Banach lattices in convex geometry

Pedro Tradacete (UC3M & ICMAT)

Joint work with I. Villanueva (UCM)

2nd Brazilian Workshop in Geometry of Banach spaces, Ubatuba, 13 August 2018

Valuations

Given a class of sets S, a valuation on S is a mapping $V : S \longrightarrow \mathbb{R}$ such that for $A, B \in S$,

$$V(A) + V(B) = V(A \cup B) + V(A \cap B),$$

whenever $A \cup B$, $A \cap B \in S$.

Valuations are an important tool in convex geometry.

Hadwiger's theorem

 \mathcal{K}^n : convex bodies in \mathbb{R}^n , with Hausdorff metric. **Quermassintegrals:** $W_j : \mathcal{K}^n \to \mathbb{R}$ given by Steiner's formula, for $K \in \mathcal{K}^n$ and $t \ge 0$

$$Vol_n(K + tB) = \sum_{j=0}^n \binom{n}{j} W_j(K) t^j.$$

 W_i is an (n - j)-homogenous valuation invariant under rigid motions.

Theorem

If $V : \mathcal{K}^n \longrightarrow \mathbb{R}$ is a continuous valuation invariant under rigid motions, then there exist $(\lambda_j)_{i=0}^n$ such that for every $K \in \mathcal{K}^n$

$$V(K) = \sum_{j=0}^{n} \lambda_j W_j(K).$$

Star sets

 $L \subset \mathbb{R}^n$ is a star set if $x \in L \Rightarrow tx \in L$ for every $t \in [0, 1]$

Given a star set $L \subset \mathbb{R}^n$, we define its radial function $\rho_L : S^{n-1} \to \mathbb{R}_+$ by

$$\rho_L(t) = \sup\{c \ge 0 : ct \in L\},\$$

for $t \in S^{n-1}$.

Star sets

A star set *L* is called a star body if ρ_L is continuous.

Note, for every positive continuous function $f : S^{n-1} \longrightarrow \mathbb{R}^+ = [0, \infty)$ there exists a star body L_f such that $f = \rho_{L_f}$.

A star set *L* is a bounded Borel star set if ρ_L is a bounded Borel function.

 $S_0^n :=$ the set of *n*-dimensional star bodies.

 $S_b^n :=$ the set of *n*-dimensional bounded Borel star sets.

Star sets

Given $K, L \in S_0^n$ (respectively S_b^n), both $K \cup L$ and $K \cap L$ are in S_0^n (respectively S_b^n), and it is easy to see that

$$\rho_{K\cup L} = \rho_K \vee \rho_L, \qquad \rho_{K\cap L} = \rho_K \wedge \rho_L.$$

Rotationally invariant valuations

Let $\theta : \mathbb{R}^+ \longrightarrow \mathbb{R}$ be a continuous function. Then the application $V : S_0^n \longrightarrow \mathbb{R}$ given by

$$V(K) = \int_{S^{n-1}} \theta(\rho_K(t)) dm(t)$$

is a radial continuous rotationally invariant valuation (where m is Lebesgue's measure on S^{n-1}).

Theorem (Villanueva 2016)

If $V : S_0^n \longrightarrow \mathbb{R}_+$ is a positive, rotationally invariant, radial continuous valuation on the n-dimensional star bodies S_0^n , with $V(\{0\}) = 0$, then there exists a continuous function $\theta : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ with $\theta(0) = 0$, such that for $K \in S_0^n$,

$$V(K) = \int_{S^{n-1}} \theta(\rho_K(t)) dm(t).$$

Valuations on Banach lattices

A valuation on a Banach lattice *E* is a mapping $V : E_+ \to \mathbb{R}$ such that for any $f, g \in E$

$$V(f) + V(g) = V(f \lor g) + V(f \land g).$$

A valuation $V : E_+ \to \mathbb{R}$ is continuous if $V(f_n) \to V(f)$ whenever $||f_n - f|| \to 0$.

[Valuations on star bodies correspond to valuations on $C(S^{n-1})$.] Properties that can be of interest:

- boundedness of a valuation
- e decomposition of a valuation
- integral representations
- uniform continuity on certain sets

Boundedness

Theorem

Every continuous valuation $V:E\to\mathbb{R}$ is bounded on order bounded sets.

Theorem

Let E be a Banach lattice of measurable functions over a σ -finite measure space (Ω, Σ, μ) with finitely many atoms. If E satisfies a lower q-estimate for some $q < \infty$, then every valuation on E which is continuous at 0 is bounded on norm bounded sets.

Recall a Banach lattice *E* satisfies a lower *q*-estimate if $\exists M > 0$ such that for every choice of pairwise disjoint $(x_i)_{i=1}^n$

$$\Big(\sum_{i=1}^n \|x_i\|^q\Big)^{\frac{1}{q}} \leq M\Big\|\sum_{i=1}^n x_i\Big\|.$$

Jordan-like decomposition

Let (K, d) be a compact metric space.

Definition

Given a set $A \subset K$, and $\omega > 0$, the ω -rim around A is the set

$$R(\mathbf{A}, \omega) = \{t \in \mathbf{K} : \mathbf{0} < \mathbf{d}(t, \mathbf{A}) < \omega\}.$$

Lemma

Let $V : C(K)_+ \to \mathbb{R}$ be a continuous valuation. Let $A \subset K$ be any Borel set and $\lambda \in \mathbb{R}^+$.

$$\lim_{\omega\to 0}\sup\{|V(f)|: f\leq \lambda\chi_{R(A,\omega)}\}=0.$$

Jordan-like decomposition

Theorem

Let $V : E_+ \longrightarrow \mathbb{R}$ be a radial continuous valuation with V(0) = 0. Then, there exist continuous valuations $V^+, V^- : E_+ \longrightarrow \mathbb{R}_+$ with $V^+(0) = V^-(0) = 0$ and

$$V = V^+ - V^-$$

Sketch of proof

Define $V^+(f) = \sup\{V(g) : 0 \le g \le f\}.$ Enough to show:

•
$$V^+(f_1 \vee f_2) + V^+(f_1 \wedge f_2) \stackrel{(\leq)}{=} V^+(f_1) + V^+(f_2),$$

• V^+ continuous.

Then take $V^- := V^+ - V$.

Note: if V is rotationally invariant, so are V^+ and V^- . [From now on, we can assume V positive.]

P. Tradacete (UC3M & ICMAT)

Control measure and extension to Borel sets For each $\lambda \ge 0$, define the *outer* measure μ_{λ}^* : For $G \subset S^{n-1}$ open, set

$$\mu_{\lambda}^{*}(\boldsymbol{G}) = \sup\{V(f): f \leq \lambda \chi_{\boldsymbol{G}}\}.$$

The following defines a finite Borel measure on S^{n-1} :

 $\mu_{\lambda}(A) = \inf\{\mu_{\lambda}^{*}(G) : A \subset G, G \text{ an open set }\}.$

Theorem

Let $V : C(S^{n-1})_+ \to \mathbb{R}$ be a continuous valuation. There is a continuous valuation $\overline{V} : B(S^{n-1})_+ \to \mathbb{R}$ extending V.

Theorem

If $V : C(S^{n-1})_+ \to \mathbb{R}$ is a continuous valuation, then it is uniformly continuous on bounded sets.

P. Tradacete (UC3M & ICMAT)

Valuations and Banach lattices

Integral representation

Theorem

 $V : C(S^{n-1})_+ \longrightarrow \mathbb{R}$ is a continuous valuation if and only if there exist a finite Borel measure μ on S^{n-1} and a function $K : \mathbb{R}_+ \times S^{n-1} \to \mathbb{R}$ such that

(a) *K* satisfies the strong Carathéodory condition:

 $K(s, \cdot)$ is Borel measurable for every $s \in \mathbb{R}_+$,

 $K(\cdot, t)$ is continuous for μ -almost every $t \in S^{n-1}$;

(b) for every $\lambda > 0$ there is $G_{\lambda} \in L^{1}(\mu)$ such that $K(s, t) \leq G_{\lambda}(t)$ for $s < \lambda$ and μ -almost every $t \in S^{n-1}$,

and

$$\mathcal{V}(f) = \int_{\mathcal{S}^{n-1}} \mathcal{K}(f(t), t) d\mu(t).$$

Integral representation

Theorem

Let X be an order continuous Banach lattice represented as a function space on a σ -finite measure space (Ω, Σ, μ) , and let $V : X_+ \longrightarrow \mathbb{R}$ be a continuous valuation. Then, there exists a strong Carathéodory function $K(\lambda, t) : \mathbb{R} \times \Omega \longrightarrow \mathbb{R}$ such that, for every $f \in X_+$,

$$V(f) = \int_{\Omega} K(f(t), t) d\mu(t).$$

Global measures and variation of a valuation

A valuation $V : C(S^{n-1})_+ \longrightarrow \mathbb{R}$ has bounded variation if, for every $f, g \in C(S^{n-1})_+$ with $f \leq g$, it holds that

$$|V|([f,g]) = \sup \left\{ \sum_{k=1}^{m} |V(f_k) - V(f_{k-1})| \right\} < \infty$$

where the supremum is taken over all finite sequences $(f_k)_{k=0}^m$ contained in $C(S^{n-1})_+$ such that $f = f_0 \le f_1 \le \cdots \le f_m = g$. Given a valuation $V : C(S^{n-1})_+ \longrightarrow \mathbb{R}$ with bounded variation, we can associate the variation function $|V| : C(S^{n-1})_+ \longrightarrow \mathbb{R}_+$ given by

$$|V|(f) = |V|([0, f]).$$

It is clear that |V| is increasing, in the sense that $|V|(f) \le |V|(g)$ whenever $f \le g$.

Lemma

 $|V|: C(S^{n-1})_+ \to \mathbb{R}$ is a valuation, and if V is continuous so is |V|.

Global measures and variation of a valuation

Theorem

Let $V : S_0^n \longrightarrow \mathbb{R}$ be a radial continuous valuation. Then the following are equivalent:

• There exists a (signed) countably additive Borel measure ν on \mathbb{R}^n such that, for every $L \in S_0^n$,

$$V(L)=\nu(L).$$

- V has bounded variation.
- V is the difference of two increasing radial continuous valuations.

Thank you for your attention.