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An important number of differential equations are originated from as
diverse research areas as celestial mechanics, quantum mechanics, Hybrid
Monte Carlo, control, etc., and Geometric Numerical Integrators (GNIs)
[6, 8] have shown to be very useful to sove them. In particular, splitting
methods are frequently used as GNIs since they are easy to use and show
good performance [3, 7].

To build efficient methods it is important to analyse the algebraic struc-
ture of the problem to be solved as well as the relevant contributions to the
error and computational cost: the accuracy desired (in energy or in posi-
tions), the stability, the computational cost, to consider long or short time
integrations, etc. We review splitting methods through applications on a set
of different problems:

-Numerical integration of the Solar System backward in time: for some
studies it is desired to get very high accuracy in positions over long time
integrations. This is a near integrable system and a number of different
classes of methods are developed for perturbed oscillating problems like
symplectic exponentially fitting methods or explicit symplectic extended
RKN methods. However, it is easy to show that these methods are equivalent
to splitting methods [1]. The Lie algebra associated to splitting methods
allow a relatively simple way to obtain the order conditions as well as to
analyse which are the relevant ones that contribute to the error in positions
over long time integrations, etc. [2].

-Hybrid Monte Carlo methods: it requires the numerical integration of
separable classical Hamiltonian systems where relatively low accuracy suf-
fices (but good stability isdesired to allow for large time steps) being the
error in energy the most relevant aspect [5].

-Quantum Mechanics: it requires in some cases the integration of PDEs
from medium to high accuracy and the symplectic methods used for classi-
cal Hamiltonian systems can also be used (see [3] and references therein).
Different splitting methods that preserve either unitarity or symplecticity
[4] have shown to be useful.

-Quantum Optimal Control: it requires, in some cases, the numerical
integration of coupled non-linear Schédinger equations with boundary con-
ditions. Second order splitting methods have shown to be highly efficient
methods used as the basic methods at each forward and backward itera-
tion in the solution of the boundary value problem [9]. Can we obtain more
efficient splitting methods to solve these problems with respect to the conver-
gence of the iterations, computational cost, accuracy, storage requirements,
etc.?



In this talk we present a review on splitting methods mainly focusing
in our recent works on splitting methods for the previous problems and we
present, for the brainstorming discussion, the open problem on how to look
for more efficient splitting methods in quantum optimal control.
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