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Introduction

Class of control systems
finite-dimensional
smooth
time-continous

We will consider
Ξ : ẋ = F (x ,u)

x ∈ X , state space, an open subset of Rn

u ∈ U, set of control values, a subset of Rm

F is smooth (Ck or C∞) with respect to (x ,u)
a control system is an underdetermined system of differential
equations: n equations for n + m variables
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Introduction

Very often: control-affine systems

Σ : ẋ = f (x) +
m

∑
i=1

uigi(x), x ∈ X ⊂ Rn,u ∈ Rm

f and g1, . . . ,gm are smooth vector fields on X
state-dependent nonlinearities
common in applications
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Introduction

Linearization problem

When is Ξ or Σ equivalent (transformable) to a linear control system?
define equivalence (or the class of transformations)
find conditions for linearization
construct linearizing transformations
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State-space equivalence and linearization

The system
Ξ : ẋ = F (x ,u), x ∈ X , u ∈ U and

Ξ̃ : ż = F̃ (z,u), z ∈ Z , u ∈ U (the same control)
are state-space equivalent, shortly S-equivalent, if there exists a
diffeomorphism z = Φ(x) such that

∂Φ
∂x
· F (x ,u) = F̃ (Φ(x),u) i.e., Φ∗F = F̃ .

the Jacobian matrix of Φ (the derivative of Φ, i.e, the tangent map
of Φ) maps the dynamics F of Ξ into F̃ of Ξ̃
A diffeomorphism is a map Φ such that

Φ is bijective
Φ and Φ−1 are Ck (C∞)

A (local) diffeomorphism defines a (local) nonlinear change of
coordinates z = Φ(x)
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State-space equivalence and linearization

S-equivalence preserves trajectories

X

x0

x(t,x0,u)

Z

z0

z(t,z0,u)

 ϕ

The image under Φ of a trajectory of Ξ is a trajectory of Ξ̃
corresponding to the same control.
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State-space equivalence and linearization

S-linearization

Problem 1 When is Σ S-equivalent to a linear system, i.e., when does
there exist z = Φ(x) transforming Σ into a linear system of the form

ż = Az +
m

∑
i=1

uibi , x ∈ Rn

that is, for 1 ≤ i ≤ m,

∂Φ
∂x

(x) · f = Φ∗f = Az and
∂Φ
∂x

(x) · gi(x) = Φ∗gi = bi

We want the same diffeomorphism Φ to transform f into Az (a
linear vector field) and gi into bi , for 1 ≤ i ≤ m (constant vector
fields)
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State-space equivalence and linearization

Why is S-linearization interesting?
If we want to solve a control problem for Σ and Σ is S-equivalent to
a linear system Λ, then
transform Σ into Λ
solve the problem for the linear system Λ
transform the solution (via the inverse Φ−1 of Φ)
we identify intrinsic nonlinearities
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State-space equivalence and linearization

A little bit of geometry: Lie bracket

Given two vector fields f and g on X , we define their Lie bracket as

[f ,g](x) =
∂g
∂x

(x)f (x)− ∂f
∂x

(x)g(x)

It is a new vector field on X .
It is a geometric (invariant) object

Φ∗[f ,g] = [Φ∗f ,Φ∗g].

It measures to what extent the flows of f and g do not commute
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State-space equivalence and linearization

Define

ad0
f g = g

adf g = [f ,g]
and, inductively, adk

f g = [f ,adk−1
f g] = [f , . . . , [f ,g], ]

For the single-input system

ẋ = f (x) + ug(x)

the Lie bracket adf g = [f ,g] = [f , f + g] measures to what extent the
trajectories of f (corresponding to u ≡ 0) do not commute with those of
f + g (corresponding to u ≡ 1).
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State-space equivalence and linearization

Theorem
Σ is, locally around x0, S-equivalent to a controllable linear system Λ if
and only if

(SL1) span {adq
f gi(x0) : 1 ≤ i ≤ m, 0 ≤ q ≤ n− 1} = Rn

(SL2) [adq
f gi ,ad r

f gj ] = 0, for 1 ≤ i , j ≤ m, 0 ≤ q, r ≤ n

Interpretation
(SL1) guarantees controllability of Λ
(SL2) implies that all iterative Lie brackets containing at least two gi ’s
vanish, i.e., [L0,L0] = 0, where L0 is the strong accessibility Lie
algebra.

Verification
(SL1) and (SL2) are verifiable in terms of f and gi ’s using
differentiation and algebraic operations only (no need to solve
PDE’s)
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State-space equivalence and linearization

Theorem
Σ on X is globally S-equivalent to a controllable linear system Λ on Rn

if and only if

(SL1) span {adq
f gi(x0) : 1 ≤ i ≤ m, 0 ≤ q ≤ n− 1} = Rn

(SL2) [adq
f gi ,ad r

f gj ] = 0, for 1 ≤ i , j ≤ m, 0 ≤ q, r ≤ n

(SL3) the vector fields f , g1,. . . ,gm are complete
(equivalently, adq

f gi , 1 ≤ i ≤ m, 0 ≤ q ≤ n− 1 are complete).

(SL4) X is simply connected

If we drop (SL4), then Σ is globally S-equivalent to a controllable
linear system Λ on Tk ×Rn−k .
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State-space equivalence and linearization

Constructing linearizing coordinates

Assume, for simplicity, the scalar-input case m = 1. In order to find the
linearizing diffeomorphism z = Φ(x) solve the system of n 1st order
PDE’s:

(S)
∂Φ
∂x

A(x) = Id ,

where A(x) = (A1(x), . . . ,An(x)) and Aq(x) = adq−1
f g(x), for

1 ≤ q ≤ n.
(SL2) form the integrability conditions for (S) and assure the existence
of solutions.
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State-space equivalence and linearization

Do not confuse S-linearization with linear approximation
Assume F (x0,u0) = 0. The linear approximation of ẋ = F (x ,u) is

ż = Az + Bv + higher order terms
ż = Az + Bv ,

where A = ∂F
∂x (x0,u0) and B = ∂F

∂u (x0,u0)

So we neglect (erase) higher order terms
In S-linearization higher order terms are compensated via the
diffeomorphism Φ (no terms are neglected)
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State-space equivalence and linearization

Consider the pendulum

θ

l

m

g

The states are (x1, x2) = (θ, θ̇) and the control is the torque u
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State-space equivalence and linearization

The equations are

ẋ1 = x2
ẋ2 = −g

l sin x1 +
1

ml2 u.

We have

f =
(

x2
−g

l sin x1

)
, g =

(
0
1

ml2

)
, adf g = −

( 1
ml2
0

)
yielding

[g,adf g] = 0 but [adf g,ad2
f g] 6= 0

which implies that the pendulum is not S-linearizable
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State-space equivalence and linearization

But put u = ml2(g
l sin x1 + v)

we get the linear controllable system (in the Brunovsky form)

ẋ1 = x2
ẋ2 = v .

therefore there are systems that become linear after applying a
(nonlinear) transformation in the control space
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Feedback equivalence and linearization

The systems

Ξ : ẋ = F (x ,u), x ∈ X , u ∈ U and

Ξ̃ : ż = F̃ (z, v), z ∈ Z , v ∈ V not the same control

are feedback equivalent, shortly F-equivalent, if there exists

a diffeomorphism z = Φ(x) and

a control transformation v = Ψ(x ,u), invertible with respect to u

such that

∂Φ
∂x
· F (x ,u) = F̃ (Φ(x),Ψ(x ,u)).

Why is F-equivalence interesting?
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Feedback equivalence and linearization

Does F-equivalence preserve trajectories?

X

x0

γ(t)

Z

φ(γ(t)) = γ̃(t)

φ

Is the image of a trajectory, via the diffeomorphism z = Φ(x), a
trajectory?
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Feedback equivalence and linearization

Yes, the image of a trajectory of Ξ, for a control u(t), is a trajectory of Ξ̃
corresponding to

v(t) = Ψ(x(t),u(t))

X

x0

x(t,x0,u)

Z

z0

z(t,z0,v)

 ϕ
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Feedback equivalence and linearization

Therefore, F-equivalence preserves the set of all trajectories (the totality
of trajectories)

X

x0

Z

z0

 ϕ

F-equivalence is thus interesting for all problems that depend on the set
of all trajectories (and not on a particular parametrization with respect to
control). Examples of such problems are: point-to-point controllability,
trajectory tracking, stabilization.
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Feedback equivalence and linearization

Problem 2 When is Ξ F-equivalent to a linear system, i.e., when do
there exist z = Φ(x) and Ψ(x ,u) transforming Ξ into a linear system of
the form

ż = Az +
m

∑
i=1

uibi , x ∈ Rn?
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Feedback equivalence and linearization

For control affine systems

ẋ = f (x) +
m

∑
i=1

uigi(x), x ∈ X

we apply z = Φ(x) and control-affine feedback transformation

u = α(x) + β(x)v ,

where the matrix β is invertible.

ẋ = f + gu
u

x

α + βv
v
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Feedback equivalence and linearization

Let D = span {f1, . . . , fk} be a distribution spanned by vector fields
D is involutive if [fi , fj ] ∈ D, for any 1 ≤ i , j ≤ k
Put Dj = span {adq

f gi ; 1 ≤ i ≤ m, 0 ≤ q ≤ j − 1}

Theorem
Σ is, locally around x0, F-equivalent to a controllable linear system Λ if
and only if

(FL1) dim Dj(x)=const.

(FL2) dim Dn(x) = n

(FL3) Dj are involutive, for 0 ≤ j ≤ n

(FL2) guarantees controllability of Λ
(FL1)-(FL3) are verifiable in terms of f and gi ’s using differentiation
and algebraic operations only (no need to solve PDE’s)
Geometry: D1 ⊂ · · · ⊂ Dn−1 ⊂ Dn = TX .
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Feedback equivalence and linearization

Assume, for simplicity m = 1. Involutivity of Dn−1 (of dimension n− 1 at
any x) is equivalent to the existence of a family of hypersurfaces
Hc = {x ∈ X : h(x) = c} tangent to Dn−1

h=c

h=c'

h=c''
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Feedback equivalence and linearization

Constructing linearizing transformations

The normal vector to the hypersurface Hc has to be annihilated by
g, . . . ,adn−2

f g spanning Dn−1. So solve

(S)
∂h
∂x

A(x) = 0,where A(x) = (g(x), . . . ,adn−2
f g(x))

any solution h, dh 6= 0 of (S) gives linearizing coordinates

zi = Li−1
f h, for 1 ≤ i ≤ n

and linearizing feedback

v = Ln
f h + uLgLn−1

f h
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Orbital feedback equivalence and linearization
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Orbital feedback equivalence and linearization

For the system

Ξ :
dx
dt

= ẋ = F (x ,u), x ∈ X , u ∈ U

define a new time scale τ such that

dt
dτ

= γ(x(t)),

where γ is a nonvanishing function on X . With respect to the new time
scale τ

dx
dτ

=
dx
dt

dt
dτ

= γ(x)F (x ,u).

We change the velocity along the trajectories.
29/ 75



Linearization of nonlinear control systems: state-space, feedback, orbital, and dynamic

Orbital feedback equivalence and linearization

The systems
Ξ : ẋ = F (x ,u), x ∈ X , u ∈ U and

Ξ̃ : ż = F̃ (z, v), z ∈ Z , v ∈ V not the same control

are orbitally feedback equivalent, shortly OF-equivalent, if there exists
a diffeomorphism z = Φ(x) and
a control transformation v = Ψ(x ,u), invertible with respect to u
a nonvanishing function γ on X

such that
∂Φ
∂x
· γ(x)F (x ,u) = F̃ (Φ(x),Ψ(x ,u)).

Why is OF-equivalence interesting?
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Orbital feedback equivalence and linearization

Does OF-equivalence preserve trajectories?

X

x0

γ(t)

Z

φ(γ(t)) = γ̃(t)

φ

Is the image of a trajectory, via the diffeomorphism z = Φ(x), a
trajectory?
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Orbital feedback equivalence and linearization

Yes, the image of a trajectory of Ξ, for a control u(t), is a trajectory of Ξ̃
corresponding to

v(t) = Ψ(x(t),u(t))

and parameterized by the new time τ =
∫ t

0
ds

γ(x(s))

X

x0

x(t,x0,u)

Z

z0

z(t,z0,v)

 ϕ
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Orbital feedback equivalence and linearization

Therefore, OF-equivalence preserves the set of all trajectories (the
totality of trajectories) as unparameterized curves

X

x0

Z

z0

 ϕ

OF-equivalence is thus interesting for all problems that depend on the
set of all trajectories and not on a particular parametrization with
respect to control and time.
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Orbital feedback equivalence and linearization

For Σ : ẋ = f (x) + ∑m
i=1 uigi(x), define

the distributions

G = span {g1, . . . ,gm},
G j

f = span {f ,gi , adf gi , . . . , adj−1
f gi , 1 ≤ i ≤ m}, for 1 ≤ j ≤ n + 1.

the differential forms

ωj(h) = 0, for any h ∈ Gn
f ,

ωj(adn
f gi) = δj

i

and the functions:

Tk ,l
i,j = ωk ([adn−1

f gi , adl
f gj ])

Attach to Σ the distribution

D = span{f ,g1, . . . ,gm} = span{f}+ G.
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Orbital feedback equivalence and linearization

Theorem (ShunJie Li-Respondek)
The following conditions are equivalent:

Σ is, locally around x0, OF-equivalent to a controllable linear
system Λ

Σ satisfies
(OFL1) dim Gn+1

f (x) = (n + 1)m + 1;
(OFL2) [G j

f ,G
j
f ] ⊂ G

j+1
f , for 1 ≤ j ≤ n;

(OFL3) [G,G2
f ] ⊂ G

2
f ;

(OFL4) The functions T k ,l
i,j equal zero or one.

Σ satisfies
(OFL1)’ C(D(1)) = G, where C = C(D(1)) is the characteristic distribution of

D(1) = [D,D], i.e., [C,D(1)] ⊂ D(1).
(OFL2)’ DΣ is locally equivalent to the Jn(1,m)contact system.
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Orbital feedback equivalence and linearization

(OFL1)-(OFL4) are generalizations of involutivity conditions for
feedback linearization
(OFL1)-(OFL4) are verifiable in terms of f and gi ’s using
differentiation and algebraic operations only (no need to solve
PDE’s)
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Linearization via dynamic feedback and flatness

Example: Unicycle

The unicycle on the plane subject to a
nonholonomic constraint: the wheel is
not allowed to slide.

(x1, x2) ∈ R2: the position of the
mid-point of the unicycle;

θ ∈ R: the angle between the
wheel and x1-axis;

(u1,u2) ∈ R2: controls allowing
to move (forward and backward)
the unicycle and to turn. Figure: The unicycle system
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Linearization via dynamic feedback and flatness

 ẋ1
ẋ2
θ̇

 = u1

 cos θ
sin θ

0

+ u2

 0
0
1

 = u1g1 + ug2.

We have

[g1,g2] = Dg2 · g1 −Dg1 · g2 =

 sin θ
− cos θ

0

 /∈ span {g1,g2}.

The distribution spanned by the control vector fields

D = span {g1,g2}

is not involutive. Thus the unicycle is not static feedback linearizable, i.e., not
F -equivalent to the controllable linear system ż = Az + Bv (even, locally on
X ⊂ R3). But...
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Linearization via dynamic feedback and flatness

Consider the control system (precom-
pensator)

ẏ = v1

and link it to the unicycle via

u1 = y
u2 = v2

v1 u1

v2=u2

Unicycle

Figure: The precompensated unicycle

We control the derivative u̇1 = v1 of the first control (the second control
u2 = v2 remaining the same). ⇒ Dynamic precompensation (preintegration)

The precomompensated unicycle becomes F-linearizable (the
linearizability distributions are involutive
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Linearization via dynamic feedback and flatness

The precomompensated unicycle becomes
ẋ1
ẋ2
θ̇
ẏ

 =


y cos θ
y sin θ

v2
v1


applying the coordinates change

z1
z2
z3
z4

 =


x1
x2

y cos θ
y sin θ


and the control transformation(

ṽ1
ṽ2

)
=

(
cos θ −y sin θ
sin θ y cos θ

)(
v1
v2

)
we get the linear controllable system

ż1 = z3 ż2 = z4
ż3 = ṽ1 ż4 = ṽ2,
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Linearization via dynamic feedback and flatness

Remarks:

It is a dynamic feedback since v1 = u̇1.

The feedback law is invertible for y = u1 6= 0.

The unicycle has the same trajectories (for u1 6= 0) as a linear system.

Knowing z1(t) = x1(t) and z2(t) = x2(t) we can calculate all states and
control via differentiation only.

The dimension of the state space is not preserved.

Questions:

Dynamic feedback is involved: what is a dynamic invertible feedback?

How to formalize equivalence via such a transformation?
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4 Definitions of flatness
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4 Definitions of flatness

Infinite preintegrations

Consider also its infinite prolongation

Ξ∞ :



ẋ = F (x ,u0)
u̇0 = u1

...
u̇l = ul+1

...

The system Ξ∞ is a dynamical system (differential equation and not
a control system) evolving on X ×U∞ = X ×U ×Rm ×Rm × · · · .
A function on X ×U∞ is C∞-smooth if, locally, it depends on a finite
number of variables (it is actually a function on X ×U l ) and is
C∞-smooth with respect to those variables.
Denote the right hand side of Ξ∞ by F ∞ and put
u∞ = (u0,u1,u2, · · ·).
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4 Definitions of flatness

Dynamic equivalence

Definition

Two control systems Ξ and Ξ̃ are D∞-equivalent if there exists a
diffeomorphism

χ : X ×U∞ → X̃ ×U∞

such that
Dχ(x ,u∞) · F ∞(x ,u∞) = F̃ ∞(χ(x ,u∞)).

Definition (Flatness, first version)
A nonlinear control system Ξ is flat if it is D∞-equivalent to a linear
controllable system Λ.

• Analogous to S-equivalence of ODE’s (dynamical systems):

Dφ(x) · f (x) = f̃ (φ(x).

• D∞-equiv. is elegant and compact but involves infinite prolongations44/ 75
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4 Definitions of flatness

Two systems Ξ and Ξ̃ are dynamically equivalent, shortly D-equivalent,
if there exist maps Φ and Ψ mapping trajectories onto trajectories and
mutually inverse on trajectories. How to formalize?

X

x0

Z

z0

 ϕ

Ψ
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4 Definitions of flatness

Two control systems

Ξ : ẋ = F (x ,u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

and
Ξ̃ : ˙̃x = F̃ (x̃ , ũ), x̃ ∈ X̃ ⊂ Rñ, u ∈ Ũ ⊂ Rm

are D-equivalent if there exist two integers l and l̃ and two pairs of maps

x̃ = φ(x ,u, u̇, . . . ,u(l))

ũ = ψ(x ,u, u̇, . . . ,u(l))

and (with a different numbers of derivatives)

x = φ̃(x̃ , ũ, ˙̃u, . . . , ũ(l̃))

u = ψ̃(x̃ , ũ, ˙̃u, . . . , ũ(l̃))

that map trajectories into trajectories and are mutually inverse on
trajectories. The new states and controls depend on the old states, old
controls and their derivatives and vice-versa.
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4 Definitions of flatness

Dynamic precompensation

Consider the control system

Ξ : ẋ = F (x ,u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

together with the precompensation

Π :
{

ẏ = G(x , y , v), y ∈ Y ⊂ Rl , v ∈ V ⊂ Rm

u = ψ(x , y , v)

The precompensated system becomes

Ξ ◦Π :
{

ẋ = F (x ,ψ(x , y , v))
ẏ = G(x , y , v).
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4 Definitions of flatness

Dynamic endogeneous invertible feedback

The dynamic feedback defining the precompensation is endogeneous if

y = µ(x ,u, . . . ,u(l)),

for a smooth function µ, that is, the state of the precompensator is a
function of the original state, original control and its derivatives. The
dynamic feedback is said invertible if the precompensated system,
together with the output

u = ψ(x , y , v)

is input-output invertible, that is, if we can express

v = ν̄(x , y ,u, . . . ,u(l)),

which, in the case of an endogenous feedback, yields

v = ν(x ,u, . . . ,u(l)).
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4 Definitions of flatness

Theorem (FLMR, Jakubczyk, Pomet)

Given two control systems Ξ and Ξ̃, the following conditions are
equivalent:
(i) The systems are D∞-equivalent;

(ii) The systems are D-equivalent;
(iii) There exist two endogeneous and invertible precompensators Π

for Ξ and Π̃ for Ξ̃ such that the precomposed systems Ξ ◦Π and
Ξ̃ ◦ Π̃ are S-equivalent.

Definition (Flatness, second version)
A nonlinear control system Ξ is flat if it is D-equivalent to a linear
controllable system Λ.
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4 Definitions of flatness

Example

D-equivalence does not preserve the dimension of the state space. Two
control systems

ẋ1 = x2
ẋ2 = u

and
˙̃x1 = ũ

are D-equivalent. Indeed, the transformations

x̃1 = x1
ũ = x2

and
x1 = x̃1
x2 = ũ
u = ˙̃u

map trajectories into trajectories and are are mutually inverse on
trajectories.
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4 Definitions of flatness

Any linear controllable system is F -equivalent to the Brunovsky
canonical form:

ż11 = z12 żm1 = zm2
... · · ·

...
ż1ρ1−1 = z1ρ1 żmρm−1 = zmρm

ż1ρ1 = v1 żmρm = vm,

and thus D-equivalent to the trivial system consisting of m functions
z11, . . . , zm1 with no dynamics. The trajectories of that system are
arbitrary evolutions of z11(t), . . . , zm1(t) subject to no constraints, so the
variables are completely free.

Definition (Flatness, third version)
A nonlinear control system Ξ is flat if it is D-equivalent to a trivial system
with no dynamics.
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4 Definitions of flatness

Solving trajectory generation problem via flatness
Using flatness we easily solve the constructive controllability problem: given x0 and xT ,
find a trajectory joining them. Assume that Ξ is D-equivalent to a controllable linear
system Λ (single-input, for simplicity), which is in Brunovsky canonical form

ż1 = z2

...

żn−1 = zn−2

żn = v

In order to go from z0 = φ(x0) into zT = φ(xT ), choose a Cn-function ϕ(t), t ∈ [0,T ],
such that

ϕ(0) = z10
ϕ̇(0) = z20

...
ϕ(n−1)(0) = zn0

ϕ(T ) = z1T
ϕ̇(T ) = z2T

...
ϕ(n−1)(T ) = znT

Then the control v(t) = ϕ(n)(t) steers the system from z0 into zT and the control u(t)
for the original system Ξ can be computed with the help of v(t) and its derivatives (an
invertible transformation!). 52/ 75
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4 Definitions of flatness

Flatness: the most popular definition

If Ξ̃ is a system with no dynamics and m free variables are denoted
ũ1, . . . , ũm, then a direct application of the third definition
(D-equivalence of Ξ and Ξ̃), requires the existence of a map

ũ = ψ(x ,u, . . . ,u(l))

such that

x = φ̃(ũ, . . . , ũ(l̃))

u = ψ̃(ũ, . . . , ũ(l̃))

since x̃ is not present. Renaming the variables ũi by ϕi as well as φ̃ and
ψ̃ by γ and δ, respectively, gives
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4 Definitions of flatness

Flatness: the most popular definition

Ξ : ẋ = F (x ,u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm.

is flat at (x0,u0, u̇0, . . . ,u(p)
0 ) ∈ X ×U ×Rmp, for p ≥ −1, if there exists m

smooth functions ϕi = ϕi (x ,u, u̇, . . . ,u(p)), called flat outputs, such that

x = γ(ϕ, ϕ̇, . . . , ϕ(s))

u = δ(ϕ, ϕ̇, . . . , ϕ(s))

where ϕ = (ϕ1, . . . , ϕm).

• Remark: If ϕi = ϕi (x), for 1 ≤ i ≤ m, Ξ is x-flat.
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4 Definitions of flatness

To memorize flatness

Consider the mechanical control system

q̇ = v

v̇ =
u
m

To know all trajectories (q(t), v(t)) (configurations and velocities),
we apply all control forces u(t) and integrate

u(t)⇒ 1
m

∫
u(t)dt = v(t)⇒

∫
v(t)dt = q(t)

But we can look all configuration trajectories q(t) and differentiate

q(t)⇒ q̇(t) = v(t)⇒ v̇(t) = q̈(t) = u(t)

so q is a flat output
To integrate the control system we do not have to integrate, we
differentiate only
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Flat systems of minimal differential weight

Summary

1 Introduction

2 State-space equivalence and linearization

3 Feedback equivalence and linearization

4 Orbital feedback equivalence and linearization

5 Linearization via dynamic feedback and flatness

6 4 Definitions of flatness

7 Flat systems of minimal differential weight

8 Conclusions
56/ 75



Linearization of nonlinear control systems: state-space, feedback, orbital, and dynamic

Flat systems of minimal differential weight

Linear systems

Theorem
(i) A linear control system Λ : ẋ = Ax + Bu is flat if and only if it is

controllable.
(ii) Flat outputs are ϕ = z11, . . . , ϕm = zm1, the top variables of the

Brunovsky canonical form.

For m = 1, define c 6= 0 by

cb = cAb = · · · = cAn−2b = 0.

Then h = cx is a flat output
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Flat systems of minimal differential weight

Nonlinear single-input systems, m = 1

Theorem
The following conditions are equivalent for a single-input system Σ
(i) Σ is flat;

(ii) Σ is F-linearizable
(iii) Σ satisfies

(FL1) dim Dj(x)=const.

(FL2) dim Dn(x) = n

(FL3) Dj are involutive, for 0 ≤ j ≤ n (Dn−1 is involutive)
Moreover, a flat output is any function ϕ satisfying

(S)
∂ϕ

∂x
A(x) = 0,where L(x) = (g(x), . . . ,adn−2

f g(x))
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Flat systems of minimal differential weight

F -linearizable systems

For multi-input systems m ≥ 2, F -linearizability is sufficient for
flatness but not necessary.
Moreover, flat ouputs are the top variables of the Brunovsky
canonical form.
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Flat systems of minimal differential weight

Minimal flat outputs and differential weight

For any flat output ϕ of Ξ there exist integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

We can choose (s1, . . . , sm) such that if for any other m-tuple (s̃1, . . . , s̃m)

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i , for 1 ≤ i ≤ m.

• Differential weight of ϕ = ∑m
i=1(si + 1) = ∑m

i=1 si + m,

i.e., minimal number of derivatives of ϕi needed to express x and u.

• ϕ: minimal flat output if its differential weight is the lowest among all flat
outputs of Ξ.

• Differential weight of Ξ: the differential weight of a minimal flat output.
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Flat systems of minimal differential weight

Static feedback linearizable (F-linearizable) systems

F-linearizable systems are the only flat systems of differential weight n + m.

• The representation of x and u uses the minimal possible, which is n + m,
number of time-derivatives of ϕi .

• For any flat system, that is not F-linearizable, the differential weight
# is bigger than n + m.
# measures the smallest possible dimension of a precompensator

linearizing dynamically the system.

• In general, a flat system is not F-linearizable, except the single-input case
where flatness reduces to F-linearization.

• The simplest flat systems that are not F-linearizable are systems that
become F-linearizable via one-dimensional precompensator⇒ differential
weight n + m + 1.
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Flat systems of minimal differential weight

Our goal

• To give a geometric characterization of control-affine systems

Σ : ẋ = f (x) +
m

∑
i=1

uigi (x),

that become F-linearizable after a one-fold prolongation of a suitably chosen
control (the simplest dynamic feedback).

# verifiable conditions (like involutivity conditions).
# describe and understand the geometry of this class of systems.
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Flat systems of minimal differential weight

Main theorem (Nicolau - Respondek) m=2

Assume k ≥ 1 and D̄k 6= TX. Σ is x-flat at x0 ∈ X, of differential weight n + 3,
if and only if
(A1) rk D̄k = 2k + 3;

(A2) rk (D̄k + [f ,Dk ]) = 2k + 4⇒ ∃ gc ∈ D0 such that adk+1
f gc ∈ D̄k ;

(A3) Bi , for i ≥ k, is involutive, where Bk = Dk−1 + span {adk
f gc} and

Bi+1 = Bi + [f ,Bi ];

(A4) There exists ρ such that Bρ = TX.

Comparison with the F-linearizable case

• Geometry of flat systems of differential weight n + 3

D0 ⊂
2
· · · ⊂

2
Dk−1 ⊂

2
Dk ⊂

1
D̄k

1∪ =

Bk ⊂
2
Bk+1 ⊂

2
· · · ⊂

2
Bµ ⊂

1
Bµ+1 ⊂

1
· · · ⊂

1
Bρ = TX

• Geometry of F-linearizable systems
D0 ⊂ D1 ⊂ · · · ⊂ Dn−1 = TX 63/ 75



Linearization of nonlinear control systems: state-space, feedback, orbital, and dynamic

Flat systems of minimal differential weight

Remarks

• General result (the particular cases k = 0 and D̄k = TX have slightly
different geometry).

• Enables us to define, up to a multiplicative function, the control to be
prolonged:

gc = β1g1 + β2g2 ∈ D0 ⇒ v1 =
d
dt

(β2u1 − β1u2) =
d
dt

ũ1

• All conditions are verifiable, verification involves derivations and algebraic
operations only (without solving PDE’S).
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Flat systems of minimal differential weight

Calculating flat outputs

• µ: the largest integer such that corank (Bµ−1 ⊂ Bµ) = 2.

• ρ: the smallest integer such that Bρ = TX .

Proposition (Nicolau - Respondek)

(i) Assume D̄k 6= TX or D̄k = TX and [Dk−1,Dk ] 6⊂ Dk .
(ϕ1, ϕ2) is a minimal x-flat output at x0 if and only if

d ϕ1 ⊥ Bρ−1 d ϕ2 ⊥ Bµ−1,

d ϕ2 ∧ d ϕ1 ∧ dLf ϕ1 ∧ · · · ∧ dLρ−µ
f ϕ1(x0) 6= 0.

The pair (ϕ1, ϕ2) is unique, up to a diffeomorphism.

(ii) Assume D̄k = TX and [Dk−1,Dk ] ⊂ Dk .
(ϕ1, ϕ2) is a minimal x-flat output at x0 if and only if (d ϕ1 ∧ d ϕ2)(x0) 6= 0
and the involutive distribution L = (span {d ϕ1,d ϕ2})⊥ satisfies

Dk−1 ⊂ L ⊂ Dk .
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Flat systems of minimal differential weight

Remarks for the case (ii)D̄k = TM and [Dk−1,Dk ] ⊂ Dk

• For any function ϕ1, satisfying

d ϕ1 ⊥ Dk−1,

there exists ϕ2 such that the pair (ϕ1, ϕ2) is a minimal x-flat output and the
choice of ϕ2 is unique, up to a diffeomorphism.

• There is as many flat outputs as functions of three variables (since Dk−1 is
involutive and of corank 3).
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Flat systems of minimal differential weight

Induction motor - first model with θ, the mechanical position



θ̇ = ω
ω̇ = µψd iq − τL

J
ψ̇d = −ηψd + ηMid
ρ̇ = npω +

ηMiq
ψd

˙id = −γid +
ηMψd
σLRLS

+ npωiq +
ηMi2q
ψd

+ ud
σLS

˙iq = −γiq − Mnpωψd
σLRLS

− npωid −
ηMid iq

ψd
+

uq
σLS

• ud , uq are the inputs (the stator voltages);

• id and iq are the stator currents;

• ψd and ρ are two well-chosen functions of the rotor fluxes;

• ω is the rotor speed;

• θ is the mechanical position.

The system is flat of differential weight 9 = 6 + 2 + 1 = n + m + 1.

k = 1 and D̄1 6= TX
Prop.2(i)
=⇒ (ϕ1, ϕ2) = (ω, ρ) and the pair (ϕ1, ϕ2) is unique.
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Flat systems of minimal differential weight

Induction motor - second model without θ, the mechanical position

ω̇ = µψd iq − τL
J

ψ̇d = −ηψd + ηMid
ρ̇ = npω +

ηMiq
ψd

˙id = −γid + ηMψd
σLRLS

+ npωiq +
ηMi2q
ψd

+ ud
σLS

˙iq = −γiq − Mnpωψd
σLRLS

− npωid −
ηMid iq

ψd
+

uq
σLS

The system is flat of differential weight 8 = 5 + 2 + 1 = n + m + 1.

k = 1, D̄1 = TX and [D0,D1] ⊂ D1 Prop.2(ii)
=⇒ many flat outputs

(the choice being parameterized by a function of three well defined variables)

if ϕ1 = ω, then ϕ2 = ρ;

if ϕ1 = ψd , then ϕ2 = ηM
µψ2

d
ω− ρ;

if ϕ1 = ρ + ηM
µψd

, then ϕ2 = ψd −ω.
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Flat systems of minimal differential weight

Main theorem (Nicolau - Respondek) m ≥ 3

Assume k ≥ 1 and cork (Dk ⊂ [Dk ,Dk ]) ≥ 2. A control system Σ is x-flat,
with the differential weight n + m + 1, if and only if it satisfies around:

(A1) There exists an involutive subdistribution Hk ⊂ Dk , of corank one;

(A2) Hi , for i ≥ k + 1, is involutive, where Hi = Hi−1 + [f ,Hi−1];

(A3) There exists ρ such that Hρ = TX.

Comparison with the F-linearizable case

• Geometry of flat systems of differential weight n + m + 1

D0 ⊂ · · · ⊂ Dk−1 ⊂ Dk ⊂ D̄k

1∪ ∩
Hk ⊂ Hk+1 ⊂ · · · ⊂ Hρ = TX

• Geometry of F-linearizable systems

D0 ⊂ D1 ⊂ · · · ⊂ Dk−1 ⊂ Dk ⊂ Dk+1 ⊂ · · · ⊂ Dn−1 = TX
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Flat systems of minimal differential weight

Remarks

1 General result (the particular cases k = 0 and cork (Dk ⊂ [Dk ,Dk ]) = 1
have slightly different geometry).

# If k = 0: similar result, but in the chain of subdistributions

H0 ⊂ D0 ⊂ H1 ⊂ H2 ⊂ · · ·

the distribution H1 is not defined as Hk+1 = Hk + [f ,Hk ], but as

H1 = D0 + [D0,D0] + [f ,H0]

and satisfies an additional nonsingularity condition⇒ singularity in the
control space.
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Flat systems of minimal differential weight

Remarks

2 In order to verify conditions (A1)-(A3): check the existence of the
involutive subdistribution Hk of corank one in Dk .

# Pasillas-Lépine and Respondek (2001): checkable conditions,
based on Bryant (Ph.D. thesis, 1979), to verify the existence of an
involutive subdistribution of corank one and an explicit way to construct it.

# If cork (Dk ⊂ [Dk ,Dk ]) ≥ 2: the subdistribution Hk is unique.

# If cork (Dk ⊂ [Dk ,Dk ]) = 1: the subdistribution Hk is no longer
unique, but we can uniquely identify it by another argument.

3 All conditions are verifiable, verification involves derivations and algebraic
operations only (without solving PDE’S).

4 Explicit construction of Hk enables us to define the control to be
prolonged (given up to a multiplicative function).
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Conclusions

What do we know about flatness?

Via flatness we can solve the constructive controllability problem
Although very useful, flatness is a highly non generic property: a
slight perturbation of a flat system yields a non flat one (Tchoń)
We know that a few classes of control systems are flat: accessible
systems with n− 1 controls, accessible control-linear systems with
n− 1 and n− 2 controls
We know to characterize flat control systems of special forms:
feedback linearizable systems, control-linear systems with 2
controls (chained form), m-chained form
or of very special dimensions: 3 states and 2 controls (nonlinear)
and 4 states and 2 controls (affine)
We know to characterize flat systems of differential weight
n + m + 1
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Conclusions

What don’t we know about flatness?

We do not know to characterize flatness in general.

We do not know whether the problem is finite or infinite dimensional, that is, we do
not know if there is a bound on the number of derivatives of controls

We do not even know how to check flatness for control-affine systems with 2
controls nor for control-linear systems with 3 controls

We know that the problem is difficult: Ellie Cartan (1914) has introduced the
notion of absolute equivalence of underdetermined differential equations. His
absolutely trivial equations are just flat systems. He proved that systems with 2
controls are flat (absolutely trivial) if and only if they are equivalent to the chained
form (Goursat normal form). Cartan claimed that the general problem is difficult.

Non flat systems exist! The first example is due David Hilbert (1912) who had also
been working on absolute equivalence (integrating differential equations without
integration). His example is, geometrically, the same as the unicycle towing a
trailer but with a hook that is not at the mid-point.
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Conclusions

Conclusions

1 We presented various definitions of the notion of flatness
2 We provided geometric tools convenient (needed) to study flatness
3 We presented geometric conditions for characterizing flatness

(verifiable via differentiation and algebraic operations only) for a few
classes of systems

4 Do not confuse linearization (static, dynamic) with linear
approximation

5 Whenever we can linearize the system (statically, dynamically), the
control problems, we are dealing with, get substantially simplified

6 Even if we do not apply linearizing transformations or the system is
not linearizable (flat), our knowledge about the system is deeper:
we identify intrinsic nonlinearities that cannot be removed via
feedback (static, dynamic)
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