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1. Introduction

Given an operator F', describing the dynamics of a system, and a
function y in its range, the left inversion problem (LIP) is to

determine a unique input u such that y = F'[u].

A sufficient condition (but not necessary) for solving this problem in

a state space setting is to have well defined relative degree (Isidori,
1995).

The solution of LIP does not require a state space realization.
Fliess operators provide an explicit analytical solution.

Introduced by M. Fliess in 1983, Fliess operators are analytic
input-output systems described by coefficients and iterated integrals

of the inputs.

Fliess operators can be viewed as a functional generalization of a
Taylor series. For example, any Volterra operator with analytic

kernels has a Fliess operator representation.
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2. Preliminaries

Population models:

e Here we apply the method to the population dynamical system:

Z; = Bizi + Z Qijzizi, t=1,2,...,n, (Lotka-Volterra model)
j=1
where z; o< to the i-th population, §; is the growth rate for the i-th

population, and «;; weights the effect of the j-th species on the i-th
species.

e Input-output models are obtained by introducing time dependence
on the 8;(t)’s or a;(t)’s (inputs), and assuming y = h(z) (outputs).

e For n =2,

z1 121 — (V122122
= & (Predator-Prey model)

Z9 —Paz2 + (212122

The vector fields are complete within the first quadrant giving
concentric periodic trajectories about z. = (82/a21, f1/a12).
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Fliess Operators:

Let X = {xo,x1,...,Zm} be an alphabet and X™ the set of all words
over X (including the empty word ().

A formal power series is any mapping ¢ : X* — R*. Typically, ¢ is
written as a formal sum ¢ =} . (c,n)n, and the set of all such
series is R ((X)).

For a measurable function u : [a,b] — R™ with finite L;-norm,
define E, : LT"[to,t0o + T| — Clto,to + T] by Ey[u] =1, and

t

Bep lul(t,t0) = [ ws(r)Eylul(r, o) dr,

to
where 2; € X, n' € X* and ug = 1.
Note that to each letter x; has been assigned a function w;.

For each ¢ € RE((X)) = F.[u](t) =3 (c,m) Eylul(t,to), which is
called a Fliess operator (Fliess, 1983).

nex*
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Fliess Operator Inverses:
> F,

u—‘- }‘y
> F,

Fig. 2.1: Product connection.

= F.Fy = F. ., 4, where ., denotes the
shuffle product.

Fig. 2.2: Cascade connection.

= F.o F; = F.oq, where c o d denotes
the composition product of ¢ € R*((X))
and d € R™((X)) (Gray et al., 2014)

v
u{i : :y
F, <

Fig. 2.3: Feedback connection.

Given c¢,d € R™((X)), y satisfies
y = Felv] = Felu + Faly]].

If there exists e so that y = Fe.[u], then

Felu] = Felu+Fyoc|ul]. (contraction!)



RGE ICMAT

RSITY

On the other hand, |v = u + Fyoc|v] = (I + F_doc) [v] = uJ

Apply the compositional inverse to both sides of this equation:
v=(I4 F_goc) ' [u] := (I + F(_goeyo—1) [u].

In which case, Fead|u] = Fe[v] = F.o(5_gocyo—1[u],  (explicit formulal)
or equivalently, cQd = co (§ —doc)°" ', where Fj := I.

The set of operators %5 = {I + F. : c € R({(X))}, forms a group under
composition, in particular, a Faa di Bruno Hopf algebra with antipode,
a, satisfying

(640 i=6+c" =04 ) (aay)(c)n,

nexx
-1 ., . .
where ¢~ denotes the composition inverse of ¢ and

an : R{{X)) = R:c— (c,n).

Remark: The antipode has an explicit series representation
(Gray & Duffaut Espinosa, 2011, 2014).
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Now observe that any ¢ € R((X)) can be written as ¢ = ¢y + cr, where

CN = Zk20(67 re)xt and cr 1= ¢ — cn.

Definition 2.1: Given ¢ € R({X)), let > 1 be the largest integer such
that supp(cr) C :136'_1X *. Then c has relative degree r if the linear word

x{ "'z € supp(c), otherwise it is not well defined.

Remark: This definition coincides with the usual definition of relative
degree given in a state space setting. But this definition is independent
of the state space setting.

Definition 2.2: Given £ € X™, the corresponding left-shift operator is

/. o /
X S R(X) i T ”—5”,
0O : otherwise.

Remark: The operation F./Fy = F,,4 is given by ¢/d := cud ™ ~1,

where ¢™ 7' = (¢,0) ! Z(c/) M and ¢ =1 —¢/(c,0) is proper.
k=0
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v — F(mr)—l(c) [U]

y = Felu] u=— 0 (" = v)
y(l) — Fm—l(C) [U] (zf " 1)~ (e) [u]
: —Elap)—1(c—c, Ul
(r-1) _ ¢ F ]~ Fel
Y = F(mg—l)_l(c) [u] (zg~ "z1)71(e)

Y = Fpyi0lul [d _ (@) e - cy>]
T r—1 -1 )
+u F(:E0 L) =1 (o) [u]. ) (zoy " 21)"1(c)

Theorem 2.3: Suppose ¢ € R((X)) has relative degree r. Let y be
analytic at t = 0 with generating series ¢, € Rpc|[[Xo]] satisfying
(cy,28) = (c,z8), k=0,...,r — 1. (Here Xg := {azo}.) Then the input

%)
E C’u?xO k'a

where ¢, = ((x) ' (c — ¢,)/(x} ) Y(¢))°~1, is the unique solution to
F.lu] =y on [0, T] for some T > 0.

Remark: The condition on ¢, ensures that y is in the range of Ft.
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3. Left System Inversion of LV Input-Output Systems

Four SISO predator-prey systems with output y = z1 (prey):

I/0 map state space realization rel. degree
—(X122122 21
Fe:B1—y go(z) = , 91(2) = 1
—B2z2 + a212122 0
B1z1 — 2122
Fo:oa12—y | go(z) = , 91(2) = 1
—B2z2 + a212122 0
B1z1 — 122122 0
Fe:Ba—y go(z) = , 91(2) 2
212122 — 22
B1z1 — 122122 0
F.:ags—y go(z) = , 91(2) = 2
—B2z2 Z122

10
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The population system under study:
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2 .5
Prey population

Fig. 3.1: u = 1.

2 2 2
T |+ (0412 22,0 21,0 — (¥12(¥2122,0<1,0

21,0 — (¥1222,021,0C0 + 21,0

2 2
+a125222,021,0) Ty — (¥1222,021,0L0L1 — (¥1222,021,0L1L0 + 21,07 + -+ - .

( Relative degree r = 1.)

11
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One must select an output function

0% tk
y(t) — Z(Cya xg)ga
k=0

where ¢, is the generating series of y. It is sufficient to consider a

polynomial of degree 3, so let (c,,0) = vo, (cy,x)) = v; for i = 1,2, 3.

Thus,
ry—1
_ (mg) (c—¢y) 1 V2
d:= —"— I = —a1222,0 — — + | @128222.0 — —
(g "x1)"1(c) 21,0 21,0
V1012220 U1
—(12002121,0%22,0 — o+ —1
21,0 21,0
2 2
V112 22,0 ’0104125222,0
+ | — + — V112021 22,0
21,0 <1,0
2V2001222.0 2 2
- + 12" i2121,022,00 + 20&1252062121,022,0
21,0
U3 2 2 2 2
T 122" 22,0 — Q1221 21,0 22,0 | To + - -
1,0

12



Mj/GEORGE ICMAT

In which case,

V1
v | — — (122
o1 V1 1 ( 21,0 12 2’0) V1(1222,0
Cu = (d )N ——— + 12220 + T
21,0 21,0 21,0

V2
-I—Z— — a12222,0 + 0412042121,022,0> o+ -
1,0

Design example:
Given
> [t1,t2] = [12.5,12.7] (At =0.2),
> u(t1) =1, u(te) = 1.5,
» initial orbit exit point [21(12.5), 22(12.5)]" = [3.82,2.25]7,

> y(tz) =2,

find a smooth u(t) for ¢t € (¢1,t2) so that all constraints are satisfied.

13
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Solution:

e Select the output as

tk:

)E = v1t + ’U3t3/3!.

(Cy7 33]8

[M]¢

y(t) =

e
I

0

e From Theorem 2.3, c, (do_l) N is computed in terms of v; and vs.

e Solving
\
(V1. vs) zf§—(0.2)F /k!,E>0 =20 \ system of nonlinear
cu(v1,03) — 1.5 algebraic equations
af—(0.2)k /k!,k>0 )

gives the transfer input (up to order 6):

u(t) = — 0.844733 — 3.22608(t — t1) + 19.2847(t — t1)° + 98.9718(t — t1)°
+ 483.681(t — t1)* + 1476.69(t — t1)° + 2818.13(t — t1)°

14
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4. Numerical Simulation

Note that u(t2) = 1.5 and y(t2) = 2.0, and the error is

[y(t) —G(t) = —153.04(t — t1)% — 269.34(t — t1)” — 1610.74(t — t1)® + - -- J

Time series for prey population

mmmm Transfer trajectory

L = [nitial prey cycle
= Final prey cycle

Prey
[l N w N (6]

10 15 20
t

Time series for predator population

51— = [nitial predator cycle

mmmm Transfer trajectory

IN
\

=== Final predator cycle

Predator
N w
I I

H
\

Fig. 4.1: Prey (top) and predator (bottom) populations.
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5. Conclusions and Future Work

e The LIP for SISO Lotka-Volterra systems was solved using Fliess

operators having well defined relative degree.

e The method provides an exact, explicit and analytic formula for the
LIP.

e The MIMO version of the Lotka-Volterra trajectory design problem
is under review for the CDC 2015.

e Efficiency of the current software is currently being improved.

17



