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Chapter 1

Introduction

In functional analysis, the Invariant Subspace Problem (ISP) is the question whether any
bounded linear operator T : E → E, with E a Banach space, has a non-trivial closed invariant
subspace, that is F ⊂ E, closed and F 6= {0}, E such that TF ⊂ F .

In other words, to answer the question means either to find an operator T as before, which
has no invariant subspaces or to prove that every bounded linear operator has at least one
invariant subspace. In the case of general Banach spaces the answer is already known and it
is negative, not every linear and bounded operator defined on Banach spaces has an invariant
subspace and the first counterexample was found by the swedish mathematician Per Enflo in
1976, when he announced the existence of such operator in the Seminaire Maurey-Schwarz
(1975-1976) [6] but it was not until 1981 when he submitted a paper for publication in Acta
Mathematica which remained unrefereed for more than five years because apparently they say
that the paper was quite difficult and not well writen. The paper was finally accepted with
small changes in 1985 and it actually appeared in 1987 [7]. But there are several other examples
of operators without invariant subspaces constructed by C. Read.

It is clear that if T has an eigenvalue then T has a non-trivial invariant subspace, namely
the closure of Ker(λ−T ) where λ is such eigenvalue and of course, T is not a λ-multiple of the
identity. So, if the operator is defined on a finite-dimensional Banach space, T has indeed an
eigenvalue. On the other hand, if the space is not separable, that means that fixed a non-zero
element x ∈ E, the closure of the linear span of {T nx;n ∈ N} can not be the whole space since it
would contradict the fact that E is not separable, and hence T would have non-trivial invariant
subspace. So, solving the ISP would be equivalent to find a non-zero vector x ∈ E such that
the closure of the span of the set {T nx}n∈N is not the whole space. So at this point the answer is:

Question: Does every bounded linear operator defined on a complex, infinite-dimensional sep-
arable Banach space have a non-trivial invariant subspace?.

The problem remains still open for the case of Hilbert spaces. As we mentioned, for the
case of Banach spaces the answer is no. In this work our purpose will be to go over the main
results obtained by several mathematicians in the case of T : E → E bounded linear, defined
on E a complex Banach space, and T will have a bounded inverse.

One of the first, and most important results that asserts that T has invariant subspace is
due to V. I. Lomonosov (1973) [13] who gave a proof of the following assertion:
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4 CHAPTER 1. INTRODUCTION

Theorem: If a non-scalar bounded and linear operator T on a Banach space commutes with a
compact operator, then T has a non-trivial hyperinvariant subspace.

Here, Lomonosov gave a stronger result than the ISP. An hyperinvariant subspace for T is
an invariant subspace for every operator that commutes with T . Therefore, finding hyperin-
variant subspaces implies finding invariant subspaces.

At this point, it seemed reasonable that Lomonosov’s Theorem could lead us to the affirma-
tive answer for the ISP. Imagine every linear bounded operator T commutes with a non-zero
compact operator, then the problem is solved. Nevertheless, seven years later, in 1980, D. W.
Hadvin, E. A. Nordgren, H. Radjavi and P. Rosenthal gave an exampe of an operator which
does not commute with any non-zero compact operator and has invariant subspaces.

In the first chapter we will present several results from analysis, more precisely, we will use
tools from functional and harmonic analysis, Banach algebras, operator theory and complex
analysis. Then, in the next chapters, we will study more carefully the conditions and properties
of an operator to ensure the existence of non-trivial invariant, or more generally, hyperinvariant
subspaces.

The first main work about this issue is due to John Wermer. In 1952, [18] he proved, for an
invertible operator, that under some conditions on the behavior of the norm of the iterates of
an operator and its spectrum, we can assure the existence of invariant subspaces. We will give
a detailed proof of this fact as it is the main part of the work and it is the origin of later works
regarding the improvement of the result.

Later on, the mathematician Aharon Atzmon presented a better result for the existence of
hyperinvariant subspaces which included as a particular case Wermer’s Theorem which actually
also gives the existence of hyperinvariant subspaces [3]. By better, we mean that the hypothesis
needed to assure the existence of hyperinvariant subspaces are weaker than the ones given by
Wermer. We will take a look at the main results of Atzmon’s work in Chapter 3.

Then, a work by the mathematician K. Kellay [11] is discussed in Chapter 3 which establishes
a slightly weaker condition than the one given by A. Atzmon and hence again, an improvement
on the hypothesis of Wermer’s Theorem.

The final Chapter of this work is devoted to give C. J. Read’s counterexample [15], that is,
we will present a definition of an invertible operator without invariant subspaces.



Chapter 2

Preliminaries

2.1 The spectrum of an operator
Let, in general, T be an operator between locally convex spaces. We define the resolvent set
of T as the set ρ(T ) of scalars λ ∈ K such that λ − T is invertible, this is, the operator
R(λ, T ) = (λ − T )−1 exists and it is continuous. We call R(λ, T ) the resolvent of T . In our
case, we are interested in studying operators between Banach spaces and the set of scalars will
be the complex numbers. As long as no confusion arises, we will just write R(λ) to refer to the
resolvent of an operator T when the operator is fixed.

Definition 2.1.1. We define the spectrum of an operator σ(T ) as the complementary set of
ρ(T ), this means, the set of scalars λ such that λ− T is not invertible.

Next, we will state some topological properties of the spectrum.

Proposition 2.1.1. The spectrum of an operator has the following properties:

(a) The resolvent set is an open subset of the complex plane.

(b) The function R : ρ(T ) −→ L(E) is analytic on ρ(T ), and ‖R(λ)‖ > 1/d(λ) where
d(λ) = dist(λ, σ(T )).

(c) The spectrum σ(T ) is contained in the disk D(0, ‖T‖), has at least one point, and is
compact.

Proof. Fix λ ∈ ρ(T ), then there exists a radius r > 0 such that the ball B(λ, r) = λ+B(0, r) ⊂
ρ(T ). We take an element µ ∈ B(0, r) and see that λ+ µ ∈ ρ(T ) for a convenient r.

Define,
S(µ) =

∑
k>0

µk(λ− T )−(k+1) =
∑
k>0

µkR(λ)k+1.

Now we may require that ‖µR(λ)‖ < 1 then |µ| < 1/‖R(µ)‖. In this case, the series
converges in operator norm and,

(µ+ λ− T )S(µ) = (λ− T )S(µ)− µS(µ)

=
∑
k>0

µk(λ− T )−k −
∑
k>0

µk+1(λ− T )−(k+1)

= I,

5
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since S commutes with λ + µ − T , then it is its inverse. Hence, B(λ, 1/‖R(λ)‖) = λ +
B(µ, 1/‖R(λ)‖) ⊂ ρ(T ) which proves ρ(T ) is open.

Analycity comes for free, since we found a power series S(µ) of the function R(λ+ µ) on a
neigbourhood of µ = 0.

For (c), similarly we set p(λ) =
∑

k>0
Tk

λk+1 . This series converges as long as ‖T‖ < |λ|, and
(λ−T )p(λ) = I, so p(λ) = R(λ) for ‖T‖ < |λ|, and hence the λ such that λ−T is not invertible
lie inside the disk D(0, ‖T‖) and since σ(T ) is closed, it is then compact.

Now since the definition of p makes sense and ‖p(λ)‖ → 0 as |λ| → ∞, by the maximum
modulus principle the function must be constantly 0 which is contradictive, therefore σ(T ) has
at least one element.

The element in σ(T ) with maximum modulus is called the spectral radius of T , which always
exists since σ(T ) is compact, we denote it by r(T ) and we see, in the next proposition, a way
of computing it.

Proposition 2.1.2. For a bounded operator we have,

(a) (Gelfand’s formula) r(T ) = limk→∞ ‖T k‖1/k 6 ‖T‖

(b) The series R(λ) =
∑

k>0
Tk

λk+1 converges in operator norm if |λ| > r(T )

Proof. Part (b) is clear.
Part (a) comes from the radius of convergence of the Laurent series R(λ), the unique point

is to ensure the existence of the limit.
We have r(T ) = lim sup ‖T k‖1/k which is the radius of convergence. Now, if λ ∈ σ(T )

then λ − T = (λk − T k)pk(λ, T ) for a polynomial pk is not invertible and then λk ∈ σ(T k),
so |λ|k 6 ‖T k‖ and hence |λ| 6 lim inf ‖T k‖1/k which proves the existence of the limit and
therefore gives the formula.

The fact that r(T ) 6 ‖T‖ is obvious but can also be seen by the Stolz criterion applied to
the logarithm of the limit.

Now, we will see how the spectrum of an operator can be decomposed in smaller disjoint
parts according to some diferent properties of its elements.

Definition 2.1.2. We can decompose the spectrum of an operator as follows,

• σp(T ) pointwise spectrum of T , the set of eigenvalues of T .

• σc(T ) continuous spectrum of T ,

σc(T ) = {λ ∈ σ(T ), λ− T is injective, non surjective but has dense range}

• σr(T ) residual spectrum of T ,

σr(T ) = {λ ∈ σ(T ), λ− T is injective, non surjective and does not have dense range}

• σa(T ) approximate point spectrum of T , is the set of λ ∈ σ(T ) such that there exists a
sequence (xn)n>0 of points in E with ‖xn‖ = 1 for all n, and Txn−λxn → 0 when n→∞.
The sequence (xn)n>0 will be called a sequence of almost eigenvectors for λ.
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An immediate observation is,

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )

and obviusly,
σp(T ) ⊂ σa(T )

The next proposition gives us some basic properties of the subsets of the spectrum defined
above.

Proposition 2.1.3.

(a) σr(T ) = σp(T
t).

(b) σp(T ) ⊂ σr(T
t), equality holds when E is reflexive.

(c) σa(T ) is a closed subset of σ(T ) which contains σp(T ), σc(T ) and the boundary of σ(T ).

Our concern will be to find, given an operator T from a Banach space E into itself, a non-
trivial closed subspace Y such that T (Y ) ⊆ Y . So, we observe that if λ ∈ σp(T ), λ 6= 0 then
there exists an element x ∈ E different from 0 and indeed Y = [x] will be invariant.

Also, if λ ∈ σr(T ) then taking Y = (λ− T )(E) will be a closed invariant subspace. Indeed,
take x ∈ E and set y = (λ − T )x ∈ Y then Ty = T (λ − T )x = (λ − T )(Tx). Therefore,
T ((λ− T )(E)) ⊆ (λ− T )(E) since T is continuous and this is not the whole space because the
range is not dense by definition of σr(T ).

The following proposition gives us another possibility to find eigenvalues in σa(T ).

Proposition 2.1.4. Let T be an operator defined on a reflexive Banach space E. Fix λ ∈ σa(T )
different from 0, and (xn)n>0 a sequence of almost eigenvectors for λ. Then, either λ is not
an eigenvalue, and (xn)n>0 tend to 0 weakly, or λ is an eigenvalue, and every non-zero weak
accumulation point of this sequence is an eigenvector for λ.

Proof. Since E is reflexive, this is, we can identify E with its bidual, then there exists a
subsequence xnk

weakly convergent to some element y ∈ E. Thus,

Txnk
− λxnk

→ 0 in norm

Txnk
→ Ty weakly

and then,
λxnk

→ Ty weakly

but,
λxnk

→ λy weakly

So, since λ is non zero, Ty = λy. If we find a subsequence we find y = 0, then (xn)n>0

converges to 0 weakly, or for some subsequence the point y 6= 0 then λ is an eigenvalue and y
is its correspondent eigenvector.
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2.2 The analytic functional calculus
In this section we will introduce some notions on analytic functional calculus. We will introduce
the Cauchy formula for operators and see what are the properties of the sprectrum inherited
by this transformation. The main result of this section will be the spectral mapping theorem
which gives us the answer of how spectrum varies when we apply an analytic function to our
operator T .

Let F(T ) denote the set of functions taking values on C analytic on some neighbourhood
of σ(T ). If f ∈ F(T ) and Ω an open set containing σ(T ) whose boundary Γ = ∂Ω consists of
a finite number of rectificable Jordan curves oriented in the positive sense and we assume that
f is analytic on Ω then, we define:

f(T ) =
1

2πi

∮
Γ

f(λ)R(λ)dλ

This definition is independent of the domain Ω, if we take another one, R(λ) will also be
analytic between boths boundaries and then by the Cauchy formula we will have f(T ) = 0 on
between. Observe also, that if Γ consists of a circle centered at the origin with a radius strictly
larger than the spectral radius, then,

f(T ) =
1

2πi

∑
n>0

T n
∮

Γ

f(λ)

λn+1
dλ

since the series converges in operator norm.
Let us now turn to some basic properties of these functions,

Proposition 2.2.1. Let f, g ∈ F(T ) and α, β ∈ C, then:

(a) αf + βg ∈ F(T ) and (αf + βg)(T ) = αf(T ) + βg(T )

(b) f · g ∈ T and (f · g)(T ) = f(T )g(T )

(c) if f(λ) =
∑∞

k=0 akλ
k converges in a neighbourhood of σ(T ) then f(T ) =

∑∞
k=0 akT

k

(d) also f ∈ F(T t) and f(T t) = f(T )t

(e) if S commutes with T then S also commutes with f(T ).

(f) For T an operator on a Hilbert space, and f ∈ F(T ), denote f#(λ) = f(λ) then f# ∈
F(T ) and f(T )∗ = f#(T ∗)

We will now introduce the spectral mapping theorem which gives a satisfactory description
of how spectrum is transformed by an analytic function of the operator. We will also give a
short and easy proof of the theorem.

Theorem 2.2.2. [Spectral Mapping Theorem] If f ∈ F(T ),

f(σ(T )) = σ(f(T )),

where f(σ(T )) = {f(λ);λ ∈ σ(T )}.
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Proof. Take λ ∈ σ(T ) and define a function g by,

g(ζ) :=
f(λ)− f(ζ)

λ− ζ

Then g ∈ F(T ) and satisfies,

(λ− ζ)g(ζ) = f(λ)− f(ζ)

applying now T ,
(λ− T )g(ζ) = f(λ)− f(T )

If λ /∈ σ(f(T )), this is, f(λ) − f(T ) were invertible, we call Λ its inverse. Then Λg(T )
would be the inverse of λ − T and λ /∈ σ(T ) which contradicts our initial assumption, so
f(λ) ∈ σ(f(T )) and hence f(σ(T )) ⊂ σ(f(T )).

Conversely, assume that µ /∈ f(σ(T )). Then the function,

h(ζ) :=
1

f(ζ)− µ

is in F(T ) and satisfies h(ζ)(f(ζ) − µ) = I. So, h(T )(f(T ) − µ) = I and µ /∈ σ(f(T )). This
shows that f(σ(T )) ⊃ σ(f(T )).

2.3 Analytic Continuation
The target of this section will be to give the reader a quick overview on analytic continuation
and some useful definitions and notions about this issue which will be essencial for the proof
of J. Wermer’s result later in the first chapter. We will define the spectrum of an element in a
concrete Banach algebra in terms of analytic continuation properties. First, let us give a slight
idea of what analytic continuation means.

Suppose we have an open and connected subset Ω ⊂ C, and a holomorphic function f :
Ω→ C. It is well-known that if we have U ⊂ Ω open and another function g ∈ H(U) and f = g
on U then f = g on the whole Ω and this is called the uniqueness property [1, pp, 122-123].
In other words, if f vanishes on a set U ⊂ Ω of positive measure then f ≡ 0 everywhere on Ω.
So, given a function f in U ⊂ Ω, there is a unique way to extend it analitically over the whole
Ω if it were possible. For instance, define,

f(z) =
+∞∑
n=0

zn.

We know that this power series converges on the unit disk D = {z ∈ C : |z| < 1}. So we
could think that D is the natural domain to define this function, but, can we extend it to a
larger set? The answer is yes. This is a geometric power series. Let us define the function,

g(z) =
1

1− z
.

Observe now that this function is holomorphic on the whole plane except for the point z = 1
and this function agrees with f , that is, f(z) = g(z) for all z ∈ D. So, we can extend f to the
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whole plane except for the value z = 1. Thus, we see that the natural domain to define f is
the larger set C \ {1}.

We will consider now functions defined on disks and we will define the notion of analytic
continuation on disks. Let us consider functions fi : Di → C, with Di ⊂ C two disks for i = 1, 2.
Then, we say that f1 and f2 are direct analytic continuation one of each other if D1 ∩D2 6= ∅
and f1 = f2 on D1 ∩D2.

Iterating this reasoning, given the couples {(fi, Di)}ki=1 holomorphic functions each one
defined on Di and Di ∩Di+1 6= ∅ for all i = 1, ..., k − 1. Then we say that (f1, D1) is a direct
analytic continuation of (fk, Dk) if, and only if, (fi, Di) is a direct analytic continuation of
(fi+1, Di+1) for all i = 1, ..., k − 1. Thus, the analytic continuation property is a reflexive,
symmetric and transitive property.

2.3.1 Analytic Continuation along a Curve

Following the previous method we can as well continue a function analytically over a given
curve or arc. Let γ : [0, 1] → C be a curve piecewise smooth, and (f,D) an analytic function
defined on a disk D centered at γ(0). An analytic continuation of f along the curve γ is a
famility of couples (ft, Dt) where each ft is defined on Dt for all t ∈ [0, 1] such that,

(i) (f0, D0) = (f,D).

(ii) Dt a disk is centered at γ(t) for each t ∈ [0, 1].

(iii) For each t ∈ [0, 1], there exists δ > 0 such that for all s ∈ (t − δ, t + δ), γ(s) ∈ Dt and
therefore Dt ∩Ds 6= ∅, and ft ≡ fs on Dt ∩Ds.

We will denote
f1#γf2

meaning that f1 and f2 are analytic continuation one of each other along the curve γ or the
other way around.

2.4 The Invariant Subspace Problem

As we mentioned in the Introduction of this work, although the Invariant Subspace Problem is
somehow easy to state the answer is still open in the case of Hilbert spaces. The problem is the
simple question: ”Does every bounded operator T on a separable Hilbert space H over C have
a non-trivial invariant subspace?” The answer is no, in general, for separable complex Banach
spaces. The solution for Banach spaces was shown by the mathematician Per Enflo in 1976, who
announced the existence of a Banach space and a bounded linear operator on it with no trivial
invariant subspaces. Further manipulations were done by other mathematicians in order to
sharpen his proof or give other counterexamples following Enflo’s ideas. C. J. Read provided a
shorter proof of the problem and also the french mathematician Bernard Beauzamy refined the
techniques of Enflo and produced a counterexample. In this work, we will be more concerned
on studying the concrete case of isomorphic operators, this is, continuous linear operators such
that the inverse exists and it is continuous.
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As we mentioned earlier, if λ ∈ σp(T ) different from zero, and x is the eigenvector associated
to λ, the subspace F = {λx;λ ∈ C} gives us a solution. Yet another, if we find λ ∈ σr(T ) the
set F = Im(λ− T ) provides a non-trivial closed invariant subspace.

A more naiv way to search for invariant subspaces is to look at the behaviour of orbits
of points under the operator T , if we have a point x ∈ E such that the orbits OT (x) =
{x, Tx, T 2x, . . . } does not have dense span then Fx = span{OT (x)} is a closed and invariant
subspace under T . Such a subspace will be called an elementary invariant subspace. If Fx is
the whole space the point x is said to be cyclic, or non-cyclic otherwise.

Another concept, which is stronger, is the hyperinvariant subspace. A subspace is said to
be hyperinvariant if it is invariant by all operators which commute with T . Following this
definition we can consider the set,

Gx = span{OS(x)} such that S commutes with T

Then Gx is an elementary hyperinvariant subspace. The aim, then, will be to look for non-
trivial invariant or hyperinvariant subspaces. The term ”non-trivial” will always be implicitly
assumed.

The following result gives us an answer on whether an operator has hyperinvariant subspaces
by means of a topological property of the spectrum.

Theorem 2.4.1 (F. Riesz). If σ(T ) = σ1 ∪ σ2 where σ1 and σ2 are disjoint closed subsets.
Then T has hyperinvariant subspaces F1 and F2, and

σ1 = σ(T |F1), σ2 = σ(T |F2)

where T |F is the restriction of T on the subspace F .

Proof. Let U1 and U2 be disjoint open sets containing σ1 and σ2 respectively. Let f1 = 1 in U1

and f1 = 0 in U2, and f2 = 1 on U2 and f2 = 0 on U1. Then f1, f2 ∈ T and we have,

f1(T ) + f2(T ) = I

f 2
1 (T ) = f1(T ) and f 2

2 (T ) = f2(T )

Therefore, f1 and f2 are projections, which commute with T . Their ranges F1 and F2 are
the hyperinvariant subspaces by proposition () property (e), and indeed closed and non-trivial.

Now, on F1, we have T = Tf1(T ). So, σ(Tf1(T )) = σ(T )f1(σ(T )) by the spectral mapping
theorem, Theorem 2.2.2, applied to the analytic function f(λ) = λf1(λ). But, σ(T )f1(σ(T )) =
σ1 and the same for F2.

2.5 Orbits of a Linear Operator

2.5.1 The image of a ball by a linear operator

The successive images of a ball by a linear operator will be very useful concerning the study of
the iterates of a points by a linear operator. The shape and position of a ball (TnB)n>0, for a
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fixed ball B will be of important consideration. Of course, our goal is to predict the behaviour
of the itaterates of a given point x, this is (Tnx)n>0 and try to find a point such that the iterates
have a controlled behaviour. For instance, if the closure of the span of the iterates (Tnx)n>0 is
not the whole space, then we have found a non trivial closed invariant subspace.

The image of a ball determines uniquely the operator. Indeed, no matter how small the ball
is, giving its image, by linearity and continuity this fact makes possible to recover the operator
T for which the ball was applied to.

If B is any closed ball in a Banach space E, then TB is a convex set which is closed in
the case of E being reflexive or if the operator is weakly compact. For example, in the case of
Hilbert spaces.

The inverse image T−1B is a closed convex set, since T is continuous. It will be bounded if
T−1 exists as a continuous operator.

The image of the ball will also be balanced (if |λ| 6 1 then λTB ⊂ TB).

2.5.2 Baire property for operators

We will now give a more general version of Baire Property involving linear operators on Banach
spaces.

Proposition 2.5.1. Let T be an operator on a Banach space E, with danse range. Let (Gn)n>0

be a countable family of open sets. Then the intersection ∩n>0T
nGn is dense.

Corollary 2.5.2. If one takes T = Id, one gets the usual Baire Property.

Corollary 2.5.3. Let T be an operator with sense range. Then, there is a dense set of points
x which have an infinite chain of backwards iterates, that is: for all n > 0, there is yn such that
T nyn = x.

Proof. This follows from the proposition 2.5.1 taking Gn = E for all n > 0.

2.5.3 C. Rolewicz example of an operator with one hypercyclic point

We will now show an example of an operator with one hypercyclic point, this means, a point
such that the iterates are dense in the whole space. C. Rolewicz example was provided in 1969
and the one we will show is C. Rolewicz version modified by B. Beauzamy in order to get a
class of examples with several supplementary properties.

Let us consider the space of square summable sequences on Z, that is l2(Z) = {(an)n∈Z ⊂
Z; ‖(an)n‖2 := (

∑
n |an|2)

1/2
< +∞}. Consider the canonical basis, en that consists of the

sequence having all 0’s and 1 on the n-th position. The support of x ∈ l2(Z) is the set
{k;xk 6= 0}.

We define weighted shift operator on l2(Z),

Tek = wkek−1, for k ∈ Z,

the integers wk ∈ Z are the weights. This operator consists of translating the terms of the
sequence (en)n one place to the left and multiplying by an integer wk. We now introduce a
condition on the weights that ensures there exists an hypercyclic point.
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Theorem 2.5.4. If the weights wk satisfy:

lim
n→∞

n∏
k=0

wk = +∞, and wk > 1 for k > 0, (2.1)

lim
n→∞

−n∏
k=0

wk = 0, and 0 < wk < 1 for k < 0, (2.2)

the operator T has an hypercyclic point.

Proof. We observe that the inverse of T is S:

Sek =
1

wk+1

ek+1.

Computing the iterates,

Tek = wkek−1

T 2ek = T (wkek−1) = wkT (ek−1) = wkwk−1ek−2

· · ·
T nek = T n−1(wkek−1) = wkT

n−1(ek−1) = · · · = wkwk−1 · · ·wk−nTek−(n−1) =

=
n−1∏
j=0

wk−jek−n,

and similar for Snek, from the hypothesis 2.2 and 2.1 we have that,

lim
n→∞

T nek = 0 and lim
n→∞

Snek = 0 for all k ∈ Z (2.3)

Let us now consider a dense sequence (x(n))n ⊂ l2(Z), each x(n) with finite support and let
us call k(n) = maxk{k : x

(n)
k 6= 0} the last integer of its support.

Now, for n > 0, let r(n) be an integer such that, if r > r(n), we have for i = 1, · · · , n− 1,

‖T rx(i)‖ < 1/2n, (2.4)

‖Srx(n)‖ < 1/2n. (2.5)

These integers exist due to (2.3). Set p(n) =
∑n

i=1 r(i), and consider z =
∑∞

k=1 S
p(k)x(k).

Then:

T p(n)z = T p(n)
(
Sp(1)x(1) + Sp(2)x(2) + · · ·+ Sp(k)x(k) + · · ·

)
=

= T p(n)Sp(1)x(1) + T p(n)Sp(2)x(2) + · · ·+ T p(n)Sp(k)x(k) +

+ · · ·+ T p(n)Sp(n−1)x(n−1) + x(n) +
∞∑

m=n+1

Sp(m)−p(n)x(m) =

= T p(n)−p(1)x(1) + · · ·+ T p(n)−p(k)x(k) + · · ·+ T p(n)−p(n−1)x(n−1) +

+ x(n) +
∞∑

m=n+1

Sp(m)−p(n)x(m).
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But for k = 1, · · · , n− 1 by (2.4) and (2.5) respectively we have,

‖T p(n)−p(k)x(k)‖ = ‖T r(k+1)+···+r(n)‖ 6 1/2n

‖
∞∑

m=n+1

Sp(m)−p(n)x(m)‖ 6
∞∑

m=n+1

‖Sr(m)+···+r(n+1)x(m)‖ <
∞∑

m=n+1

(1/2)m = 1/2n.

Finally,

‖T p(n)z − x(n)‖ 6 ‖
n−1∑
k=1

T p(n)−p(k)x(k)‖+ ‖
∞∑

m=n+1

Sp(m)−p(n)x(m)‖ < (n− 1)/2n + 1/2n = n/2n,

since the sequence x(n) is dense, so is T (n)z for n > 1. Hence z is an hypercyclic point.

2.6 Banach Algebras
In this section we will give some overview on banach algebras, in particular, operator algebras
and some important facts that will be necessary later in the preliminaries of Wermer’s result.

A complex Banach algebra A, is a complex Banach space, endowed with an operation

A× A→ A

(x, y) 7→ xy,

satisfying, for all x, y, z ∈ A and λ ∈ C,

(i) x(y + z) = xy + xz, and (y + z)x = yx+ zx,

(ii) (xy)z = x(yz),

(iii) λ(xy) = (λx)y = x(λy),

(iv) ‖xy‖ 6 ‖x‖‖y‖.

If also xy = yx the algebra A is said to be commutitave, and if A has a unit, that is, an
element e ∈ A such that ex = xe = x for all x ∈ A, the algebra A is said to be unitary. Usually
the unit element is represented by 1.

A subalgebra B ⊂ A, is a vector subspace of A which is closed under the algebra operation,
i,e: if x, y ∈ B then xy ∈ B.

For instance, the space of all sequences a = (an)n∈Z ⊂ C satisfying that
∑

n∈Z |an| < +∞ is
a Banach algebra with the following operation,

∗ : A× A→ A

(a, b) 7→ a ∗ b,
where the element a ∗ b is another sequence, defined as,

(a ∗ b)n =
∑
m∈Z

an−mbm.
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This algebra is denoted by `1 and the norm associated to this space is ‖a‖`1 =
∑

n∈Z |an|.
This space, using weights, will be a useful tool for the proof of existence of invariant subspaces
of isomorphisms between Banach spaces.

We say that an element a ∈ A is invertible, if there exists b ∈ A such that ab = ba = 1,
usually we will denote it as a−1.

We define the spectrum of an element a ∈ A as the set of scalars such that λ − a is not
invertible, that is,

σ(a) = {λ ∈ C; λ− a is not invertible}.

Finally, we give a very strong result on unitary Banach algebras whose elements, besides 0,
are all invertible.

Theorem 2.6.1 (Gelfand-Mazur). If A is a complex Banach algebra with unit and every non-
zero element is invertible, then A is isometric to C.

Proof. We saw in (2.1.1) that the spectrum of an operator has at least one point, following the
same argument one can show that σ(a) has also at least one point. Now, since the spectrum of
each element is non-empty, for each a ∈ A, there is a λ ∈ C such that λ − a is not invertible.
By hypothesis A is an algebra whose elements are all invertible, besides 0, then λ− a = 0 and
hence a = λ, and it is of course an isometry since ‖a‖ = |λ|.

2.6.1 Ideals and Homomorphisms of Banach algebras

A vector subspace I of a complex Banach algebra A is called an ideal, if it satisfies that for all
a ∈ A and x ∈ I, then ax ∈ I and xa ∈ I. An ideal I is said to be a proper ideal, if I 6= A,
and it is said to be maximal if there are no other proper ideals containing I, that is, if I ′ ⊂ A
is another proper ideal such that I ⊂ I ′ then I ′ = I.

Remark 2.6.1. Observe that a proper ideal can not contain any invertible element, otherwise
the unit element would belong to the ideal, so the ideal would coincide with the whole algebra.

Proposition 2.6.2. Every maximal ideal is closed and every proper ideal is contained in a
maximal ideal.

Proof. Consider I a maximal ideal of A. Then, its closure I is also an ideal which contains I.
Let us see that I 6= A: We consider the unit ball centered at 1, that is,

B = {a ∈ A; ‖a− 1‖ < 1}.

Then I ∩ B = ∅, otherwise, if b ∈ B, then ‖1 − b‖ < 1 so b would be invertible, and b ∈ I
invertible would imply I = A which is a contradiction. Now, since B is open, I ∩ B = ∅. This
shows that I is proper, and since I is maximal, then I = I, that is, closed.

Let now I be a proper ideal, and consider the family of all ideals containing I, ordered by
inclusion, I ⊂ I1 ⊂ I2 ⊂ . . . . We consider a totally ordered subfamily (Ii) of these ideals.
Then the set ∪iIi is a proper ideal since none of them intersects B as we have seem before,
and I ⊂ ∪iIi so, it is a majorant for I. Then, by Zorn’s lemma there are maximal elements in
∪iIi.
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An homomorphism ϕ between two Banach algebras A and B is a mapping,

A
ϕ−→ B,

satisfying,

(i) ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈ A,

(ii) ϕ(λx) = λϕ(x) for all x ∈ A and λ ∈ C,

(iii) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A.

Remark 2.6.2. The multiplicativity property provides directly the continuity as we shall see
in the coming proposition.

Proposition 2.6.3. Every homomorphism ϕ from A into C is continuous, and if ϕ 6= 0 then
ϕ(1) = 1 and ‖ϕ‖ = 1. Moreover ϕ(a) ∈ σ(a) for all a ∈ A.

Proof. Since ϕ is a linear mapping, it is enough to check continuity at zero. We have that the
kernel of ϕ is an ideal. Indeed, given x, y ∈ Kerϕ, then ϕ(xy) = ϕ(x)ϕ(y) = 0, so xy ∈ Kerϕ.

Moreover, it is a hyperplane by the Hahn Banach theorem, so Kerϕ is a maximal ideal and
by Proposition 2.6.2 it is closed and hence ϕ is continuous.

Now take an element x ∈ A such that ‖x‖ = 1, then,

|ϕ(x)|n = |ϕ(xn)|,

by multiplicativity and since ϕ is continuous,

|ϕ(xn)| 6 ‖ϕ‖‖xn‖ 6 ‖ϕ‖,

so |ϕ(x)| 6 ‖ϕ‖1/n and letting n tend to infinity, we get |ϕ(x)| 6 1, so ‖ϕ‖ = max
‖x‖=1

|ϕ(x)| 6 1.

On the other hand if ϕ 6= 0 there is at least an element x ∈ A such that ϕ(x) 6= 0 and by
linearity ϕ(x) = ϕ(1x) = ϕ(1)ϕ(x), so ϕ(1) = 1 and hence ‖ϕ‖ = 1.

Finally, for each a ∈ A, ϕ(a)−a ∈ Kerϕ, which is a proper ideal, so it contains no invertible
elements, so ϕ(a) ∈ σ(a).

Such a non-zero homomorphism from A into C is called a character and it is denoted by χ.
We denote by χ(A) the characters of A, that is, all continuous homomorphisms from A into C.
Of course, χ(A) ⊂ A∗, where A∗ is the dual. We endow A∗ with the topology σ(A∗, A), this
means, the topology of pointwise convergence on elements of A and next we will see that χ(A)
is a w∗-compact subset of A∗.

Proposition 2.6.4. The set of characters χ(A) ⊂ A∗ is w∗-compact.

Proof. It suffices to show that it is closed under the weak star topology since w∗-compactness
follows directly by the Banach-Alaoglu Theorem.
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2.6.2 The Gelfand’s Transform

We have introduced χ(A) a subset of the dual A∗, consisting of the continuous homomorphisms
from A into C. We endow A∗ with the topology defined by means of the seminorms ‖ · ‖a,
a ∈ A which act on A∗ as ‖u‖a = |u(a)| for all u ∈ A∗. We say that un → u with respect to
this topology if, and only if, un(a)→ u(a) for all a ∈ A, that is, the pointwise convergence on
elements of A.

Now, we define the Gelfand transform â of an element a ∈ A as,

G : A→ C(χ(A))

a 7→ â

The correpondence a 7→ â is called the Gelfand’s morphism, and we denote the set Â =
{â; a ∈ A}.

This correspondence is continuous. Indeed,

‖â‖C(χ(A)) = sup
ϕ∈χ(A)

|â(ϕ)|

= sup
ϕ∈χ(A)

|ϕ(a)|

6 r(a) [since by Proposition 2.6.3 ϕ(x) ∈ σ(a) for all a ∈ A]

6 ‖a‖.
So, the Gelfand’s morphism is continuous. Next, we show the relation between the Gelfand

transform of an element in a Banach algebra A and its spectrum. But, before that, we need an
important lemma.
Lemma 2.6.5. An ideal is maximal if, and only if it is the kernel of some character.
Proof. We have already shown that the kernel of a character is a maximal ideal, in the proof
of Proposition 2.6.3 as a consequence of Proposition 2.6.2.

Conversely, consider M a maximal ideal of a Banach algebra A. Then, A/M is a Banach
algebra with no invertible elements: Indeed, let π : A→ A/M . If A/M had invertible elements,
this would mean that A/M contains some proper ideal, in such a case, π−1(I) would be a proper
ideal, containing M with π−1(I) 6= M which is a contradiction since M is maximal.

Thus, every element in A/M has no invertible elements. So, since A/M is a Banach algebra
without invertible elements besides 0, by Gelfand-Mazur’s Theorem 2.6.1 A/M is isometric to
C. Then, if ψ : A/M → C is such isometry, we have that ϕ = π ◦ ψ is a character on A and
Kerϕ = M .
Theorem 2.6.6. Let A be a commutative Banach algebra. Then, for every a ∈ A,

σ(a) = {ϕ(a); ϕ ∈ χ(A)},
and therefore,

r(a) = sup
ϕ∈χ(A)

â(ϕ) = ‖â‖C(χ(A)).

Proof. If we have λ ∈ σ(a), then a′ = λ − a is not invertible. Let I = {ba′; b ∈ A}. This is
an ideal because A is commutative and it is proper since a′ is not invertible, and is contained
in some maximal ideal M which, by Lemma 2.6.5, is the kernel of some character. So, I ⊂ M
which is the kernel of some ϕ ∈ χ(A). So, ϕ(a′) = ϕ(λ−a) = λ−ϕ(a) = 0, hence ϕ(a) = λ.



18 CHAPTER 2. PRELIMINARIES



Chapter 3

Wermer’s Theorem on invariant subspaces

In this section we show an important result of operators having a non-trivial invariant subspace.
The main goal in this section is to prove John Wermer’s result which, provides a sufficient
condition based on the behaviour of the norms of the iterates of the operator and the spectrum
of the operator in order to ensure the existence of non-trivial invariant subspaces.

We will start by giving the hypothesis we will require for the norms of the iterates but in a
more general setting. We will present an algebra of sequences with weights and such weights will
satisfy the condition we show next. Then, we will show several lemmas and results concerning
this algebra of sequences which will apply to the case of Wermer’s Theorem.

Definition 3.0.1. Let {ρn}n∈Z be a sequence of positive numbers. We say that the sequence
{ρn}n∈Z satisfies condition (1) if it is majorized by a sequence {dn}n∈Z, that is, ρn 6 dn for all
n, where {dn}n∈Z satisfies the following properties:

(i) It is symmetric, d−n = dn and dn > 1 for all n.

(ii)
∑∞

n=0
log dn
1+n2 < +∞.

(iii) dn is non-decreasing as |n| → +∞.

(iv) log dn
n

decreases as |n| → +∞.

Remark 3.0.3. We must remark at this point, that if, for instance, ρn = ‖T n‖ for some
bounded invertible operator T , satisfies condition (1), then the spectrum of T is necessarily
contained in the unit circle T: Indeed, suppose λ ∈ σ(T ) and |λ| > 1, this implies that
r(T ) = limn ‖T n‖1/n > 1 since ‖T n‖ > 1 for all n, as we shall see later, so there exsists a
number R > 1 such that ‖T n‖ > Rn for n large enough. Thus, since there is a sequence dn
such that dn > ρn, we have that log dn > n logR for n big enough which would imply that∑+∞

n=0
log dn
1+n2 = +∞.

On the other hand, if λ ∈ σ(T ) and |λ| < 1, then 1/λ ∈ σ(T 1) which is again contradictive
with condition (1).

Finally, ‖T n‖ > 1 for if ‖T n‖ < 1 for n > 0, we have that for all m > 0, ‖T nm‖ 6 ‖T n‖m
and therefore the spectral radius r(T ) = limm ‖T nm‖

1
nm < 1 which is contradictory by the

previous argument. Similar for negative n.

The aim of this chapter is then, to prove the following result.

19
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Theorem 3.0.7. Let T be a bounded operator on E a Banach space with bounded inverse.
Let ρn = ‖T n‖ satisfy condition (1). If σ(T ) does not reduce to a single point, then T has a
non-trivial invariant subspace in E.

First of all, we will show that if we assume that Wermer’s result is true the assumption
on the spectrum having more than a point can be dropped if the norm of the iterates of the
operator have polynomial growth. Let us first give the general statement and then, check that
if ‖T n‖ = O(|n|k) then we do not need to assume anything on the spectrum of T .

The objective is to prove the forementioned result. This will require some lemmas and
concepts that we will discuss later. First, let us see that, if Theorem 3.0.7 is true and the
sequence ‖T n‖ is of polynomial order, then the requirement on the spectrum having more than
one points can be dropped.

Theorem 3.0.8. Let E be a Banach space and T : E → E a bounded linear operator with
bounded inverse. Then if ‖T n‖ = O(|n|k) for some finite k. Then T has a non-trivial invariant
subspace.

Before we prove Theorem 3.0.8 we need the following result due to Gelfand and Hille [10,
pp, 128-129].

Proposition 3.0.9. Let T be a bounded linear operator acting on a Banach space. If the
sequence ‖T n‖ = O(|n|k) and the spectrum of T consists of a single point λ0, i.e: σ(T ) = {λ0}.
Then, (T − λ0I)k+1 = 0

We are now in a position to prove Theorem 3.0.8:

Proof. Since ‖T n‖ = O(|n|k), condition (1) is achieved: Indeed, since ‖T n‖ 6 C|n|k, we take
dn = C|n|k if n 6= 0 and d0 = 1, and C > 1 so dn = C|n|k > 1. It is also symmetric and the
series,

+∞∑
n=1

log(C|n|k)
1 + n2

=
+∞∑
n=1

logC

1 + n2
+ k

+∞∑
n=1

log |n|
1 + n2

< +∞.

Moreover, dn is clearly non-decreasing, and log dn+1/(n+1) 6 log dn/n and hence decreasing.
So, by Theorem 3.0.7 we just need to check the case of the spectrum of T having a single

point. Now, by the previous proposition, if σ(T ) = {λ0} then (T − λ0I)k+1 = 0. So, T has a
non trivial invariant subspace for either Ker(T − λ0I), or the closure of the image of T − λ0I.

Indeed, define Y := Ker(T − λ0I) ⊆ E. If Y = E,

Tx = λ0x ∀x ∈ E,

that is, T is a multiple of the identity and then it has invariant subspaces.
On the other hand, if Y = {0}, this means that (T − λ0I)x = 0 if, and only if x = 0. We

have by Gelfand-Hille that,

(T − λ0I)k+1 = 0 for all x ∈ E

So,
(T − λ0I)(T − λ0I)kx = 0 for all x ∈ E,
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and by the previous reasoning, this is equivalent to say that (T − λ0I)kx = 0 for all x ∈ E.
Now, recursively, we arrive to,

(T − λ0I)2x = (T − λ0I)(T − λ0I)x = 0 for all x ∈ E

So, T (T − λ0I) = λ0(T − λ0) and hence, Im(T − λ0I) is invariant under T .

We introduce now a space of sequences that will be useful in the proof of Wermer’s result. We
consider {ρn}n∈Z a sequence of real numbers equal or greater than 1 such that ρn+m 6 ρnρm
for any n,m ∈ Z, and such that for every R > 1 ρn = o(R|n|) as |n| → +∞, that means
limn

ρn
R|n|

= 0.
Let L = `1(ρn) be the space of all complex valued sequences {an}n∈Z such that

∑
n |an|ρn <

+∞. The space L endowed with the norm ‖a‖ =
∑

n |an|ρn and the convolution operation is a
Banach algebra.

Now, the dual L∗ of the space L, is the set of bounded linear forms x∗ = (xn)n∈Z acting as
x∗ : L→ C, x∗(a) =

∑
n anxn. So,

‖x∗‖L∗ = sup
‖a‖=1

|
∑
n

anxn| 6 sup
‖a‖=1

∑
n

|an||xn| = sup
‖a‖=1

∑
n

|an|ρn
|xn|
ρn

6 sup
n
|xn|/ρn < +∞

Actually the above inequalities are equalities: Fixed x∗ ∈ L∗, choose a ∈ L, the sequence
a = (an)n such that the n-th element of the sequence is an = xn

|xn|2
1
ρn

and is 0 everywhere else. It
is clear that

∑
n anxn > 0 for all n and a ∈ BL since ‖a‖ =

∑
m |am|ρm = 1

ρn
ρn = 1. Remember

that ρn 6= 0 since it is a sequence of positive numbers. Finally for this a,∑
n

anxn = sup
n
|xn|/ρn.

So, L∗ is the space of sequences x∗ = (xn)n such that supn |xn|/ρn < +∞, endowed with
the norm ‖x∗‖L∗ = supn |xn|/ρn.

Let us now prove an important property of the homomorphisms on this space L:

Proposition 3.0.10. Every complex valued homomorphism α acting on L must be of the form:

α : L → C
a 7→ α(a) =

∑
n

anλ
n

with λ ∈ T, varying according to α.

Proof. We have to impose the three properties an homomorphism α : L → C between two
algebras must satisfy:

(i) α(ka) = kα(a) for all a ∈ L and k ∈ C,

(ii) α(a+ b) = α(a) + α(b) for all a, b ∈ L,
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(iii) α(a ∗ b) = α(a)α(b) for all a, b ∈ L.
Let (ekn)n∈Z be the sequence consisting of all zeros and one in the k-th position. Observe

that given a ∈ L we can write:

a =
+∞∑

k=−∞

ake
k with ak ∈ C for all n ∈ Z,

So it is enough to define α by means of the images of the sequences ek = (ekn)n. Then, let us
call

λ = α(e1),

where λ ∈ C must have modulus 1, since it is an homomorphism of a Banach algebra into C
and by Proposition 2.6.3 α is continuous and ‖α‖ = 1.

Now, we observe that,
e1 ∗ e1 =

∑
m∈Z

e1
n−me

1
m = e2,

then using property (iii) we have,

α(e2) = α(e1 ∗ e1) = α(e1)α(e1) = λ2.

Recursively,
α(ek) = α(ek−1 ∗ ek−1) = α(ek−1)α(ek−1) = λk.

Finally, given a sequence a ∈ L, a = (an)n using the expression mentioned above, we have,

α(a) = α

(
+∞∑

k=−∞

ake
k

)
=

+∞∑
k=−∞

akα(ek) =
+∞∑

k=−∞

akλ
k,

by using both property (i) and (ii).

Now, given a sequence x∗ ∈ L∗, x∗ = (xn)n it is natural to define the following functions:

f+
x∗(λ) =

+∞∑
n=1

xn
λn
, and f−x∗(λ) = −

+∞∑
n=0

λnx−n, (3.1)

where f+
x∗ is defined and analytic for λ ∈ C, |λ| > 1 and f−x∗ is defined and analytic for

|λ| < 1. Let us check this; since |xn|/ρn 6 supn |xn|/ρn = ‖x∗‖L∗ , then |xn| 6 ‖x∗‖L∗ρn hence
|xn| = o(R|n|) for each R > 1. This means that limn

|xn|
R|n|

= 0. So,

f+
x∗(λ) =

+∞∑
n=1

xn
Rn

(
R

λ

)n
,

where xn
Rn → 0 so f+

x∗ will be analytic for all |λ| > |R| > 1. Similarly,

f−x∗(λ) = −
+∞∑
n=1

x−n
Rn

(λR)n,

where x−n

Rn → 0 so f−x∗ will be analytic for |λ| < 1
R
< 1.

Here, we define the concept of spectrum of an element x∗ ∈ L∗ using the previous functions
f+
x∗ and f

−
x∗ .



23

Definition 3.0.2. Let x∗ ∈ L∗. We define the spectrum of x∗, spec(x∗), as the set of points
λ ∈ T such that the functions f+

x∗ and f
−
x∗ are not analytic continuation one of each other along

any arc containing λ. That is,

spec(x∗) = {λ ∈ T; f+
x∗ ��#γ f

−
x∗ for all arc γ with λ ∈ γ}.

Next step we want to show that given a closed subset of the unit circle, the set of sequences
of L∗ whose spectrum lies inside this closed set is a weak*-closed set. In order to do so, we need
to invoke a necessary result on subharmonic functions due to Nils Sjöberg. [16, pp, 309-319]

Theorem 3.0.11 (N. Sjöberg). Let h(t) be an even function, decreasing as t→ +∞, unbounded
at the origin and such that,

∫ x
0

log+ h(t)dt < +∞ for all x > 0.
Given a rectangle: R = {(x, y) ∈ R2 : −a 6 x 6 a, −b 6 y 6 b}, and b′ with 0 < b′ < b,

then, there exists a constant M = M(a, b, b′, h) such that for any subharmonic function u(x, y)
on R and u(x, y) 6 eh(|x|) we have u(x, y) 6M on R.

Lemma 3.0.12. Let {ρn}n∈Z satisfy condition (1), and Λ ⊂ T closed. Then the set,

EΛ = {x∗ ∈ L∗ : spec(x∗) ⊂ Λ}

is a weak*-closed subspace of L∗.

Proof. Given x∗, y∗ ∈ EΛ and α ∈ C a scalar, it is straightforward that x∗ + y∗ ∈ EΛ and
αx∗ ∈ EΛ. It remains to show that given (x∗k)k∈N ⊂ L∗ such that x∗k

w∗−→ x∗ with x∗k ∈ EΛ for
all k then x∗ ∈ EΛ.

Recall that with the weak* topology on L∗, x∗k
w∗−→ x∗ as k → +∞ if, and only if x∗k(a)

k→+∞−−−−→
x∗(a) for all a ∈ L.

To see that x∗ ∈ EΛ, we take an element λ0 /∈ Λ and see that λ0 /∈ spec(x∗). Now, since Λ
is closed, hence T\Λ is open, there is a closed disk D = D(λ0) centered at λ0 and disjoint from
Λ. Now, for each k, since x∗k ∈ EΛ, its spectrum lies outside of the disk D. So there exists for
each k a function fk which is analytic in the interior of D and by uniqueness fk(λ) = f+

x∗k
(λ)

for |λ| > 1 and fk(λ) = f−x∗k
(λ) for |λ| < 1.

We shall now see that the functions fk are uniformly bounded in D. To do so, we will use
Theorem 3.0.11. So, we will find a function h satisfying the same conditions as in the theorem,
such that for all λ ∈ D,

|fk(λ)| 6 eh(log |λ|) for all |λ| > 1,

and,
|fk(λ)| 6 eh(log(1/|λ|)) for all |λ| < 1.

Consider a sequence dn satisfying condition (1). We have that log dn
n

decreases to 0: Indeed,
otherwise there would exist a strictly positive constant such that log dn

n
> C for all n since logn

n

decreases and dn > 1 for all n by hypothesis, but then,∑
n>0

log dn
1 + n2

=
∑
n>0

log dn
n

n

1 + n2
> C

∑
n>0

1

n+ 1
= +∞,

which is a contradiction.
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Therefore, for a given number t ∈ R, t > 0, there exists a unique first positive integer, let
us call it N = N(t), such that, log dn/n 6 t/2 for all n > N . Thus,

+∞∑
n=0

e−tndn =
+∞∑
n=0

exp
(
n

(
−t+

log dn
n

))
6

N−1∑
n=0

exp
(
n

(
−t+

log dn
n

))

+
+∞∑
n=N

exp
(
n

(
−t+

t

2

))
6

N−1∑
n=0

dn +
+∞∑
n=N

e−(t/2)n 6 NdN +O

(
1

t

)
6 N(t)e(t/2)N(t) +O

(
1

t

)
.

Here, we used that dn 6 dN if n < N , since dn is non-decreasing.
We define now, h(t) = log

∑+∞
n=0 e

−tndn for t > 0 and define h(−t) = h(t) for t < 0, since h
must be even. Then,

h(t) = log
+∞∑
n=0

e−tndn 6 log
(
N(t)e(t/2)N(t) +O(1/t)

)
6 log

(
2N(t)e(t/2)N(t)O(1/t)

)
for t between 0 and 1. We use the fact that a+ b 6 2ab for a, b > 1. So,

h(t) 6 logN(t) +
t

2
N(t) + logKO(1/t) 6

N(t)

2
+
N(t)

2
+ log(1/t) + C = N(t) + log

1

t
+ C.

since log x < x
2
and 0 < t < 1.

Hence for all 0 < x < 1, ∫ x

0

log+ h(t)dt < +∞,

as long as, ∫ x

0

logN(t)dt < +∞ for all 0 < x < +∞,

which is true as we shall see later.
Next, we define k(y) piecewise as follows,

k(y) =

{
log dn
n

= k(n) if y = n ∈ Z, n > 0,

k(y) linear otherwise.

That is, the linear continuous extension of log dn/n to (0,+∞). So, k decreases to zero as
y → +∞ since log dn/n is decreasing and dn > 1 for all n and,∫ +∞

1

k(y)

y
dy 6

+∞∑
n=1

log dn
n2

< +∞.

Now, for each t > 0, let z(t) be the unique value such that k(ez(t)) = t, since k is a dreceasing
function and hence injective and therefore piecewise invertible. For each x > 0 the integral,∫ x

0

z(t)dt,
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is bounded for all x between 0 and 1. Indeed, if we express this integral in terms of the
distribution function of z, which is:

µz(s) = m{σ ∈ [0, 1]; z(σ) > s},

where m denotes the Lebesgue measure. Then,∫ x

0

z(t)dt =

∫ +∞

0

µz(s)ds.

But,

µz(s) = m{σ ∈ [0, 1]; z(σ) > s} = m{σ ∈ [0, 1]; ez(σ) > es}
= m{σ ∈ [0, 1]; k

(
ez(σ)

)
< k(es)} = m{σ ∈ [0, 1]; σ < k(es)} = k(es).

Here, we used the fact that the exponential is a strictly increasing function and k is strictly
decreasing, so inequalities change. So,∫ x

0

z(t)dt =

∫ +∞

0

µz(s)ds =

∫ +∞

0

k(es)ds.

Now, by a change of variables y = es,∫ +∞

0

k(es)ds =

∫ +∞

0

k(y)

y
dy < +∞.

Now, since N(t) 6 ez(t/2) + 1 we have that,∫ x

0

logN(t)dt < +∞ for all 0 < x < 1,

so ∫ x

0

log+ h(t)dt < +∞,

and h(t) decreases as |t| increases since
∑

n e
−tndn decreases. Therefore, the function h(t)

fulfills the conditions in Theorem 3.0.11.
Since x∗k converges weakly, ‖x∗k‖ is bounded uniformly in k, and without loss of generality

we can assume the bound to be one, otherwise we can divide the sequences by the norm.
Choose λ inside α and |λ| > 1. Then,

|fk(λ)| = |f+
k (λ)| 6

+∞∑
n=1

|xkn|
|λ|n

6 ‖x∗k‖
+∞∑
n=1

1

|λ|n
ρn 6

+∞∑
n=1

1

|λ|n
dn,

since ρn 6 dn, and for λ inside α and |λ| < 1,

|fk(λ)| = |f−k (λ)| 6
+∞∑
n=1

|xk−n||λ|n 6 ‖x∗k‖
+∞∑
n=1

|λ|nρn 6
+∞∑
n=1

|λ|ndn,
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Therefore for all k, we have for λ inside α and |λ| > 1,

|f+
k (λ)| 6 eh(log |λ|),

and for λ inside α and |λ| < 1,
|f−k (λ)| 6 eh(log(1/|λ|)).

Now, since these inequalities do not depend on the chosen point λ0 ∈ D, we can suppose
that λ0 = 1 otherwise we can shift λ0 to 1 via a rotation. Let us now define,

gk(w) = fk

(
1− w
1 + w

)
,

that is, we apply to λ a conformal transformation that sends the right half-plane to the interior
of the unit circle.

If we write w = t+ is, we can find a rectangle R = {t+ is; |t| 6 a, |s| 6 b} such that λ lies
inside α if w ∈ R. So if t > 0 then |λ| < 1 and if t < 0 then |λ| > 1. So, on the one hand, for
t > 0, hence for |λ| < 1,

|gk(w)| =
∣∣∣∣fk (1− w

1 + w

)∣∣∣∣ 6 exp
(
h

(
log

1 + w

1− w

))
, (3.2)

and on the other hand for t < 0, and hence |λ| > 1,

|gk(w)| =
∣∣∣∣fk (1− w

1 + w

)∣∣∣∣ 6 exp
(
h

(
log

1− w
1 + w

))
.

But since for t > 0 we can find c = c(a, b) a constant depending on a and b such that∣∣1+w
1−w

∣∣ > et/c, and hence, log
∣∣1+w

1−w

∣∣ > t/c, then, since h is decreasing,

h

(
log

∣∣∣∣1− w1 + w

∣∣∣∣) < h(t/c) for all w ∈ R,

so using the upperbound (3.2) we have,

|gk(w)| 6 eh(t/c) if t > 0.

Using the same reasoning for w ∈ R with t < 0, we have that,

|gk(w)| 6 eh(|t|/c) if t < 0.

Now, by a change of variables y = t
c
we have,∫ x

0

log h(t/c)dt = c

∫ x/c

0

log h(y)dy.

So we found an h satisfying the properties of the Theorem 3.0.11 and such that,

|gk(t+ is)| 6 eh(|t|/c) for all |t| < a, |b| < s and k ∈ Z,
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hence, applying the Theorem 3.0.11 we have that the subharmonic functions |gk(w)| are uni-
formly bounded on the rectangle R, in particular in some neighbourhood of 0, and hence the
functions fk are uniformly bounded in some neighbourhood of λ0. Therefore, there exists some
subsequence fkj converging uniformly in some neighbourhood of λ0 to a function f(λ) which is
analytic there since the functions fkj are also analytic there and the convergence is uniform.

Since x∗k converges weakly to x∗, so xkn → xn for all n and,

|xkn| 6 ‖xk‖ρn 6 ρn.

Therefore, for |λ| > 1 the functions fn(λ) converge to f+
x∗(λ) and for |λ| < 1 the functions

fn(λ) convergence to f−x∗(λ). So the functions fk converge to a function f which is f = f+ for
|λ| > 1 and f = f− for |λ| < 1 and analytic near λ0.

So λ0 does not lie in the spectrum of x∗, that is, x∗ /∈ EΛ as we wanted to see.

Definition 3.0.3. Let a, b ∈ L and x∗ ∈ L∗, x∗ = (xn)n. We define the elements:

(a ∗ b)n =
∑
m∈Z

an−mbm for all n ∈ Z

(a ∗ x)n =
∑
m∈Z

am−nxm for all n ∈ Z

and finally we define the Fourier series of a as:

â(λ) =
∑
n∈Z

anλ
n, |λ| = 1.

Remark 3.0.4. Observe that with this definition of convolution in L, the algebra L is com-
mutative. Indeed, take a, b ∈ L,

(a ∗ b)n =
∑
m∈Z

an−mbm =
∑
i∈Z

aibn−i = (b ∗ a)n.

Lemma 3.0.13. Let any closed set Λ ⊂ T, and a point z /∈ Λ. Then, there is a sequence a ∈ L
such that

â(λ) = 0 for all λ ∈ Λ

â(z) 6= 0.

Proof. Consider the sequence x∗w = wn with |w| = 1. This sequence exists in L∗ since supn
|x∗w|
ρn

=

supn 1/ρn < +∞ since ρn > 1 for all n ∈ Z.
Now, we consider the functions f+

x∗w
and f−x∗w ;

f+
x∗w

(λ) =
+∞∑
n=1

λnw−n =
−λ
λ− w

if |λ| < 1,

f−x∗w(λ) = −
+∞∑
n=0

wn

λn
=
−λ
λ− w

if |λ| > 1.
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We observe that the spectrum of x∗w has the unique point w ∈ T since f+
x∗w ��#γ f

−
x∗w

for all
arc γ containing w. Define,

EΛ = {x∗ ∈ L∗ : spec(x∗) ⊂ Λ}.

We have that x∗z /∈ EΛ.
On the other hand, we saw in Lemma 3.0.12 that EΛ is a weak*-closed subspace of L∗, so by

Hahn-Banach there exists an element a ∈ L such that x∗(a) = 0 for x∗ ∈ EΛ and x∗z(a) 6= 0. But
each sequence of the type x∗w with w ∈ Λ ⊂ T belongs to EΛ as we have just seen. Therefore,

â(w) =
∑
n∈Z

anw
n = x∗w(a) = 0 if w ∈ Λ

â(z) =
∑
n∈Z

anz
n = x∗z(a) 6= 0

as we wanted to see.

Lemma 3.0.14. Given y∗ ∈ L∗. If a ∗ y∗ = 0 for a ∈ L, then â(λ) = 0 for all λ ∈ spec(y∗).

Proof. Let Γ = {λ ∈ T; a ∗ y∗ = 0 ⇒ â(λ) = 0; a ∈ L}. We want to prove that spec(y∗) ⊂ Γ.
First, we claim that the set Γ is closed: Observe that we can write Γ as the intersection of the
kernels of the Fourier series of a for those a ∈ L such that a ∗ y∗ = 0, that is,

Γ =
⋂

a∗y∗=0

Ker(â),

and â : L→ C is a continuous homomorphism of L into C since Γ is the intersection of closed
sets, it is closed.

Consider now any larger closed subset Γ′ ⊂ T such that Γ is contained in the interior (in
the topology of T induced by the Euclidean topology of C) of Γ′, then we consider,

EΓ′ = {x∗ ∈ L∗ : spec(x∗) ⊂ Γ′}.

Now, we claim that y∗ ∈ EΓ′ , i.e. spec(y∗) ⊂ Γ′. Indeed, let us suppose the contrary. That
is, y∗ /∈ EΓ′ , then spec(y∗) ��⊂ Γ′ so there exists at least λ0 ∈ spec(y∗) such that λ0 /∈ Γ′ and this
means that λ0 /∈ Γ so there is a ∈ L such that a ∗ y∗ = 0 implies â(λ0) 6= 0.

On the other hand since EΓ′ is weak*-closed by Lemma 3.0.12, and by Hahn-Banach Theo-
rem there exists a sequence a ∈ L with y∗(a) =

∑
n anyn 6= 0 and x∗(a) =

∑
n anxn = 0 for all

x∗ = (xn)n ⊂ EΓ′ . In particular, for x∗λ = λn we have xλ(a) =
∑

n anλ
n = 0 for all λ ∈ Γ′ and

observe that x∗λ(a) = â(λ). So, â(λ) = 0 for all λ ∈ Γ′ and we will see next that this implies
a ∗ y∗ = 0 which is a contradiction for the λ0 /∈ Γ′.

Consider the set,
I = {b ∈ L; b ∗ (a ∗ y∗) = 0, a ∈ L}.

This set is a closed proper ideal of the Banach algebra L. Indeed, given a′ ∈ L and b′ ∈ I then
(a′ ∗ b′) ∗ (a ∗ y∗) = a′ ∗ (b′ ∗ a ∗ y∗) = 0 so, a′ ∗ b′ ∈ I. It is proper since a ∗ y∗ 6= 0 and it is
closed since I is a maximal ideal, and hence by Lemma 2.6.5 is the kernel of some character,
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and hence it is closed. Then, since L is an algebra with unit, the ideal I has a zero, that is,
there exists µ ∈ T such that b ∈ I implies that b̂(µ) = 0.

Moreover, the point µ is in Γ, otherwise we could find an element a0 ∈ L such that a0∗y∗ = 0
and â0(µ) 6= 0 by the definition of Γ, and of course a0 ∈ I, since a0 ∗ (a ∗ y∗) = a ∗ (a0 ∗ y∗) = 0,
so µ could not have been a zero of the ideal I.

Now, we use Lemma 3.0.13 and find an element a1 ∈ L such that â1(µ) 6= 0 and â1(λ) = 0
for all λ outside the interior of Γ which is closed. So, we have two elements a and a1 whose
Fourier series vanish on complementay sets, hence a1 ∗ a = 0, since â ∗ a1 = ââ1 = 0 and this
implies a1 ∈ I, because a1 ∗ a = 0 implies a1 ∗ a ∗ y∗ = 0 and therefore â1(µ) = 0 which is a
contradiction. In conclusion, a ∗ y∗ = 0.

In particular, the zero coordinate of the sequence (a∗y∗)n =
∑

m am−nym, which is, (a∗y∗)0 =∑
m amym = y∗(a) vanishes and this is a contradiction with the choice of a ∈ L at the begining

of this proof. So, y∗ ∈ EΓ′ , i,e: the spectrum of y∗ lies inside Γ′. Since all this reasoning holds
for any Γ′ whose interior contains Γ, this also holds for Γ and hence the lemma is proved.

Let us now concentrate on the more general setting of E a Banach space, E∗ its dual. Let
T : E → E be a bounded linear operator with bounded inverse T−1 : E → E. Let S = T ∗ be
its adjoint operator acting on the dual E∗. As usual, we denote by σ(T ) its spectrum and Rλ

the resolvent operator, RλT = (λI − T )−1 for those λ /∈ σ(T ).
We know that, given any continuous linear form u ∈ E∗, and an element ϕ ∈ E, the

functions:

f : σ(T )c → C
λ 7→ f(λ) = u(Rλ(ϕ)),

are analytic in any given connected component as we saw in Proposition 2.1.1. Since in our
situation σ(T ) ⊂ T, we define,

f+
u,ϕ(λ) = u(Rλ(ϕ)) for all |λ| > 1, f−u,ϕ(λ) = u(Rλ(ϕ)) for all |λ| < 1. (3.3)

The functions f+
u,ϕ and f−u,ϕ are analytic. First, recall that, given an operator T whose

spectrum lies inside the unit circle, we have the respective resolvent functions defined inside
and outside the unit disk,

Rλ = (λ− T )−1 =
∑
n>1

T n−1

λn
for all |λ| > 1,

Rλ = (λ− T )−1 = −
∑
n>0

T−n−1λn for all |λ| < 1,

which converge in operator norm in the given domains by Proposition 2.1.2, item (b). Now,
since u ∈ E∗ is a continuous linear form,

u(Rλϕ) =
∑
n>1

u(T n−1ϕ)

λn
for all |λ| > 1,

u(Rλϕ) = −
∑
n>0

u(T−n−1ϕ)λn for all |λ| < 1,
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but since the sequence ρn = ‖T n‖ 6 ‖T‖n = o(R|n|) for R > 1, we have that limn
‖Tn‖
R|n|

= 0,
this means the sequence T n/R|n| converges to zero in norm. But convergence in norm implies
weak convergence, so u(T nϕ/R|n|)

n→+∞−−−−→ 0 for all ϕ ∈ E. So,

u(Rλϕ) =
∑
n>1

u

(
T n−1ϕ

Rn

)(
R

λ

)n
for all |λ| > 1,

u(Rλϕ) = −
∑
n>0

u

(
T−n−1ϕ

Rn

)
(λR)n for all |λ| < 1,

by the same reason we used in 3.1, these functions f+
u,ϕ and f−u,ϕ are analytic for |λ| > 1 and

|λ| < 1 respectively. Notice here the similarity with the functions f+
x∗ and f−x∗ for a given

x∗ ∈ L∗.
The fact that, for a given u ∈ E∗, these functions are analytic inside and outside the unit

disk, allow us to define the set of values λ ∈ T such that the functions f+
u,ϕ and f−u,ϕ do not

continue each other analytically over any arc which contains λ as we did for the functions f+
x∗

and f−x∗ . Later on, we will see the relationship between both definitions.

Definition 3.0.4. Let σ(T ) ⊂ T. Given ϕ ∈ E, we define;

Λϕ = {p ∈ T : f+
u,ϕ ��#γ f

−
u,ϕ with p ∈ γ for some u ∈ E∗}

Using the notion of analytic continuation along a curve that we saw in the Preliminaries,
and given a closed subset Γ ⊂ T, we are in a position to define the set of functions CΛ ⊂ E
which is invariant under T . First, we will find an invariant set for T then we will see later in
the proof of Wermer’s Theorem, that such set is non-trivial. This set will be defined as the set
of ϕ ∈ E such that the functions f+

u,ϕ and f−u,ϕ do not continue each other analytically over any
arc containing λ ∈ Γ ⊂ T.

Theorem 3.0.15. Let the sequence ρn = ‖T n‖ satisfy condition (1). Let Λ ⊂ T closed. Then
the set,

CΛ = {ϕ ∈ E : Λϕ ⊆ Λ}

is a closed subspace of E and is invariant under T and T−1.

Proof. First, since ρn+m = ‖T n+m‖ 6 ‖T n‖‖Tm‖ = ρnρm, and satisfies condition (1) by hy-
pothesis, in particular, ρn = o(R|n|) for R > 1, we can define the Banach algebra L = `1(ρn)
with ρn = ‖T n‖. Recall that σ(T ) ⊂ T.

We fix now an element ϕ ∈ E and an element in the dual u ∈ E∗. We consider the sequence
(xn)n∈Z = (u(T nϕ))n∈Z. Since u and T are continuous, we have,

|u(T nϕ)| 6 ‖u‖E∗‖T nϕ‖E 6 ‖u‖E∗‖ϕ‖Eρn.

Therefore,
sup
n
|u(T nϕ)/ρn| 6 ‖u‖E∗‖ϕ‖E < +∞,

and hence x∗ = (u(T nϕ))n∈Z ∈ L∗.
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Suppose we have an element λ0 ∈ ΛTϕ, we want to see that then λ0 ∈ spec(x∗) with
x∗ = {u(T nϕ)}n ⊂ E∗.

Using the definition of spectrum we gave for a sequence x∗ ∈ L∗ and comparing it to the
definition of the set Λψ for ψ ∈ E, then if,

λ0 ∈ {λ ∈ T : f+
u,Tϕ ��#γ f

−
u,Tϕ for some u ∈ E∗},

where the functions f+
u,Tϕ and f−u,Tϕ are defined as before and depend on Tϕ, that is,

f+
u,Tϕ(λ) = u(Rλ(Tϕ)) =

∑
n>1

u (T nϕ)

λn
for all |λ| > 1,

f−u,Tϕ(λ) = u(Rλ(Tϕ)) = −
∑
n>0

u
(
T−nϕ

)
λn for all |λ| < 1.

Then, there exists some u ∈ E∗ such that f+
u,Tϕ and f−u,Tϕ do not continue each other

analytically over any arc γ containing λ0, and this is precisely the definition of spectrum of
the sequence x∗ = (u(T nϕ))n, observe the form of f+

u,Tϕ and f−u,Tϕ, so λ0 ∈ spec(u(T nϕ)). So,
by the same reason if λ0 /∈ ΛTϕ then λ0 /∈ spec(u(T nϕ)), that is, the functions f+

u,Tϕ and f−u,Tϕ
continue each other analytically over any arc containing λ0 for all u ∈ E∗.

Let us see that Λϕ = ΛTϕ. First, since T commutes with the resolvent operator Rλ we have
that,

u(Rλ(Tϕ)) = u(TRλϕ) = (u ◦ T−1)(Rλϕ).

So, if we denote S = T ∗ the adjoint operator we have,

u(Rλ(Tϕ)) = 〈u,Rλ(Tϕ)〉 = 〈u, TRλ(ϕ)〉 = 〈Su,Rλ(ϕ)〉.

Now if λ0 /∈ Λϕ, then 〈Su,Rλ(ϕ)〉 is analytic in a neighbourhood of λ0 and so is u(Rλ(Tϕ))
by the identity above. Hence, λ0 /∈ ΛTϕ.

On the other hand let us suppose λ0 /∈ ΛTϕ and pick any u ∈ E∗. As before, we have

u(Rλϕ) = 〈u,Rλϕ〉 = 〈u,RλT
−1(Tϕ)〉 = 〈S−1u,Rλ(Tϕ)〉,

and since 〈S−1u,Rλ(Tϕ)〉 is analytic in a neighbourhood of λ0 then λ0 /∈ Λϕ by the identity.
Altogether we have shown that Λϕ = ΛTϕ, and then ΛT−1ϕ = Λϕ as well. So this shows that

if ϕ ∈ CΛ, then Tϕ, T−1ϕ ∈ CΛ as well. So the set CΛ is invariant under T .
Moreover, it is a subspace since given ϕ1, ϕ2 ∈ CΛ and z, w ∈ C scalars. We have, by the

linearity of the resolvent,

〈u,Rλ(zϕ1 + wϕ2)〉 = z〈u,Rλϕ1〉+ w〈u,Rλϕ2〉,

so, zϕ1 + wϕ2 ∈ CΛ.
So it remains to show that it is closed. If we have a sequence (ϕm)m ⊂ CΛ converging to an

element ϕ ∈ E, then we must show that ϕ ∈ CΛ. So we must show that Λϕ ⊂ Λ, that is, λ /∈ Λ
implies that λ /∈ Λϕ.

We take λ0 /∈ Λ and let us suppose that λ0 ∈ Λϕ. Then, as we have seen, λ0 ∈ ΛTϕ, so we
have an element u ∈ E∗ such that λ0 ∈ spec(x∗) with x∗ = {u(T nϕ}n ∈ L∗.
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On the other hand, since ϕm ∈ CΛ for all m, then if an element λ is not in Λ then λ /∈ Λϕm

for all m, so ϕm /∈ ΛTϕm , and hence λ /∈ spec(x∗m) with x∗m = {u(T nϕm)}. So, again since
Λϕm ⊂ Λ for all m, the spectrum of x∗m is included in Λ for all m. On the other hand, x∗m
converges weakly to x∗ ∈ L∗ since ϕm → ϕ and hence u(T nϕm)→ u(T nϕ) for each n and this
limit is in L∗ since |u(T nϕ)| . ρn for each n.

Therefore, by Lemma 3.0.12, the spectrum of x∗ is also in Λ and hence λ0 /∈ spec(x∗) which
is a contradiction with the fact that λ0 ∈ ΛTϕ. Hence, λ0 /∈ ΛTϕ = Λϕ, so Λϕ ⊂ Λ and finally,
CΛ is closed as we wanted to prove.

Lemma 3.0.16. Let T be a linear bounded operator acting on E, with bounded inverse such
that σ(T ) ⊂ T. Let λ0 ∈ σ(T ) and α any circle centered at λ0. Then, there exists some ϕ ∈ E
and some µ in the interior of α such that µ ∈ Λϕ.

Proof. Let us argue by contradiction. Suppose that for every ϕ ∈ E, and for every µ in the
interior of α then µ /∈ Λϕ, that is, the function f+

u defined on the unit disk is analytic in the
interior of α.

Consider another circle β centered at λ0 with smaller radius than α. Then, since u(Rλϕ)
is continuous on β, and β is a compact set, then u(Rλϕ) is bounded on β, and since u is a
continuous linear form.

Now, Rλ as a function in λ is continuous on β except maybe at the two points where β
intersects with the unit circle: Indeed, consider for all λ ∈ β the family of operators

Tλ : E ⊕ E∗ −→ C
(ϕ, u) 7→ 〈u,Rλϕ〉

,

then for all (ϕ, u) ∈ E ⊕ E∗,∑
λ∈β

|Tλ(ϕ, u)| = supλ ∈ β〈u,Rλϕ〉 < +∞,

so by the Banach-Steinhaus Theorem this implies that

sup
λ∈β
‖Tλ‖ < +∞.

But,
‖Tλ‖ = sup

‖ϕ‖61
‖u‖61

|〈u,Rλϕ〉| = ‖Rλ‖L(E),

and hence,
sup
λ∈β
‖Rλ‖ < +∞.

Now, by the Cauchy integral formula,

R =
1

2πi

∮
β

Rξ

ξ − λ0

dξ,
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and upperbounding, for a fixed ϕ ∈ E,

‖Rϕ‖E 6 C
1

2π
‖ϕ‖E

∮
β

dξ

|λ0 − ξ|
6
‖ϕ‖E

2π
long(β) sup

ξ∈β

1

|ξ − λ0|
6 C ′‖ϕ‖E.

So, the integral defines a bounded operator R : E → E. Then, multiplying by (λ0I − T ),

(λ0I − T )R =
1

2πi

∮
β

(ξI − T )Rξ

ξ − λ0

dξ − 1

2πi

∮
β

(λ0 − ξ)Rξ

λ0 − ξ
dξ.

But, ∮
β

u(Rξϕ)dξ = 0,

for all u ∈ E∗ and ϕ ∈ E by analyticity.
So,

1

2πi

∮
β

Rξdξ = 0,

and hence (λ0I − T )R = I.
In a similar way, we have that R(λ0I − T ) = I. Therefore, R = (λ0I − T )−1 and hence

µ /∈ σ(T ) which is a contradiction.

Theorem 3.0.17 (J. Wermer). Let T be a linear and bounded operator acting on a Banach
space E, with bounded inverse. Let ρn = ‖T‖n satisfy condition (1). If σ(T ) does not reduce to
a single point, then T has a non-trivial invariant subspace in E.

Proof. The aim is to show that T has a non-trivial invariant subspace, in fact, by Theorem
3.0.15 we know that CΛ is an invariant subspace of T , so it remains to show that it is not trivial.

Since σ(T ) does not reduce to a single point, we can find two distinct points λ1, λ2 ∈ σ(T ),
λ1 6= λ2. Let D1, D2 be two disks centered at λ1 and λ2 respectively, with radius small enough
so that they are disjoint.

By Lemma, 3.0.16 we can find elements ϕ1, ϕ2 ∈ E and points p1 ∈ D1 and p2 ∈ D2 such
that p1 ∈ Λϕ1 and p2 ∈ Λϕ2 . Since D1 ∩D2 = ∅, then p1 6= p2.

Now, let Λ be a closed arc in T containing p1 but not p2, and a smaller open arc Λ1 ⊂ Λ
containing p1.

Then, by Lemma 3.0.13 there exists a sequence a ∈ L such that â(p1) = 1 and â(λ) = 0 for
all λ /∈ Λ1.

Define now, ψ =
∑

n∈Z anT
nϕ1 ∈ E. We should now see that ψ 6= 0 and that Λψ ⊂ Λ in

order to ensure that CΛ := {ϕ ∈ E : Λϕ ⊆ Λ} 6= {0}.
Let us suppose that ψ = 0. We pick b ∈ L such that b̂(p1) = 1. Now, for any u ∈ E∗, we

compute the convolution between two elements of L, since {u(T nψ)}n ⊂ C,

(b ∗ {u(T nψ)})m =
∑
k∈Z

bm−ku(T kψ) =
∑
k∈Z

bm−ku

(
T k
∑
l∈Z

alT
lϕ1

)

=
∑
k∈Z

bm−ku

(∑
l∈Z

alT
k+lϕ1

)
=
∑
k∈Z

bm−k
∑
l∈Z

alu
(
T k+lϕ1

)
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Now, we set i = k + l,∑
i,k∈Z

bm−kai−ku
(
T iϕ1

)
=

∑
k∈Z

bm−k
∑
i∈Z

ai−ku
(
T iϕ1

)
=
∑
k∈Z

bm−k(a ∗ {(T nϕ1})k

= (b ∗ (a ∗ {u(T nϕ1)}))m = (a ∗ b ∗ {T nϕ1})m.

Since ψ = 0, then T nψ = 0 and u(T nψ) = 0 thereafter b ∗ u(T nψ) = 0. So,

(b ∗ {u(T nψ)})m = ((a ∗ b) ∗ {u(T nϕ1)})m = 0

Now we can apply Lemma 3.0.14 and then the Fourier series of a ∗ b, i.e:

(̂a ∗ b)(λ) =
∑
n∈Z

(a ∗ b)nλn for |λ| = 1,

vanishes for all λ in the spectrum of T , in particular at p1. So,

(̂a ∗ b)(p1) = â(p1)̂b(p1) = 0.

But by the choice of a and b in L, we have â(p1) = b̂(p1) = 1 which is a contradiction, hence
ψ 6= 0.

In order to show that Λψ ⊆ Λ, we will show that given q /∈ Λ then q /∈ Λψ.
Suppose the contrary, q ∈ Λψ. Then, there exists an element in the dual u1 ∈ E∗ with q in

the spectrum of the sequence xn = (u1(T nψ))n. Indeed, recall that,

Λϕ = {p ∈ T : f+
u,ϕ ��#γ f

−
u,ϕ with p ∈ γ for some u ∈ E∗}

spec(x∗) = {λ ∈ T : f+
x∗ ��#γ f

−
x∗ ∀γ ⊃ {λ}}

and observe that,

f+
x∗(λ) =

∑
n>1

u1(T nψ)

λn
= u1

(∑
n>0

T nψ

λn

)
= u1 (Rλ(ψ)) for |λ| > 1

f−x∗(λ) = −
∑
n>0

λnu1(T−nψ) = u1 (Rλ(ψ)) for |λ| < 1

So if q ∈ T is such that u1(Rλ) does not continue analytically over any arc that contains
q, then f+ and f− do not continue each other analytically over any arc containing q either,
and hence q ∈ spec(u1(T nϕ1)). Therefore, if b ∈ L and (b ∗ x∗)n = 0 where x∗ = (xn)n =

{u1(T nϕ1)}n, by Lemma 3.0.14 we have that b̂(q) = 0, but we can also choose b ∈ L with b̂

vanishing on Λ by Lemma 3.0.13 applied to the set Λ, and b̂(q) 6= 0. Then, b ∗ a = 0, since the
Fourier series of a and b vanish on complementary sets.

As before, since (a ∗ b) ∗ u1(T nϕ1) = b ∗ u1(T nψ), we have b ∗ u1(T nψ) = 0, and hence,
as before, by lemma 3.0.14 since q ∈ spec(u(T nϕ1)), b̂(q) = 0, which is a contradiction. So,
q /∈ Λψ.

Moreover, we have just seen that there is a function ψ 6= 0, ψ ∈ Cϕ. On the other hand,
since p2 ∈ Λϕ2 , then Λϕ2 6⊆ Λ. So ϕ2 /∈ CΛ which shows CΛ 6= E.
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We have then seen sufficient conditions for the norms of the iterates of a linear bounded
operator with bounded inverse in order to assure that T has a non-trivial invariant subspace in
E. Then, at this level questions arise, such as, are these conditions necessary? or the optimal
ones? For instance, we required the sequence {ρn}n∈Z of positive numbers to be majorized by
a sequence dn satisfying, among other conditions, that∑

n>0

log dn
1 + n2

< +∞,

and this property was only used in the proof of the Lemma 3.0.12 when we wanted to prove that,
given a closed subset Λ ⊂ T, the set of elements in L∗ such that their spectrum lies inside Λ
was weak*-closed. And this lemma was precisely important in the proofs of the Lemmas 3.0.13
and 3.0.14 in order to invoke the Hahn-Banach theorem which we used to separate points in Λ
and in the Theorem 3.0.15 to show that the set CΛ was closed. This tool was essencial in the
proof of Wermer’s result and that is why we require the fact that the spectrum has to have at
least two points, so that we can ensure that the set CΛ is not the whole space.

So, the next question arise. Is it necessary to require the assumption on the spectrum having
at least two points? All these questions are still to be answered.
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Chapter 4

Further results related to Wermer’s
Theorem

As we mentioned in the introduction, the property of a subspace being hyperinvariant is a
strong one. Recall that L(E) is the set of linear bounded operator acting from E to E. We say
that Y ⊂ E, closed and Y 6= {0}, E, is invariant under T ∈ L(E) if for all x ∈ Y then Tx ∈ Y .
If we then denote by C(T,E) the set of operators which commute with T , we say that Y is an
hyperinvariant subspace for T if it is invariant for every operator S ∈ C(T,E).

We define now a Beurling sequence, which is a sequence satisfying some of the properties
of condition (1) mentioned in chapter 3. So, we ask the sequence to satisfy less conditions.

Definition 4.0.5 (Beurling sequence). A sequence of real numbers {ρn}n∈Z such that ρ0 = 1
and ρn > 1, for all n ∈ Z is said to be a Beurling sequence if the following conditions are
fulfilled:

(i) ρn+m 6 ρnρm, for all n,m ∈ Z.

(ii) ∑
n∈Z

log ρn
1 + n2

< +∞.

If we replace Z by N the sequence is said to be, one sided Beurling sequence {ρn}n∈N.
The main result of Aharon Atzmon work is the following Theorem, which gives sufficient

conditions to have hyperinvariant subspaces.

Theorem 4.0.18 (A. Atzmon). Let E be a complex Banach space and T an operator in L(E).
Assume there exist {xn}n∈Z ⊂ E and {x∗n}n∈Z ⊂ E∗ with x0, x

∗
0 6= 0 such that

Txn = xn+1 and T ∗x∗n = x∗n+1 for all n ∈ Z, (4.1)

where T ∗ denotes the adjoint operator of T acting on the dual E∗.
Then, the following sufficient conditions imply that either T is a multiple of the identity

operator or T has a non-trivial hyperinvariant subspace:

(i) The sequence {‖x∗n‖}n∈Z is dominated by a Beurling sequence and ‖xn‖ = O(|n|k) as
|n| → +∞ for some integer k > 0.

37
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(ii) The sequence {‖xn‖}n∈Z is dominated by a Beurling sequence and ‖x∗n‖ = O(|n|k) as
|n| → +∞ for some integer k > 0.

(iii) Both {‖xn‖}n∈Z and {‖x∗n‖}n∈Z are dominated by Beurling sequences and the functions
defined on C \ T by:

fx(λ) =


+∞∑
n=1

x−nλ
n−1, |z| < 1,

−
0∑

n=−∞

x−nλ
n−1, |z| > 1

(4.2)

and,

f ∗x(λ) =


+∞∑
n=1

x∗−nλ
n−1, |z| < 1,

−
0∑

n=−∞

x∗−nλ
n−1, |z| > 1

(4.3)

hav more than one singularity on T.

(iv) The elements x0 and y0 are not contained in the respective sets in E and E∗ defined as:
span{xn : n ∈ Z, n 6= 0} and span{x∗n : n ∈ Z, n 6= 0} and,∑

n∈Z

(log+ ‖xn‖+ log+ ‖x∗n‖)
1 + n2

< +∞, (4.4)

and for some constant C > 0,

‖xn‖ 6 C‖xn+1‖ and ‖x∗n‖ 6 C‖x∗n+1‖, for all n ∈ Z. (4.5)

(v) For ome integer j,

inf
n∈Z
‖xn+j‖‖x∗−n‖ = 0. (4.6)

Observe that condition (iii) corresponds to the definition we gave in 3.1, which we already
saw that such functions are analytic on the given domain of definition, and that the spectrum
of such sequences are precisely the singular points of these functions which are those λ ∈ T
such that no analytic continuation over any arc containing the point is possible.

Definition 4.0.6 (Single valued extension property). We will say that an operator T ∈ L(E)
has the single valued extension property (s.v.e.p.) if for any analytic function f : Ω→ E defined
on an open set Ω ⊂ C, with (T − λI)f(λ) ≡ 0, it results f(λ) ≡ 0.

Remark 4.0.5. For any operator T ∈ L(E) having the s.v.e.p. and f ∈ E, we can consider
the set of λ0 ∈ Ω such that there exists λ→ f(λ) analytic continuation in a neighbourhood of
λ0 with the property that (T − λI)f(λ) ≡ f .
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Following the previous definition and remark we observe that, from condition (iii) in The-
orem 4.0.18 and the hypothesis 4.1 from the same Theorem, we have that, for all |λ| 6= 1,

(T − λI)fx(λ) = Tfx(λ)− λfx(λ) =
+∞∑
n=1

Tx−nλ
n−1 −

+∞∑
n=1

x−nλ
n

=
+∞∑
n=1

x−n+1λ
n−1 −

+∞∑
n=1

x−nλ
n = x0 +

∑
n=2

x−n+1λ
n−1 −

+∞∑
n=1

x−nλ
n = x0.

And therefore, if T has the s.v.e.p. we conclude that the singularity set of fx coincides with
the spectrum of x0, σT (x0) ⊂ T. Exactly the same, if T ∗ has the s.v.e.p. we have that the
singularity set of fx∗ coincides with the set σT ∗(x∗0).

Now, assuming that T and T ∗ have the s.v.e.p. we can formulate condition (iii) from
Theorem 4.0.18 in the following way:

(iii) The sequences {‖xn‖}n∈Z and {‖x∗n‖}n∈Z are dominated by Beurling sequences and the
set σT (x0) ∪ σT ∗(x∗0) has more than one point.

Thus, Theorem 4.0.18 implies clearly, the following theorem:

Theorem 4.0.19. Let T be an invertible operator in L(E) and x0 ∈ E and x∗0 ∈ E∗ non
zero elements. If the sequences {T nx0}n∈Z and {(T ∗)nx∗0}n∈Z satisfy one of the forementioned
hypothesis stated in Theorem 4.0.18, then either T is a multiple of the identity or T has a
non-trivial hyperinvariant subspace.

We will see at this point, that Wermer’s Theorem 3.0.17, from Chapter 3 can be weakened
since Theorem 4.0.19 implies Wermer’s result from Chapter 3 as we shall see now.

Theorem 4.0.20. Let T be an invertible operator in L(E) such that∑
n∈Z

log ‖T n‖
1 + n2

< +∞, (4.7)

and the spectrum of T contains more than one point then either T is a multiple of the identity
or T has a non-trivial hyperinvariant subspace.

Proof. Let us consider the sequence ρn = ‖T n‖ as we did in Chapter 3. We observe immediately
that {ρn}n∈Z is a Beurling sequence since ‖T n+m‖ 6 ‖T n‖‖Tm‖. Since we have that,

‖T nx‖ 6 ‖T n‖‖x‖ = ρn‖x‖, and ‖(T ∗)nx∗‖ 6 ‖(T ∗)n‖‖x∗‖ = ρn‖x∗‖ for all n ∈ Z.

Let σ(T ) be the spectrum of T and consider,

Rλ = (T − λI)−1, λ ∈ σ(T )c

the resolvent operator. Recall that σ(T ) ⊂ T for being T such that ‖T n‖ is Beurling, as we
saw in 3.0.3. So, as we did in Chapter 3 we have,

RλT =
+∞∑
n=1

T−nλn−1, |λ| < 1
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and,

RλT = −
0∑

n=−∞

T−nλn−1, |λ| > 1.

Therefore, if x ∈ E, and fTnx the function associated to the sequence {T nx}n∈Z by 4.2, we
have immediately,

fTnx(λ) = RλTx for all λ ∈ C \ T.
Assume now that λ0 ∈ σ(T ), by a Theorem by Helson [9, Thm 3], there exists a non-zero

element x0 ∈ E such that
D −→ E
λ 7→ RλTx0

has no analytic continuation to any neighbourhood of λ0. So, λ0 is a singular point of fTnx.
Since, by hypothesis σ(T ) has more than one point, there exists λ1 ∈ σ(T ), λ1 6= λ0, and

since σ(T ) = σ(T ∗) following exactly the same argument with the function f(T ∗)nx∗ associated
to the sequence {(T ∗)nx∗}n∈Z, we will have that λ1 is a singularity of f(T ∗)nx∗ . Thus, we are in
the assumptions of Theorem 4.0.19 and the proof is complete.

Another related result as a consequence of Theorem 4.0.18 is the following one, an extension
of the result given by B. Sz.-Nagy and B. Foias [14, p. 74] which is shown in [5, p. 134].

Theorem 4.0.21 (Colojoara-Foias). Let E be a reflexive Banach space, and {ρn}n∈Z an in-
creasing sequence of positive numbers satisfying

lim sup
m→+∞

ρm+n

ρm
6 Cnk for all n ∈ N (4.8)

for some constant C > 0 and integer k 6 0. Let T be an operator in L(E) such that

‖T n‖ = O(ρn), as n→∞, (4.9)

and assume there exists elements x ∈ E and x∗ ∈ E∗ such that

lim sup
n→∞

‖ρ−1
n T nx‖ > 0 (4.10)

and,

lim sup
n→∞

‖ρ−1
n (T ∗)nx∗‖ > 0. (4.11)

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

Before the proof of the above result, we need the following proposition and a corollary of it
whose proof can be seen in [3, p. 22].

Proposition 4.0.22. Let T be an injective bounded linear operator acting on a Banach space
E, and assume there is a sequence {x∗n}n∈Z ⊂ E∗ and an element x ∈ E such that

sup
m,n∈N
m6n

‖(T ∗)mx∗n‖ < +∞, (4.12)
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and

lim sup
n→+∞

|〈T nx, x∗n〉| > 0. (4.13)

Then there exists a norm bounded sequence {y∗n}n∈Z ⊂ E∗ with y∗0 6= 0 such that

T ∗y∗n = y∗n−1 for all n ∈ N. (4.14)

Moreover, if there is a sequence of positive numbers {an}n∈N such that

lim sup
n→+∞

‖(T ∗)m+nx∗n‖ 6 an, for all m ∈ N, (4.15)

then,

‖(T ∗)my∗0‖ 6 an, for all m ∈ N. (4.16)

Corollary 4.0.23. Let T be an injective operator in L(E) and assume there is an incresing
sequence {ρn}n∈Z of positive numbers and x ∈ E such that

‖T n‖ = O(ρn), as n→∞,

and
lim sup
n→∞

‖ρ−1
n T nx‖ > 0.

Then, there exists a norm bounded sequence {y∗n}n∈Z ⊂ E∗ with y∗0 6= 0 such that,

T ∗y∗n = y∗n−1 for all n ∈ N. (4.17)

Moreover, if there also exists a sequence {an}n∈Z of positive numbers such that

lim sup
n→+∞

ρm+n

ρn
6 am for all m ∈ N, (4.18)

then

‖(T ∗)my∗0‖ 6 am, for all m ∈ N.

Now, we are in a position to prove Theorem 4.0.21:

Proof. First of all, we observe that if T 6= 0 and T is not injective then its kernel is a non-trivial
hyperinvariant subspace for T : Indeed, if x ∈ Ker(T ) 6= {0} then for all S ∈ C(T,E) we have
that, TSx = STx = 0 and hence Sx ∈ Ker(T ), thus Ker(T ) is invariant under any S which
commutes with T . Also, if T ∗ is not injective, then the closure of the image of T is a non-trivial
hyperinvariant subspace for T . This is again clear, since as a general fact T ∗ injective implies
that ImT = E and the other way around. So, if y = Tx ∈ Im(T ) then, for any S ∈ C(T,E)
we have that Sy = STx = TSx and therefore Sx ∈ Im(T ) and since T ∗ is not injective, the
closure of Im(T ) is a proper subspace of E.

So, following the above mentioned reasoning we shall assume that T and T ∗ are both
injective. This, together with the condition 4.1 and the hypothesis that x0, x

∗
0 6= 0 implies that

xn, x
∗
n 6= 0 for all n ∈ Z.
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Now, from the previous Corollary 4.0.23 and hypothesis 4.25, 4.26 and 4.27 we obtain that
there exists norm bounded a sequence {y∗n}n∈Z ⊂ E∗ with y∗0 6= 0 such that 4.17 holds and

(T ∗)ny∗n = O(|n|k), as n→∞.

Consider now the sequence {z∗n}n∈Z ⊂ E∗ defined by means of {y∗n}n∈Z as:

zn = y∗−n for n < 0, and zn = (T ∗)ny∗n for n > 0.

Now, it follows from properties of the sequence {y∗n}n∈Z and the fact that (T ∗)ny∗n =
O(|n|k), as n → ∞, that condition 4.1 and condition (ii) from Theorem 4.0.18 hold for
the sequence {z∗n}n∈Z.

Now, due to the fact that E is reflexive, and by hypothesis 4.28 we obtain that there exists
a sequence {xn}n∈Z ⊂ E with x0 6= 0 such that 4.1 and condition (i) from Theorem 4.0.18 hold
and hence the conclusion of Theorem 4.0.18 is attained.

Finally, we show a more restrictive result by Beuzamy which asks the norm of T to be one
and it is also a consequence of Theorem 4.0.18.

Theorem 4.0.24 (Beauzamy). Let T be a bounded linear operator acting on a Banach space
E such that ‖T‖ = 1, and assume that for some x ∈ E we have,

lim sup
n→∞

‖T nx‖ > 0.

Moreover, suppose there exists a sequence {xn}n∈Z ⊂ E with x0 6= 0 such that the sequence
{‖xn‖}n∈N is dominated by a one-sided Beurling sequence and such that,

Txn = xn−1 for all n ∈ N.

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

This Theorem is consequence of the former ones, let us give an extension of Beauzamy’s
result by means of Theorem 4.0.21 and 4.0.24.

Theorem 4.0.25. Let T be a bounded linear operator and {ρn}n∈Z an increasing Beurling
sequence satisfying conditions 4.25 and 4.26 from Theorem 4.0.21 and assume there is a vector
x ∈ E such that 4.27 from 4.0.21 holds too. Finally, assume there is a sequence {xn}n∈Z ⊂ E
which satisfies the hypothesis from Beauzamy’s Theorem 4.0.24. Then either T is a multiple of
the identity or T has a non-trivial invariant subspace.

Proof. Again, using Corollary 4.0.23, from hypothesis 4.25, 4.26 and 4.27 we conclude that
there exists a norm bounded sequence {x∗n}n∈Z ⊂ E∗ satisfying 4.14 and 4.16 from Proposition
4.0.22 with an = nk for all n ∈ N.

Now, consider the sequences {yn}n∈Z ⊂ E and {y∗n}n∈Z ⊂ E∗ defined by:

yn = x−n for n < 0, and yn = T nx0 for n > 0,

and,
y∗n = x∗−n for n < 0, and y∗n = (T ∗)nx∗0 for n > 0.
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Now, we have that
‖yn‖ = ‖x−n‖, for all n < 0,

and

‖y−n‖ = ‖T−nx0‖ = ‖T−n+1T−1x0‖ = ‖T−n+1x1‖ = · · · = ‖xn‖ for all n > 0.

so the sequence {‖yn‖}n∈Z is dominated by a Beurling sequence, since {‖xn‖}n∈N is dominated
by a one-sided Beurling sequence and finally, by the same reasoning since ‖(T ∗)nx0‖ 6 nk, we
have that {‖y∗n‖}n∈Z is bounded by nk so ‖y∗n‖ = O(|n|k) as n→ +∞.

So Theorem 4.0.18 item (ii) applies to the sequences {yn}n∈Z and {y∗n}n∈Z and this comple
tes the proof.

We will now see some results which are slight modifications from Colojoaras and Foias result
seen in Theorem 4.0.21, and also improvements on the hypothesis of this Theorem. We will see
that the condition on the growth of the norm of the iterates of T need not be polynomial, in
fact, it can be exponential.

First, we see that in Theorem 4.0.21, the condition 4.28 and the fact that E must be a
reflexive Banach space, can be modified as follows:

Theorem 4.0.26. Let E be a complex Banach space and T a bounded linear operator acting
on E to itself. Let σ(T ) be the spectrum. Assume there is an increasing sequence {ρn}n∈Z of
positive numbers and an element x ∈ E satisfying conditions 4.25, 4.26 and 4.27 from Theorem
4.0.21.

Then if σ(T )∩T is countable, T ∗ has an eigenvalue, and hence either T is a multiple of the
identity or T has a non-trivial hyperinvariant subspace.

Observe that if T ∗ has an eigenvalue, that is, λ ∈ T such that T ∗x∗ = λx∗ for some
x∗ ∈ E∗, and T 6= λI, then Im(T − λI)is a non-trivial hyperinvariant subspace for T . Indeed,
if y ∈ Im(T − λI) = {(T − λI)x ∈ E; x ∈ E}, then for all S ∈ C(T,E) we have, Sy =
S(T − λI)x = STx − Sλx = TSx − λSx = (T − λI)Sx and hence Sy ∈ Im(T − λI). It is
non-trival. It is non-zero since T 6= λI and Im(T − λI) is not dense because Ker(T ∗−λI) 6= 0.

Another remark which is important to point to is that the condition on σ(T ) ∩ T being
countable can be replaced by a weaker hypothesis demanding that the set σ(T ) ∩ T is a set of
null-measure with respect to the Lebesgue measure on T.

The following result will lead us to the improvement of Colojoaras and Foias result seen in
Theorem 4.0.21.

Theorem 4.0.27. Let E be a complex Banach space and let T ∈ L(E). Assume we have
sequences {xn}n∈Z ⊂ E and {x∗n}n∈Z ⊂ E∗ with x0 6= 0 and x∗0 6= 0 such that

Txn = xn+1 and T ∗x∗n = x∗n+1.

Suppose also that {‖x∗n‖}n∈Z is dominated by a Beurling sequence and that for some integer
k > 0 and constant C > 0,

‖xn‖+ ‖x∗n‖ = O(nk), as n→ +∞, (4.19)
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and,

‖x−n‖ = O(eCn
1/2

), as n→ +∞. (4.20)

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

Remark 4.0.6. This Theorem also holds if we replace the conditions 4.19 and 4.20 by the next
ones:

‖x−n‖+ ‖x∗−n‖ = O(nk), as n→ +∞,

and,

‖xn‖ = O(eCn
1/2

), as n→ +∞.

The above mentioned Theorem 4.0.27 has the following consequences:

Corollary 4.0.28. Let T be an invertible operator in L(E) and suppose there are non-zero
elements x0 ∈ E and x∗0 ∈ E∗ such that

‖T nx0‖+ ‖(T ∗)nx∗0‖ = O(nk), as n→ +∞, (4.21)

and,

‖T−nx0‖+ ‖(T ∗)−nx∗0‖ = O(eCn
1/2

), as n→ +∞, (4.22)

for some integer k > 0 and constant C > 0.
Then either T is a multiple fo the identity or T has an hyperinvariant subspace.

Proof. It is clear that from items 4.21 and 4.22 we have that the sequences,

xn = T nx0 and x∗n = (T ∗)nx∗0, n ∈ Z

satisfy the hypothesis of Theorem 4.0.27

Corollary 4.0.29. Let T be an invertible operator in L(E) and suppose that

‖T n‖ = O(nk), as n→ +∞, (4.23)

and,

‖T n‖ = O(eCn
1/2

), as n→ −∞, (4.24)

for some integer k > 0 and constant C > 0.
Then either T is a multiple fo the identity or T has an hyperinvariant subspace.

Observe that Corollary 4.0.29 is a particular case of Wermer’s Theorem seen in Chapter 3.
Finally, we obtain the following result as a consequence of Theorem 4.0.27, which is Colo-

joaras and Foias Theorem replacing the first hypothesis by a weaker one.
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Theorem 4.0.30. Let E be a reflexive Banach space, and {ρn}n∈Z an increasing sequence of
positive numbers satisfying

lim sup
m→+∞

ρm+n

ρm
=6 KeCn

1/2

for all n ∈ N (4.25)

for some constant C > 0 and integer k 6 0. Let T be an operator in L(E) such that

‖T n‖ = O(ρn), as n→∞, (4.26)

and assume there exists elements x ∈ E and x∗ ∈ E∗ such that

lim sup
n→∞

‖ρ−1
n T nx‖ > 0 (4.27)

and,

lim sup
n→∞

‖ρ−1
n (T ∗)nx∗‖ > 0. (4.28)

Then, either T is a multiple of the identity or T has a non-trivial hyperinvariant subspace.

Proof. We have just to apply Corollary 4.0.29 taking the sequence an = KeCn
1/2 , for all n ∈ N

and from the fact that

lim sup
m→+∞

ρm+n

ρm
6 KeCn

1/2

for all n ∈ N

and following exactly the same proof as in Theorem 4.0.21 bearing in mind that the sequence
{y∗n}n∈Z satisfies that,

‖(T ∗)my∗0‖ 6 am = KeCm
1/2

, for all m ∈ N.

The same for the sequence {xn}n∈Z ⊂ E as in the proof of Theorem 4.0.21.

The later work of K. Kellay gives an extension of the work by A. Atzmon in the sense that
it stablishes the existence of hyperinvariant subspaces based on a weaker condition than the
one given by A. Atzmon. Let us first state the Theorem by K. Kellay and then compare it to
the results seen until now.

Theorem 4.0.31 (K. Kellay). Let T be an operator in L(E) such that T 6= λI. Let {ρn}n∈N
be an incresing Beurling sequence such that

lim sup
m→+∞

ρm+n

ρm
= O(eεn

1/2

) for all ε > 0, as n→ +∞

and such that

‖T n‖ = O(ρn) as n→ +∞.

Assume there is an element x ∈ E such that,

lim sup
n→+∞

‖T nx‖
ρn

> 0,
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and a sequence {xn}n∈N ⊂ E such that

Txn+1 = xn for all n > 0,

∑
n>0

log+ ‖xn‖
1 + n2

< +∞, (4.29)

and ‖xn+1‖ 6 C‖xn‖ for all n > 0 and C > 0. (4.30)

Then, T has an hyperinvariant subspace.

Observe that condition 4.29 is weaker than the fact that a sequence {‖xn‖}n∈N ⊂ E is
dominated by a Beurling sequence. Indeed, if {xn}n∈N ⊂ E is such that ‖xn‖ 6 Cρn for some
constant C > 0 and {ρn}n∈N a Beurling sequence, then

∑
n>0

log+ ‖xn‖
1 + n2

6 C
∑
n>0

log+ ρn
1 + n2

< +∞,

and since,
‖xn+1‖ 6 Cρn+1 and ‖xn‖ 6 Cρn,

hence,
‖xn+1‖
‖xn‖

6 ρ1

and we obtain what we wanted.



Chapter 5

An example of an invertible operator
without invariant subspaces

This Chapter has the main goal to define a bounded and linear operator with bounded inverse
with no invariant subspaces. The operator will be defined on a Banach space that will be an
infinite-dimensional direct sum of James p-spaces. We will present the James p-spaces which are
Banach spaces of sequences satisfying a certain boundedness variation property depending on
p, (p>1). We will find a basis for E and define the operator as a right-shift on these sequences.

5.1 James p-spaces and strictly singular operators
Before we define the notion of strictly singular operator we need to give meaning to norm
increasing operators.

Definition 5.1.1 (Norm increasing). Given E and F two normed spaces and T : E → F a
bounded linear operator. We say that T is norm increasing if there exists ε > 0 such that

‖Tx‖F > ε‖x‖E for all x ∈ E.

Using this definition we can define strictly singular operators as those which such property
is not fulfilled in any infinite-dimensional subspace of E.

Definition 5.1.2 (Strictly singular operator). Let E and F be complex Banach spaces, and
T : E → F a bounded linear operator. We say that T is strictly singular if there is no subspace
W ⊂ E of infinite dimension such such that the restriction T |W is norm increasing

A compact operator is always strictly singular. Nevertheless, the converse is not true, and
an evidence of this is that Read shows a strictly singular operator without invariant subspaces,
so it can not be compact since it would contradict Lomonosov’s Theorem which in particular
states that every compact operator has invariant subspaces.

It is easy to check that compact implies strictly singular. Indeed: Suppose that an operator
T is not strictly singular, that is, there is a subspace F ⊂ E of infinite dimension such that
‖Tx‖ > ε‖x‖ for all x ∈ F . Take y = Tx with y ∈ F and define an operator R such that
R(y) = x. R is bounded: ‖Ry‖ = ‖x‖ 6 1

ε
‖Tx‖ = 1

ε
‖y‖. Hence, T is invertible on F and the

47
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image of BF the unit ball of F is isomorphic to BF , that is TBF ≡ BF but T compact implies
that BF is compact but F has infinite dimension so we get a contradiction.

Now, we will consider the space of sequences in c0 = {{an}n∈N ⊂ C : limn an = 0} and we
define the James p-space for 1 < p < +∞ as:

Jp = {a ∈ c0 : ‖a‖ =

 sup
i1<···<in
n∈N

n∑
j=2

|aij − aij−1
|p
1/p

< +∞}

We will construct an operator with no invariant subspaces acting on a Banach space defined
by means of an `2-direct sum of Jp spaces. Consider {pn}n∈N ⊂ R an increasing sequence, all
of them strictly greater than 2. Define,

E = `2 ⊕
+∞⊕
n=1

Jpn .

The construction of such operator will be by means of an increasing sequence which tends
to infinity sufficiently fast. Let {qn}+∞

n=1 be an increasing sequence of positive integers. Set,

a0 = 0 an = q2n−1 and bn = q2n for all n > 1.

Thus, we have a1 < b1 < a2 < b2 < . . . . Define now, a sequence {cn}+∞
n=0 by means of a and

b as follows,
c0 = 0 cn = n(an + bn) for all n > 1.

Finally, we define the following partial sums of vn,

sn = 1 +
n−1∑
k=0

(1 + vk) and s0 = 1.

We know that every Banach space contains an infinite-dimensional subspace that has a
Schauder basis. Let F ⊂ E be the infinite-dimensional subspace of E spanned by the unit
vectors, {fij}i,j∈Z+ , where fixed i, the element {fij} is the Schauder basis for the Jpi space and
for i = 0 we denote {f0j}j>0 the basis for the `2 space.

Now,given I ⊂ Z+ × Z+ a set of indices, we will denote by FI ⊂ F the set spanned by
the unit vectors {fij; (i, j) ∈ I}, and πI : F → FI will denote the natural projection from F
onto FI , acting on F as πI(fij) = fij whenever (i, j) ∈ I or πI(fij) = 0 otherwise. Such πI is
continuous for certain choices of I, but we will only be concerned in the choices of I for which
πI is continuous.

5.2 Construction of the operator
The first step will be to define a new sequence {en}+∞

n=0 such that its linear span is dense in
F ⊂ E.

To do so, first we will need to reorder the elements of {fij, i, j > 0} by means of a bijection
ϕ : Z+ × Z+ → Z+, in such a way that fij is equal to the element fϕ(i,j). We will denote Fn
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the subspace generated by the linear span of {f1, . . . , fn} where Fn = FI for a choice of I such
that it is the unique set of indices with I = ϕ−1([0, n]) ⊂ Z+ × Z+.

We need now to define the following set of positive integers:

Ω =
+∞⋃
n=1

n⋃
k=1

[kan, kan + cn−k],

and observe,

Ω =
+∞⋃
k=0

Ωk,

where,

Ωk =
+∞⋃

n=k+1

[(n− k)an, (n− k)an + ck].

As long as the sequence {qn}n increases sufficiently fast, it can be checked that the set Ω is
a disjoint union, and that both Ω and Z+ \ Ω are infinite sets. So, from now on we will take
for granted that {qn}n increases sufficiently rapidly so that this condition is fulfilled.

Let now, for each k > 0, σk be the natural bijection defined as follows:

σk : Ωk −→ [0, ck]× Z+

(n− k)an +m 7→ (m,n− k − 1)
, with m ∈ [0, ck].

From σk we define the functions Σk(m) = σk(m)+(dk, 0) in such a way that Σk acts on the same
domain as σk and the image becomes [dk, dk+ck]×Z+ = [dk, dk+1)×Z+ since dk+1 = dk+ck+1.

Finally, define Σ as the unique map acting on Ω onto Z+ × Z+ such that Σ|Ωk
= Σk, that

is, the restriction of Σ on the set Ωk coincides with the functions Σk defined before.
Now, Σ is a bijection from Ω onto [d0,+∞] × Z+ = N × Z+. So unsing Σ we may get a

bijection between Z+ and Z+ × Z+ by mapping the set Z+ \ Ω onto {0} × Z+.
So, if we define,

Σ : Z+ −→ Z+ × Z+

m 7→ Σ(m) = (0, ψ−1(m))
,

where, ψ is the unique increasing bijection between the sets Z+ \ Ω and Z+.
The next step will be to construct the basis {en}+∞

n=0 of F and the operator without invariant
subspaces will be a "right shift" of the basis elements of F .

Assuming that the sequence {qn}n increases sufficiently fast in such a way that the function
Σ, and hence Σ−1 are well-defined. We will construct for each k, the element fk = fi,j where
(i, j) = Σ(k).

Now, we claim that there exists a sequence {en}+∞
n=0 ⊂ F such that,

f0 = e0, (5.1)

and, given r, n, k such that 0 < r 6 n and ran 6 k 6 ran + cn−r then,

fk = (n− r + 1)k−ranan−r((1 + n)ranek − n(r−1)an−1ek−ran+(r−1)an−1). (5.2)
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Moreover, if 0 < r < n and ran + cn−r < k < (r + 1)an then,

fk = (1 + n)ke((r+
1
2)an−k)/

√
anek. (5.3)

on the other hand if n > 1 and cn−1 < k < an then

fk = (1 + n)ke(
1
2
an−k)/

√
anek. (5.4)

If r, n, k satisfy that 0 < r 6 n and [r(an + bn) 6 k 6 nan + rbn then,

fk = (1 + n)kek − bn(1 + n)i−bnei−bn . (5.5)

Fianlly, if the integers r, n and k are such that 0 6 r < n and nan + rbn < k < (r+ 1)(an + bn)
then,

fk = (1 + n)k2((r+ 1
2)bn−k)/

√
bnek. (5.6)

Recall that the ek’s can be isolated from the fk’s since,

fk =
k∑

n=0

λk,nek,

with λk,n 6= 0 for all k ∈ Z+ and the matrix (λk,n)k,n is a lowe triangular matrix with diagonal
elements different from zero and hence invertible. Thus, we can define an operator by means
of the elements {en}+∞

n=0 and the next Theorem gives us the main result of this Chapter.

Theorem 5.2.1 (Read). Assuming we have an sequence {qn}+∞
n=0 that increases sufficiently

rapidly. Then, there exists a unique sequence {en}+∞
n=0 satisfying the conditions 5.1, 5.2, 5.3,

5.4, 5.5 and 5.6 which is a basis for the space F and there is a unique continuous linear
operator T : F → F and strictly singular such that Tek = ek+1 for each k and T has no
invariant subspaces.

The last step is to contruct an invertible operator without invariant subspaces using a
strictly singular operator with no invariant subspace. To do so, we will use the following result
about strictly singular operator whose proof can be seen with detail in [2, pp, 278–279].

Theorem 5.2.2. Let T be a strictly singular operator in L(E) with E an infinite dimensional
Banach spacer, then the spectrum of T is countable, 0 ∈ σ(T ) and it is the only possible
accumulation point, and all the non-zero elements of σ(T ) are eigenvalues.

Now, by Read’s Theorem, we have a strictly singular operator T with no invariant subspaces,
so σ(T ) = {0}. Indeed, if σ(T ) 6= {0} then by Theorem 5.2.2 T would have an eigenvalue but
this means that T would have an invariant subspace and this can not happen.

Finally, let us consider the operator S = I−T . S is an invertible operator with no invariant
subspaces. It is indeed invertible since σ(T ) = {0} so all operators of the form λI − T for all
λ ∈ C \ {0} are invertible. Moreover, if Y ⊂ E and Y 6= {0}, E is invariant under S, then:

TY = (I + S)Y = Y + SY ⊂ Y,

and this implies that S has no invariant subspaces either.
Therefore, we have constructed an invertible operator with no invariant subspaces which

shows that, indeed, not every bounded and linear operator on an infinite-dimensional and
separable Banach space necessarily has non-trivial invariant subspaces.
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