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1. Introduction

• Given an operator F , describing the dynamics of a system, and a

function y in its range, the left inversion problem (LIP) is to

determine a unique input u such that y = F [u].

• A sufficient condition (but not necessary) for solving this problem in

a state space setting is to have well defined relative degree (Isidori,

1995).

• The solution of LIP does not require a state space realization.

• Fliess operators provide an explicit analytical solution.

• Introduced by M. Fliess in 1983, Fliess operators are analytic

input-output systems described by coefficients and iterated integrals

of the inputs.

• Fliess operators can be viewed as a functional generalization of a

Taylor series. For example, any Volterra operator with analytic

kernels has a Fliess operator representation.
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2. Preliminaries

Population models:

• Here we apply the method to the population dynamical system:

żi = βizi +

n
∑

j=1

αijzizj , i = 1, 2, . . . , n, (Lotka-Volterra model)

where zi ∝ to the i-th population, βi is the growth rate for the i-th

population, and αij weights the effect of the j-th species on the i-th

species.

• Input-output models are obtained by introducing time dependence

on the βi(t)’s or αij(t)’s (inputs), and assuming y = h(z) (outputs).

• For n = 2,




ż1

ż2



 =





β1z1 − α12z1z2

−β2z2 + α21z1z2



 (Predator-Prey model)

The vector fields are complete within the first quadrant giving

concentric periodic trajectories about ze = (β2/α21, β1/α12).
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Fliess Operators:

• Let X = {x0, x1, . . . , xm} be an alphabet and X∗ the set of all words

over X (including the empty word ∅).

• A formal power series is any mapping c : X∗ → R
ℓ. Typically, c is

written as a formal sum c =
∑

η∈X∗(c, η)η, and the set of all such

series is Rℓ〈〈X〉〉.

• For a measurable function u : [a, b]→ R
m with finite L1-norm,

define Eη : Lm
1 [t0, t0 + T ]→ C[t0, t0 + T ] by E∅[u] = 1, and

Exiη′ [u](t, t0) =

t
∫

t0

ui(τ)Eη′ [u](τ, t0) dτ,

where xi ∈ X, η′ ∈ X∗ and u0 , 1.

• Note that to each letter xi has been assigned a function ui.

• For each c ∈ R
ℓ〈〈X〉〉 ⇒ Fc[u](t) =

∑

η∈X∗(c, η)Eη[u](t, t0), which is

called a Fliess operator (Fliess, 1983).
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Fliess Operator Inverses:

yu

Fd

Fc

×

Fig. 2.1: Product connection.

⇒ FcFd = Fc ⊔⊔ d, where ⊔⊔ denotes the

shuffle product.

u
v

yFd Fc

Fig. 2.2: Cascade connection.

⇒ Fc ◦ Fd = Fc◦d, where c ◦ d denotes

the composition product of c ∈ R
ℓ〈〈X〉〉

and d ∈ R
m〈〈X〉〉 (Gray et al., 2014)

u
v

y

Fd

Fc

Fig. 2.3: Feedback connection.

Given c, d ∈ R
m〈〈X〉〉, y satisfies

y = Fc[v] = Fc[u+ Fd[y]].

If there exists e so that y = Fe[u], then

Fe[u] = Fc[u+Fd◦e[u]]. (contraction!)
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On the other hand,
✞
✝

☎
✆v = u+ Fd◦c[v] ⇒ (I + F−d◦c) [v] = u.

Apply the compositional inverse to both sides of this equation:

v = (I + F−d◦c)
−1[u] :=

(

I + F(−d◦c)◦−1

)

[u].

In which case, Fc@d[u] = Fc[v] = Fc◦(δ−d◦c)◦−1 [u], (explicit formula!)

or equivalently, c@d = c ◦ (δ − d ◦ c)◦−1, where Fδ := I.

The set of operators Fδ = {I + Fc : c ∈ R〈〈X〉〉}, forms a group under

composition, in particular, a Faà di Bruno Hopf algebra with antipode,

α, satisfying

(δ + c)◦−1 := δ + c◦−1 = δ +
∑

η∈X∗

(αaη)(c) η,

where c◦−1 denotes the composition inverse of c and

aη : R〈〈X〉〉 → R : c 7→ (c, η).

Remark: The antipode has an explicit series representation

(Gray & Duffaut Espinosa, 2011, 2014).
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Now observe that any c ∈ R〈〈X〉〉 can be written as c = cN + cF , where

cN :=
∑

k≥0(c, x
k
0)x

k
0 and cF := c− cN .

Definition 2.1: Given c ∈ R〈〈X〉〉, let r ≥ 1 be the largest integer such

that supp(cF ) ⊆ xr−1
0 X∗. Then c has relative degree r if the linear word

xr−1
0 x1 ∈ supp(c), otherwise it is not well defined.

Remark: This definition coincides with the usual definition of relative

degree given in a state space setting. But this definition is independent

of the state space setting.

Definition 2.2: Given ξ ∈ X∗, the corresponding left-shift operator is

ξ−1 : X∗ → R〈X〉 : η 7→

{

η′ : η = ξη′

0 : otherwise.

Remark: The operation Fc/Fd = Fc/d is given by c/d := c ⊔⊔ d ⊔⊔ −1,

where c ⊔⊔ −1 := (c, ∅)−1
∞
∑

k=0

(c′) ⊔⊔ k, and c′ = 1− c/(c, ∅) is proper.
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y = Fc[u]

y(1) = F
x−1
0 (c)

[u]
...

y(r−1) = F
(xr−1

0 )−1(c)
[u]

y(r) = F(xr
0)

−1(c)[u]

+u F
(xr−1

0 x1)−1(c)
[u].



















































u =
v − F(xr

0)
−1(c)[u]

F
(xr−1

0 x1)−1(c)
[u]

(y(r) = v)

=
−F(xr

0)
−1(c−cy)[u]

F
(xr−1

0 x1)−1(c)
[u]

= −Fd[u],

☛

✡

✟

✠
d =

(xr
0)

−1(c− cy)

(xr−1
0 x1)−1(c)

.

Theorem 2.3: Suppose c ∈ R〈〈X〉〉 has relative degree r. Let y be

analytic at t = 0 with generating series cy ∈ RLC [[X0]] satisfying

(cy, x
k
0) = (c, xk

0), k = 0, . . . , r − 1. (Here X0 := {x0}.) Then the input

u(t) =

∞
∑

k=0

(cu, x
k
0)

tk

k!
,

where cu = ((xr
0)

−1(c− cy)/(x
r−1
0 x1)

−1(c))◦−1, is the unique solution to

Fc[u] = y on [0, T ] for some T > 0.

Remark: The condition on cy ensures that y is in the range of Fc.
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3. Left System Inversion of LV Input-Output Systems

Four SISO predator-prey systems with output y = z1 (prey):

I/0 map state space realization rel. degree

Fc : β1 7→ y g0(z) =

[

−α12z1z2

−β2z2 + α21z1z2

]

, g1(z) =

[

z1

0

]

1

Fc : α12 7→ y g0(z) =

[

β1z1

−β2z2 + α21z1z2

]

, g1(z) =

[

−z1z2

0

]

1

Fc : β2 7→ y g0(z) =

[

β1z1 − α12z1z2

α21z1z2

]

, g1(z) =

[

0

−z2

]

2

Fc : α22 7→ y g0(z) =

[

β1z1 − α12z1z2

−β2z2

]

, g1(z) =

[

0

z1z2

]

2
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The population system under study:




ż1

ż2



 =





−α12z1z2

−β2z2 + α21z1z2



+





z1

0



u, y = z1

with z1(0) = z1,0 and z2(0) = z2,0. Make α12 = α21 = β2 = 1.
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Fig. 3.1: u = 1.
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• ← Equilibrium (1, 1.5)

Final orbit

Vector field

Fig. 3.2: u = 1.5.

c = z1,0 − α12z2,0z1,0x0 + z1,0
✄
✂

�
✁x1 +

(

α12
2z2,0

2z1,0 − α12α21z2,0z1,0
2

+α12β2z2,0z1,0)x
2
0 − α12z2,0z1,0x0x1 − α12z2,0z1,0x1x0 + z1,0x

2
1 + · · · .

✞
✝

☎
✆Relative degree r = 1.
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One must select an output function

y(t) =

∞
∑

k=0

(cy, x
k
0)

tk

k!
,

where cy is the generating series of y. It is sufficient to consider a

polynomial of degree 3, so let (cy, ∅) = v0, (cy, x
i
0) = vi for i = 1, 2, 3.

Thus,

d :=
(xr

0)
−1(c− cy)

(xr−1
0 x1)−1(c)

= −α12z2,0 −
v1
z1,0

+

(

α12β2z2,0 −
v2
z1,0

−α12α21z1,0z2,0 −
v1α12z2,0

z1,0

)

x0 +
v1
z1,0

x1

+

(

−
v1α12

2z2,0
2

z1,0
+

v1α12β2z2,0
z1,0

− v1α12α21z2,0

−
2v2α12z2,0

z1,0
+ α12

2α21z1,0z2,0
2 + 2α12β2α21z1,0z2,0

−
v3
z1,0
− α12β2

2z2,0 − α12α21
2z1,0

2z2,0

)

x2
0 + · · ·
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In which case,

cu =
(

d◦−1)

N
=

v1
z1,0

+ α12z2,0 +





v1
(

− v1
z1,0
− α12z2,0

)

z1,0
+

v1α12z2,0
z1,0

+
v2
z1,0
− α12β2z2,0 + α12α21z1,0z2,0

)

x0 + · · ·

Design example:

Given

◮ [t1, t2] = [12.5, 12.7] (∆t = 0.2),

◮ u(t1) = 1, u(t2) = 1.5,

◮ initial orbit exit point [z1(12.5), z2(12.5)]
T = [3.82, 2.25]T ,

◮ y(t2) = 2,

find a smooth u(t) for t ∈ (t1, t2) so that all constraints are satisfied.
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Solution:

• Select the output as

y(t) =

∞
∑

k=0

(cy, x
k
0)

tk

k!
= v1t+ v3t

3/3!.

• From Theorem 2.3, cu =
(

d◦−1
)

N
is computed in terms of v1 and v3.

• Solving

cy(v1, v3)
∣

∣

∣

xk
0→(0.2)k/k!,k>0

= 2.0

cu(v1, v3)
∣

∣

∣

xk
0→(0.2)k/k!,k>0

= 1.5











← system of nonlinear
algebraic equations

gives the transfer input (up to order 6):✎

✍

☞

✌

u(t) = − 0.844733− 3.22608(t− t1) + 19.2847(t− t1)
2 + 98.9718(t− t1)

3

+ 483.681(t− t1)
4 + 1476.69(t− t1)

5 + 2818.13(t− t1)
6
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4. Numerical Simulation

Note that u(t2) = 1.5 and y(t2) = 2.0, and the error is✞
✝

☎
✆

y(t)− ŷ(t) = − 153.04(t− t1)
6 − 269.34(t− t1)

7 − 1610.74(t− t1)
8 + · · · .
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Fig. 4.1: Prey (top) and predator (bottom) populations.
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Fig. 4.2: Orbit transfer.
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5. Conclusions and Future Work

• The LIP for SISO Lotka-Volterra systems was solved using Fliess

operators having well defined relative degree.

• The method provides an exact, explicit and analytic formula for the

LIP.

• The MIMO version of the Lotka-Volterra trajectory design problem

is under review for the CDC 2015.

• Efficiency of the current software is currently being improved.
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