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A	geometric	approach	to	Abel	equations	and	its	applications	

	
The	 recently	 developed	 theory	 of	 quasi-Lie	 systems	 will	 be	 used	 as	 a	 geometric	
approach	to	study	Abel	 first	order	differential	equation	of	the	first	kind.	 In	particular	
we	will	 characterize	 some	 particular	 examples	 of	 integrable	 Abel	 equations.	 A	 basic	
ingredient	 is	 the	 structure	 preserving	 group	 and	 the	 associated	 invariants	
characterizing	the	orbits	of	the	action	of	the	group	of	curves	in	the	affine	group	on	the	
set	 of	 Abel	 first	 order	 differential	 equations	 of	 the	 first	 kind.	 Higher	 order	 Abel	
equations	will	be	discussed	and	inverse	problem	of	the	Lagrangian	dynamics	is	studied	
in	 the	 particular	 case	 of	 the	 second-order	 equations	 and	 the	 existence	 of	 two	
alternative	Lagrangian	formulations	is	proved,	both	Lagrangians	being	of	a	non-natural	
class.	 The	 study	 is	 carried	 out	 by	 means	 of	 the	 Darboux	 polynomials	 and	 Jacobi	
multipliers.	
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