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Chapter 1

Introduction

In functional analysis, the Invariant Subspace Problem (ISP) is the question whether any
bounded linear operator T': £ — FE, with £ a Banach space, has a non-trivial closed invariant
subspace, that is F' C F, closed and F # {0}, E such that TF C F.

In other words, to answer the question means either to find an operator 1" as before, which
has no invariant subspaces or to prove that every bounded linear operator has at least one
invariant subspace. In the case of general Banach spaces the answer is already known and it
is negative, not every linear and bounded operator defined on Banach spaces has an invariant
subspace and the first counterexample was found by the swedish mathematician Per Enflo in
1976, when he announced the existence of such operator in the Seminaire Maurey-Schwarz
(1975-1976) [6] but it was not until 1981 when he submitted a paper for publication in Acta
Mathematica which remained unrefereed for more than five years because apparently they say
that the paper was quite difficult and not well writen. The paper was finally accepted with
small changes in 1985 and it actually appeared in 1987 [7]. But there are several other examples
of operators without invariant subspaces constructed by C. Read.

It is clear that if T has an eigenvalue then 7' has a non-trivial invariant subspace, namely
the closure of Ker(\ —T') where A is such eigenvalue and of course, T" is not a A-multiple of the
identity. So, if the operator is defined on a finite-dimensional Banach space, T" has indeed an
eigenvalue. On the other hand, if the space is not separable, that means that fixed a non-zero
element x € F, the closure of the linear span of {T"z;n € N} can not be the whole space since it
would contradict the fact that E is not separable, and hence T" would have non-trivial invariant
subspace. So, solving the ISP would be equivalent to find a non-zero vector x € F such that
the closure of the span of the set {T"z},cn is not the whole space. So at this point the answer is:

Question: Does every bounded linear operator defined on a complex, infinite-dimensional sep-
arable Banach space have a non-trivial invariant subspace?.

The problem remains still open for the case of Hilbert spaces. As we mentioned, for the
case of Banach spaces the answer is no. In this work our purpose will be to go over the main
results obtained by several mathematicians in the case of T': F — E bounded linear, defined
on E a complex Banach space, and T" will have a bounded inverse.

One of the first, and most important results that asserts that 7" has invariant subspace is
due to V. I. Lomonosov (1973) [13] who gave a proof of the following assertion:
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4 CHAPTER 1. INTRODUCTION

Theorem: If a non-scalar bounded and linear operator T on a Banach space commutes with a
compact operator, then T has a non-trivial hyperinvariant subspace.

Here, Lomonosov gave a stronger result than the ISP. An hyperinvariant subspace for T is
an invariant subspace for every operator that commutes with 7. Therefore, finding hyperin-
variant subspaces implies finding invariant subspaces.

At this point, it seemed reasonable that Lomonosov’s Theorem could lead us to the affirma-
tive answer for the ISP. Imagine every linear bounded operator 7" commutes with a non-zero
compact operator, then the problem is solved. Nevertheless, seven years later, in 1980, D. W.
Hadvin, E. A. Nordgren, H. Radjavi and P. Rosenthal gave an exampe of an operator which
does not commute with any non-zero compact operator and has invariant subspaces.

In the first chapter we will present several results from analysis, more precisely, we will use
tools from functional and harmonic analysis, Banach algebras, operator theory and complex
analysis. Then, in the next chapters, we will study more carefully the conditions and properties
of an operator to ensure the existence of non-trivial invariant, or more generally, hyperinvariant
subspaces.

The first main work about this issue is due to John Wermer. In 1952, [18] he proved, for an
invertible operator, that under some conditions on the behavior of the norm of the iterates of
an operator and its spectrum, we can assure the existence of invariant subspaces. We will give
a detailed proof of this fact as it is the main part of the work and it is the origin of later works
regarding the improvement of the result.

Later on, the mathematician Aharon Atzmon presented a better result for the existence of
hyperinvariant subspaces which included as a particular case Wermer’s Theorem which actually
also gives the existence of hyperinvariant subspaces [3|. By better, we mean that the hypothesis
needed to assure the existence of hyperinvariant subspaces are weaker than the ones given by
Wermer. We will take a look at the main results of Atzmon’s work in Chapter 3.

Then, a work by the mathematician K. Kellay [11] is discussed in Chapter 3 which establishes
a slightly weaker condition than the one given by A. Atzmon and hence again, an improvement
on the hypothesis of Wermer’s Theorem.

The final Chapter of this work is devoted to give C. J. Read’s counterexample [15], that is,
we will present a definition of an invertible operator without invariant subspaces.



Chapter 2

Preliminaries

2.1 The spectrum of an operator

Let, in general, T" be an operator between locally convex spaces. We define the resolvent set
of T as the set p(T') of scalars A € K such that A\ — T is invertible, this is, the operator
R(A\,T) = (A —T)! exists and it is continuous. We call R(\,T) the resolvent of T. In our
case, we are interested in studying operators between Banach spaces and the set of scalars will
be the complex numbers. As long as no confusion arises, we will just write R(\) to refer to the
resolvent of an operator 1" when the operator is fixed.

Definition 2.1.1. We define the spectrum of an operator o(T') as the complementary set of
p(T), this means, the set of scalars \ such that X\ — T is not invertible.

Next, we will state some topological properties of the spectrum.
Proposition 2.1.1. The spectrum of an operator has the following properties:

(a) The resolvent set is an open subset of the complex plane.

(b) The function R : p(T) — L(E) is analytic on p(T), and |R(N)|| = 1/d(\) where
d(\) = dist(\, o(T)).

(¢c) The spectrum o(T) is contained in the disk D(0,||T|), has at least one point, and is
compact.

Proof. Fix X € p(T'), then there exists a radius r > 0 such that the ball B(\,r) = A+ B(0,r) C
p(T). We take an element € B(0,r) and see that A + u € p(T') for a convenient r.

Define,
Z ,LL )\ T (k+1) _ Z,UkR k+1

k>0 k>0

Now we may require that [|[uR(N)|| < 1 then |u| < 1/||R(u)||. In this case, the series
converges in operator norm and,

(h+A=T)S(p) = A=T)5(p )—MS( )

= Z,u A=T)" Zuk+1)\ T)~ (k+1)

k>0 k>0
= 1,
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since S commutes with A + p — 7', then it is its inverse. Hence, B(A, 1/||R(N)|]) = A +
B(p, 1/||R(N)||) € p(T) which proves p(T') is open.

Analycity comes for free, since we found a power series S(u) of the function R(A + i) on a
neigbourhood of = 0.

For (c), similarly we set p(A\) = >, ;,C—il This series converges as long as ||T'|| < |A|, and
(A=T)p(N\) =1, s0 p(A) = R(]) for || T|| < |A|, and hence the X such that A— T is not invertible
lie inside the disk D(0, || T||) and since o(T) is closed, it is then compact.

Now since the definition of p makes sense and |[p(\)|| — 0 as |A|] — oo, by the maximum
modulus principle the function must be constantly 0 which is contradictive, therefore o(T") has
at least one element. O

The element in o(7") with maximum modulus is called the spectral radius of 7', which always
exists since o(T) is compact, we denote it by r(T) and we see, in the next proposition, a way
of computing it.

Proposition 2.1.2. For a bounded operator we have,
(a) (Gelfand’s formula) r(T) = limy_,o || T*||V/* < ||T|
(b) The series R(\) = ;- ,\{—L converges in operator norm if |A| > r(T)

Proof. Part (b) is clear.

Part (a) comes from the radius of convergence of the Laurent series R()\), the unique point
is to ensure the existence of the limit.

We have r(T) = limsup ||T%||'/* which is the radius of convergence. Now, if A\ € o(T)
then A\ — T = (A\* — T*)pp (A, T) for a polynomial p, is not invertible and then \* € o(T*),
so |A[* < ||T*|| and hence |A| < liminf ||7%||'/* which proves the existence of the limit and
therefore gives the formula.

The fact that #(T") < ||T']|] is obvious but can also be seen by the Stolz criterion applied to
the logarithm of the limit. O

Now, we will see how the spectrum of an operator can be decomposed in smaller disjoint
parts according to some diferent properties of its elements.

Definition 2.1.2. We can decompose the spectrum of an operator as follows,
e 0,(T) pointwise spectrum of T', the set of eigenvalues of T
e 0.(T) continuous spectrum of T,

o.(T)={N € o(T),\ =T is injective, non surjective but has dense range}

e 0.(T) residual spectrum of T,

o.(T) ={N € a(T),A—T is injective, non surjective and does not have dense range}

e 0,(T) approximate point spectrum of T, is the set of A € o(T') such that there exists a
sequence (Ty)n=o of points in E with ||x,|| = 1 for alln, and Tx,— Az, — 0 when n — oo.
The sequence (x,,)n=0 will be called a sequence of almost eigenvectors for \.
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An immediate observation is,
o(T)=o0,(T)Uo.(T)Uo,.(T)
and obviusly,
op(T') C 0a(T)
The next proposition gives us some basic properties of the subsets of the spectrum defined

above.
Proposition 2.1.3.
(@) o.(T) = 0,(T").
(b) 0,(T) C 0,.(T"), equality holds when E is reflexive.
(¢) 04(T) is a closed subset of o(T) which contains o,(T), o.(T) and the boundary of o(T).

Our concern will be to find, given an operator 7' from a Banach space E into itself, a non-
trivial closed subspace Y such that T'(Y) C Y. So, we observe that if A\ € ¢,(T'), A # 0 then
there exists an element x € E different from 0 and indeed Y = [z] will be invariant.

Also, if A € 0,.(T') then taking Y = (A — T")(E) will be a closed invariant subspace. Indeed,
take x € F and set y = (A —T)z € Y then Ty = T(A\ — T)x = (A — T)(Tz). Therefore,
T(A—=T)(E)) C(A—T)(E) since T is continuous and this is not the whole space because the
range is not dense by definition of o,.(T).

The following proposition gives us another possibility to find eigenvalues in o, (7).

Proposition 2.1.4. Let T be an operator defined on a reflexive Banach space E. Fiz A € 0,(T)
different from 0, and (x,)n>0 @ sequence of almost eigenvectors for X\. Then, either \ is not
an eigenvalue, and (T,)n>o tend to 0 weakly, or X is an eigenvalue, and every non-zero weak
accumulation point of this sequence is an eigenvector for \.

Proof. Since E is reflexive, this is, we can identify F with its bidual, then there exists a
subsequence x,, weakly convergent to some element y € E. Thus,

Tz,, — A, — 0in norm

Tz, — Ty weakly

and then,
Ay, — Ty weakly

but,
Az, — Ay weakly

So, since A is non zero, Ty = \y. If we find a subsequence we find y = 0, then (z,),>0
converges to 0 weakly, or for some subsequence the point y # 0 then A is an eigenvalue and y
is its correspondent eigenvector. 0
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2.2 The analytic functional calculus

In this section we will introduce some notions on analytic functional calculus. We will introduce
the Cauchy formula for operators and see what are the properties of the sprectrum inherited
by this transformation. The main result of this section will be the spectral mapping theorem
which gives us the answer of how spectrum varies when we apply an analytic function to our
operator T

Let F(T) denote the set of functions taking values on C analytic on some neighbourhood
of o(T). If f € F(T) and € an open set containing o(7") whose boundary I' = 02 consists of
a finite number of rectificable Jordan curves oriented in the positive sense and we assume that
f is analytic on Q then, we define:

/(D) iiéﬂMRMMA

- 21

This definition is independent of the domain €2, if we take another one, R(\) will also be
analytic between boths boundaries and then by the Cauchy formula we will have f(7') = 0 on
between. Observe also, that if I consists of a circle centered at the origin with a radius strictly
larger than the spectral radius, then,

1 A
A7) =5 ;T” ] ﬁi—ﬁdx
since the series converges in operator norm.
Let us now turn to some basic properties of these functions,
Proposition 2.2.1. Let f,g € F(T) and a, B € C, then:
(a) af + Bg € F(T) and (of + Bg)(T) = af(T) + Bg(T)
(b) f-g€T and (f-g)(T) = f(T)g(T)
(c) if F(N) =D reoarA® converges in a neighbourhood of o(T) then f(T) = > p,axT"
(d) also f € F(T") and f(T") = f(T)*
(e) if S commutes with T then S also commutes with f(T).

(f) For T an operator on a Hilbert space, and f € F(T), denote f#(\) = f(A\) then f# €
F(T) and f(T)* = f#(T*)

We will now introduce the spectral mapping theorem which gives a satisfactory description
of how spectrum is transformed by an analytic function of the operator. We will also give a
short and easy proof of the theorem.

Theorem 2.2.2. [Spectral Mapping Theorem] If f € F(T),
flo(T) = a(f(T)),
where f(o(T)) = {f(\); A € o(T)}.
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Proof. Take X € o(T) and define a function g by,

fN) =[O
—<

, ) —
Then g € F(T') and satisfies,

(A =Qg(¢) = F(A) = ()

applying now 7T,
(A =T)g(¢) = F(N) = f(T)

If A ¢ o(f(T)), this is, f(\) — f(T) were invertible, we call A its inverse. Then Ag(T)
would be the inverse of A — T and A ¢ o(T") which contradicts our initial assumption, so
F(\) € o(£(T)) and hence f(o(T)) C o((T)).

Conversely, assume that p ¢ f(o(T)). Then the function,

is in F(7T') and satisfies A({)(f(¢) —u) = 1. So, h(T)(f(T) — pu) = I and p ¢ o(f(T)). This
shows that f(o(T)) D o(f(T)). O

2.3 Analytic Continuation

The target of this section will be to give the reader a quick overview on analytic continuation
and some useful definitions and notions about this issue which will be essencial for the proof
of J. Wermer’s result later in the first chapter. We will define the spectrum of an element in a
concrete Banach algebra in terms of analytic continuation properties. First, let us give a slight
idea of what analytic continuation means.

Suppose we have an open and connected subset 2 C C, and a holomorphic function f :
Q — C. It is well-known that if we have U C 2 open and another function g € H(U) and f = ¢
on U then f = g on the whole 2 and this is called the uniqueness property |1, pp, 122-123].
In other words, if f vanishes on a set U C 2 of positive measure then f = 0 everywhere on €.
So, given a function f in U C €, there is a unique way to extend it analitically over the whole
Q) if it were possible. For instance, define,

n=0

We know that this power series converges on the unit disk D = {z € C : |z| < 1}. So we
could think that ID is the natural domain to define this function, but, can we extend it to a
larger set? The answer is yes. This is a geometric power series. Let us define the function,

Observe now that this function is holomorphic on the whole plane except for the point z = 1
and this function agrees with f, that is, f(z) = g(z) for all z € D. So, we can extend f to the
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whole plane except for the value 2 = 1. Thus, we see that the natural domain to define f is
the larger set C\ {1}.

We will consider now functions defined on disks and we will define the notion of analytic
continuation on disks. Let us consider functions f; : D; — C, with D; C C two disks for i = 1, 2.
Then, we say that f; and f, are direct analytic continuation one of each other if Dy N Dy # ()
and f1 = f2 on D1 N DQ.

[terating this reasoning, given the couples {(f;, D;)}*_; holomorphic functions each one
defined on D; and D; N D;yq # () for all i = 1,....,k — 1. Then we say that (f1, D1) is a direct
analytic continuation of (fg, D) if, and only if, (f;, D;) is a direct analytic continuation of
(fix1, Diy1) for all @ = 1,...,k — 1. Thus, the analytic continuation property is a reflexive,
symmetric and transitive property.

2.3.1 Analytic Continuation along a Curve

Following the previous method we can as well continue a function analytically over a given
curve or arc. Let v : [0,1] — C be a curve piecewise smooth, and (f, D) an analytic function
defined on a disk D centered at v(0). An analytic continuation of f along the curve 7 is a
famility of couples (f;, D;) where each f; is defined on D, for all ¢ € [0, 1] such that,

(1) (fo, Do) = (f, D).
(ii) Dy a disk is centered at (t) for each t € [0, 1].

(iii) For each t € [0, 1], there exists 6 > 0 such that for all s € (t —d,t + ), v(s) € D; and
therefore D; N Dy # 0, and f; = f, on D, N D,

We will denote
fl #7f2

meaning that f; and f, are analytic continuation one of each other along the curve v or the
other way around.

2.4 The Invariant Subspace Problem

As we mentioned in the Introduction of this work, although the Invariant Subspace Problem is
somehow easy to state the answer is still open in the case of Hilbert spaces. The problem is the
simple question: "Does every bounded operator 1" on a separable Hilbert space H over C have
a non-trivial invariant subspace?” The answer is no, in general, for separable complex Banach
spaces. The solution for Banach spaces was shown by the mathematician Per Enflo in 1976, who
announced the existence of a Banach space and a bounded linear operator on it with no trivial
invariant subspaces. Further manipulations were done by other mathematicians in order to
sharpen his proof or give other counterexamples following Enflo’s ideas. C. J. Read provided a
shorter proof of the problem and also the french mathematician Bernard Beauzamy refined the
techniques of Enflo and produced a counterexample. In this work, we will be more concerned
on studying the concrete case of isomorphic operators, this is, continuous linear operators such
that the inverse exists and it is continuous.
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As we mentioned earlier, if A € 0,(T) different from zero, and z is the eigenvector associated
to A, the subspace F' = {A\z; A € C} gives us a solution. Yet another, if we find A € ¢,(7) the
set F' = Im(\ —T) provides a non-trivial closed invariant subspace.

A more naiv way to search for invariant subspaces is to look at the behaviour of orbits
of points under the operator 7', if we have a point x € FE such that the orbits Or(x) =
{z,Tx,T?z,...} does not have dense span then F, = span{Or(z)} is a closed and invariant
subspace under T'. Such a subspace will be called an elementary invariant subspace. If F} is
the whole space the point x is said to be cyclic, or non-cyclic otherwise.

Another concept, which is stronger, is the hyperinvariant subspace. A subspace is said to
be hyperinvariant if it is invariant by all operators which commute with 7. Following this
definition we can consider the set,

G, = span{Og(x)} such that S commutes with T

Then G, is an elementary hyperinvariant subspace. The aim, then, will be to look for non-
trivial invariant or hyperinvariant subspaces. The term "non-trivial” will always be implicitly
assumed.

The following result gives us an answer on whether an operator has hyperinvariant subspaces
by means of a topological property of the spectrum.

Theorem 2.4.1 (F. Riesz). If o(T) = o1 U gy where o1 and o9 are disjoint closed subsets.
Then T has hyperinvariant subspaces Fy and Fy, and

o1 = U(T|F1>a 02 = 0(T|F2>
where T|p is the restriction of T' on the subspace F.

Proof. Let U; and U, be disjoint open sets containing oy, and o, respectively. Let f; =1 in U;

and fi =01in Uy, and fo =1 on Us and fo =0 on U;. Then fi, fo € T and we have,

AT+ fo(T) =1

fi(T) = fi(T) and f3(T) = fo(T)

Therefore, f; and fy are projections, which commute with 7". Their ranges F} and F; are
the hyperinvariant subspaces by proposition () property (e), and indeed closed and non-trivial.
Now, on Fy, we have T'= T fi(T'). So, o(T f1(T)) = o(T) f1(c(T)) by the spectral mapping
theorem, Theorem 2.2.2; applied to the analytic function f(\) = Afi(A\). But, o(T) fi(c(T)) =
o1 and the same for F5. O

2.5 Orbits of a Linear Operator

2.5.1 The image of a ball by a linear operator

The successive images of a ball by a linear operator will be very useful concerning the study of
the iterates of a points by a linear operator. The shape and position of a ball (T}, B),>0, for a
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fixed ball B will be of important consideration. Of course, our goal is to predict the behaviour
of the itaterates of a given point x, this is (7,,2),>0 and try to find a point such that the iterates
have a controlled behaviour. For instance, if the closure of the span of the iterates (7,,x),>0 is
not the whole space, then we have found a non trivial closed invariant subspace.

The image of a ball determines uniquely the operator. Indeed, no matter how small the ball
is, giving its image, by linearity and continuity this fact makes possible to recover the operator
T for which the ball was applied to.

If B is any closed ball in a Banach space E, then T'B is a convex set which is closed in
the case of F being reflexive or if the operator is weakly compact. For example, in the case of
Hilbert spaces.

The inverse image T~ !B is a closed convex set, since T is continuous. It will be bounded if
T~ 1 exists as a continuous operator.

The image of the ball will also be balanced (if |A| < 1 then A\T'B C T'B).

2.5.2 Baire property for operators

We will now give a more general version of Baire Property involving linear operators on Banach
spaces.

Proposition 2.5.1. Let T' be an operator on a Banach space E, with danse range. Let (G,)n>0
be a countable family of open sets. Then the intersection N,>oT"G,, is dense.

Corollary 2.5.2. If one takes T' = Id, one gets the usual Baire Property.

Corollary 2.5.3. Let T be an operator with sense range. Then, there is a dense set of points
x which have an infinite chain of backwards iterates, that is: for all n > 0, there is y,, such that
vy, = x.

Proof. This follows from the proposition 2.5.1 taking G,, = E for all n > 0. [

2.5.3 C. Rolewicz example of an operator with one hypercyclic point

We will now show an example of an operator with one hypercyclic point, this means, a point
such that the iterates are dense in the whole space. C. Rolewicz example was provided in 1969
and the one we will show is C. Rolewicz version modified by B. Beauzamy in order to get a
class of examples with several supplementary properties.

Let us consider the space of square summable sequences on Z, that is [*(Z) = {(an)nez C
Z; [(an)nll2 == >, |an|2)1/2 < +oo}. Consider the canonical basis, e, that consists of the
sequence having all 0’s and 1 on the n-th position. The support of z € [*(Z) is the set
{k; x # 0}

We define weighted shift operator on [5(Z),

Tey, = wrep_1, for k € Z,

the integers w;, € 7Z are the weights. This operator consists of translating the terms of the
sequence (e,), one place to the left and multiplying by an integer wy. We now introduce a
condition on the weights that ensures there exists an hypercyclic point.
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Theorem 2.5.4. If the weights wy, satisfy:

JLIIC}OHwk =400, and wy, > 1 for k > (2.1)
lim Hwk—O and 0 < wy, <1 for k <0, (2.2)

the operator T has an hypercyclic point.
Proof. We observe that the inverse of T is S:

1
Sep = Chtl-
Wr41
Computing the iterates,
Tek = WkCk-1
2
T e, = T(wger—1) = wiT(ex—1) = WrWk_1€5—2
m n—1 n—1
T"e, = T (wkekq) = wi T (ekfl) = = WpWg—1 'wkfnTek—(n—l) =
n—1
= Hwk—jek—na
Jj=0

and similar for S™ey, from the hypothesis 2.2 and 2.1 we have that,

lim T"e;, = 0 and lim S"ey =0 forall k € Z (2.3)

n—oo n—oo

Let us now consider a dense sequence (z™),, C [*(Z), each 2™ with finite support and let
us call k(n) = maxg{k : x,(cn) # 0} the last integer of its support.

Now, for n > 0, let r(n) be an integer such that, if r > r(n), we have fori =1,--- ,n — 1,
1T < 1/2%, (2.4)
1572 < 1/2™. (2.5)

These integers exist due to (2.3). Set p(n) = >_i 7(i), and consider z = > oo SP®I k),
Then:
TP(n), — ) (Sp(l) 1) 4 gp@) () Ly gprtR) (k) ) =
— 7P gr(1) (1) 4 p(n) gr(2) (2) 4 . + TP(1) gp(k) 1.(k) |
+ oo em) gp(n=1),(n=1) o 4(n) | Z §p(m)=p(n) .(m) _

m=n+1
— Tp(n)—p(l)x(l) 4o r)=pk) (k) oy pp(n)=p(n=l) p(n—1)

+ (”)_|_ Z Sp )=p(n) (M)

m=n-+1
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But for k =1,--- ,n— 1 by (2.4) and (2.5) respectively we have,

HTp (n) p(k) H HTT (k+1)+-+r n)H < 1/2n
I Z GPm)=p(n) 1. (m) | Z || Gyttt D) g m))| Z (1/2)™ =1/2".
m=n+1 m=n+1 m=n+1
Finally,
n—1
TPz — 2| < || TP P W) 4| Z S M| < (n —1)/2" +1/2" = n/2",
k=1 m=n+1
since the sequence z(™ is dense, so is ™z for n > 1. Hence z is an hypercyclic point. O

2.6 Banach Algebras

In this section we will give some overview on banach algebras, in particular, operator algebras
and some important facts that will be necessary later in the preliminaries of Wermer’s result.
A complex Banach algebra A, is a complex Banach space, endowed with an operation

AxA—=A

(z,y) = 2y,
satisfying, for all x,y,2 € A and A\ € C,

(i)
(i) (zy)z = z(yz),

) Mzy) = (Az)y = z(\y),
V)

eyl < [l ]yl

r(y+2) =2y + 2z, and (y + 2)r = yx + 27,

(iii

(i

If also zy = yx the algebra A is said to be commutitave, and if A has a unit, that is, an
element e € A such that ex = xe = x for all z € A, the algebra A is said to be unitary. Usually
the unit element is represented by 1.

A subalgebra B C A, is a vector subspace of A which is closed under the algebra operation,
i,e: if x,y € B then xy € B.

For instance, the space of all sequences a = (an)nez C C satisfying that >~ _, |a,| < +oo is
a Banach algebra with the following operation,

x: AxA— A

(a,b) — axb,

where the element a * b is another sequence, defined as,

(axb), = Z O,

mEZ
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This algebra is denoted by ¢' and the norm associated to this space is [|alla = >, o5 an]-
This space, using weights, will be a useful tool for the proof of existence of invariant subspaces
of isomorphisms between Banach spaces.

We say that an element a € A is invertible, if there exists b € A such that ab = ba = 1,
usually we will denote it as a™*.

We define the spectrum of an element a € A as the set of scalars such that A — a is not
invertible, that is,

o(a) ={A € C; X —a is not invertible}.

Finally, we give a very strong result on unitary Banach algebras whose elements, besides 0,
are all invertible.

Theorem 2.6.1 (Gelfand-Mazur). If A is a complex Banach algebra with unit and every non-
zero element is invertible, then A is isometric to C.

Proof. We saw in (2.1.1) that the spectrum of an operator has at least one point, following the
same argument one can show that o(a) has also at least one point. Now, since the spectrum of
each element is non-empty, for each a € A, there is a A € C such that A — a is not invertible.
By hypothesis A is an algebra whose elements are all invertible, besides 0, then A — a = 0 and
hence a = A, and it is of course an isometry since ||al| = |A|. O

2.6.1 Ideals and Homomorphisms of Banach algebras

A vector subspace I of a complex Banach algebra A is called an ideal, if it satisfies that for all
a € Aand x € I, then ax € [ and xa € I. An ideal [ is said to be a proper ideal, if I # A,
and it is said to be maximal if there are no other proper ideals containing I, that is, if I’ C A
is another proper ideal such that I C I’ then I’ = I.

Remark 2.6.1. Observe that a proper ideal can not contain any invertible element, otherwise
the unit element would belong to the ideal, so the ideal would coincide with the whole algebra.

Proposition 2.6.2. Every maximal ideal is closed and every proper ideal is contained in a
mazimal ideal.

Proof. Consider I a maximal ideal of A. Then, its closure 1 is also an ideal which contains 1.
Let us see that I # A: We consider the unit ball centered at 1, that is,

B={a€cA; |la—1| <1}.

Then I N B = (), otherwise, if b € B, then |1 — b|| < 1 so b would be invertible, and b € T
invertible would imply I = A which is a contradiction. Now, since B is open, I N B = (). This
shows that I is proper, and since I is maximal, then I = I, that is, closed.

Let now I be a proper ideal, and consider the family of all ideals containing I, ordered by
inclusion, I C I; C I, C .... We consider a totally ordered subfamily (;) of these ideals.
Then the set U;I; is a proper ideal since none of them intersects B as we have seem before,

and I C U;I; so, it is a majorant for I. Then, by Zorn’s lemma there are maximal elements in
Ui ;. O
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An homomorphism ¢ between two Banach algebras A and B is a mapping,
A5 B,
satisfying,

(i) (@ +y) = p(x) + @(y) for all 7,y € A,

(ii) ¢(Az) = Ap(z) for all z € A and A € C,

(ili) ¢(zy) = p(x)p(y) for all z,y € A.

Remark 2.6.2. The multiplicativity property provides directly the continuity as we shall see
in the coming proposition.

Proposition 2.6.3. Every homomorphism ¢ from A into C is continuous, and if ¢ # 0 then
o(1) =1 and ||¢|| = 1. Moreover ¢(a) € o(a) for all a € A.

Proof. Since ¢ is a linear mapping, it is enough to check continuity at zero. We have that the
kernel of ¢ is an ideal. Indeed, given x,y € Kery, then ¢(xy) = ¢(x)¢(y) = 0, so zy € Kergp.
Moreover, it is a hyperplane by the Hahn Banach theorem, so Kery is a maximal ideal and
by Proposition 2.6.2 it is closed and hence ¢ is continuous.
Now take an element x € A such that ||z| = 1, then,

()] = lp(a")],

by multiplicativity and since ¢ is continuous,

|o(=™)] < llellll" < e,

so |o(z)] < |||/ and letting n tend to infinity, we get |o(z)| < 1, so [|p|| = Hm”ax lp(z)] < 1.
z||=1

On the other hand if ¢ # 0 there is at least an element x € A such that ¢(z) # 0 and by
linearity ¢(z) = ¢(1x) = ¢(1)p(z), so ¢(1) = 1 and hence ||¢| = 1.

Finally, for each a € A, p(a) —a € Kerg, which is a proper ideal, so it contains no invertible
elements, so ¢(a) € o(a). O

Such a non-zero homomorphism from A into C is called a character and it is denoted by Y.
We denote by x(A) the characters of A, that is, all continuous homomorphisms from A into C.
Of course, x(A) C A*, where A* is the dual. We endow A* with the topology o(A*, A), this
means, the topology of pointwise convergence on elements of A and next we will see that x(A)
is a w*-compact subset of A*.

Proposition 2.6.4. The set of characters x(A) C A* is w*-compact.

Proof. 1t suffices to show that it is closed under the weak star topology since w*-compactness
follows directly by the Banach-Alaoglu Theorem. ]



2.6. BANACH ALGEBRAS 17

2.6.2 The Gelfand’s Transform

We have introduced y(A) a subset of the dual A*, consisting of the continuous homomorphisms
from A into C. We endow A* with the topology defined by means of the seminorms || - ||,
a € A which act on A* as ||u|l, = |u(a)| for all u € A*. We say that u, — u with respect to
this topology if, and only if, u,(a) — u(a) for all a € A, that is, the pointwise convergence on
elements of A.

Now, we define the Gelfand transform @ of an element a € A as,

G:A—=C(x(4))
a—a

The correpondence a +— a is called the Gelfand’s morphism, and we denote the set A=
{a;a € A}.

This correspondence is continuous. Indeed,

[@llecyay = sup [a(y)]
pEX(A)
= sup |p(a)
peEX(A)
< 7r(a) [since by Proposition 2.6.3 ¢(z) € o(a) for all a € A]
< all

So, the Gelfand’s morphism is continuous. Next, we show the relation between the Gelfand
transform of an element in a Banach algebra A and its spectrum. But, before that, we need an
important lemma.

Lemma 2.6.5. An ideal is maximal if, and only if it is the kernel of some character.

Proof. We have already shown that the kernel of a character is a maximal ideal, in the proof
of Proposition 2.6.3 as a consequence of Proposition 2.6.2.

Conversely, consider M a maximal ideal of a Banach algebra A. Then, A/M is a Banach
algebra with no invertible elements: Indeed, let 7 : A — A/M. If A/M had invertible elements,
this would mean that A/M contains some proper ideal, in such a case, 7~*(I) would be a proper
ideal, containing M with 7=!(I) # M which is a contradiction since M is maximal.

Thus, every element in A/M has no invertible elements. So, since A/M is a Banach algebra
without invertible elements besides 0, by Gelfand-Mazur’s Theorem 2.6.1 A/M is isometric to
C. Then, if ¢ : A/M — C is such isometry, we have that ¢ = 7 o % is a character on A and
Kerp = M. [

Theorem 2.6.6. Let A be a commutative Banach algebra. Then, for every a € A,
o(a) = {e(a); ¢ € x(4)},

and therefore,
r(a) = sup a(p) = [[allciyay-
pEX(A)
Proof. If we have A € o(a), then ' = A — a is not invertible. Let I = {ba’; b € A}. This is
an ideal because A is commutative and it is proper since a’ is not invertible, and is contained
in some maximal ideal M which, by Lemma 2.6.5, is the kernel of some character. So, I C M
which is the kernel of some ¢ € x(A). So, p(a') = p(A—a) = A—p(a) =0, hence p(a) = X. O
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Chapter 3

Wermer’s Theorem on invariant subspaces

In this section we show an important result of operators having a non-trivial invariant subspace.
The main goal in this section is to prove John Wermer’s result which, provides a sufficient
condition based on the behaviour of the norms of the iterates of the operator and the spectrum
of the operator in order to ensure the existence of non-trivial invariant subspaces.

We will start by giving the hypothesis we will require for the norms of the iterates but in a
more general setting. We will present an algebra of sequences with weights and such weights will
satisfy the condition we show next. Then, we will show several lemmas and results concerning
this algebra of sequences which will apply to the case of Wermer’s Theorem.

Definition 3.0.1. Let {p,}nez be a sequence of positive numbers. We say that the sequence
{pntnez satisfies condition (1) if it is majorized by a sequence {d,}nez, that is, p, < d,, for all
n, where {d,}nez satisfies the following properties:

(i) It is symmetric, d_,, = d, and d,, > 1 for all n.

(ii) Doy 2dy < 4o0.

(iii) d, is non-decreasing as |n| — +oo.
(iv) 8% decreases as |n| — +oo.

Remark 3.0.3. We must remark at this point, that if, for instance, p, = ||T"| for some
bounded invertible operator T', satisfies condition (1), then the spectrum of T is necessarily
contained in the unit circle T: Indeed, suppose A € o(T) and |A| > 1, this implies that
r(T) = lim, ||T"||"/™ > 1 since ||T"|| > 1 for all n, as we shall see later, so there exsists a
number R > 1 such that [|[7"| > R" for n large enough. Thus, since there is a sequence d,,
such that d,, > p,, we have that logd,, > nlog R for n big enough which would imply that

Z+OOO log d,, = 400
n=0 1+n? :

On the other hand, if A € o(T) and |A| < 1, then 1/\ € o(T") which is again contradictive
with condition (1).

Finally, ||T"|| > 1 for if ||T"|| < 1 for n > 0, we have that for all m > 0, |7 < || T™|™
and therefore the spectral radius r(T) = lim,, |T"™|# < 1 which is contradictory by the

previous argument. Similar for negative n.

The aim of this chapter is then, to prove the following result.

19
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Theorem 3.0.7. Let T be a bounded operator on E a Banach space with bounded inverse.
Let p, = ||T™]|| satisfy condition (1). If o(T') does not reduce to a single point, then T has a
non-trivial invartant subspace in E.

First of all, we will show that if we assume that Wermer’s result is true the assumption
on the spectrum having more than a point can be dropped if the norm of the iterates of the
operator have polynomial growth. Let us first give the general statement and then, check that
if 77| = O(|n|*) then we do not need to assume anything on the spectrum of 7.

The objective is to prove the forementioned result. This will require some lemmas and
concepts that we will discuss later. First, let us see that, if Theorem 3.0.7 is true and the
sequence [|T"| is of polynomial order, then the requirement on the spectrum having more than
one points can be dropped.

Theorem 3.0.8. Let E be a Banach space and T : E — E a bounded linear operator with
bounded inverse. Then if | T"|| = O(|n|*) for some finite k. Then T has a non-trivial invariant
subspace.

Before we prove Theorem 3.0.8 we need the following result due to Gelfand and Hille |10,
pp, 128-129].

Proposition 3.0.9. Let T' be a bounded linear operator acting on a Banach space. If the
sequence | T"|| = O(|n|*) and the spectrum of T consists of a single point \g, i.e: o(T) = { o}
Then, (T — NI)F1 =0

We are now in a position to prove Theorem 3.0.8:

Proof. Since ||T"|| = O(|n|*), condition (1) is achieved: Indeed, since ||T"| < C|n|¥, we take
dy, = Cn|Fif n # 0 and dy = 1, and C' > 1 so d,, = C|n|¥ > 1. Tt is also symmetric and the
series,

+oo +o0o +o0o
log(C|n|*) log C log |n|
= —— + k <
Z 1+ n2 Zl+n2+ ;1—1—712 +00

n=1 n=1

Moreover, d,, is clearly non-decreasing, and log d,,11/(n+1) < logd, /n and hence decreasing.
So, by Theorem 3.0.7 we just need to check the case of the spectrum of T" having a single
point. Now, by the previous proposition, if o(T') = {\o} then (T' — X\oI)¥*! = 0. So, T has a
non trivial invariant subspace for either Ker(T' — A\oI), or the closure of the image of T'— Ao[.
Indeed, define Y := Ker(T' — \g/) C E. If Y = E,

Tr =M x Vr ek,

that is, T" is a multiple of the identity and then it has invariant subspaces.
On the other hand, if Y = {0}, this means that (7" — \o/)x = 0 if, and only if z = 0. We
have by Gelfand-Hille that,

(T — XDt =0 forallz e FE

So,
(T — M) (T — XoD)*z =0 forallz € E,
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and by the previous reasoning, this is equivalent to say that (T — \gI)*x = 0 for all x € E.
Now, recursively, we arrive to,

(T — XD )?x = (T — M) (T — Nol)zv=0forallz € E
So, T(T — XoI) = M(T — A\o) and hence, Im(7T" — A\¢I) is invariant under 7. O

We introduce now a space of sequences that will be useful in the proof of Wermer’s result. We
consider {p, }nez a sequence of real numbers equal or greater than 1 such that p,1m < prpm
for any n,m € Z, and such that for every R > 1 p, = o(R") as |n| — +oco, that means
lim,, % =0.

Let L = ¢*(p,) be the space of all complex valued sequences {a, },ez such that Y |a,|p, <
+00. The space L endowed with the norm ||a|| = " |an|p, and the convolution operation is a
Banach algebra.

Now, the dual L* of the space L, is the set of bounded linear forms z* = (z,,),ecz acting as
z*: L — C, z*(a) =), an,. So,

]

_ _ £
L* = Sup |Zanxn| < sup Z |an||xn| = Sup Z |a’n|pn_
fall=1 " llall=1"5 \ P

jall=1 <, n

< sup |za|/pn < +00

Actually the above inequalities are equalities: Fixed z* € L*, choose a € L, the sequence
a = (ay), such that the n-th element of the sequence is a,, = %pin and is 0 everywhere else. It
is clear that ) a,x, > 0 for all n and a € By, since ||a|| =), |am|pm = ipn = 1. Remember
that p, # 0 since it is a sequence of positive numbers. Finally for this a,

Z ATy = SUp ||/ pp.

So, L* is the space of sequences z* = (x,), such that sup,, |z,|/p, < +00, endowed with
the norm ||z*||z+ = sup,, |Zn|/pn-
Let us now prove an important property of the homomorphisms on this space L:

Proposition 3.0.10. Every complex valued homomorphism o acting on L must be of the form:
a: L —C
a +— ala) = Zan)\”
with A € T, varying according to a.

Proof. We have to impose the three properties an homomorphism « : L. — C between two
algebras must satisfy:

(i) a(ka) = ka(a) for all a € L and k € C,

(i) a(a+b) = a(a) + a(b) for all a,b € L,
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(iii) a(ax*b) = a(a)a(b) for all a,b € L.

Let (ef),ez be the sequence consisting of all zeros and one in the k-th position. Observe
that given a € L we can write:

+oo
a= Z are® with ay € C forall n € Z,

k=—o00

So it is enough to define a by means of the images of the sequences ef = (ef),. Then, let us
call
A= alel),

where A € C must have modulus 1, since it is an homomorphism of a Banach algebra into C
and by Proposition 2.6.3 « is continuous and ||af| = 1.

Now, we observe that,
e xep = Z 6711—m€in = 62,
meZ
then using property (iii) we have,

a(e®) = ale' xe') = ale')ale') = N

Recursively,
a(ek) = Oc(ek’1 * ek’l) = a(ekfl)a(ek’l) =\

Finally, given a sequence a € L, a = (a,), using the expression mentioned above, we have,

ala) =« ( Z akek> = Z aro(ef) = Z ap\®,

k=—o00 k=—o00 k=—o00
by using both property (¢) and (7). O
Now, given a sequence x* € L*, 2* = (x,), it is natural to define the following functions:
400 T 400
tN)=) = d N == Na_,, 3.1
B35 md )Y 31

where f is defined and analytic for A\ € C, |\| > 1 and f,. is defined and analytic for
|A| < 1. Let us check this; since |z,|/p, < sup,, |Tn|/pn = ||2*||L+, then |z,| < ||2*| L+ pn hence
|z,| = o(RI"l) for each R > 1. This means that lim,, 22l = 0. So,

RI"l —
+00 n
R
Ty =S 2 (2
=25 (5)
where £z — 0 so f,- will be analytic for all [A| > |R| > 1. Similarly,
+00 T
[ == ZrOR)",
n=1
where “=* — 0 so f,. will be analytic for [A\| < % < 1.

Here, we define the concept of spectrum of an element z* € L* using the previous functions
£ and f..
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Definition 3.0.2. Let z* € L*. We define the spectrum of x*, spec(x*), as the set of points
A\ € T such that the functions [ and f_. are not analytic continuation one of each other along
any arc containing A. That 1s,

spec(x®) = {N € T; ff #, [ for all arc v with X\ € v}.

Next step we want to show that given a closed subset of the unit circle, the set of sequences
of L* whose spectrum lies inside this closed set is a weak™*-closed set. In order to do so, we need
to invoke a necessary result on subharmonic functions due to Nils Sjoberg. [16, pp, 309-319]

Theorem 3.0.11 (N. Sjoberg). Let h(t) be an even function, decreasing ast — 400, unbounded
at the origin and such that, fox log™ h(t)dt < 400 for all z > 0.

Given a rectangle: R = {(z,y) € R*: —a<x <a, —b<y<b}, andV with0 <V < b,
then, there exists a constant M = M (a,b,b', h) such that for any subharmonic function u(x,y)
on R and u(z,y) < ") we have u(z,y) < M on R.

Lemma 3.0.12. Let {p, }nez satisfy condition (1), and A C T closed. Then the set,
Ey={a"e€ L": spec(z*) C A}
is a weak*-closed subspace of L*.

Proof. Given z*,y* € Ey and a € C a scalar, it is straightforward that «* + y* € FEj) and
ar* € Ej. It remains to show that given (zj)ren C L* such that z; == 2* with z} € E, for
all k£ then z* € F,.

Recall that with the weak* topology on L*, z} % x* as k — +o0 if, and only if z}(a)
z*(a) for all a € L.

To see that z* € Fj, we take an element \g ¢ A and see that Ay ¢ spec(z*). Now, since A
is closed, hence T\ A is open, there is a closed disk D = D(\g) centered at A\g and disjoint from
A. Now, for each k, since zj € Ej, its spectrum lies outside of the disk D. So there exists for
each k a function f; which is analytic in the interior of D and by uniqueness fip(\) = f;% (\)
for |A] > 1 and fr(\) = f;k()\) for A < 1.

We shall now see that the functions fj are uniformly bounded in D. To do so, we will use

Theorem 3.0.11. So, we will find a function h satisfying the same conditions as in the theorem,
such that for all A € D,

k—+4o0

|fe(V)] < eleeAD forall A > 1,

and,
| fN)] < e"Uos@/AD) for all )] < 1.

Consider a sequence d,, satisfying condition (1). We have that % decreases to 0: Indeed,

log dn dn log n
n

otherwise there would exist a strictly positive constant such that > ( for all n since

decreases and d,, > 1 for all n by hypothesis, but then,

log d,, logd, n 1
PRl Dt v R D Dl

n=0 n=0 n>0

which is a contradiction.
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Therefore, for a given number ¢ € R, ¢t > 0, there exists a unique first positive integer, let
us call it N = N(t), such that, logd,/n < t/2 for all n > N. Thus,

400 400 logd N—-1 logd
E e d, = E : — ) ) < E — =
e "d, exp(n( t+ - )>\ exp(n( t+ - ))

n=0 n=0 n=0

+ gexp(n( >> Zd +Z —(t/2)n <NdN+O<>
< N(t)e®2N +0<1)

Here, we used that d,, < dy if n < N, since d,, is non-decreasing.
We define now, h(t) = log Y% e""d, for t > 0 and define h(—t) = h(t) for t < 0, since h
must be even. Then,

logZe d, < log (N (t)eN0 + 0(1/t)) < log (2N (1)e/2NDO(1/1))

for t between 0 and 1. We use the fact that a + b < 2ab for a,b > 1. So,
N(t) | N(t)

h(t) <log N(t) + %N(t) +1log KO(1/t) < —5 + — +log(1/t) + C = N(t) —i—log% +C.

since logr < 2 and 0 <¢ < 1.
Hence for all 0 < z < 1,

/ logt h(t)dt < +o0,

0
as long as,

/ log N(t)dt < +oo forall 0<x < +oo,
0

which is true as we shall see later.
Next, we define k(y) piecewise as follows,

() = %:k(n) it y=neZ, n>0,
V= kE(y) linear otherwise.

That is, the linear continuous extension of logd,/n to (0,+00). So, k decreases to zero as
y — 400 since logd,/n is decreasing and d,, > 1 for all n and,

k), X log d,,
/1 = dy < =5 < 0o

n=1

N

Now, for each t > 0, let z(#) be the unique value such that k(e**)) = ¢, since k is a dreceasing
function and hence injective and therefore piecewise invertible. For each x > 0 the integral,

/0 "L,
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is bounded for all x between 0 and 1. Indeed, if we express this integral in terms of the
distribution function of z, which is:

p=(s) =m{o € [0,1]; z(0) > s},

where m denotes the Lebesgue measure. Then,

/Oxz(t)dt - /Om 11.(s)ds.

p=(s) = mio€0,1]; z(0) > s} =m{o €[0,1]; 7 > e}
= m{oce€[0,1]; k (ez(”)) < k(e®)} =m{o €[0,1]; o < k(e®)} = k(e’).

But,

Here, we used the fact that the exponential is a strictly increasing function and k is strictly
decreasing, so inequalities change. So,

/Ox ~(t)dt = /Om 1a(5)ds = /Om k(e")ds.

Now, by a change of variables y = e®,
+oo +oo k
/ k(e®)ds = / Mdy < +o00.
0 0 Y

Now, since N(t) < /% + 1 we have that,

/ log N(t)dt < +oo forall 0 <z < 1,
0

SO "
/ log® h(t)dt < +oo,
0

and h(t) decreases as |t| increases since Y e d, decreases. Therefore, the function h(t)
fulfills the conditions in Theorem 3.0.11.

Since z}, converges weakly, |||l is bounded uniformly in &, and without loss of generality
we can assume the bound to be one, otherwise we can divide the sequences by the norm.

Choose A inside o and |A| > 1. Then,

+ = |x7k7;,| * = 1 S 1
V)] = [T (V)] < ZW < [l Zan < ZWd"’
n=1 n=1 n=1

since p,, < d,,, and for X inside o and |A| < 1,

“+o00

+o00 +oo
e =1 D A < 2D A o < D 1A dn,
n=1 n=1

n=1
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Therefore for all k, we have for A inside o and |A| > 1,
IfFOV)] < ehloglA)

and for A inside o and |A| < 1,
Ifr (V)] < ehlog(1/IA)

Now, since these inequalities do not depend on the chosen point \qg € D, we can suppose
that \g = 1 otherwise we can shift A\g to 1 via a rotation. Let us now define,

1—w
w) = — ),
i) =5 (150 )
that is, we apply to A a conformal transformation that sends the right half-plane to the interior
of the unit circle.

If we write w = ¢+ is, we can find a rectangle R = {t +is; |t| < a,|s| < b} such that A lies
inside « if w € R. So if t > 0 then |A| < 1 and if ¢ < 0 then |A| > 1. So, on the one hand, for

t > 0, hence for |A| < 1,
1—w 14+w
()| <o (e 1)) e

and on the other hand for ¢ < 0, and hence |A| > 1,

() <o (1 ()

But since for ¢ > 0 we can find ¢ = ¢(a,b) a constant depending on a and b such that
H—w‘ > et/¢, and hence, log HJ_F—Z} > t/c, then, since h is decreasing,

1—w
h (log

so using the upperbound (3.2) we have,

g1 (w)| =

|91 (w)| =

1 —
H——wD < h(t/c) forall w € R,
w
lgi(w)| < "M if ¢ > 0.
Using the same reasoning for w € R with ¢ < 0, we have that,
lgr(w)| < W9 if ¢ <.

Now, by a change of variables y = ﬁ we have,

T x/c
/ log h(t/c)dt = c/ log h(y)dy.
0 0
So we found an h satisfying the properties of the Theorem 3.0.11 and such that,

gt +is)| < ") forall |t| <a, |b| <s and k€ Z,
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hence, applying the Theorem 3.0.11 we have that the subharmonic functions |gx(w)| are uni-

formly bounded on the rectangle R, in particular in some neighbourhood of 0, and hence the

functions fj are uniformly bounded in some neighbourhood of A\y. Therefore, there exists some

subsequence f, converging uniformly in some neighbourhood of Ay to a function f(A) which is

analytic there since the functions f;; are also analytic there and the convergence is uniform.
Since z} converges weakly to z*, so z¥ — z,, for all n and,

|zn] < 2" [lpn < pa-

Therefore, for |A| > 1 the functions f,(\) converge to f%()\) and for |A\| < 1 the functions
fn(N) convergence to f..(\). So the functions f; converge to a function f which is f = f* for
|IA| > 1 and f = f~ for |A\| < 1 and analytic near .

So Ag does not lie in the spectrum of z*, that is, z* ¢ E) as we wanted to see. ]

Definition 3.0.3. Let a,b € L and a* € L*, x* = (x,),. We define the elements:

(axb), = Z pmbm  for alln € Z

mEZ

(a*x), = Z ppnTm  for allmn € Z

meZ

and finally we define the Fourier series of a as:
a\) =) a\", A =1
neZ

Remark 3.0.4. Observe that with this definition of convolution in L, the algebra L is com-
mutative. Indeed, take a,b € L,

(axb), = Z [ Z a;iby—; = (b*xa)p,.

meZL 1€EZ

Lemma 3.0.13. Let any closed set A C T, and a point z ¢ A. Then, there is a sequence a € L
such that
a(A\)=0  forall A€ A

a(z) #0.

Proof. Consider the sequence z}, = w" with |w| = 1. This sequence exists in L* since sup,, % =
sup,, 1/p, < 400 since p, > 1 for all n € Z.
Now, we consider the functions f;% and f,.;

+oo
—A
FEN) =) M= —— if[A <1,
—~ A—w

+0o0
_ Z w" -
n=0
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We observe that the spectrum of x has the unique point w € T since f;;u #. [z for all
arc v containing w. Define,

Ey={z" € L*: spec(z*) C A}.

We have that 2} ¢ Ej.

On the other hand, we saw in Lemma 3.0.12 that F, is a weak™-closed subspace of L*, so by
Hahn-Banach there exists an element a € L such that *(a) = 0 for 2* € F) and z3(a) # 0. But
each sequence of the type z; with w € A C T belongs to E, as we have just seen. Therefore,

a(w) = Zanw” =z;(a)=0 ifweA

nez

as we wanted to see. O]
Lemma 3.0.14. Given y* € L*. Ifaxy* =0 for a € L, then a(\) = 0 for all X € spec(y*).

Proof. Let ' = {A € T; axy*=0=a(\) =0;a € L}. We want to prove that spec(y*) C I'.
First, we claim that the set I' is closed: Observe that we can write I as the intersection of the
kernels of the Fourier series of a for those a € L such that a x y* = 0, that is,

and @ : L — C is a continuous homomorphism of L into C since I" is the intersection of closed
sets, it is closed.

Consider now any larger closed subset I'" C T such that T" is contained in the interior (in
the topology of T induced by the Euclidean topology of C) of I, then we consider,

Er={a* € L*: spec(z*) CT'}.

Now, we claim that y* € Frv, i.e. spec(y*) C I'. Indeed, let us suppose the contrary. That
is, y* ¢ Erv, then spec(y*) & I so there exists at least A\ € spec(y*) such that Ay ¢ I'" and this
means that A\g ¢ I" so there is a € L such that a * y* = 0 implies a(\g) # 0.

On the other hand since Er is weak™-closed by Lemma 3.0.12, and by Hahn-Banach Theo-
rem there exists a sequence a € L with y*(a) =) a,y, # 0 and 2*(a) = ), a,z, = 0 for all
r* = (x,), C Ep. In particular, for 3 = A" we have z5(a) = >, a,A\" =0 for all A € [" and
observe that z}(a) = @(\). So, a(A) = 0 for all A € I'" and we will see next that this implies
a * y* = 0 which is a contradiction for the Ay ¢ IT".

Consider the set,

I={bel; bx(axy*)=0,a€ L}.
This set is a closed proper ideal of the Banach algebra L. Indeed, given o’ € L and b’ € I then
(@ *b)* (axy*) =d x (U xaxy*) =0so, d xb € [. It is proper since a * y* # 0 and it is
closed since I is a maximal ideal, and hence by Lemma 2.6.5 is the kernel of some character,
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and hence it is closed. Then, since L is an algebra with unit, the ideal I has a zero, that is,
there exists p € T such that b € I implies that b(u) = 0.

Moreover, the point y is in I', otherwise we could find an element ag € L such that agxy* = 0
and ao(p) # 0 by the definition of I', and of course ag € I, since ag * (a *y*) = a* (ap*y*) = 0,
so pu could not have been a zero of the ideal I.

Now, we use Lemma 3.0.13 and find an element a; € L such that ai(u) # 0 and a;(\) =0
for all A outside the interior of I' which is closed. So, we have two elements a and a; whose
Fourier series vanish on complementay sets, hence a; *x @ = 0, since @ * a; = aa; = 0 and this
implies a; € I, because a; * a = 0 implies a; * a * y* = 0 and therefore a;(p) = 0 which is a
contradiction. In conclusion, a * y* = 0.

In particular, the zero coordinate of the sequence (axy*), = >, @m—nYm, Which is, (axy*)o =
> m GmYm = y*(a) vanishes and this is a contradiction with the choice of @ € L at the begining
of this proof. So, y* € Er, i,e: the spectrum of y* lies inside I". Since all this reasoning holds
for any IV whose interior contains I', this also holds for I' and hence the lemma is proved. [

Let us now concentrate on the more general setting of £ a Banach space, E* its dual. Let
T : E — E be a bounded linear operator with bounded inverse T : & — E. Let S = T* be
its adjoint operator acting on the dual E*. As usual, we denote by o(7') its spectrum and R
the resolvent operator, R\T = (A — T)~! for those A & o(T).

We know that, given any continuous linear form v € E*, and an element ¢ € E| the
functions:

f: o) —C
A = f(A) = u(Ba(9),

are analytic in any given connected component as we saw in Proposition 2.1.1. Since in our
situation o(7T") C T, we define,

ro(A) =u(Rx(p)) forall [X>1, f  (A)=u(Rx(p)) forall [A<I. (3.3)

u,p

The functions f; , and f- are analytic. First, recall that, given an operator 7" whose
spectrum lies inside the unit circle, we have the respective resolvent functions defined inside
and outside the unit disk,

Tn—l
Ry = \A-T)"'= — for all [A| > 1,
n=>1 )\
Ry = A\=T)"==)_T'A\" forall |\ <1,
n=0

which converge in operator norm in the given domains by Proposition 2.1.2; item (b). Now,
since u € F* is a continuous linear form,

Tn—l
u(Ryp) = Zu for all |A\| > 1,

n
n=1 )\

u(Rap) = = u(T " ')A" forall |\ <1,

n=0
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but since the sequence p, = || 7" < ||T||" = o(R™) for R > 1, we have that lim, g:‘” =0,

this means the sequence 7" /R!" converges to zero in norm. But convergence in norm implies
n——+00

weak convergence, so u(T"¢/R") 2= 0 for all ¢ € E. So,

Tnflgo R n
u(Ryp) = Zu( 7 ) (X) for all |A] > 1,

n=1
T—n—l
u(Rap) = —Zu( o 90) (AR)" for all |\ <1,
n=0

by the same reason we used in 3.1, these functions fj , and f.- are analytic for [A[ > 1 and
IA|] < 1 respectively. Notice here the similarity with the functions f. and f,. for a given
x* e L*.

The fact that, for a given u € E*, these functions are analytic inside and outside the unit
disk, allow us to define the set of values A € T such that the functions f; and f,, do not
continue each other analytically over any arc which contains A as we did for the functions f.
and f,.. Later on, we will see the relationship between both definitions.

Definition 3.0.4. Let o(T) C T. Given ¢ € E, we define;
Ap={peT: fr, # fu, withpey for someu e E'}

Using the notion of analytic continuation along a curve that we saw in the Preliminaries,
and given a closed subset I' C T, we are in a position to define the set of functions Cy, C E
which is invariant under 7. First, we will find an invariant set for T then we will see later in
the proof of Wermer’s Theorem, that such set is non-trivial. This set will be defined as the set
of ¢ € I such that the functions f, , and f, -, do not continue each other analytically over any
arc containing A € I' C T.

Theorem 3.0.15. Let the sequence p, = ||T™] satisfy condition (1). Let A C T closed. Then
the set,

CA:{(pEE: Ang}
is a closed subspace of E and is invariant under T and T~!.
Proof. First, since ppym = T < |T"IIT™|| = papm, and satisfies condition (1) by hy-
pothesis, in particular, p, = o(R!") for R > 1, we can define the Banach algebra L = £'(p,)
with p, = ||T"||. Recall that o(T) C T.

We fix now an element ¢ € E and an element in the dual u € E*. We consider the sequence
(@n)nez = (W(T™p))nez. Since u and T are continuous, we have,

u(T"@)| < lul

"¢l < [lul

E* E* S0||Epn-

Therefore,

sup [u(T"9)/pn| < |lullp-llle < 400,

and hence z* = (w(T"¢))nez € L*.
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Suppose we have an element \g € Ap,, we want to see that then Ay € spec(z*) with
z* = {u(T™p)}, C E*.

Using the definition of spectrum we gave for a sequence x* € L* and comparing it to the
definition of the set Ay, for ¢» € E, then if,

Ne{reT: flr, #y fur, forsome uec E*},

where the functions f;f 7, and f, r, are defined as before and depend on T'p, that is,

wro(N) = u(BA(Tp)) = ; %:SD) for all |\ > 1,
f;m()\) =u(Ra(Ty)) = — ZU (Tﬁn@) A" forall A < 1.

n=0

Then, there exists some u € E* such that f;f 7, and fu. 1, do not continue each other
analytically over any arc vy containing Ao, and this is precisely the definition of spectrum of
the sequence z* = (u(T"¢)),, observe the form of f, ' and f, ., so Ao € spec(u(T"p)). So,
by the same reason if Ao ¢ Ap, then Ao ¢ spec(u(T"p)), that is, the functions f, ,, and f,p,
continue each other analytically over any arc containing A\ for all v € E*.

Let us see that A, = Ap,. First, since T' commutes with the resolvent operator ) we have
that,

u(RA(Tp)) = u(TRxp) = (uwo T™1)(Rrp).

So, if we denote S = T the adjoint operator we have,
u(RA(Tp)) = (u, R\(T'p)) = (u, TR\(¢p)) = (Su, R\(¢))-

Now if \g ¢ A, then (Su, Ry(¢)) is analytic in a neighbourhood of A\g and so is u(R(Ty))
by the identity above. Hence, A\g ¢ Aqy.
On the other hand let us suppose \g ¢ Ar, and pick any u € E*. As before, we have

u(Ryp) = (u, Raxp) = (u, R\T~H(T'p)) = (S™'u, R\(T'p)),

and since (S~'u, Ry(T'¢)) is analytic in a neighbourhood of Ay then \g ¢ A, by the identity.
Altogether we have shown that A, = Ap,, and then Ap-1, = A, as well. So this shows that
if o € Oy, then T, T~p € Oy as well. So the set C} is invariant under 7.
Moreover, it is a subspace since given @1, ps € Cy and z,w € C scalars. We have, by the
linearity of the resolvent,

{u, Ba(z1 + wipa)) = 2(u, Rapr) + w(u, Rxpa),

S0, 21 + wps € Ch.

So it remains to show that it is closed. If we have a sequence (¢, ), C Cx converging to an
element ¢ € E, then we must show that ¢ € Cy. So we must show that A, C A, that is, A ¢ A
implies that A ¢ A,,.

We take Ao ¢ A and let us suppose that Ao € A,. Then, as we have seen, \g € Ar,, so we
have an element v € E* such that Ay € spec(z*) with z* = {u(T"p},, € L*.
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On the other hand, since ¢, € Cy for all m, then if an element A is not in A then A ¢ A, ,
for all m, so ¢, ¢ Arpy,,, and hence X ¢ spec(z;,) with =7, = {u(T"¢,)}. So, again since
Ay, C A for all m, the spectrum of z7, is included in A for all m. On the other hand, z},
converges weakly to x* € L* since ¢,,, — ¢ and hence u(T"p,,) — u(T™¢) for each n and this
limit is in L* since |u(T™¢)| < p, for each n.

Therefore, by Lemma 3.0.12, the spectrum of z* is also in A and hence Ay ¢ spec(z*) which
is a contradiction with the fact that A\g € Ap,. Hence, \g ¢ Ap, = Ay, so A, C A and finally,
C\ is closed as we wanted to prove.

O

Lemma 3.0.16. Let T be a linear bounded operator acting on E, with bounded inverse such
that o(T') C T. Let Ao € o(T) and a any circle centered at \g. Then, there exists some ¢ € E
and some v in the interior of o such that p € A,.

Proof. Let us argue by contradiction. Suppose that for every ¢ € E, and for every u in the
interior of « then p ¢ A, that is, the function f; defined on the unit disk is analytic in the
interior of a.

Consider another circle 5 centered at Ay with smaller radius than «. Then, since u(Ryp)
is continuous on f, and f is a compact set, then u(Ryp) is bounded on 3, and since u is a
continuous linear form.

Now, R, as a function in A is continuous on [ except maybe at the two points where [
intersects with the unit circle: Indeed, consider for all A € § the family of operators

. FpE* — C
(907 U) = <U, RASO> ’

then for all (p,u) € E® E*,

> ITa(p,u)| = sup X € Blu, Ryp) < +o0,
AES

so by the Banach-Steinhaus Theorem this implies that

sup | Th || < +o0.
AepB

But,
|Tx[| = sup [{u, Rxp)| = || Rx|| (),
lell<1
[[ull<1
and hence,

sup || Ry|| < +oc.
AEB

Now, by the Cauchy integral formula,

_ Re

dg,
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and upperbounding, for a fixed p € F,

Lo g3 s

< .
2m cep €= Dol Iell=

1 de
< (C— <
IRol < O3 lell § 1% <

So, the integral defines a bounded operator R : E — E. Then, multiplying by (A — T),

_ 1 (I -T)Re .. 1 [ (Ao—§ R
Qol ~T)R =20 5 E—Xo a mfg X — & de.

But,
fg u(Rep)de = 0,

for all w € E* and ¢ € E by analyticity.

So,
L Redé =0
omi Jy o0
and hence (Ao —T)R = 1.
In a similar way, we have that R(Agl — T') = I. Therefore, R = (\I — T)~! and hence
p ¢ o(T) which is a contradiction. O

Theorem 3.0.17 (J. Wermer). Let T be a linear and bounded operator acting on a Banach
space E, with bounded inverse. Let p, = |T||" satisfy condition (1). If o(T) does not reduce to
a single point, then T' has a non-trivial invariant subspace in E.

Proof. The aim is to show that T has a non-trivial invariant subspace, in fact, by Theorem
3.0.15 we know that Cy is an invariant subspace of 7', so it remains to show that it is not trivial.

Since o(T") does not reduce to a single point, we can find two distinct points Ay, Ay € o(T),
A1 # Ao Let Dy, Dy be two disks centered at \; and A\ respectively, with radius small enough
so that they are disjoint.

By Lemma, 3.0.16 we can find elements ¢, s € E and points p; € D; and p, € D, such
that py € Ay, and p, € A,,. Since Dy N Dy = (), then py # po.

Now, let A be a closed arc in T containing p; but not ps, and a smaller open arc Ay C A
containing p;.

Then, by Lemma 3.0.13 there exists a sequence a € L such that a(p;) = 1 and a(\) = 0 for
all A ¢ Ay.

Define now, v = > _, a,7"p1 € E. We should now see that ¢ # 0 and that A, C A in
order to ensure that Cy :={p € E: A, C A} # {0}.

Let us suppose that v = 0. We pick b € L such that g(pl) = 1. Now, for any u € E*, we
compute the convolution between two elements of L, since {u(T")}, C C,

b {u(T" ) = D bt TH) =Y by (T’“ ZalTlgm)

keZ kEZ leZ

= > buosu (Z alT’f“sol) = b ) aw (T¢))

keZ leZ keZ leZ
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Now, we set i = k + [,

Z bm_kai_ku (ngpl) = Z bm_k Z ;U (Tzwl) = Z bm_k(a * {(Tn(pl})k

i, kET kez €T kez

= (b (ax{u(T"p1)}))m = (axbx{T"P1})m.

Since ¥ = 0, then Ty = 0 and u(T") = 0 thereafter b x u(T"y) = 0. So,

(b {u(T"Y)})m = ((axb) * {u(T"¢1)}),, =0

Now we can apply Lemma 3.0.14 and then the Fourier series of a x b, i.e:

(axb)(A) =Y (axb),A" for [\ =1,

nez

vanishes for all A in the spectrum of T, in particular at p;. So,

—

(a*b)(p1) = al(p1)b(p1) = 0.

But by the choice of a and b in L, we have a(p;) = /b\(pl) = 1 which is a contradiction, hence

¥ #0.
In order to show that Ay, C A, we will show that given g ¢ A then ¢ ¢ A,.

Suppose the contrary, ¢ € Ay. Then, there exists an element in the dual v; € E* with ¢ in
the spectrum of the sequence z,, = (u;(T™)),. Indeed, recall that,

Ap={peT: f;f(p#7 Jup With p € 7 for some u € E*}

spec(z*) ={NeT: fL#, [ VyD{A\}}

and observe that,

o= w — (Z T:f) — uy (Ra(¥)))  for [N > 1

nx1 n>0

fr V) = =) N (T7)) = ug (Ry(v))  for [A] < 1
n=>0

So if ¢ € T is such that u;(R,) does not continue analytically over any arc that contains
q, then f* and f~ do not continue each other analytically over any arc containing ¢ either,
and hence ¢ € spec(uy(T™¢1)). Therefore, if b € L and (b * z*),, = 0 where z* = (z,), =
{u1(T"p1)}n, by Lemma 3.0.14 we have that b(g) = 0, but we can also choose b € L with b
vanishing on A by Lemma 3.0.13 applied to the set A, and /b\(q) # 0. Then, b*a = 0, since the
Fourier series of a and b vanish on complementary sets.

As before, since (a * b) x uy(T"p1) = b * u1(T™Y), we have b * u;(T™)) = 0, and hence,

~

as before, by lemma 3.0.14 since g € spec(u(T™¢1)), b(q) = 0, which is a contradiction. So,
q & Ay

Moreover, we have just seen that there is a function ¢ # 0, ¢ € C,. On the other hand,
since ps € Ay, then Ay, € A. So ¢y ¢ Cy which shows Cy # E. O
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We have then seen sufficient conditions for the norms of the iterates of a linear bounded
operator with bounded inverse in order to assure that 7" has a non-trivial invariant subspace in
E. Then, at this level questions arise, such as, are these conditions necessary? or the optimal
ones? For instance, we required the sequence {p,}ncz of positive numbers to be majorized by
a sequence d,, satisfying, among other conditions, that

Zlogdn <1
0.¢}
1+ n? ’

n=0

and this property was only used in the proof of the Lemma 3.0.12 when we wanted to prove that,
given a closed subset A C T, the set of elements in L* such that their spectrum lies inside A
was weak*-closed. And this lemma was precisely important in the proofs of the Lemmas 3.0.13
and 3.0.14 in order to invoke the Hahn-Banach theorem which we used to separate points in A
and in the Theorem 3.0.15 to show that the set Cy, was closed. This tool was essencial in the
proof of Wermer’s result and that is why we require the fact that the spectrum has to have at
least two points, so that we can ensure that the set Cy is not the whole space.

So, the next question arise. Is it necessary to require the assumption on the spectrum having
at least two points? All these questions are still to be answered.
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Chapter 4

Further results related to Wermer’s
Theorem

As we mentioned in the introduction, the property of a subspace being hyperinvariant is a
strong one. Recall that L(E) is the set of linear bounded operator acting from F to E. We say
that Y C F, closed and Y # {0}, E, is invariant under 7' € L(F) if for all z € Y then Tz € Y.
If we then denote by C(T, E) the set of operators which commute with 7', we say that Y is an
hyperinvariant subspace for 7" if it is invariant for every operator S € C(T, E).

We define now a Beurling sequence, which is a sequence satisfying some of the properties
of condition (1) mentioned in chapter 3. So, we ask the sequence to satisfy less conditions.

Definition 4.0.5 (Beurling sequence). A sequence of real numbers {py}nez such that py = 1
and p, = 1, for all n € Z 1is said to be a Beurling sequence if the following conditions are

fulfilled:

(7') Pn+m < PnPm; fO’f’ all n,me L.

(ii)

If we replace Z by N the sequence is said to be, one sided Beurling sequence {p;, }nen-
The main result of Aharon Atzmon work is the following Theorem, which gives sufficient
conditions to have hyperinvariant subspaces.

Theorem 4.0.18 (A. Atzmon). Let E be a complex Banach space and T' an operator in L(E).
Assume there exist {x, tnez C E and {x} }hez C E* with xo,xf # 0 such that

Tx,=2n1 and Trx, =z, ., forall necZ, (4.1)

where T™ denotes the adjoint operator of T acting on the dual E*.
Then, the following sufficient conditions imply that either T is a multiple of the identity
operator or ' has a non-trivial hyperinvariant subspace:

(i) The sequence {||x%||}nez is dominated by a Beurling sequence and ||z,|| = O(|n|*) as
|n| — +oo for some integer k > 0.

37
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(ii) The sequence {||zy||}nez is dominated by a Beurling sequence and ||z%|| = O(|n|*) as
In| — +oo for some integer k > 0.

(11i) Both {||z,||}nez and {||z%||}nez are dominated by Beurling sequences and the functions

defined on C\ T by:

Zx AT 2 < 1
—Zx AT 2] > 1

n=—oo

and,

Zx_m Lolal<

fr(A) = (4.3)

—Zx_n/\” Loz >1

hav more than one singularity on T.

(iv) The elements x¢ and yy are not contained in the respective sets in E and E* defined as:
span{x, : n € Z, n # 0} and span{z} : n € Z, n# 0} and,

log™ ||@,|| + log™
5 log” all +log” i) _ o
14+ n?
nez
and for some constant C' > 0,
[#n]] < Cllznll  and g |l < Cllay il for all n e Z. (4.5)
(v) For ome integer j,

inf [z 22, = 0. (1.6)

Observe that condition (7iz) corresponds to the definition we gave in 3.1, which we already
saw that such functions are analytic on the given domain of definition, and that the spectrum
of such sequences are precisely the singular points of these functions which are those A € T
such that no analytic continuation over any arc containing the point is possible.

Definition 4.0.6 (Single valued extension property). We will say that an operator T € L(FE)
has the single valued extension property (s.v.e.p.) if for any analytic function f : Q — E defined
on an open set Q C C, with (T'— X ) f(\) =0, it results f(A\) =0

Remark 4.0.5. For any operator 7' € L(E) having the s.v.e.p. and f € E, we can consider
the set of Ay € € such that there exists A\ — f()\) analytic continuation in a neighbourhood of
Ao with the property that (T'— \I)f(\) = f.
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Following the previous definition and remark we observe that, from condition (i7i) in The-
orem 4.0.18 and the hypothesis 4.1 from the same Theorem, we have that, for all |A| # 1,

+oo +o0
(T =MD fo(\) = TN = Mo(A) =) Te_ A=) z_A
n=1 n=1

“+00 “+00 —+o00
= E x_n+1)\”_1 — E Ty A" = 20 + E Ty AT — E T_, A = x0.
n=1 n=1 n=2 n=1

And therefore, if T has the s.v.e.p. we conclude that the singularity set of f, coincides with
the spectrum of g, op(zo) C T. Exactly the same, if 7" has the s.v.e.p. we have that the
singularity set of f,« coincides with the set op-(zf).

Now, assuming that 7" and T* have the s.v.e.p. we can formulate condition (ii7) from
Theorem 4.0.18 in the following way:

(i) The sequences {||z,||}nez and {||z} || }nez are dominated by Beurling sequences and the
set op(zo) U op«(xf) has more than one point.

Thus, Theorem 4.0.18 implies clearly, the following theorem:

Theorem 4.0.19. Let T be an invertible operator in L(E) and xy € E and x§ € E* non
zero elements. If the sequences {T"xo}nez and {(T*)"x}nez satisfy one of the forementioned
hypothesis stated in Theorem 4.0.18, then either T is a multiple of the identity or T' has a
non-trivial hyperinvariant subspace.

We will see at this point, that Wermer’s Theorem 3.0.17, from Chapter 3 can be weakened
since Theorem 4.0.19 implies Wermer’s result from Chapter 3 as we shall see now.

Theorem 4.0.20. Let T be an invertible operator in L(E) such that

1 s
) log /"]l _ o, (4.7)
1+ n?
nez

and the spectrum of T contains more than one point then either T is a multiple of the identity
or T has a non-trivial hyperinvariant subspace.

Proof. Let us consider the sequence p,, = ||T"|| as we did in Chapter 3. We observe immediately
that {pn tnez is a Beurling sequence since |77 < ||T™]|||T™]]. Since we have that,

[T l| < 1Tl = pullzll, and (T%)"2"[| < [(T*)"[[[[2"]| = palle™|| for all n € Z.

Let o(T) be the spectrum of 7" and consider,

Ry=(T - X', Meo(T)
the resolvent operator. Recall that o(7) C T for being T such that ||7"|| is Beurling, as we
saw in 3.0.3. So, as we did in Chapter 3 we have,

“+oo
R\T =Y T\ A <1

n=1
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and,

0
R\T=— > T\ [A>1
Therefore, if © € E, and frn, the function associated to the sequence {T"x},cz by 4.2, we

have immediately,
frnz(A) = R\Tx forall AeC\T.

Assume now that Ay € o(7), by a Theorem by Helson [9, Thm 3|, there exists a non-zero

element xy € E such that
D — E

A Ry T'zq

has no analytic continuation to any neighbourhood of Ag. So, \g is a singular point of frn,.
Since, by hypothesis o(7") has more than one point, there exists A; € o(T"), A\; # Ao, and
since 0(T") = o(T™) following exactly the same argument with the function f(p+)n,~ associated
to the sequence {(7%)"x*},cz, we will have that )\, is a singularity of fiz+)ng+. Thus, we are in
the assumptions of Theorem 4.0.19 and the proof is complete. O

Another related result as a consequence of Theorem 4.0.18 is the following one, an extension
of the result given by B. Sz.-Nagy and B. Foias [14, p. 74] which is shown in [5, p. 134].

Theorem 4.0.21 (Colojoara-Foias). Let E be a reflexive Banach space, and {p,}nez an in-
creasing sequence of positive numbers satisfying

lim sup Prn <Cn* forall neN (4.8)

m—+oo  Pm

for some constant C > 0 and integer k < 0. Let T be an operator in L(E) such that
IT"|| = O(pn), as n— oo, (4.9)

and assume there exists elements x € E and x* € E* such that

limsup ||p;, ' T"z|| > 0 (4.10)
n—oo
and,
limsup ||p;, ' (T*)"2*|| > 0. (4.11)
n—oo

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

Before the proof of the above result, we need the following proposition and a corollary of it
whose proof can be seen in [3, p. 22].

Proposition 4.0.22. Let T be an injective bounded linear operator acting on a Banach space
E, and assume there is a sequence {x},ez C E* and an element x € E such that

sup [[(7°)"3 | < +oo, (4.12)
m,ne
m<n
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and

limsup |[(T"z, z)| > 0. (4.13)

n—-+o0o

Then there ezists a norm bounded sequence {y}:}nez C E* with y5 # 0 such that
Ty, =y._y forall neN. (4.14)

Moreover, if there is a sequence of positive numbers {a, }nen such that

limsup ||(T*)" "2 || < a,, forall meN, (4.15)
n—-+oo
then,
I(T*)"ysll < an, for all m € N. (4.16)

Corollary 4.0.23. Let T' be an injective operator in L(E) and assume there is an incresing
sequence {pn tnez of positive numbers and x € E such that

IT"|| = O(pn), as n — oo,
and

limsup ||p;, ' T"z|| > 0.

n—o0

Then, there ezists a norm bounded sequence {y} }nez C E* with y§ # 0 such that,
Ty, =y, forall neN. (4.17)

Moreover, if there also exists a sequence {ay }nez of positive numbers such that

pm+n

lim sup < ap  forall meN, (4.18)

n—+oo  Pn

then
N@"55ll < @y forall m N,
Now, we are in a position to prove Theorem 4.0.21:

Proof. First of all, we observe that if T' # 0 and T is not injective then its kernel is a non-trivial
hyperinvariant subspace for T Indeed, if x € Ker(T') # {0} then for all S € C(T, E) we have
that, TSz = STz = 0 and hence Sz € Ker(7T), thus Ker(7) is invariant under any S which
commutes with T'. Also, if 7™ is not injective, then the closure of the image of T" is a non-trivial
hyperinvariant subspace for 7. This is again clear, since as a general fact T™ injective implies
that ImT = E and the other way around. So, if y = Tx € Im(T) then, for any S € C(T, E)
we have that Sy = STx = T'Sx and therefore Sz € Im(7T") and since 7™ is not injective, the
closure of Im(7') is a proper subspace of E.

So, following the above mentioned reasoning we shall assume that 7" and 7™ are both
injective. This, together with the condition 4.1 and the hypothesis that x, z§ # 0 implies that
T, 2 # 0 for all n € Z.
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Now, from the previous Corollary 4.0.23 and hypothesis 4.25, 4.26 and 4.27 we obtain that
there exists norm bounded a sequence {y*},cz C E* with y; # 0 such that 4.17 holds and

(T = (), as n— oo.
Consider now the sequence {2} }nez C E* defined by means of {y},ecz as:
zp =y*, for n<0, and z,=(T")"y; for n>0.

Now, it follows from properties of the sequence {y*},cz and the fact that (7%)"y: =
O(|nl¥), as n — oo, that condition 4.1 and condition (ii) from Theorem 4.0.18 hold for
the sequence {z}},cz.

Now, due to the fact that F is reflexive, and by hypothesis 4.28 we obtain that there exists
a sequence {1, }nez C E with zg # 0 such that 4.1 and condition (i) from Theorem 4.0.18 hold
and hence the conclusion of Theorem 4.0.18 is attained. O

Finally, we show a more restrictive result by Beuzamy which asks the norm of 7" to be one
and it is also a consequence of Theorem 4.0.18.

Theorem 4.0.24 (Beauzamy). Let T' be a bounded linear operator acting on a Banach space
E such that ||T|| = 1, and assume that for some x € E we have,

lim sup ||T"x|| > 0.

n—o0

Moreover, suppose there exists a sequence {Ty}nez C E with xo # 0 such that the sequence
{l|lzn||}nen is dominated by a one-sided Beurling sequence and such that,

Tx,=x,_1 forall néeN.

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

This Theorem is consequence of the former ones, let us give an extension of Beauzamy’s
result by means of Theorem 4.0.21 and 4.0.24.

Theorem 4.0.25. Let T' be a bounded linear operator and {p,}nez an increasing Beurling
sequence satisfying conditions 4.25 and 4.26 from Theorem 4.0.21 and assume there is a vector
x € E such that 4.27 from 4.0.21 holds too. Finally, assume there is a sequence {x,}nez C E
which satisfies the hypothesis from Beauzamy’s Theorem 4.0.24. Then either T' is a multiple of
the identity or T has a non-trivial invariant subspace.

Proof. Again, using Corollary 4.0.23, from hypothesis 4.25, 4.26 and 4.27 we conclude that
there exists a norm bounded sequence {z},cz C E* satisfying 4.14 and 4.16 from Proposition
4.0.22 with a,, = n* for all n € N.

Now, consider the sequences {y, }nez C E and {y}}ncz C E* defined by:

Yo =x_, for n<0, and y,=T"xy for n >0,

and,
yr=2a", for n<0, and y,=(T")"z; for n>0.
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Now, we have that
lynll = |x_n|l, forall n <O,

and
[y—nll = T "2o|| = [T T || = |77y = = ||lan|| forall n>0.

so the sequence {||y,||}nez is dominated by a Beurling sequence, since {||x,| }nen is dominated
by a one-sided Beurling sequence and finally, by the same reasoning since ||(7%)"zo| < n*, we
have that {||y*]|}nez is bounded by n* so ||y*|| = O(|n|¥) as n — +o0.

So Theorem 4.0.18 item (i) applies to the sequences {y, }nez and {y} ez and this comple
tes the proof. O

We will now see some results which are slight modifications from Colojoaras and Foias result
seen in Theorem 4.0.21, and also improvements on the hypothesis of this Theorem. We will see
that the condition on the growth of the norm of the iterates of 7" need not be polynomial, in
fact, it can be exponential.

First, we see that in Theorem 4.0.21, the condition 4.28 and the fact that £ must be a
reflexive Banach space, can be modified as follows:

Theorem 4.0.26. Let E be a complex Banach space and T a bounded linear operator acting
on E to itself. Let o(T) be the spectrum. Assume there is an increasing sequence {pytnez of
positive numbers and an element x € E satisfying conditions 4.25, 4.26 and 4.27 from Theorem
4.0.21.

Then if o(T)N'T is countable, T* has an eigenvalue, and hence either T is a multiple of the
wdentity or T has a non-trivial hyperinvariant subspace.

Observe that if T* has an eigenvalue, that is, A € T such that T*x* = Az* for some
z* € E*, and T # A, then Im(7T" — AI)is a non-trivial hyperinvariant subspace for T'. Indeed,
ify € Im(T—X) = {(T — X))z € E; x € E}, then for all S € C(T,FE) we have, Sy =
S(T — M)x = STx — S\ = T'Sx — A\Sx = (T — M )Sz and hence Sy € Im(T — AI). It is
non-trival. It is non-zero since 7" # A and Im(7 — AI) is not dense because Ker(T* — AI) # 0.

Another remark which is important to point to is that the condition on o(7") N T being
countable can be replaced by a weaker hypothesis demanding that the set (7)) N'T is a set of
null-measure with respect to the Lebesgue measure on T.

The following result will lead us to the improvement of Colojoaras and Foias result seen in
Theorem 4.0.21.

Theorem 4.0.27. Let E be a complex Banach space and let T € L(E). Assume we have
sequences {xp}nez C E and {z} } ez C E* with 9 # 0 and x§ # 0 such that

Ty, =y and T xz, =x,,,.

Suppose also that {||xf| }nez is dominated by a Beurling sequence and that for some integer
k > 0 and constant C' > 0,

znll + [l ]l = O(n*), as n — +oo, (4.19)
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and,
z_n|| = O(“™),  as n — +oc. (4.20)

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

Remark 4.0.6. This Theorem also holds if we replace the conditions 4.19 and 4.20 by the next
ones:

lz—nll + |22, ]l = O(n*), as n— +oo,
and,
|znl| = O(ecnl/z), as n — +oo.
The above mentioned Theorem 4.0.27 has the following consequences:

Corollary 4.0.28. Let T' be an invertible operator in L(E) and suppose there are mon-zero
elements xo € E and zj € £ such that

| T"xo|| + || (T*)" x5 = O(nk), as n — +0oo, (4.21)
and,
1T~ ao|| + [|(T*) "] = O(“™), as n — +oo, (4.22)

for some integer k > 0 and constant C' > 0.
Then either T is a multiple fo the identity or T' has an hyperinvariant subspace.

Proof. 1t is clear that from items 4.21 and 4.22 we have that the sequences,
Tp =T"zg and z) = (T")"x;, neZ
satisfy the hypothesis of Theorem 4.0.27 O]

Corollary 4.0.29. Let T be an invertible operator in L(E) and suppose that
|7 = O(n*), as n — +oo, (4.23)
and,
1T = O™, as n — —o0, (4.24)

for some integer k > 0 and constant C' > 0.
Then either T is a multiple fo the identity or T has an hyperinvariant subspace.

Observe that Corollary 4.0.29 is a particular case of Wermer’s Theorem seen in Chapter 3.
Finally, we obtain the following result as a consequence of Theorem 4.0.27, which is Colo-
joaras and Foias Theorem replacing the first hypothesis by a weaker one.
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Theorem 4.0.30. Let E be a reflexive Banach space, and {py}nez an increasing sequence of
positive numbers satisfying

lim sup Prmtn =< KeCn'?

m—+oo  Pm

forall neN (4.25)

for some constant C' > 0 and integer k < 0. Let T' be an operator in L(E) such that
|7 = O(pn), as n— oo, (4.26)

and assume there exists elements x € E and x* € E* such that

lim sup ||p;, " T"z|| > 0 (4.27)
n—oo
and,
limsup ||p;, ' (T*)"2*|| > 0. (4.28)
n—oQ

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.
Proof. We have just to apply Corollary 4.0.29 taking the sequence a,, = K 60”1/2, for alln € N
and from the fact that

2 forall neN

. 1
lim sup Protn < Kem
m—+oo  Pm

and following exactly the same proof as in Theorem 4.0.21 bearing in mind that the sequence
{yi }nez satisfies that,

1(T*) " ygll < am = Ke™"” . forall meN.
The same for the sequence {z,}n,cz C E as in the proof of Theorem 4.0.21. ]

The later work of K. Kellay gives an extension of the work by A. Atzmon in the sense that
it stablishes the existence of hyperinvariant subspaces based on a weaker condition than the
one given by A. Atzmon. Let us first state the Theorem by K. Kellay and then compare it to
the results seen until now.

Theorem 4.0.31 (K. Kellay). Let T be an operator in L(E) such that T # M. Let {pn}nen
be an incresing Beurling sequence such that

lim sup 27 = O(e™”®) forall >0, as n— +oo
m—+oo  Pm

and such that
IT"|| = O(pn) as n— +oo.

Assume there is an element x € E such that,

LT
im sup
n——+00 Pn

> 0,
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and a sequence {x,}tneny C E such that

Trpi1 =x, forall n>=0,

log™ ||z,
yologlleall o, (4.20)
= 1+n
and ||xp41|| < Cllzy|| forall n>=0 and C > 0. (4.30)

Then, T' has an hyperinvariant subspace.

Observe that condition 4.29 is weaker than the fact that a sequence {||z,||}neny C E is
dominated by a Beurling sequence. Indeed, if {z, },en C E is such that ||z,|| < Cp, for some
constant C' > 0 and {p, }n,en a Beurling sequence, then

log™ ||, log™ p
———— < C — < ,
Z 1 + n2 Z 1 + 7’L2 00

n=0 n>0
and since,
[Zns1]l < Cppyr and  [[zn]| < Cpn,
hence,
[y 1
~X
]|

and we obtain what we wanted.



Chapter 5

An example of an invertible operator
without invariant subspaces

This Chapter has the main goal to define a bounded and linear operator with bounded inverse
with no invariant subspaces. The operator will be defined on a Banach space that will be an
infinite-dimensional direct sum of James p-spaces. We will present the James p-spaces which are
Banach spaces of sequences satisfying a certain boundedness variation property depending on
p, (p>1). We will find a basis for £ and define the operator as a right-shift on these sequences.

5.1 James p-spaces and strictly singular operators

Before we define the notion of strictly singular operator we need to give meaning to norm
mcereasing operators.

Definition 5.1.1 (Norm increasing). Given E and F two normed spaces and T : E — F a
bounded linear operator. We say that T' is norm increasing if there exists € > 0 such that

|Tz||r > ¢||lx||lg  forall z€E.

Using this definition we can define strictly singular operators as those which such property
is not fulfilled in any infinite-dimensional subspace of F.

Definition 5.1.2 (Strictly singular operator). Let E and F be complex Banach spaces, and
T : E — F a bounded linear operator. We say that T is strictly singular if there is no subspace
W C E of infinite dimension such such that the restriction T|w is norm increasing

A compact operator is always strictly singular. Nevertheless, the converse is not true, and
an evidence of this is that Read shows a strictly singular operator without invariant subspaces,
so it can not be compact since it would contradict Lomonosov’s Theorem which in particular
states that every compact operator has invariant subspaces.

It is easy to check that compact implies strictly singular. Indeed: Suppose that an operator
T is not strictly singular, that is, there is a subspace F' C E of infinite dimension such that
|Tx|| > e||z|| for all x € F. Take y = Tx with y € F and define an operator R such that
R(y) = . Ris bounded: ||Ry| = ||z|| < £||Tz| = L||ly||. Hence, T is invertible on F and the

47
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image of Bp the unit ball of F' is isomorphic to B, that is T'"Br = Br but T compact implies
that Bp is compact but F' has infinite dimension so we get a contradiction.

Now, we will consider the space of sequences in ¢y = {{a,}nen € C: lim, a, = 0} and we
define the James p-space for 1 < p < 400 as:

" 1/p
Jy={a€co: |a| = - sup. E lai, —ai;_,|” < 400}
11<<lp ._
neN J=2

We will construct an operator with no invariant subspaces acting on a Banach space defined
by means of an ¢5-direct sum of .J, spaces. Consider {p, },eny C R an increasing sequence, all
of them strictly greater than 2. Define,

+oo
E=bLaeJ,.
n=1

The construction of such operator will be by means of an increasing sequence which tends
to infinity sufficiently fast. Let {g,},;> be an increasing sequence of positive integers. Set,

ay=0 a, =¢qo,—1 and b, =¢qy, forall n>1.

Thus, we have a1 < by < as < by < .... Define now, a sequence {cn},ﬁ% by means of a and
b as follows,
co=0 ¢, =nla,+b,) forall n>1.

Finally, we define the following partial sums of v,

n—1
Sp = 1—|—Z(1+vk) and sp = 1.
k=0

We know that every Banach space contains an infinite-dimensional subspace that has a
Schauder basis. Let F' C E be the infinite-dimensional subspace of E spanned by the unit
vectors, { fij}i jez+, where fixed i, the element {f;;} is the Schauder basis for the J,, space and
for i = 0 we denote {fo;};>0 the basis for the ¢* space.

Now,given I C Z* x ZT a set of indices, we will denote by F; C F the set spanned by
the unit vectors {fi;; (i,j) € I}, and 7 : FF — F; will denote the natural projection from F
onto Fy, acting on F as 7;(fi;) = fi; whenever (i,7) € I or m;(fi;) = 0 otherwise. Such 7y is
continuous for certain choices of I, but we will only be concerned in the choices of I for which
77 1s continuous.

5.2 Construction of the operator

The first step will be to define a new sequence {e,}/2 such that its linear span is dense in
FCE.

To do so, first we will need to reorder the elements of {f;;,4,j > 0} by means of a bijection
@ L' X ZT — Z*, in such a way that f;; is equal to the element f,; ;). We will denote F),
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the subspace generated by the linear span of {fi,..., f,} where F,, = F} for a choice of I such
that it is the unique set of indices with I = ¢™1([0,n]) C Z* x Z*.
We need now to define the following set of positive integers:

+oo n
0= U U [kana kan + Cn—k]a
n=1k=1
and observe,
+oo
Q=%
k=0
where,
“+o0o
= (0= k)an, (n = k)an + .
n=k+1

As long as the sequence {q, }, increases sufficiently fast, it can be checked that the set €2 is
a disjoint union, and that both Q and Z* \ Q are infinite sets. So, from now on we will take
for granted that {g,}, increases sufficiently rapidly so that this condition is fulfilled.

Let now, for each k£ > 0, o} be the natural bijection defined as follows:

or: —  [0,¢x] x ZT

(n—Ka, +m (m’n_k_l),wmh m € [0, cxl.

From oy, we define the functions ¥x(m) = o, (m)+(dg, 0) in such a way that 3, acts on the same
domain as o, and the image becomes [dy, d+cx] X ZT = [dg, dg+1) X Z7 since dy11 = d+c+ 1.

Finally, define ¥ as the unique map acting on § onto Z* x Z* such that X|g, = 3, that
is, the restriction of ¥ on the set {2 coincides with the functions ¥, defined before.

Now, ¥ is a bijection from 2 onto [dy, +00] X ZT = N x Z*. So unsing ¥ we may get a
bijection between Z* and Z* x Z* by mapping the set Z* \ Q onto {0} x Z*.

So, if we define,

X Zt — AR/
m = X(m)= (0,47 (m))’

where, 1 is the unique increasing bijection between the sets Z* \ 2 and Z™.

The next step will be to construct the basis {e, },/>) of F' and the operator without invariant
subspaces will be a "right shift" of the basis elements of F'.

Assuming that the sequence {¢, }, increases sufficiently fast in such a way that the function
3, and hence 7! are well-defined. We will construct for each k, the element f; = f;; where

(i,7) = %(k).

Now, we claim that there exists a sequence {e, } /2% C F such that,

Jo = eo, (5.1)
and, given r,n, k such that 0 < r <n and ra, < k < ra, + ¢,_, then,

fr=m—r+ 1D, (14+n) e —nT e o D )- (5.2)
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Moreover, if 0 < r < n and ra, + ¢,—. < k < (r + 1)a,, then,

fe=0+ n)ke((”“%)“"_k)/‘/aek. (5.3)
on the other hand if n > 1 and ¢,,_1 < k < a,, then
fo=(1+ n)ke(%““‘k)/mek. (5.4)

If r,n, k satisfy that 0 < r < n and [r(a, + b,) < k < na, + rb, then,
fk: = (1 + n)kek — bn(l + n)i_b"ei_b .

n

(5.5)

Fianlly, if the integers 7, n and k are such that 0 < r < n and na,, +rb, < k < (r+1)(a, + by)
then,

Fo = (1 4 n)k2((rr2)bn=k)/Vong, (5.6)

Recall that the e;’s can be isolated from the f;’s since,

k
fe = g NknCh,
n=0

with A\, # 0 for all k € Z* and the matrix (Mg, )k, is a lowe triangular matrix with diagonal
elements different from zero and hence invertible. Thus, we can define an operator by means
of the elements {e, }:'>% and the next Theorem gives us the main result of this Chapter.

Theorem 5.2.1 (Read). Assuming we have an sequence {q,}2% that increases sufficiently
rapidly. Then, there exists a unique sequence {e,}'2% satisfying the conditions 5.1, 5.2, 5.3,
5.4, 5.5 and 5.6 which is a basis for the space F and there is a unique continuous linear
operator T : F' — F' and strictly singular such that Te, = epi1 for each k and T has no
invariant subspaces.

The last step is to contruct an invertible operator without invariant subspaces using a
strictly singular operator with no invariant subspace. To do so, we will use the following result
about strictly singular operator whose proof can be seen with detail in |2, pp, 278-279].

Theorem 5.2.2. Let T be a strictly singular operator in L(E) with E an infinite dimensional
Banach spacer, then the spectrum of T is countable, 0 € o(T) and it is the only possible
accumulation point, and all the non-zero elements of o(T) are eigenvalues.

Now, by Read’s Theorem, we have a strictly singular operator 7' with no invariant subspaces,
so o(T) = {0}. Indeed, if o(T) # {0} then by Theorem 5.2.2 T would have an eigenvalue but
this means that T" would have an invariant subspace and this can not happen.

Finally, let us consider the operator S = I —7T'. S is an invertible operator with no invariant
subspaces. It is indeed invertible since o(T) = {0} so all operators of the form A\ — T for all
A € C\ {0} are invertible. Moreover, if Y C E and Y # {0}, F is invariant under S, then:

TY =(I+S)Y =Y +8Y C Y,

and this implies that S has no invariant subspaces either.

Therefore, we have constructed an invertible operator with no invariant subspaces which
shows that, indeed, not every bounded and linear operator on an infinite-dimensional and
separable Banach space necessarily has non-trivial invariant subspaces.
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