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In this talk I will review the basic notions of integrability of partial difference equa-
tions which I consider as a guiding principle for construction of integrable discretizations
of integrable PDEs.

In case of hyperbolic type PDEs f(u, ux, uy, uxy) = 0, we consider discretizations of
the type

F (um,n, um+1,n, um,n+1, um+1,n+1) = 0, (m,n) ∈ Z2

(quad-equations). A typical integrable example – the sine-Gordon equation uxy = sinu
and its Hirota’s discretization
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I will argue that an adequate definition of integrability of such equations is the multi-
dimensional consistency, i.e., the possibility to impose the equation on any two-dimensional
sublattice of Zm for any m ≥ 3. This definition is constructive, yields the more classical
integrability attributes (such as zero-curvature representations, permutable Bäcklund-
type transformations, conserved quantities etc.) in an algorithmic way, and allows for a
complete classification of such equations [1, 2].

Then, I will turn to an extension of the notion of multi-dimensional consistency to
the case of variational (Lagrangian) equations coming from a least action principle. In
this case, the relevant notion of integrability is that of pluri-Lagrangian systems. Let
L[u] be a discrete 2-form on Zm, depending on a field u : Zm → R.

• To an arbitrary quad-surface Σ ⊂ Zm with boundary, there corresponds the action
functional, which assigns to u|Σ the number

SΣ[u] =

∫
Σ
L[u].

• We say that the field u : Σ → R is a critical point of SΣ, if for any interior vertex
n ∈ Σ,

∂SΣ[u]

∂u(n)
= 0.

• We say that the field u : Zm → R solves the pluri-Lagrangian problem for the
Lagrangian 2-form L if, for any oriented quad-surface Σ ⊂ Zm, the restriction u|Σ
is a critical point of the corresponding action SΣ.
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I will discuss why this is the relevant notion of integrability of discrete variational sys-
tems, what is its continuous counterpart, and what are the open problems in this ap-
proach [4, 3].
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