(t) = e^{At} \)

\[
 e^{tA} = \sum_{k \geq 0} \frac{t^k}{k!} A^k = \begin{pmatrix} 2 - e^{-t} & -1 + e^{-t} \\ 2 - 2e^{-t} & -1 + 2e^{-t} \end{pmatrix}
\]

Main object: exponential of a matrix

Basic property of the exponential of a matrix (of dimension \(N \geq 2 \)):

\[e^A e^B \neq e^{A+B} \quad \text{in general} \quad AB \neq BA \]

Only if \(AB = BA \) it is true that \(e^A e^B = e^{A+B} \).
A trivial example

Consider

\[
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}
\]

\(A\) and \(B\) do not commute:

\[
AB = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad BA = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
\]

Hence we have

\[
e^A = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix} \quad \text{and} \quad e^B = \begin{pmatrix} e & 0 \\ e - 1 & 1 \end{pmatrix}
\]
A trivial example

and

\[e^A e^B = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix} \begin{pmatrix} e & 0 \\ e - 1 & 1 \end{pmatrix} = \begin{pmatrix} 2e^2 - e & e \\ e^2 - e & e \end{pmatrix} \]

whereas

\[e^{(A+B)} = e^{3/2} \begin{pmatrix} c + s & 2s \\ 2s & c - s \end{pmatrix} \]

with \(c = \cosh \frac{\sqrt{5}}{2}, \ s = \frac{1}{\sqrt{5}} \sinh \frac{\sqrt{5}}{2}. \)

Therefore

\[e^A e^B \neq e^{A+B} \]

Important object: the \textbf{commutator} \([A, B] = AB - BA\)
Problems

1. \(e^A e^B = e^{A+B+C} \)

2. \(e^{A+B} = e^A e^B e^{C_1} e^{C_2} \ldots \)

3. Given \(Y' = A(t) Y, \ Y(0) = I, \) with \(A(t) \) a \(N \times N \) matrix,
 - \(N = 1: \ Y(t) = e^{\int_0^t A(s) \, ds} \)
 - \(N > 1: \ Y(t) = e^{\int_0^t A(s) \, ds} \) if
 \[
 \left[A(t), \int_0^t A(s) \, ds \right] = 0 \quad \text{(Coddington & Levinson)}
 \]
 - General case: can we write \(Y(t) = e^{\Omega(t)} \) with
 \[
 \Omega(t) = \int_0^t A(s) \, ds + \text{(something else)}?
 \]
Exponential map:

- Fundamental role played by the exponential transformation in Lie groups and Lie algebras

\[\exp : \mathfrak{g} \rightarrow \mathcal{G} \]

- Kashiwara–Vergne conjecture (with important implications in Lie theory, harmonic analysis, etc.), proved as a theorem in 2006

- Lie groups are ubiquitous in physics: symmetries in classical mechanics, Quantum Mechanics, control theory, etc.
I. MAIN CHARACTERS
H.F. Baker (1866-1956) J.E. Campbell (1862-1924) F. Hausdorff (1868-1942)
Problems

1. \(e^A e^B = e^{A+B+C} \)
 Baker–Campbell–Hausdorff (BCH) Formula

2. \(e^{A+B} = e^A e^B e^{C_1} e^{C_2} \ldots \)
 Zassenhaus Formula

3. Given \(Y' = A(t)Y, \ Y(0) = I, \ A(t) \) a \(N \times N \) matrix,
 - \(N = 1: \ Y(t) = e^{\int_0^t A(s) \, ds} \)
 - \(N > 1: \ Y(t) = e^{\int_0^t A(s) \, ds} \) if
 \[
 \left[A(t), \int_0^t A(s) \, ds \right] = 0
 \]
 - General: can we write \(Y(t) = e^{\Omega(t)} \) with
 \[
 \Omega(t) = \int_0^t A(s) \, ds + \text{(something else)}
 \]

 Magnus Expansion
These topics have already appeared (several times) at the workshop. We are mainly concerned by

- **computational aspects**: how to generate *efficiently* the corresponding series
- **Convergence** of the series
Before starting...

- **Lie Product Formula.** Let X and Y be $n \times n$ complex matrices. Then

\[
e^{X+Y} = \lim_{m \to \infty} \left(e^{X/m} e^{Y/m} \right)^m.
\]

- A big brother: **Trotter product formula.** The same result when X and Y are suitable unbounded operators on an infinite-dimensional Hilbert space.

Many applications in the numerical treatment of PDEs
II. BCH FORMULA
Let X, Y be two non commuting operators. Then

$$e^X e^Y = \sum_{p,q=0}^{\infty} \frac{1}{p! q!} X^p Y^q$$

Substituting this series in the formal series defining the logarithm function

$$\log Z = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (Z - 1)^k$$

one gets

$$Z = \log(e^X e^Y) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum \frac{X^{p_1} Y^{q_1} \cdots X^{p_k} Y^{q_k}}{p_1! q_1! \cdots p_k! q_k!},$$

The inner summations extends over all non-negative integers $p_1, q_1, \ldots, p_k, q_k$ for which $p_i + q_i > 0$ ($i = 1, 2, \ldots, k$).
First terms:

\[
Z = (X + Y + XY + \frac{1}{2}X^2 + \frac{1}{2}Y^2 + \cdots)
\]
\[
- \frac{1}{2}(XY + YX + X^2 + Y^2 + \cdots) + \cdots
\]
\[
= X + Y + \frac{1}{2}(XY - YX) + \cdots = X + Y + \frac{1}{2}[X, Y] + \cdots
\]

Baker, Campbell, Hausdorff analyzed whether \(Z \) can be written as a series only in terms of (nested) commutators.

The answer is yes, but they weren’t able to provide a rigorous proof.

Bourbaki: “\textit{chacun considère que les démonstrations de ses prédécesseurs ne sont pas convaincantes}”

Finally, Dynkin (1947): explicit formula for \(Z \).

Sometimes it is called BCH-D (for Dynkin) formula (Bonfiglioli & Fulci)
Dynkin:

\[
Z = \sum_{k=1}^{\infty} \sum_{p_i, q_i} (-1)^{k-1} \frac{[X^{p_1}Y^{q_1} \ldots X^{p_k}Y^{q_k}]}{k} \frac{1}{(\sum_{i=1}^{k} (p_i + q_i))} \frac{p_1! \cdot q_1! \cdot \ldots \cdot p_k! \cdot q_k!}{(\sum_{i=1}^{k} (p_i + q_i))}
\]

(1)

Inner summation over all non-negative integers \(p_1, q_1, \ldots, p_k, q_k\) for which \(p_1 + q_1 > 0, \ldots, p_k + q_k > 0\)

\([X^{p_1}Y^{q_1} \ldots X^{p_k}Y^{q_k}]\) denotes the right nested commutator based on the word \(X^{p_1}Y^{q_1} \ldots X^{p_k}Y^{q_k}\):

\([XY^2X^2Y] \equiv [X, [Y, [Y, [X, [X, [X, Y]]]]]]\)

Gathering terms together

\[
Z = \log(e^X e^Y) = X + Y + \sum_{m=2}^{\infty} Z_m,
\]

(2)

\(Z_m(X, Y)\): homogeneous Lie polynomial in \(X, Y\) of degree \(m\), i.e., a \(\mathbb{Q}\)-linear combination of commutators of the form \([V_1, [V_2, \ldots, [V_{m-1}, V_m] \ldots]]\) with \(V_i \in \{X, Y\}\) for \(1 \leq i \leq m\).
First terms

\[Z_2 = \frac{1}{2} [X, Y] \]
\[Z_3 = \frac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] \]
\[Z_4 = -\frac{1}{24} [Y, [X, [X, Y]]] \]
\[Z_5 = \frac{1}{720} [X, [X, [X, [X, Y]]]] - \frac{1}{180} [Y, [X, [X, [X, Y]]]] \]
\[+ \frac{1}{180} [Y, [Y, [X, [X, Y]]]] + \frac{1}{720} [Y, [Y, [Y, [X, Y]]]] \]
\[- \frac{1}{120} [[X, Y], [X, [X, Y]]] - \frac{1}{360} [[X, Y], [Y, [X, Y]]] \]
Applications

Fundamental role in different fields:

- **Mathematics**: theory of linear differential equations, Lie groups, numerical analysis of differential equations
- **Theoretical Physics**: perturbation theory, quantum mechanics, statistical mechanics, quantum computing
- **Control theory**: design and analysis of nonlinear control mechanisms, nonlinear filters, stabilization of rigid bodies,...
Quantum Mechanics

- \(i\hbar \dot{U} = HU(t) \), \(U(t_0) = I \), so that \(\psi(t) = U(t)\psi_0 \)
- \(H(t) = K + V = -\frac{\hbar^2}{2m}p^2 + V \)
- Solution: \(U(t) = e^{-iHt/\hbar} \).
- Very often, computing \(e^{-iKt/\hbar} \), \(e^{-iVt/\hbar} \) is easier
Quantum Monte Carlo methods

- Partition function

\[Z = \text{Tr}(e^{-\beta H}) = \sum_{\alpha} \langle \alpha | e^{-\beta H} | \alpha \rangle, \]

for the orthogonal complete set of states \(|\alpha\rangle \). Here \(\beta = 1/T \) and \(H = K + V \)

- All practical implementations intended for Monte Carlo estimations of \(Z \) rely on approximating

\[e^{-\beta(K+V)} = \left(e^{-\epsilon(K+V)} \right)^M, \]

with \(\epsilon = \beta/M \) and \(M \) is the number of convolution terms (beads).

- Product of exponentials

\[e^{-\epsilon(K+V)} \approx \prod_{i=1}^{m} e^{-a_i \epsilon K} e^{-b_i \epsilon V} \]
Applications

- **Lie groups theory**: Lie algebra ↔ Lie group. Multiplication law in the group is determined uniquely by the Lie algebra structure, at least in a neighborhood of the identity.

- Helpful also to prove the existence of a local Lie group with a given Lie algebra.

- The particular structure of the series is not very important in this setting...

- ...But in other fields it is relevant to analyze the combinatorial aspects and its efficient computation.
Applications

- **Lie groups theory**: Lie algebra \leftrightarrow Lie group. Multiplication law in the group is determined uniquely by the Lie algebra structure, at least in a neighborhood of the identity.

- Helpful also to prove the existence of a local Lie group with a given Lie algebra.

- The particular structure of the series is not very important in this setting...

- ...But in other fields it *is* relevant to analyze the combinatorial aspects and its efficient computation.
Splitting and composition methods

\[\dot{u} = F(u) = A(u) + B(u), \quad u(0) = u_0 \]

- Flows of \(A(u) \) and \(B(u) \), \(e^{tA}, e^{tB} \) can be obtained explicitly
- Approximation (for \(t = h \), the time step)

\[\Psi_h \equiv \exp(ha_1A) \exp(hb_1B) \cdots \exp(ha_kA) \exp(hb_kB) \]

- **Order conditions** to be satisfied by \(a_i, b_i \) so that

\[\Psi_h \equiv \exp(ha_1A) \exp(hb_1B) \cdots \exp(ha_kA) \exp(hb_kB) \]

verifies \(\Psi_h(u_0) = u(h) + O(h^{r+1}) \) when \(h \to 0 \).
- They are obtained by applying BCH in sequence:

\[\Psi_h = \exp(p_{1,1}A + p_{1,2}B + p_{2,1}[A, B] + \cdots) \]

with \(p_{i,j} \) polynomials in \(a_i, b_i \).
- \(p_{1,1} = p_{1,2} = 1, p_{2,1} = 0 \), etc.
How to obtain the BCH formula

- Different procedures in the literature:
 - **Goldberg form + Dynkin (Specht-Wever) theorem (explicit)**

\[
Z = X + Y + \sum_{n=2}^{\infty} \frac{1}{n} \sum_{w, |w|=n} g_w \ [w],
\]

(3)

with \(w = w_1 w_2 \ldots w_n \), each \(w_i \) is \(X \) or \(Y \),
\([w] = [w_1, [w_2, \ldots [w_{n-1}, w_n] \ldots]]\), the coefficient \(g_w \) is a rational number and \(n \) is the word length.

- **Varadarajan (recursive)**

\[
Z_1 = X + Y
\]

(4)

\[
(n + 1)Z_{n+1} = \frac{1}{2} [X - Y, Z_n] + \sum_{p=1}^{[n/2]} \frac{B_{2p}}{(2p)!} \sum[Z_{k_1}, \ldots [Z_{k_{2p}}, X + Y] \ldots], \quad n \geq 1
\]

Second sum: over all positive integers such that \(k_1 + \cdots + k_{2p} = n \)
Diffman (Trondheim-Bergen). Matlab toolbox for computations in a free Lie algebra.

The computation of the BCH formula is carried out in Diffman by integrating numerically

\[Z' = d \exp_z^{-1}(X) \equiv \sum_{k=1}^{\infty} \frac{B_k}{k!} \text{ad}_Z^k X, \quad Z(0) = Y \]

from \(t = 0 \) to \(t = 1 \) using a single step of a Runge–Kutta method. (\(e^{Z(t)} = e^{tX}e^Y \))

Koseleff (1993): explicit expression in the Lyndon basis up to \(n = 10 \) by using only manipulations of Lie polynomials, without resorting to the associative algebra.
Reinsch (2000): Simple derivation with matrices of rational numbers. Mathematica program. The expression is not written in terms of commutators.

A recent (much simpler) modification in 2015

Lie Tools Package (LTP) (Torres-Torriti & Michalska, 2003).

- Package in Maple for carrying out Lie algebraic symbolic computations.
- Special function for the computation of BCH formula in the Dynkin form in terms of Lie monomials in the Hall basis.
- Reported results in 2003: up to order 10 in 25 hours with maximum memory usage of 17.5 Mbytes on a Pentium III, 550 MHz, 256 Mbytes RAM, Maple 7, Linux
Bottleneck in the computation

- The iterated commutators are not all linearly independent, due to the Jacobi identity

\[[X_1, [X_2, X_3]] + [X_2, [X_3, X_1]] + [X_3, [X_1, X_2]] = 0\]

(and other identities involving nested commutators of higher degree originated by it)

- All the previous expressions for the BCH series are *not* formulated directly in terms of a basis of the free Lie algebra \(\mathcal{L}(X, Y) \)

- Problematic when designing numerical integrators for ODEs (*one condition per element in the basis*)

- Very difficult to study specific properties of the series: distribution of coefficients, combinatorial properties, etc.
It is possible to rewrite the formulas in terms of a basis of $\mathcal{L}(X, Y)$, but this process is very time consuming and requires lots of memory resources.

The complexity grows exponentially with m: the number of terms involved in the series grows as the dimension c_m of the homogeneous subspace $\mathcal{L}(X, Y)_m$

$c_m = \mathcal{O}(2^m/m)$ (Witt’s formula)
To express the BCH series as

\[Z = \log(\exp(X) \exp(Y)) = \sum_{i \geq 1} z_i E_i, \quad (5) \]

where \(z_i \in \mathbb{Q} \) (\(i \geq 1 \)) and \(\{E_i : i = 1, 2, 3, \ldots\} \) is a basis of \(\mathcal{L}(X, Y) \) whose elements are of the form

\[E_1 = X, \quad E_2 = Y, \quad \text{and} \quad E_i = [E_{i'}, E_{i''}] \quad i \geq 3, \quad (6) \]

for appropriate values of the integers \(i', i'' < i \) (\(i = 3, 4, \ldots \)).

- In particular: classical Hall basis, Lyndon basis
- Design an efficient algorithm
- Analyze the series (coefficients, convergence)
Summary of the algorithm

- Starting point: vector space g of maps $\alpha : \mathcal{T} \to \mathbb{R}$
- \mathcal{T}: set of rooted trees with black and white vertices

$$\mathcal{T} = \left\{ \text{bicoloured rooted trees} \right\}.$$

- \mathcal{T} is typically referred to as the set of labeled rooted trees with two labels, ‘black’ and ‘white’.
- Elements of \mathcal{T}: bicoloured rooted trees.
\(\mathfrak{g} \) is endowed with a Lie algebra structure by defining the Lie bracket \([\alpha, \beta] \in \mathfrak{g} \), of two arbitrary maps \(\alpha, \beta \in \mathfrak{g} \) as

For each \(u \in \mathcal{T} \),

\[
[\alpha, \beta](u) = \sum_{j=1}^{\mid u \mid - 1} (\alpha(u(j))\beta(u^{(j)}) - \alpha(u^{(j)})\beta(u(j))),
\]

(7)

|\(u \)| denotes the number vertices of \(u \)

each of the pairs of trees \((u(j), u^{(j)}) \in \mathcal{T} \times \mathcal{T} \), \(j = 1, \ldots, \mid u \mid - 1 \), is obtained from \(u \) by removing one of the \(\mid u \mid - 1 \) edges of the rooted tree \(u \), the root of \(u(j) \) being the original root of \(u \).
For instance

\[
[\alpha, \beta](\bullet) = \alpha(\circ)\beta(\bullet) - \alpha(\bullet)\beta(\circ), \quad [\alpha, \beta](\circ) = 0
\]

\[
[\alpha, \beta](\bullet \circ) = 2(\alpha(\bullet)\beta(\circ) - \alpha(\circ)\beta(\bullet))
\]

\[
[\alpha, \beta](\bullet \circ \circ) = \alpha(\circ \circ)\beta(\bullet) + \alpha(\bullet \circ)\beta(\circ) - \alpha(\bullet \circ \circ) - \alpha(\circ \circ)\beta(\bullet) - \alpha(\bullet \circ)\beta(\circ)
\]

The Lie subalgebra of \(\mathfrak{g}\) generated by the maps \(X, Y \in \mathfrak{g}\) defined as

\[
X(u) = \begin{cases}
1 & \text{if } u = \bullet \\
0 & \text{if } u \in \mathcal{T}\{\bullet}\end{cases}, \quad Y(u) = \begin{cases}
1 & \text{if } u = \circ \\
0 & \text{if } u \in \mathcal{T}\{\circ}\end{cases}
\]

is a free Lie algebra over the set \(\{X, Y\}\)

\(\mathcal{L}(X, Y)\): Lie subalgebra of \(\mathfrak{g}\) generated by the maps \(X\) and \(Y\).
For each particular Hall–Viennot basis \(\{E_i : i = 1, 2, 3, \ldots \} \), and \(X \) and \(Y \) as above, one can associate a bicoloured rooted tree \(u_i \) to each element \(E_i \) such that, for any map \(\alpha \in \mathcal{L}(X, Y) \),

\[
\alpha = \sum_{i \geq 1} \frac{\alpha(u_i)}{\sigma(u_i)} E_i,
\]

(9)

For each \(i \), \(\sigma(u_i) \) is certain positive integer associated to the bicoloured rooted tree \(u_i \) (the number of symmetries of \(u_i \))

if \(\alpha \in \mathcal{L}(X, Y) \), then its projection \(\alpha_n \) to the homogeneous subspace \(\mathcal{L}(X, Y)_n \) is given by

\[
\alpha_n(u) = \begin{cases}
\alpha(u) & \text{if } |u| = n \\
0 & \text{otherwise}
\end{cases}
\]

(10)

for each \(u \in \mathcal{T} \).
Lie series:

\[\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \cdots, \quad \text{where} \quad \alpha_n \in \mathcal{L}(X, Y)_n. \]

A map \(\alpha \in \mathfrak{g} \) is then a Lie series if and only if (9) holds.

The corresponding BCH series is a Lie series

\[
Z = \sum_{i \geq 1} z_i E_i = \sum_{i \geq 1} \frac{Z(u_i)}{\sigma(u_i)} E_i \\
= Z(\bullet)X + Z(\bigcirc)Y + Z(\bigbullet)[Y, X] \\
+ \frac{Z(\bigbullet\bigcirc)}{2}[[Y, X], X] + Z(\bigbullet\bigcirc)[[Y, X], Y] + \cdots,
\]

The coefficients \(Z(u_i) \) can be determined by recursive procedures for BCH (Varadarajan).
In summary:
- Construct algorithmically a sequence of labeled rooted trees in a one-to-one correspondence with a Hall basis.
- In addition, they must verify

\[\alpha = \sum_{i \geq 1} \frac{\alpha(u_i)}{\sigma(u_i)} E_i, \]

- In this way, one can build Lie series.
- In particular, the BCH series.
- A very efficient algorithm written in Mathematica allows us to get the BCH series up to a prescribed value of \(m \) in the Hall and Lyndon basis.
Some results

- Comparison:
 - with the best previous algorithm: 17.5 MBytes up to \(m = 10 \).
 - ours: 5.4 MBytes

- In less than 15 min. of CPU (2008) and 1.5 GBytes we get up to \(m = 20 \)

- 109697 non vanishing terms out of 111013 elements \(E_i \) of grade \(|i| \leq 20 \) in the Hall basis

- Last element:

\[
E_{111013} = [[[[[Y, X], Y], [Y, X]], [[[Y, X], X], [Y, X]]],
[[[[Y, X], Y], [Y, X]], [[[Y, X], Y], Y], Y]],
\]

with coefficient

\[
z_{111013} = -\frac{19234697}{140792940288}.
\]
An observation: In the basis of P. Hall there are 1316 zero coefficients out of 111013 up to degree $m = 20$, whereas in the Lyndon basis the number of vanishing terms rises to 34253 (more than 30% of the total number of coefficients!!)

More remarkably, one notices that the distribution of these vanishing coefficients in the Lyndon basis follows a very specific pattern.

It is possible to explain this pattern.

In a sense, the Lyndon basis seems the natural choice to get systematically the BCH series with the minimum number of terms.

Variations: symmetric BCH formula

$$e^{\frac{1}{2}X} e^Y e^{\frac{1}{2}X} = e^W$$
(Mityagin) The Baker–Campbell–Hausdorff series converges absolutely when $\|X\| + \|Y\| < \pi$.

- This result can be generalized to any set X_1, X_2, \ldots, X_k of bounded operators in a Hilbert space \mathcal{H}:
 $$e^{X_1} e^{X_2} \cdots e^{X_k} = e^Z$$
 converges if
 $$\|X_1\| + \|X_2\| + \cdots + \|X_k\| < \pi$$
- Optimal bound
Let
\[X_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]
and let \(X = \alpha X_1, \ Y = \beta X_2, \) with \(\alpha, \beta \in \mathbb{C}. \) Then
\[
\log(e^X e^Y) = \alpha X_1 + \frac{2\alpha \beta}{1 - e^{-2\alpha}} X_2,
\]
analytic function for \(|\alpha| < \pi \) with first singularities at \(\alpha = \pm i\pi. \) Then BCH cannot converge if \(|\alpha| \geq \pi, \) independently of \(\beta \neq 0. \)

- From the above theorem: convergence if \(|\alpha| + |\beta| < \pi \)
- In the limit \(|\beta| \to 0 \) this result is optimal
Second example

\[X = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \]

with \(\alpha > 0 \). Then

\[e^{\varepsilon X} e^{\varepsilon Y} = \begin{pmatrix} 1 & \alpha \varepsilon \\ \alpha \varepsilon & 1 + \alpha^2 \varepsilon^2 \end{pmatrix} \] (11)

- convergence of the BCH series in this case whenever
 \[2\alpha|\varepsilon| < \pi, \text{ or } |\varepsilon| < \frac{\pi}{2\alpha} \]
- conservative estimate since convergence can be shown for
 \[|\varepsilon| < \frac{2}{\alpha} \]
Numerical check of convergence for $\alpha = 2$

- $Z^{[N]}(\varepsilon) = \sum_{n=1}^{N} Z_n(\varepsilon)$
- Compute $E_r(\varepsilon) = \|e^X e^Y e^{-Z^{[N]}(\varepsilon)} - I\|$
- Convergence if $\varepsilon < 1$
- $\varepsilon = 1/4$; with $N = 10$, $E_r(\varepsilon) \approx 10^{-7}$. With $N = 15$, $E_r(\varepsilon) \approx 10^{-10}$
- $\varepsilon = 0.9$; to get $E_r(\varepsilon) \approx 10^{-8}$ we need $N = 150$; with $N = 200$ then $E_r(\varepsilon) \approx 10^{-10}$
Other results on convergence

The Baker–Campbell–Hausdorff formula expressed as a series of homogeneous Lie polynomials in $X, Y \in \mathfrak{g}$ (a Banach Lie algebra), converges absolutely in the domain $D_1 \cup D_2$ of $\mathfrak{g} \times \mathfrak{g}$, where

$$
D_1 = \left\{ (X, Y) : \mu \|X\| < \int_{\mu \|Y\|}^{2\pi} \frac{1}{g(x)} \, dx \right\}
$$

$$
D_2 = \left\{ (X, Y) : \mu \|Y\| < \int_{\mu \|X\|}^{2\pi} \frac{1}{g(x)} \, dx \right\}
$$

and $g(x) = 2 + \frac{x}{2} (1 - \cot \frac{x}{2})$. (Michel 1974, F.C. & S. Blanes 2004)

Biagi & Bonfiglioli 2014: generalization to arbitrary infinite-dimensional Banach–Lie algebras (in particular, without using the exponential map)
III. ZASSENHAUS FORMULA
In the paper dealing with ME expansion, Magnus (1954) cites an unpublished reference by Zassenhaus, reporting that there exists a formula which may be called the dual of the (Baker–Campbell–)Hausdorff formula. More specifically,

Theorem

(Zassenhaus Formula). Let $\mathcal{L}(X, Y)$ be the free Lie algebra generated by X and Y. Then, e^{X+Y} can be uniquely decomposed as

$$e^{X+Y} = e^X e^Y \prod_{n=2}^{\infty} e^{C_n(X,Y)} = e^X e^Y e^{C_2(X,Y)} \ldots e^{C_n(X,Y)} \ldots,$$

where $C_n(X, Y) \in \mathcal{L}(X, Y)$ is a homogeneous Lie polynomial in X and Y of degree n.
The existence of this formula is an immediate consequence of the BCH theorem.

By comparing with the BCH formula it is possible to obtain the first terms as

\[
C_2(X, Y) = -\frac{1}{2}[X, Y], \quad C_3(X, Y) = \frac{1}{3}[Y, [X, Y]] + \frac{1}{6}[X, [X, Y]].
\]

Less familiar than the BCH formula but still important in several fields: statistical mechanics, many-body theories, quantum optics, path integrals, \(q\)-analysis in quantum groups, particle accelerators physics, etc.

Numerical analysis: Iserles et al., 2014.

Again, two important aspects: **efficient computation** and **convergence** of the formula.
Some (brief) history

- Several systematic computations of the terms C_n for $n > 3$ have been carried out in the literature: Wilcox (1967), Volkin (1968), Suzuki (1976), Baues (1980). All of them give results for C_n as a linear combination of nested commutators.
- Weyrauch and Scholz (2009): C_n up to $n = 15$ in less than 2 minutes (with another procedure)
- Now

\[C_n = \sum_{w, |w| = n} g_w w, \quad (12) \]

where g_w is a rational coefficient and the sum is taken over all words w with length $|w| = n$ in the symbols X and Y, i.e., $w = a_1 a_2 \cdots a_n$, each a_i being X or Y.

- Applying Dynkin–Specht–Wever theorem it is possible to express them in terms of commutators, but in a way that there are redundancies
Our contribution

- To present a new recurrence that allows one to express the Zassenhaus terms C_n up to a prescribed degree directly in terms of independent commutators involving n operators X and Y.
- We are able to express directly C_n with the minimum number of commutators required at each degree n.
- We obtain sharper bounds for the terms of the Zassenhaus formula which show that the product converges in a larger domain than previous results.
A new recurrence

- We introduce a parameter λ,

$$e^{\lambda(X+Y)} = e^{\lambda X} e^{\lambda Y} e^{\lambda^2 C_2} e^{\lambda^3 C_3} e^{\lambda^4 C_4} \ldots \quad (13)$$

so that the original Zassenhaus formula is recovered when $\lambda = 1$.

- Consider the compositions

$$R_1(\lambda) = e^{-\lambda Y} e^{-\lambda X} e^{\lambda(X+Y)} \quad (14)$$

and for each $n \geq 2$,

$$R_n(\lambda) = e^{-\lambda^n C_n} \ldots e^{-\lambda^2 C_2} e^{-\lambda Y} e^{-\lambda X} e^{\lambda(X+Y)} = e^{-\lambda^n C_n} R_{n-1}(\lambda).$$

Then,

$$R_n(\lambda) = e^{\lambda^{n+1} C_{n+1}} e^{\lambda^{n+2} C_{n+2}} \ldots$$
Finally,

\[F_n(\lambda) \equiv \left(\frac{d}{d\lambda} R_n(\lambda) \right) R_n(\lambda)^{-1}, \quad n \geq 1. \]

(15)

We have for \(n \geq 1 \)

\[F_{n+1}(\lambda) = e^{-\lambda^{n+1} \text{ad} c_{n+1}} G_{n+1}(\lambda), \]

(16)

\[C_{n+1} = \frac{1}{(n+1)!} F_n^{(n)}(0), \]

(17)

\[G_{n+1}(\lambda) = F_n(\lambda) - \frac{\lambda^n}{n!} F_n^{(n)}(0). \]

(18)

Expressions (16)–(18) allow one to compute recursively the Zassenhaus terms \(C_n \) starting from \(F_1(\lambda) \). The sequence is

\[F_n(\lambda) \rightarrow C_{n+1} \rightarrow G_{n+1}(\lambda) \rightarrow F_{n+1}(\lambda) \rightarrow \cdots \]
For $n = 1$,

$$F_1(\lambda) = e^{-\lambda \text{ad}_Y} (e^{-\lambda \text{ad}_X} - I) Y,$$

that is,

$$F_1(\lambda) = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \frac{(-\lambda)^{i+j}}{i!j!} \text{ad}^i_Y \text{ad}^j_X Y \tag{19}$$

or equivalently

$$F_1(\lambda) = \sum_{k=1}^{\infty} f_{1,k} \lambda^k, \quad \text{with} \quad f_{1,k} = \sum_{j=1}^{k} \frac{(-1)^k}{j!(k-j)!} \text{ad}^{k-j}_Y \text{ad}^j_X Y. \tag{20}$$

In general ($n \geq 2$),

$$F_n(\lambda) = \sum_{k=n}^{\infty} f_{n,k} \lambda^k, \quad \text{with} \quad f_{n,k} = \sum_{j=0}^{[k/n]-1} \frac{(-1)^j}{j!} \text{ad}^j_{C_n} f_{n-1,k-nj}, \tag{21}$$
It turns out that

\[F_n(\lambda) = \sum_{k=n+1}^{2n+2} k\, C_k\, \lambda^{k-1} + \lambda^{2n+2} H_n(\lambda) \]

where \(H_n(\lambda) \) involves commutators of \(C_j, j \geq n + 1 \). Notice that the terms \(C_{n+1}, \ldots, C_{2n+2} \) of the Zassenhaus formula can be then directly obtained from \(F_n(\lambda) \).

In particular,

\[C_{n+1} = \frac{1}{n+1} f_{1,n} = \frac{1}{n+1} \sum_{i=0}^{n-1} \frac{(-1)^n}{i!(n-j)!} \text{ad}_Y \text{ad}_X^{n-j} Y, \quad (22) \]

for \(n = 1, 2, 3, \) and

\[C_{n+1} = \frac{1}{n+1} f_{[n/2],n} \quad n \geq 5, \quad (23) \]
Define $f_{1,k} = \sum_{j=1}^{k} \frac{(-1)^k}{j!(k-j)!} \text{ad}_Y^{k-j} \text{ad}_X^j Y$

$C_2 = (1/2) f_{1,1}$

Define $f_{n,k}$ $n \geq 2$, $k \geq n$ by :

$$f_{n,k} = \sum_{j=0}^{[k/n]-1} \frac{(-1)^j}{j!} \text{ad}_{C_n}^j f_{n-1,k-nj}$$

$C_n = (1/n) f_{[(n-1)/2],n-1}$ $n \geq 3$.

- Important property: it provides expressions for C_n that, by construction, involve only independent commutators. In other words, they cannot be simplified further by using the Jacobi identity and the antisymmetry property of the commutator.

- This can be easily proved by repeated application of the Lazard elimination principle.
The algorithm can be easily implemented in a symbolic algebra package. We need to define an object inheriting only the linearity property of the commutator, the adjoint operator and the functions $f_{n,k}$ and C_n.

We have expressions of C_n up to $n = 20$ with a reasonable computational time and memory requirements (35 MB).

<table>
<thead>
<tr>
<th>n</th>
<th>CPU time (seconds)</th>
<th>Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$W-S$</td>
<td>New</td>
</tr>
<tr>
<td>14</td>
<td>29.18</td>
<td>0.14</td>
</tr>
<tr>
<td>16</td>
<td>203.85</td>
<td>0.59</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>3.01</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>19.18</td>
</tr>
</tbody>
</table>

C_{16} has 54146 terms when expressed as combinations of words, but only 3711 terms with the new formulation.
Clear[Cmt, ad, ff, cc];
$RecursionLimit= 1024;
Cmt[a_, a_] := 0;
Cmt[a___, 0, b___] := 0;
Cmt[a___, c_ + d_, b___] := Cmt[a, c, b] + Cmt[a, d, b];
Cmt[a___, n_ c_Cmt, b___] := n Cmt[a, c, b];
Cmt[a___, n_ X, b___] := n Cmt[a, X, b];
Cmt[a___, n_ Y, b___] := n Cmt[a, Y, b];
Cmt /: Format[Cmt[a_, b_]] := SequenceForm["[", a, ",", b, "]"];

ad[a_, 0, b_] := b;
ad[a_, j_Integer, b_] := Cmt[a, ad[a, j-1, b]];
ff[1, k_] := ff[1, k] =
 Sum[((-1)^k/(j! (k-j)!)) ad[Y, k-j, ad[X, j, Y]], {j, 1, k}];
cc[2] = (1/2) ff[1, 1];
ff[p_, k_] := ff[p, k] =
 Sum[((-1)^j/j!) ad[cc[p], j, ff[p-1, k-p, j]], {j, 0, IntegerPart[k/p] - 1}];
cc[p_Integer] := cc[p] =
 Expand[(1/p) ff[IntegerPart[(p-1)/2], p-1]];
Suppose now that X and Y are defined in a Banach algebra A. Then it makes sense to analyze the convergence of the Zassenhaus formula.

Only two previous results establishing sufficient conditions for convergence of the form $\|X\| + \|Y\| < r$ with a given $r > 0$.

Suzuki (1976): $r_s = \log 2 - \frac{1}{2} \approx 0.1931$

Bayen (1979): r_b given by the unique positive solution of the equation

$$z^2 \left(1 + 2 \int_0^z \frac{e^{2w} - 1}{w} \, dw\right) = 4(2 \log 2 - 1).$$

Numerically, $r_b = 0.59670569 \ldots$

Thus, for $\|X\| + \|Y\| < r_b$ one has

$$\lim_{n \to \infty} e^X e^Y e^{C_2} \ldots e^{C_n} = e^{X+Y}. \quad (25)$$
Next we use recursion (16)–(18) to show that it converges for
\((x, y) \equiv (\|X\|, \|Y\|) \in \mathbb{R}^2\) in a domain that is larger than
\(\{(x, y) \in \mathbb{R}^2 : 0 \leq x + y < r_b\}\).

There is convergence if \(\lim_{n \to \infty} \|R_n(1)\| = 1\).

But \(R_n(\lambda)\) is also the solution of

\[
\frac{d}{d\lambda} R_n(\lambda) = F_n(\lambda) R_n(\lambda), \quad R_n(0) = I. \tag{26}
\]

If \(\int_0^1 \|F_n(\lambda)\| \, d\lambda < \infty\), then there exists a unique solution
\(R_n(\lambda)\) of (26) for \(0 \leq \lambda \leq 1\), and

\[
\|R_n(1)\| \leq \exp(\int_0^1 \|F_n(\lambda)\| \, d\lambda)
\]

In consequence, convergence is guaranteed whenever
\((x, y) = (\|X\|, \|Y\|) \in \mathbb{R}^2\) is such that

\[
\lim_{n \to \infty} \int_0^1 \|F_n(\lambda)\| \, d\lambda = 0.
\]
We have that $\|C_{n+1}\| \leq \delta_{n+1}$, where $\delta_2 = xy$ and for $n \geq 2$,

$$\delta_{n+1} = \frac{1}{n+1} \sum_{(i_0,i_1,\ldots,i_n) \in \mathcal{I}_n} \frac{2^{i_0+\cdots+i_n}}{i_0!i_1!\cdots i_n!} \delta_{i_n} \cdots \delta_{i_2} y^{i_1} x^{i_0} y.$$

Similarly, $\|F_n(\lambda)\| \leq f_n(\lambda)$ and

$$\int_0^1 f_n(\lambda) d\lambda \leq \sum_{k=n}^{\infty} \delta_k,$$

Then, $\lim_{n \to \infty} \|R_n(1)\| = 1$ if the series $\sum_{k=2}^{\infty} \delta_k$ converges.

Let’s analyze each term in this series...
We get from our recurrence

\[\| f_{1,k} \| \leq d_{1,k} = 2^k y \sum_{j=1}^{k} \frac{1}{j!(k-j)!} x^j y^{k-j} = \frac{2^k}{k!} y ((x + y)^k - y^k) \]

\[\| f_{n,k} \| \leq d_{n,k} = \sum_{j=0}^{[k/n] - 1} \frac{2^j}{j!} \delta_n d_{n-1,k-nj} \] (27)

Therefore

\[\| C_n \| \leq \delta_n = \frac{1}{n} d_{[(n-1)/2],n-1}, \quad n \geq 3. \]

A sufficient condition for convergence is obtained by imposing

\[\lim_{n \to \infty} \frac{\delta_{n+1}}{\delta_n} < 1. \] (28)

Recall that both \(d_{n,k} \) and \(\delta_n \) depend on \((x, y) = (\| X \|, \| Y \|) \), so condition (28) implies a constraint on the convergence domain \((x, y) \in \mathbb{R}^2 \).
Convergence domain

Computing numerically for each point the coefficients $d_{n,k}$ and δ_n up to $n = 1000$ we get
$$X = \alpha \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

- Compute $R_1 = e^{-Y} e^{-X} e^{X+Y}$
- Compute $R_2(m) = e^{C_2} e^{C_3} \cdots e^{C_m}$
- Finally $E_m = \| R_1 - R_2(m) \|$
- Particular case: $\alpha = 0.2$. Then we are outside the guaranteed domain of convergence
 - $m = 10, \; E_{10} \approx 1.3345 \cdot 10^{-4}$
 - $m = 15, \; E_{15} \approx 1.9180 \cdot 10^{-6}$
 - $m = 20, \; E_{20} \approx 4.7958 \cdot 10^{-9}$
Sometimes one has to deal with

$$\exp(\lambda A_1 + \lambda^2 A_2 + \cdots + \lambda^n A_n + \cdots)$$

with A_k non-commuting operators

In that case it is still possible to generalize the expansion and to get

$$e^{\lambda A_1 + \lambda^2 A_2 + \cdots} = e^{\lambda C_1} e^{\lambda^2 C_2} \cdots e^{\lambda^n C_n} \cdots$$

Recursive procedure to obtain C_k
IV. MAGNUS EXPANSION
Given the matrix \(A(t) \ N \times N \), solve the initial value problem

\[
Y'(t) = A(t)Y(t), \quad Y(t_0) = Y_0. \tag{29}
\]

- If \(N = 1 \), the solution reads

\[
Y(t) = \exp\left(\int_{t_0}^{t} A(s)ds \right) Y_0. \tag{30}
\]

- This is also valid when \(N > 1 \) if \([A(t), \int_{0}^{t} A(s)ds] = 0 \).

 Particular case: \(A(t_1)A(t_2) = A(t_2)A(t_1) \) for all \(t_1 \text{ y } t_2 \). In particular, when \(A \) is constant.

- In general, (30) is not the solution
- Typical procedure (Neumann, Dyson):

\[Y(t) = \int_{t_0}^{t} A(s) \, ds + \int_{t_0}^{t} A(s_1) \int_{t_0}^{s_1} A(s_2) \, ds_2 \, ds_1 + \cdots \]

- Magnus (1954): construct \(Y(t) \) as a genuine exponential representation

- Motivation: problems arising in Quantum Mechanics (in this way, unitary is preserved, and is essential in QM)
W. Magnus proposal: to express the solution as the exponential of a certain matrix function $\Omega(t, t_0)$,

$$Y(t) = \exp \Omega(t, t_0) Y_0$$ \hspace{1cm} (31)

Ω is built as a series expansion

$$\Omega(t) = \sum_{k=1}^{\infty} \Omega_k(t).$$ \hspace{1cm} (32)

For simplicity, $\Omega(t) \equiv \Omega(t, t_0)$ y $t_0 = 0$.
First terms:

\[\Omega_1(t) = \int_0^t A(t_1) \, dt_1, \]

\[\Omega_2(t) = \frac{1}{2} \int_0^t dt_1 \int_0^{t_1} dt_2 \, [A(t_1), A(t_2)] \quad (33) \]

\[\Omega_3(t) = \frac{1}{6} \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} dt_3 \, ([A(t_1), [A(t_2), A(t_3)]] + [A(t_3), [A(t_2), A(t_1)]])) \]

\[[A, B] \equiv AB - BA \]

\[\Omega_1(t) \] is exactly the exponent in the scalar case

If we insist in keeping an exponential representation for \(Y(t) \), then the exponent must be corrected

The rest of the series (32) accounts for this correction
Insert $Y(t) = \exp \Omega(t)$ in $Y' = A(t)Y$, $Y(0) = I$

Differential equation satisfied by Ω:

$$\frac{d\Omega}{dt} = \sum_{n=0}^{\infty} \frac{B_n}{n!} \text{ad}^n \Omega A,$$

(34)

where $\text{ad}^0 \Omega A = A$, $\text{ad}^{k+1} \Omega A = [\Omega, \text{ad}^k \Omega A]$, and B_j are the Bernoulli number.

At first sight, a very bad idea!: we replace a linear differential equation by another which is highly nonlinear!

... But this is defined for Ω
We apply Picard’s iteration:

\[
\Omega^{[0]} = O, \quad \Omega^{[1]} = \int_0^t A(t_1) dt_1,
\]

\[
\Omega^{[n]} = \int_0^t \left(A(t_1) dt_1 - \frac{1}{2} [\Omega^{[n-1]}, A] + \frac{1}{12} [\Omega^{[n-1]}, [\Omega^{[n-1]}, A]] + \cdots \right)
\]

so that \(\lim_{n \to \infty} \Omega^{[n]}(t) = \Omega(t) \) in a neighborhood of \(t = 0 \)

Another recursive procedure to obtain the series, based on a generator
When the recursion is worked out explicitly,

\[
\Omega_n(t) = \sum_{j=1}^{n-1} \frac{B_j}{j!} \sum_{k_1+\cdots+k_j=n-1} \int_0^t \text{ad}_\Omega_{k_1}(s) \text{ad}_\Omega_{k_2}(s) \cdots \text{ad}_\Omega_{k_j}(s) A(s) \, ds
\]

\(\Omega_n\) is a linear combination of \(n\)-multiple integrals of \(n-1\)-nested commutators containing \(n\) operators \(A\) evaluated at different times.

The expression is increasingly complicated when \(n\) grows.
Some properties

If $A(t)$ belongs to some Lie algebra \mathfrak{g}, then $\Omega(t)$ (and truncation of the Magnus series) also belongs to \mathfrak{g} and therefore $\exp(\Omega) \in \mathcal{G}$, where \mathcal{G} is the Lie group with Lie algebra \mathfrak{g}.

1. Symplectic group (in Hamiltonian mechanics)
2. Unitary group (for the Schrödinger equation)

The resulting approximations preserve important qualitative properties of the exact solution (e.g., unitarity, etc.)
Analytic approximations

Starting point for the construction of new families of numerical integrators for $Y' = A(t)Y$

Very efficient high order numerical methods

Lie group integrators, special class of geometric numerical integration methods
Example: \(Y' = A(t)Y, \quad Y(0) = I \)

\[
A_{ij} = \sin(t(j^2 - i^2)), \quad 1 \leq i < j \leq 10
\]

Efficiency diagram

Error as a function of time
Is this result only formal? What about convergence?

Specifically, given a certain operator \(A(t) \), when it is possible to get \(\Omega(t) \) in (31) as the sum of the series
\[
\Omega(t) = \sum_{n=1}^{\infty} \Omega_n(t)
\]

It turns out that the Magnus series converges for \(t \in [0, T) \) such that
\[
\int_0^T \|A(s)\| ds < \pi
\]

where \(\| \cdot \| \) is the 2-norm

This is a generic result, in the sense that it is possible to find particular matrices \(A(t) \) so that the series diverges for all \(t > T \).

... But is is only a *sufficient* condition: there exist matrices \(A(t) \) so that the expansion converges for \(t > T \).

Analysis of the eigenvalues
Remarks

- The result is valid for complex matrices $A(t)$
- In fact, for any given bounded operator $A(t)$ in a Hilbert space \mathcal{H} if Y is a normal operator (in particular, if iY is unitary).
- This results can be used in turn to prove the convergence of the Baker–Campbell–Hausdorff formula
Consider the initial value problem

\[U' = A(t)U, \quad U(0) = I, \] \hspace{1cm} (35)

with

\[A(t) = \begin{cases}
Y & 0 \leq t \leq 1 \\
X & 1 < t \leq 2
\end{cases} \]

The exact solution of (35) at \(t = 2 \) is \(U(2) = e^X e^Y \).

But we can apply Magnus: \(U(2) = e^{\Omega(2)} \).

In this way it is possible to get BCH as a particular case of the Magnus expansion. (Sometimes it is called the continuous \textit{BCH formula} BCH).
‘Symmetric’ Zassenhaus formula: useful for obtaining new numerical methods for certain classes of PDEs (Bader et al. 2014)

\[e^{X+Y} = \ldots e^C e^2 e^{\frac{1}{2} Y} e^X e^{\frac{1}{2} Y} e^2 e^C \ldots \]

in an efficient way

‘Continuous analogue’ of the Zassenhaus formula (M. Nadinic’s Thesis 2015): Given \(U' = A(t)Y, \ U(0) = I, \)

\[U(t) = e^{W_1(t)} e^{W_2(t)} \ldots e^{W_r(t)} \ldots \]

as efficiently as possible
Some references