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Open-loop and closed-loop control

Open-loop control: 
the controller actuates 
on the system 
independently of the 
system state.

Closed-loop or 
feedback control: the 
controller actuates on 
the system using 
information of the 
system state.
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Information and feedback control
The information about the state 
of the system allows the 
external agent to optimize its 
actuation on the system, in 
order to improve the system 
performance. 
Thermodynamics of feedback 
control is incomplete: the role 
of information in feedback 
controlled systems is still not 
completely understood. In 
particular, its implications for 
the entropy of the system. 
The understanding of feedback 
systems and their limitations is 
very important form the 
technological point of view.
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1. Entropy in Thermodynamics

Second law and entropy 
intimately linked
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1.1. Second principle
Kelvin-Planck statement:
“It is not possible to find any 
spontaneous process whose 
only result is to convert a 
given amount of heat to an 
equal amount of work
through the exchange of heat 
with only one heat source”.

Clausius statement:
“It is not possible to find an 
spontaneous process which 
its only result is to pass 
heat from a system to 
another system with 
greater temperature”. 
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1.2. Clausius Theorem
For a system that follows 
a cyclic process we have 
for each cycle

with δQ the infinitesimal 
amount of work 
interchanged with the 
thermal bath at 
temperature TTB.
The equality holds if the 
process is reversible (in 
this case also Tsystem=TTB)
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1.3. Thermodynamic definition of 
entropy

The application of the 
Clausius theorem for 
reversible cycles tell us 
that there exist a state 
function, named entropy, 
defined by

As a consequence in any 
cycle the change in 
entropy of the system is 
zero.
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1.4. Second principle in terms of 
entropy

The entropy of an isolated system either 
increases or remains constant

Thus, in an isolated systems only processes 
that increase or keep constant the entropy 
will spontaneously occur.
The increase of the entropy of an isolated 
system indicates its evolution towards the 
equilibrium state, which has the maximum 
entropy.

0≥Δ ISOLATEDS
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2. Entropy in Statistical Physics and 
Information

Microstate and Macrostate
+

Entropy expression in Statistical Physics
+

Basic concepts in Information Theory
=

Fruitful and clear interpretation of entropy
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2.1. Microstate and macrostate

Microstate:
Complete description of the state of the 
system, where all the microscopic variables 
are specified.

Macrostate:
Partial description of the state of the 
system, where only some macroscopic 
variables are specified.
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2.1. Microstate and macrostate
Example: gas of a great 
number of point particles
Microstate: position and 
velocity of each particle at 
a time t.
Macrostate: E, V and N; o 
p, V and T.
In general, for systems 
with a great number of 
constituents 
experimentally it is only 
possible to determine the 
macrostate.
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2.2. Entropy in the microcanonical
ensemble

Isolated system in an 
equilibrium state defined 
by E, V and N.
Macrostate E, V and N 
has Ω equiprobable
compatible microstates
Entropy

k=1,38 10-23 J/K 
Boltzmann constant

Ω= lnkS
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2.3. Boltzmann entropy
Entropy of a macrostate

pi probability of microstate i
n number of microstates compatible with the 
macrostate

Example with equal probability: isolated 
system in equilibrium microcanonical
ensemble pi=1/Ω
Example with different probabilities:
- system in equilibrium with a thermal bath 
(particle gas) canonical ensemble. 
- Proteins.

∑
=

−=
n

i
ii ppkS

1
ln



C.E. Shannon, The Bell System 
Tech. J. 27, 379 (1948).
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2.5. Entropy and information

Shannon defined the quantity

(Shannon “entropy”)
It is a measure of the average uncertainty 
of a random variable that takes n values 
each with probability pi. 
It is the number of bit needed in average to 
describe the random variable.

∑
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n
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2.5. Entropy and information
If the values are 
equiprobable, the 
number of bits needed in 
average to describe the 
random variable, is 
simply log2n.

But when the values are 
not equiprobable, the 
average number of bits 
can be reduced, using a 
shorter description for 
the more probable cases.

Example with four values:

With this codification the average 
number of bits needed is
∑pili = 7/4 = 1.75 bits

Which coincides with the Shannon 
“entropy” 
H = ∑pilog2pi = 7/4 = 1.75 bits

While it they were equiprobable it 
would be log24= 2 bits
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2.5. Entropy and information
Recall that the Boltzmann entropy of a macrostate and 
the Shannon “entropy” are

pi probability or the i microstate
n number of microstates compatible with the macrostate
Botzmann entropy of a macrostate: average amount of 
information needed to specify the microstate

[The ln(2) factor comes from the change of base.]
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3. Entropy and thermodynamics of 
feedback systems

Feedback controlled system: 
system that is coupled to an 
external agent that uses 
information of the system to 
actuate on it.
Thermodynamics of feedback 
control is incomplete: the role 
of information in feedback 
controlled systems is still not 
completely understood. In 
particular, its implications for 
the entropy of the system.
Much of the progress has come 
from the study of the Maxwell’s 
demon, and mainly from a 
computation theory point of 
view.
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J.C.Maxwell, Theory of heat (1871) 
L.Szilard, Z. Phys. 53, 840 (1929)

19

3.1. Maxwell demon: 
Szilard engine

The demon puts a wall in 
the middle, and observes 
where is the particle.
Once the demon knows in 
which side is the particle, it 
attaches a piston in the 
correct side of the wall to 
extract a work W. 
Meanwhile the system is 
connected to a thermal bath 
of temperature T extracting 
from it a heat Q=W.
Apparently the efficiency is 
¿¿¿η=W/Q=1???
and with only one thermal 
bath
(¡¡¡2nd principle!!!)

Q=W

W=kTln2

ΔSs=-kln2

ΔSs=kln2



J.C.Maxwell, Theory of heat (1871) 
L.Szilard, Z. Phys. 53, 840 (1929)
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3.1. Maxwell demon: 
Szilard engine

ΔSs=-kln2

ΔSs=kln2

?

W=kTln2
Q=W



R. Landauer, IBM J. Res. Dev. 5, 
183 (1961)
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3.2. Landauer principle
It can be obtained from the 
second law, therefore it is 
not a principle.

The erasure of one bit of 
information produces a 
growth in the entropy of 
the enviroment of 
ΔSe≥kln2

(Szilard engine: one bit is 
enough to store the 
information, for example: 
0 left, 1 right)

Qe≥kTln2Wd=Qe

ΔSe≥kln2



C.H.Bennett, Int.J.Theor.Phys. 21, 
905 (1982)
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3.3. Maxwell demon “solution” 
(system + demon perspective)

ΔSs=-kln2

ΔSs=kln2

W=kTln2 Q=W

ΔSd= kln2

ΔSs+ ΔSd+ ΔSe≥0

ΔSe=-kln2

ΔSe≥kln2

ΔSd= -kln2

Wd=Qe Qe≥kTln2



W.H.Zurek, Phys.Rev.A 40, 4731 
(1989)
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3.4. Many measurements
(demon + system perspective)

Zurek shows how to 
minimize the erasure 
cost, using an 
algorithmic complexity 
approach

The clever demons 
compress the 
information (less bits 
= lower erasure cost)

nQe

Compressed
nc≤n

nWd=nQe

ΔSe≥nkln2

ΔSe≥nckln2



24

3.5. Open questions
There are already many open questions in the 

physics of feedback controlled systems.
From the point of view of system + controller 
the understanding is advanced, but it uses 
concepts like algorithmic complexity (Zurek) 
which do not have a clear physical meaning, 
and which it is neither clear how to compute 
them in real cases. 
The understanding from the point of view of 
the system (without entering in the controller 
details) is still incomplete.
The thermodynamics of the feedback controlled 
systems is still incomplete.



F. J. Cao, M. Feito, Phys. Rev. E 
79, 041118 (2009)
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3.6. Entropy reduction due to 
information

System perspective: For the controller 
we only need the (deterministic or 
not) correspondence between the 
states of the system and the 
actions of the controller.

The entropy of the system before
being measured by the system for 
the first time
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F. J. Cao, M. Feito, Phys. Rev. E 
79, 041118 (2009)
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3.6. Entropy reduction due to 
information

If the first measurement 
implies that the first 
action of the controller C1
is c, the entropy 
decreases to

Therefore the average 
entropy after the 
measurement is
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F. J. Cao, M. Feito, Phys. Rev. E 
79, 041118 (2009)
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3.7. Derivation of the Landauer
“principle”
The average change in a measurement is

where its appears the mutual information

which is a measurement of the ((dependency)) between two 
random variables.

Thus, we obtain the Landauer “principle” as a consequence
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3.8. Many measurements
(system perspective)
For systems with deterministic control after M 

measurements we obtain

H(CM,…,C1) is the average amount of information needed to 
especify the M actions of the controller on the system

This result indicates that only nonredundant information
is useful to reduce the entropy of the system (in 
correspondence with the Zurek idea of compressing the 
information)

∑
∈

……

…−

CcMc
MCMCMCMC

Minfo

)c,,(cp)c,,(cpk=

)C,,)H(C(k=ΔS

1

11
,,

11

1

ln      

2ln

K
LL



F. J. Cao, M. Feito, Phys. Rev. E 
79, 041118 (2009)

29

3.8. Many measurements
(system perspective) 
For system with NONdeterministic control after M measurements we have

where the additional term is nonzero if the present state of the system and the 
previous history of the controller does not completely determine the action 
of the controller.

Example: 

The entropy reduction in the system due to information after M measurements is

with
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3.9. Application and example
Isothermal feedback systems: 
its efficiency can be defined as

If the controller does not transfer 
heat to the system, the 
maximum efficiency is

Markovian particle pump: we 
have computed the rate of 
reduction of entropy, the work, 
and the efficiency, both in the 
quasistatic and in a 
nonquasistatic regime.
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4. Conclusions
Entropy of a macrostate can be interpreted as the 
average amount of information needed to specify the 
microstate

This approach allows us to establish the 
thermodynamics of feedback controlled classical 
systems, even for nonquasistatic cases (where 
measurements are correlated) and also for 
nondeterministic controllers.
Open questions: continuous time limit, 
thermodynamics of feedback controlled quantum 
systems, applications to particular systems of 
relevance.
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