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Aim

To discuss three structural problems

When is a control system mechanical?

To analyze compatibility of two structures of control systems:
mechanical structure and linear structure

To describe equivariants of mechanical control systems
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Problem statement

Assume that a control system Σ is equivalent to a mechanical control
system (MS)

Σ←→ (MS)

Assume that Σ is equivalent to a linear control system Λ

Σ←→ Λ

Question: Are the linear and mechanical structures of Σ compatible,
i.e., is Σ equivalent to a linear mechanical control system (LMS) ?

Σ←→ (LMS)

Two variants of our problem: we may wish (MS) and (LMS) to have
equivalent mechanical structures or we may allow for non equivalent
ones (the latter possibility being, obviously, related with the problem of
(non)uniqueness of mechanical structures that a control system may
admit).

To make the problem precise: define the class of systems Σ, linear
systems Λ, mechanical control systems (MS), linear mechanical control
system (LMS), and the equivalence.



Notions

We will consider smooth control-affine systems of the form

Σ : ż = F (z) +

m∑

r=1

urGr(z), z ∈M

Σ and Σ̃ : ˙̃z = F̃ (z̃) +
∑m

r=1
urG̃r(z̃) on M̃ are (locally) state-space

equivalent, shortly (locally) S-equivalent, if there exists a (local)

diffeomorphism Ψ : M → M̃ such that

DΨ(z) · F (z) = F̃ (z̃) and DΨ(z) ·Gr(z) = G̃r(z̃), 1 ≤ r ≤ m.

Ψ preserves trajectories.

Σ is S-linearizable if it is S-equivalent to a linear system of the form

Λ : ˙̃z = Az̃ +

m∑

r=1

urBr.



Mechanical Control Systems

A mechanical control system (MS) as a 4-tuple (Q,∇, g0, d), in which

(i) Q is an n-dimensional manifold, called configuration manifold;

(ii) ∇ is a symmetric affine connection on Q;

(iii) g0 = (e, g1, . . . , gm) is an (m+ 1)-tuple of vector fields on Q;

(iv) d : TQ→ TQ is a map preserving each fiber and linear on fibers.

defining the system that, in local coordinates (x, y) of TQ, reads

ẋi = yi

ẏi = −Γi
jk(x)y

jyk + dij(x)y
j + ei(x) +

m∑
r=1

urg
i
r(x).

Γi
jk are the Christoffel symbols of ∇ (Coriolis and centrifugal forces)

the terms dij(x)y
j correspond to dissipative-type (or gyroscopic-type)

forces acting on the system,

e represents an uncontrolled force (which can be potential or not)

g1, . . . , gm represent controlled forces.



Examples: planar rigid body

Figure: The planar rigid body



Examples: planar rigid body

Configuration: q = (θ, x1, x2) ∈ S1 × R2, where

θ = relative orientation of Σbody w.r.t. Σspatial

(x1, x2) = position of the center of mass

Equations of motion:

θ̈ = −u2
h

J

ẍ1 = u1
cos θ

m
− u2

sin θ

m

ẍ2 = u1
sin θ

m
+ u2

cos θ

m

no d-forces

The Christoffel symbols Γi
jk of the Euclidean metric

Jdθ ⊗ dθ +m(dx1 ⊗ dx1 + dx2 ⊗ dx2) vanish



Examples: robotic leg

Figure: Robotic leg



Examples: robotic leg

Configuration: q = (r, θ, ψ) ∈ R+ × S1 × S1, where

r = extension of the leg

θ = angle of the leg from an inertial reference frame

ψ = angle of the body

Equations of motion:

r̈ = rθ̇2 +
1

m
u2

θ̈ = −
2

r
ṙθ̇ +

1

mr2
u1

ψ̈ = −
1

J
u1.

no d-forces

The Christoffel symbols of the Riemannian metric
mdr ⊗ dr +mr2dθ⊗ dθ+ Jdψ ⊗ dψ are Γr

θθ = −r and Γθ
rθ = Γθ

θr = 1/r.



Vertical distribution and mechanical MS-equivalence

Any mechanical control system (MS) evolves on TQ and thus defines
the vertical distribution V, of rank n, that is tangent to fibers TqQ. In
(x, y)-coordinates it is given by

V = span

{
∂

∂y1
, . . . ,

∂

∂yn

}
.

Clearly, V contains all control vector fields gir(x)
∂

∂yi of (MS).

Two mechanical systems (MS) and (M̃S) are MS-equivalent if there
exists a diffeomorphism ϕ between their configuration manifolds Q and
Q̃ such that the corresponding control systems on the tangent bundles
TQ and T Q̃ are S-equivalent via the extended point diffeomorphism
Φ = (ϕ,Dϕ · y)T .

The diffeomorphism Φ, establishing the MS-equivalence, maps the
vertical distribution into the vertical distribution.



Linear Mechanical Control Systems

Systems that are simultaneously linear and mechanical form the class of
Linear Mechanical Control Systems

(LMS)

˙̃x = ỹ,

˙̃y = Dỹ + Ex̃+
m∑
r=1

urbr,

where D and E are matrices of appropriate sizes.



Example

The mechanical system

(MS)1 :
ẋ1 = y1, ẏ1 = u,

ẋ2 = y2, ẏ2 = x1(1 + x1) + y1 y2

1+x1

on TQ, where Q = {(x1, x2) ∈ R2 : x1 > −1}. is transformed via the
diffeomorphism Ψ

x̃1 = x1,

x̃2 = x2 − 1

2

(
y2

1+x1

)2
,

ỹ1 = y1,

ỹ2 = y2

1+x1 ,

into the linear control system

(LMS)1 :
˙̃x1 = ỹ1,
˙̃x2 = ỹ2,

˙̃y1 = u,
˙̃y2 = x̃1.

Notice that (LMS)1 is a linear mechanical system but its mechanical
structure is not MS-equivalent to that of (MS)1. Indeed, Ψ does not map
the vertical distribution V = span { ∂

∂y1 ,
∂

∂y2 } of (MS)1 onto the vertical

distribution Ṽ = span { ∂
∂ỹ1 ,

∂
∂ỹ2 } of (LMS)1. The question is thus whether

we can bring (MS)1 into a linear system that would be mechanically
equivalent to (MS)1? ⊳



Linearization preserving the mechanical structure:

main result

Theorem

The mechanical system (MS) is, locally around (x0, y0) ∈ TQ,
MS-equivalent to a linear controllable mechanical system (LMS) if and only
if it satisfies, in a neighborhood of (x0, y0), the following conditions

(LM1)dim span {adqF Gr, 0≤q≤2n−1, 1≤r≤m}(x, y)=2n,

(LM2)
[
adpF Gr, ad

q
F Gs

]
=0, for 1 ≤r, s≤m, 0≤p, q≤2n,

(LM3) there exist driq ∈ R, where 1 ≤ i ≤ n, 1 ≤ r ≤ m,
0 ≤ q ≤ 2n− 1, such that the vector fields

Vi =
∑

r,q

driq ad
q
F Gr

span the vertical distribution V.



(LM3) is a compatibility condition

It is well known that the conditions (LM1) and (LM2) are necessary
and sufficient for a nonlinear control system of the form Σ :
ż = F (z) +

∑m
r=1

urGr(z) to be, locally, S-equivalent to a linear
controllable system.

In linearizing coordinates the vector fields adqF Gr are constant

The condition (LM3) is thus, clearly, a compatibility condition that
assures that the mechanical and linear structure are conform: it implies
that well chosen R-linear combinations of the vector fields adqF Gr span
the vertical distribution V that defines the tangent bundle structure of
the mechanical system.



Example - cont.

For the system (MS)1 of Example, we have

V = span

{
∂

∂y1
,
∂

∂y2

}
.

Simple Lie bracket calculations yield

adF G = − ∂
∂x1 −

y2

1+x1

∂
∂y2 ,

ad2F G = y2

1+x1

∂
∂x2 + (1 + x1) ∂

∂y2 ,

ad3F G = − ∂
∂x2 , ad4F G = 0.

We take V1 = G = ∂
∂y1 , that is, d10 = 1 and d11 = d12 = d13 = 0. In order to

have V = span {V1, V2}, where V2 = d21 adF G+ d22 ad
2
F G+ d23 ad

3
F G, we

need d21 = 0 and d23 = y2

1+x1 d22 so d22 and d23 cannot be taken as real
constants, thus violating the condition (LM3) of Theorem 4. It follows that
although the system (MS)1 of Example 1 is S-equivalent to a linear
mechanical system, it is not MS-equivalent to a linear mechanical system,
that is, it cannot be linearized with simultaneous preservation of its
mechanical structure. ⊳



Interpretation of linearizability conditions

The linearizing diffeomorphism ϕ simultaneously rectifies the control
vector fields, annihilates the Christoffel symbols, transforms the
fiber-linear map d(x)y into a linear one, and the vector field e(x) into a
linear vector field. Conditions that guarantee that all those
normalizations take place and, moreover, that they can be effectuated
simultaneously must be somehow encoded in the conditions
(LM1)-(LM3). How?

By (LM3), there exist Vi =
∑

r,q d
r
iq ad

q
F Gr, 1 ≤ i ≤ n, that span the

vertical distribution V and are vertical lifts of vector fields vi on Q. The
commutativity conditions

0 = [adF Vi, adF Vj ] = [vi, vj ] modV, 1 ≤ i, j ≤ n, (1)

imply that there exists a local diffeomorphism x̃ = ϕ(x) rectifying
simultaneously all vi, that is, ϕ∗vi =

∂
∂x̃i
. The extended point

transformation (x̃, ỹ)T = Φ(x, y) = (ϕ(x),Dϕ · y)T maps Vi into
Ṽi = Φ∗Vi =

∂
∂ỹi
.



Now calculating in the (x̃, ỹ)-coordinates the commutativity relations

0 = [Ṽi, adF̃ Ṽj ] = Γk
ij

∂

∂yk
, (2)

we conclude that all Christoffel symbols vanish implying that the
connection ∇ defining the mechanical system is locally Euclidean (its
Riemannian tensor R vanishes) and that the local x̃-coordinates are flat
and, simultaneously, rectifying coordinates for the vi’s.

Finally, calculating the commutativity relations

0 = [adF Ṽi, ad
2
F Ṽj ], (3)

we conclude that in the x̃-coordinates, the (1, 1)-tensor d is constant
and the vector field e(x) is linear.

All those informations are encoded in the commutativity conditions
(LM2) but they are mixed up. Passing to the vector fields
Vi =

∑
r,q d

r
iq ad

q
F Gr and using the conditions (LM2) in the form

0 = [adpF Vi, ad
q
F Vj ], for 0 ≤ p, q ≤ 2 (equivalent to (1)-(3)), instead of

applying directly to adqF Gr, allows to clearly identify the conditions
responsable for the required form of, respectively, gr’s, the
connection ∇, d(x), and e(x).



Linearization of Mechanizable Control Systems

So far: is the linear structure compatible with a given mechanical
structure?

Now: we discuss general control-affine systems that admit both: a
mechanical and a linear structure.

If a system admits a unique mechanical structure, then the situation is
that of the previous theorem

When does a control system admit a mechanical structure and when is
it unique?



Equivalence problem

When is the control system

Σ : ż = F (z) +
m∑

r=1

urGr(z), z ∈M2n, u ∈ Rm,

mechanical? That is, when does there exist a (local) diffemorphism
Φ :M → TQ transforming Σ into a mechanical system (MS)?
In other words, a diffeomorphism Φ :M → TQ such that

Φ∗F = yi
∂

∂xi
+
(
−Γi

jk(x)y
jyk + dij(x)y

j + gi0(x)
) ∂

∂yi

Φ∗Gr = gir(x)
∂

∂yi
,



Links with the inverse problem

When for the control system (differential equation)

Σ : ż = F (z) +

m∑

r=1

urGr(z), z ∈M, u ∈ Rm,

does there exist a (local) diffeomorphism Φ :M → TQ such that

Φ∗F = yi
∂

∂xi
+
(
−Γi

jk(x)y
jyk + dij(x)y

j + gi0(x)
) ∂

∂yi

Φ∗Gr = gir(x)
∂

∂yi
,

our problem is more specific: the right hand side is quadratic in
velocities

our problem is more general:

no á priori tangent bundle structure TQ

non potential forces g0 are allowed

dissipative forces are allowed

The vector fields Gr provide additional information encoded in the Lie
algebra generated by them and F .



Symmetric product

An affine connection ∇ defines the symmetric product:

〈X : Y 〉 = ∇XY +∇YX X,Y ∈ X(Q).

In coordinates given by

〈X : Y 〉 =

(
∂X i

∂xj
Y j +

∂Y i

∂xj
Xj + Γi

jkX
jY k + Γi

jkY
jXk

)
∂

∂xi
.

A distribution D on Q is called geodesically invariant with respect to an
affine connection ∇ if every geodesic γ : I → Q, such that
γ′(t0) ∈ D(γ(t0)) for some t0 ∈ I, satisfies γ′(t) ∈ D(γ(t)) for all t ∈ I.

Geometric interpretation of the symmetric product (A. Lewis):
a distribution D on a manifold Q, equipped with an affine
connection ∇, is geodesically invariant if and only if

〈X : Y 〉 ∈ D, for every X,Y ∈ D.

So the symmetric products plays the same role for the geodesic
invariance as the Lie brackets for integrability.



Geodesic accessibility

Consider the mechanical control system (MS) = (Q,∇, g0, d). Let
SYM(g1, . . . , gm) be the smallest distribution on Q containing the input
vector fields g1, . . . , gm and such that it is closed under the symmetric
product defined by the connection ∇.

Definition

The system (MS) is called geodesically accessible at x0 ∈ Q if

SYM(g1, . . . , gm)(x0) = Tx0
Q,

and geodesically accessible if the above equality holds for all x0 ∈ Q. A
geodesically accessible mechanical system will be denoted by (GAMS).

For geodesically accessibile mechanical control systems, the smallest
geodesically invariant distribution containing the control vector fields
g1, · · · , gm is TQ.

The planar rigid body is geodesically accessible but the robotic leg is
NOT geodesically accessible (although accessible).



The basic object

We will call a zero-velocity point for the mechanical control system
(MS) any point of the form (x0, ẋ0) = (x0, 0), that is, any point of the
zero section of the tangent bundle TQ.

For the control system

Σ : ż = F (z) +
m∑

r=1

urGr(z),

let V denote the smallest vector space, over R, containing the vector
fields G1, . . . , Gm and satisfying

[V , adF V ] ⊂ V ,

where [V , adF V ] = {[Vi, adF Vj ] | Vi, Vj ∈ V}.



Characterization of mechanical control systems

Theorem (Respondek-Ricardo)

Let M be a smooth 2n-dimensional manifold. A system Σ is locally, at
z0 ∈M, S-equivalent to a mechanical system (MS) around a zero-velocity
point (x0, 0) if (and only if (MS) is geodesically accessible)

(MS0) F (z0) ∈ V(z0),

(MS1) dimV(z) = n and dim
(
V + [F,V ]

)
(z) = 2n,

(MS2) [V ,V ] (z) = 0,

for any z in a neighborhood of z0.
Moreover, under (MS0)-(MS2), the mechanical structure is unique.

The condition (MS0) implies that the diffeomorphism establishing the
S-equivalence (if it exists) will map z0 into a zero-velocity point.

A mechanical system (more generally, a control system that is
S-equivalent to a mechanical system (MS)) is geodesically accessible
around a zero-velocity point if and only if it satisfies (MS0) and (MS1).



The condition (MS2) [V ,V ] = 0, is always necessary for S-equivalence to
a mechanical system (MS) and sufficient provided that (MS1) and
(MS2) hold.

It states that the Lie algebra L = {F,G1, . . . , Gm}LA contains an
abelian subalgebra V (that spans a distribution of rank n) which is the
structural condition reflecting the existence of a mechanical structure.

The conditions (MS0)-(MS2) are veryfiable: define

V1 = {Gr | 1 ≤ r ≤ m}

V2 = {[Gr, adF Gs] | 1 ≤ r, s ≤ m}

and, inductively,

Vi =
⋃

p+l=i

[
Vp, adF Vl

]
. Put V := VectR

∞⋃

i=1

Vi.

Control systems that admit a unique mechanical structure are
S-equivalent to a geodesically accessible mechanical systems
(Respondek-Ricardo). But linear mechanical control systems are never
geodesically accessible (unless the number of controls m equals n, the
dimension of the configuration manifold Q) so a new approach to the
problem is needed.



Theorem

The following conditions are equivalent for a nonlinear control system of
the form Σ : F (z) +

∑m

r=1
urGr(z) on a 2n-dimensional manifold:

(i) the system Σ is S-equivalent, locally at z0, to a controllable linear
mechanical system (LMS);
(ii) Σ satisfies, in a neighborhood of z0, the following conditions

(LM1)dim span {adqF Gr, 1≤r≤m, 0≤q≤2n−1}(z)=2n,

(LM2)
[
adpF Gr, ad

q
F Gs

]
=0, for 1≤r, s≤m, 0≤p, q≤2n,

(LM3)’ there exist driq ∈ R, where 1 ≤ i ≤ n, 1 ≤ r ≤ m,
0 ≤ q ≤ 2n− 1, such that the distribution

V = span {
∑

r,q

driq ad
q
F Gr, 1 ≤ i ≤ n}

is of rank n, contains Gr, for 1 ≤ r ≤ m, and satisfies

V+ [F,V] = TM.

(iii) Σ satisfies (LM1), (LM2) and

(LM3)” dim span {Gr, adF Gr, 1 ≤ r ≤ m}(z) = 2m.



Interpretation of the conditions

The difference between the condition (LM3) and (LM3)’ (or (LM3)”)
explains very clearly the difference between the problems considered in
this and the previous theorem.

If a mechanical system is given (the case of the former theorem), then n
vector fields of the form Vi =

∑
r,q d

r
iq ad

q
F Gr have to span its vertical

distribution V.

If a mechanical structure is not given (the case of the last theorem), it
is the distribution V = span {V1, . . . , Vn} which will be the vertical
distribution of the mechanical structure to be constructed, provided
that V satisfies (LM3)’ (or, equivalently, (LM3)”).



Example-cont.

Clearly, the system (MS) of Example, satisfies the conditions (LM1) and
(LM2) (actually, we have given a linearizing diffeomorphism Ψ explicitly).
To analyze the condition (LM3)’, we take V1 = G = ∂

∂y1 , that is, d10 = 1 and

d11 = d12 = d13 = 0, and V2 = d21 adF G+ d22 ad
2
F G+ d23 ad

3
F G. We look

for reals d21, d22, d23 such that the distribution V = span {V1, V2} satisfies
V+ [F,V] = TM . A direct calculation shows that this is the case if and
only if

d21d23 − d
2
22 6= 0.

Therefore the system (MS)1 of Example admits infinitely many
non-equivalent linear mechanical structures whose vertical distribution can
be any distribution span {G, d21 adF G+ d22 ad

2
F G+ d23 ad

3
F G}, where the

real coefficients d2q satisfy the above condition. ⊳



Reducing the problem to the case of linear systems

The conditions (LM1) and (LM2) are necessary and sufficient for
S-equivalence of Σ to a linear controllable system.

Therefore the problem becomes that of when a linear control system
admits a linear mechanical structure.

Therefore the last Theorem reduces actually to the following one, which
is of independent interest.



Proposition

Consider a linear controllable system of the form
Λ : ż = Az +

∑m

r=1
urbr, where z ∈ R2n. The following conditions are

equivalent:
(i) the system Λ is S-equivalent, via a linear transformation, to a linear

mechanical system (LMS);
(ii) there exists an n-dimensional linear subspace V ⊂ R2n containing the

vectors br, for 1 ≤ r ≤ m, and satisfying

V+AV = R2n.

(iii) all controllability indices of Λ equal at least two.

The above proposition explains that all linear controllable systems
(excepts for those possessing a controllability index equal to one) admit a
linear mechanical structure. Moreover, such a structure is, in general, highly
non unique: any n-dimensional linear subspace V satisfying (ii) of the above
proposition leads to such a structure.



Our linear mechanical control systems are general

(LMS)
ẋ = y,
ẏ = Dy + Ex+Bu,

given by any positional force Ex and any force Dy depending on velocities
(any linear controlled SODE)

And if we want the drift of the system to be Lagrangian? (only
potential positional forces)



When is a linear system Lagrangian?

Given
ẋ = y,
ẏ = Ex (+Bu),

when does there exist a quadratic Lagrangian

L =
1

2
yTMy
kinetic

−
1

2
xTPx
potent.

such that

d

dt
∂L
∂ẋ
− ∂L

∂x
= Mẍ+ Px = M(ẍ−M−1Px)

= M(ẍ− Ex) = 0,

where M =MT , P = PT and M -invertible. We conclude P =ME and the
question is:
• Can we represent a given matrix E as a product of symmetric matrices

E =M−1P?



Linear inverse problem

Theorem (Helmholtz, Douglas, Sarlet)

(i) SODE ẍ = f(x, ẋ) is Lagrangian if and only if satisfies Helmholz
conditions (algebraic and differential);

(ii) for the linear SODE ẍ = Ex, Helmholz conditions are purely algebraic
and read: there exists M =MT such that ME = ETM (clearly, if and
only if there exists P = PT such that P =ME).

So when is E a product of two symmetric matrices?



All linear mechanical systems, with positional forces, are

Lagrangian

Theorem (Frobenius, 1910)

Any real (complex) square matrix can be written as a product of two real
(complex) symmetric matrices.

Proposition

Any SODE ẍ = Ex (control system ẍ = Ex+Bu is a Lagrangian system
Mẍ+ Px = 0 (control system Mẍ+ Px = Bu), given by Lagrangian
L = 1

2
yTMy − 1

2
xTPx (by the controlled Lagrangian

L = 1

2
yTMy − 1

2
xTPx+ xTBu).



Nonholonomic constraints

• When is the control system

Σ : ż = F (z) +

m∑

r=1

urGr(z), z ∈M

equivalent to a mechanical control systems in the presence of nonholonomic
constraints?
• Constraints: ẋ ∈ C = span {c1, . . . , ck} - constraint distribution

• Constraint forces ω =
∑n−k

i=1
λiωi, where span {ω1, . . . , ωn−k} = annC.

• Passsing to vecotor fields constraint forces we get

(NHS)
ẋ = y

ẏ = −yTΓ(x)y + d(x)y + e(x) +
m∑
i=1

uigi(x) +
n−k∑
i=1

λiri(x).

• Eliminating the Lagrange multipliers and taking the constraints into
account, we get



Poincaré representation

ẋ =
k∑

i=1

ci(x)v
i dimx = n

v̇ = −vT Γ̃(x)v + d̃(x)v + ẽ(x) +
m∑
i=1

uig̃i(x), dim v = k.

• The system evolves on the manifold C ⊂ TM , equipped with the
coordinates (x, v) = (x1, . . . , xn, v1, . . . , vk)
• Analogous definition of the geodesic acessibilty: the smallest

distribution containing the g̃i’s and closed under the symmetric product
defined by ∇̃ is TQ
• Γ̃i

jk are the Christoffel symbols of the connection ∇̃, which (in general)
is not symmetric and not metrizable (although comming via projection onto
C from the metric connection connection ∇)



When is a control system nonholonomic?

Theorem

Let M be a smooth d-dimensional manifold. A system Σ is locally, at
z0 ∈M, S-equivalent to a completely nonholonomic system (NHS) around a
zero-velocity point (x0, 0) if (and only if (MS) is geodesically accessible)

(MS0) F (z0) ∈ V(z0),

(MS1) dimV(z) = k , where d ≥ 2k and dim
(
V + [F,V ]

)
(z) = d,

(MS2) [V ,V ] (z) = 0,

for any z in a neighborhood of z0.

• [F,V ] stands for the involutive closure of the distribution [F,V ].
• The only difference for the unconstrained case is k = n and d = 2n
• There are no new structural conditions for the constrained case



When a control system admits a mechanical structure?

Why is that question interesting?

If system admits a mechanical structure, we can apply to it the whole
machinery of the mechanical control theory

If we reduce or constrain a mechanical system, we want to know
whether the reduced (constraint) system is still mechanical

For observed dynamics we define dummy input vector fields and the
properties of the virtual control system determine properties of the
observer



Affine connection control systems

Mechanical control systems subject

neither to dissipative-type (or gyroscopic-type) forces, i.e., d = 0

nor to uncontrolled forces, i.e., g0 = 0

are called affine connection control systems and are thus defined as a 3-tuple
(ACS) = (Q,∇, g), with Q and ∇ as before and g = (g1, . . . , gm) an m-tuple
of input vector fields on Q. For an (ACS), we have

ẋi = yi,

ẏi = −Γi
jk(x)y

jyk +
m∑
r=1

urg
i
r(x),



Let Sym(g) denote the smallest family of vector fields on Q containing
g1, . . . , gm and closed under the symmetric product defined by the
connection ∇. Elements of Sym(g) are thus iterative symmetric
products of vector fields g1, . . . , gm.

Let Let SYM(g) be the distribution on Q spanned by Sym(g).

Recall that the system (MS) is called geodesically accessible at
x0 ∈ Q if

SYM(g)(x0) = Tx0
Q,

and geodesically accessible if the above equality holds for all x0 ∈ Q.

Geodesically accessible mechanical control systems are denoted by
(GAMS). If additionally, the system is affine connection then it will be
called geodesically accessible affine connection system and it will be
denoted shortly by (GACS).



Conform frames

The geodesic accessibility property guarantees the existence of n
independent vector fields v1, . . . , vn ∈ Sym(g) and ṽ1, . . . , ṽn ∈ Sym(g̃).

Two frames (v1, . . . , vn) and (ṽ1, . . . , ṽn), for two systems, are conform
if each ṽj , 1 ≤ j ≤ n, is constructed as an analogous iterative
symmetric product as that defining vj



Fundamental relations

Fix a frame (v1, . . . , vn) and consider the fundamental equalities

(LAR)
[
viq , . . . ,

[
vi3 , [vi2 , vi1 ]

]
. . .
]
= α s

i1...iq
vs, and

(SAR) 〈viq : . . . 〈vi3 : 〈vi2 : vi1 〉〉 . . .〉 = β s
i1...iq

vs,

defining the structure functions α s
i1...iq

and β s
i1...iq

, where q ≥ 2 and
1 ≤ i1, . . . , iq ≤ n.

Equalities (LAR) and (SAR) give, respectively, information about the
Lie algebraic relations and the symmetric algebraic relations of the
system.

Analogously, we can derive the structure functions α̃ s
i1...iq

and β̃ s
i1...iq

for

(G̃ACS). We consider the families of structure functions

s = {α s
i1...iq

, β s
i1...iq

| q ≥ 2} and

s̃ = {α̃ s
i1...iq

, β̃ s
i1...iq

| q ≥ 2}

defined by the Lie algebraic relations (LAR) and the symmetric
algebraic relations (SAR).



Rank and order of a family of functions

A family of smooth functions {γ s
i1...iq

| q ≥ 2} is of a constant rank r, in

an open neighborhood U of x0 ∈ Q, if
{
dγsi1...iq (x) | q ≥ 2

}
span an

r-dimensional space at any x ∈ U .

We call the order of a family of constant rank r to be the minimal
number ρ such that

dim span
{
dγsi1...iq | 2 ≤ q ≤ ρ

}
(x0) = r.



Eqivariants of mechanical control systems

Theorem

Two geodesically accessible affine connection systems (GACS) = (Q,∇, g)

and (G̃ACS) = (Q̃, ∇̃, g̃), whose families of structure functions s and s̃ are of
constant rank in neighborhoods of x0 ∈ Q and x̃0 ∈ Q̃, are MS-equivalent
around x0 and x̃0, respectively, if and only if there exists a diffeomorphism
ϕ :Wx0

→ W̃x̃0
, where Wx0

and W̃x̃0
are neighborhoods of x0 and x̃0 in Q

and Q̃, respectively, such that

(LAC) α s
i1...iq

= α̃ s
i1...iq

◦ ϕ,

(SAC) β s
i1...iq

= β̃ s
i1...iq

◦ ϕ,

for q ≤ ρ+ 1, with ρ being the common order of families s and s̃.



(LAC) says that the Lie modules, generated by the symmetric vector

fields Sym(g1, . . . , gm) of (GACS) and and Sym(g̃1, . . . , g̃m) of (G̃ACS),
coincide (up to the conjugation by a diffeomorphism of the
configuration manifolds Q and Q̃); (SAC) states that the symmetric
modules, generated by all symmetric vector fields of (GACS) and

(G̃ACS), coincide (up to the conjugation by the same diffeomorphism).

If a diffeomorphism φ establishing the equivalence of (GACS) and

(G̃ACS) exists then it is unique (since it transforms the frame
(v1, . . . , vn) onto the frame (ṽ1, . . . , ṽn) and φ(x0) = x̃0). On the other
hand, the diffeomorphism ϕ conjugating the structure functions may or
may not be unique: we can distinguish three cases:

(i) If r = n, that is, the families s and s̃ are of maximal possible rank, then
the diffeomorphism ϕ conjugating them is unique and ϕ and φ coincide;

(ii) If r = 0, which correspond to s and s̃ consisting of constant functions
only (homogenous case), then (LAC) and (SAC) imply that the
structure functions have to be the same and, if this is the case, any
diffeomorphism ϕ conjugates them;

(iii) If 0 < r < n, then only a “part” of the diffeomorphism φ is determined
by the diffeomorphism ϕ.



Conclusions

We described mechanical systems that admit a mechanical structure
(both holonomic and nonholonomic)

We discussed linearization of mechanic and mechanizable control
systems

Equivariants of mechanical control systems


