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Abstract. Properties of Schur type for Banach lattices of regular operators and
tensor products are analyzed. It is shown that the dual positive Schur property
behaves well with respect to Fremlin’s projective tensor product, which allows us
to construct new examples of spaces with this property. Similar results concerning
the positive Grothendieck property are also presented.

1. Introduction

A particular feature of the space `1 of summable sequences is that every sequence

(xn) ⊂ `1 which converges in the weak topology is also norm convergent. In other

words, sequential weak-convergence and norm-convergence are equivalent in `1. A

Banach space in which this equivalence holds is said to have the Schur property, and

this is intimately related to the ubiquity of subspaces isomorphic to `1. In the context

of Banach lattices, a weaker notion has been considered when the above equivalence

is required only for positive elements. Namely, a Banach lattice E has the positive

Schur property (PSP) when every weakly null sequence of positive elements (xn)n

in E+ is convergent to zero in norm. The simplest example of a Banach lattice with

the PSP but without the Schur property is the space L1 over a nonatomic measure

space.

In the study of the duality for the PSP, the dual positive Schur property (DPSP)

has been recently introduced in [2]. Namely, a Banach lattice E is said to have the

DPSP when every sequence of positive functionals (x∗n)n in E∗+ which is weakly-∗
convergent to zero, is necessarily convergent to zero in norm. If a Banach lattice

E has the DPSP, then its dual E∗ has the PSP, but the converse is not necessarily

true. A detailed study of the DPSP can be found in [17].

Our aim in this paper is to construct new examples of Banach lattices with these

properties, as well as studying similar properties in Banach lattices of regular oper-

ators.

A starting point for our work is the following theorem from [15]:

Theorem 1. Let E, F be Banach lattices. The following are equivalent:
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(1) E∗ and F have PSP.

(2) Lr(E,F ) has PSP.

Note that this theorem relates, in a certain sense, the weak topology in the space

Lr(E,F ), which is in general not very well understood, with that of E and F .

Moreover, in spaces of operators there is another relevant topology which can be

considered in this respect: the weak operator topology (in short, wot). We will

introduce a version of the positive Schur property for spaces of operators that cor-

responds to the wot. In addition, a characterization of this property in terms of the

DPSP and PSP of the spaces E and F will be provided (see Theorem 2).

As one may expect, similar results can also be obtained for the weak-∗ operator

topology in Lr(E,F ∗). Moreover, in this case, our analysis yields also a character-

ization of the DPSP of Fremlin’s projective tensor product of two Banach lattices

E ⊗|π| F (see Theorem 3).

Finally, we also study another property closely related to PSP and DPSP: the posi-

tive Grothendieck property (PGP). Recall that a Banach space E has the Grothendieck

property when every weak-∗ null sequence in E∗ is also weakly null. In a similar way,

a Banach lattice E is said to have the PGP if every sequence of positive elements

(x∗n)n in E∗+ which is weak-∗ null is also weakly null.

It can be easily seen that a Banach lattice has DPSP if and only if E∗ has PSP

and E has PGP. This connection motivates the study of the same kind of results for

spaces of operators and Fremlin’s tensor product of Banach lattices (see Theorem

5).

2. Notation and preliminaries

We follow standard terminology concerning Banach lattices and positive operators

as can be found in the monographs [1, 11]. Let us start recalling the basic definitions

of this work.

A Banach lattice E has the dual positive Schur property (DPSP) if every sequence

of positive functionals (x∗n) ⊂ E∗+ which is weak-∗ convergent to zero satisfies ‖x∗n‖ →
0 ([2], [17]). A Banach lattice E is said to have the positive Grothendieck property

(PGP) if every sequence of positive elements (x∗n)n in E∗+ which is weak-∗ null is

also weakly null.

Since every operator T : E → c0 can be identified with a weak-∗ null sequence

x∗n in E∗, it follows that a Banach lattice E has DPSP if and only if every positive

operator T : E → c0 is compact; while, E has PGP if and only if every positive

operator T : E → c0 is weakly compact. It is immediate to see that E has DPSP if

and only if E has PGP and E∗ has PSP.

It is also clear that if E is a Banach lattice with the DPSP (respectively PGP)

and I ⊂ E is a closed ideal, then E\I has DPSP (resp. PGP).
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Recall that a Banach lattice has the PSP if every normalized disjoint sequence

has a subsequence equivalent to the unit vector basis of `1 (cf. [5, 16]). Similarly,

a Banach lattice E has the DPSP if and only if every sequence of positive disjoint

elements in E∗+ which is weak-∗ convergent to zero is norm null [17, Proposition 2.3].

It is straightforward to check that C(K) spaces have the DPSP for every compact

Hausdorff space K. More generally, for an AM -space E it follows that DPSP and

PGP are equivalent properties, and these hold if and only if there is no positively

complemented order copy of c0 in E [17, Proposition 4.1]. A criterion for Musielak-

Orlicz spaces to have DPSP can be also found in [17].

For Banach lattices E and F , an operator T : E → F is positive when Tx ∈ F+

whenever x ∈ E+. We denote the set of positive operators between E and F by

L+(E,F ), and the space of regular operators Lr(E,F ) is the linear space generated

by L+(E,F ). Recall that given a Dedekind-complete Banach lattice F , for every

Banach lattice E, the space of regular operators Lr(E,F ) is again a Banach lattice

with the norm

‖T‖r = inf{‖S‖ : S ∈ L+(E,F ), |Tx| ≤ S|x|,∀x ∈ E}.

Note that every dual Banach lattice F ∗ is Dedekind-complete, hence Lr(E,F ∗) is

always a Banach lattice. In order to avoid cumbersome repetition, everytime we

deal with the space Lr(E,F ), we will assume that F is Dedekind-complete.

Recall that given two vector spaces E,F , we can consider the algebraic tensor

product E ⊗ F as the space of linear combinations of elements of the form e ⊗ f
with e ∈ E and f ∈ F . The Fremlin tensor product ([6], [7]) of two Banach lattices

E and F is the completion of E ⊗ F with respect to the norm

‖u‖E⊗|π|F = inf{
n∑
i=1

‖xi‖E‖yi‖F : xi ∈ E+, yi ∈ F+, |u| ≤
n∑
i=1

xi ⊗ yi}.

This space, with the order given by the closure of E+ ⊗ F+ with respect to ‖ · ‖|π|,
becomes a Banach lattice.

Moreover, it turns out that the mapping

T : (E ⊗|π| F )∗ −→ Lr(E,F ∗)
φ 7−→ Tφ

where Tφ is given by 〈Tφx, y〉 = φ(x⊗ y) for every x ∈ E, y ∈ F , defines a surjective

Riesz isometry (cf. [6, 9]).

3. Positive Schur properties in Lr(E,F )

Recall that a sequence of operators (Tn) ⊂ L(E,F ) converges to zero in the weak

operator topology (wot) if for every x ∈ E and y∗ ∈ F ∗ we have

〈y∗, Tnx〉 → 0.
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Similarly, given a sequence (Tn) ⊂ L(E,F ∗), we say that this sequence converges to

zero in the weak−∗ operator topology (w∗ot) if for every x ∈ E and y ∈ F we have

〈Tnx, y〉 → 0.

The following notions are related to the positive Schur property for Banach lattices

of regular operators.

Definition 1. Lr(E,F ) has the wot-positive Schur property (Lr(E,F ) ∈ wot −
PSP ) if for every sequence of positive operators (Tn) ⊂ L+(E,F ) with Tn → 0 in

the weak operator topology, then ‖Tn‖ → 0.

Definition 2. Lr(E,F ∗) has the w∗ot-positive Schur property (Lr(E,F ∗) ∈ w∗ot−
PSP ) if for every sequence of positive operators (Tn) ⊂ L+(E,F ∗) with Tn → 0 in

the weak-∗ operator topology, then ‖Tn‖ → 0.

Observe that for Banach lattices E and F we have:

Lr(E,F ) ∈ PSP ⇒ Lr(E,F ) ∈ wot− PSP,

Lr(E,F ∗) ∈ PSP ⇒ Lr(E,F ∗) ∈ wot−PSP ⇒ Lr(E,F ∗) ∈ w∗ot−PSP.

Theorem 2. Let E, F be Banach lattices. The following are equivalent:

(1) E has DPSP and F has PSP.

(2) Lr(E,F ) has wot-PSP.

Proof. (1) ⇒ (2): We will proceed by contradiction. Let (Tn) ⊂ L+(E,F ) be a

sequence of positive operators such that for every x ∈ E and y∗ ∈ F ∗

〈y∗, Tnx〉 → 0

but for some α > 0 we have ‖Tn‖ > α for every n ∈ N.

Since Tn ≥ 0, for every n ∈ N there is xn ∈ E+ with ‖xn‖ ≤ 1 such that

‖Tnxn‖ ≥ α.

Notice first that for any y∗ ∈ F ∗ and x ∈ E, by hypothesis, we have that

〈T ∗ny∗, x〉 = 〈y∗, Tnx〉 → 0,

which means that (T ∗ny
∗) is weak-∗ convergent to zero in E∗. In particular, since

Tn ≥ 0 and E has DPSP, it follows that

‖T ∗n(y∗)‖ ≤ ‖T ∗n(y∗+)‖+ ‖T ∗n(y∗−)‖ → 0.

Thus, we have that for every y∗ ∈ F ∗

|〈y∗, Tnxn〉| = |〈T ∗ny∗, xn〉| ≤ ‖T ∗ny∗‖‖xn‖ → 0.

Therefore, (Tnxn) is a positive weakly null sequence in F , and by the PSP it follows

that ‖Tnxn‖ → 0 in contradiction with ‖Tnxn‖ > α.
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(2)⇒ (1): Let (xn) ⊂ E∗+ be a weak-∗ null sequence. Fix y ∈ F+\{0} and let us

define Tn : E → F by

Tn(x) = 〈x∗n, x〉y.

Clearly, (Tn) is a sequence of positive operators which converge to zero in the wot.

Therefore, since Lr(E,F ) has wot-PSP it follows that ‖Tn‖ → 0. This implies that

‖x∗n‖ =
‖Tn‖
‖y‖

→ 0

showing that E has DPSP.

Let now (yn) ⊂ F+ be a weakly null sequence. Given x∗ ∈ E∗+\{0}, we can define

Tn : E → F by

Tn(x) = 〈x∗, x〉yn.

Clearly, (Tn) is a sequence of positive operators which converge to zero in the wot.

Therefore, since Lr(E,F ) has wot-PSP it follows that ‖Tn‖ → 0. This implies that

‖yn‖ =
‖Tn‖
‖x∗‖

→ 0

showing that F has PSP. �

Concerning w∗ot-PSP we have the following:

Theorem 3. Let E, F be Banach lattices. The following are equivalent:

(1) E and F have DPSP.

(2) Lr(E,F ∗) has w∗ot-PSP.

(3) E ⊗|π| F has DPSP.

Proof. (1) ⇒ (2): As in the proof of Theorem 2, we will proceed by contradiction.

Let (Tn) ⊂ L+(E,F ∗) be a sequence of positive operators such that for every x ∈ E
and y ∈ F

〈Tnx, y〉 → 0

but for some α > 0 we have ‖Tn‖ > α for every n ∈ N.

Since Tn ≥ 0, for every n ∈ N there is xn ∈ E+ with ‖xn‖ ≤ 1 such that

‖Tnxn‖ ≥ α.

Notice first that for any y ∈ F and x ∈ E, by hypothesis, we have that

〈T ∗ny, x〉 = 〈y, Tnx〉 → 0,

which means that (T ∗ny) is weak-∗ convergent to zero in E∗. In particular, since E

has DPSP, for any y ∈ F it follows that

‖T ∗n(y)‖ ≤ ‖T ∗n(y+)‖+ ‖T ∗n(y−)‖ → 0.

Thus, we have that for every y ∈ F

|〈y, Tnxn〉| = |〈T ∗ny, xn〉| ≤ ‖T ∗ny‖‖xn‖ → 0.
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Therefore, (Tnxn) is a positive weakly-∗ null sequence in F ∗, and by the DPSP of

F it follows that ‖Tnxn‖ → 0 in contradiction with ‖Tnxn‖ > α.

(2)⇒ (3): Let (φn) ⊂ (E ⊗|π| F )∗+ be a weak-∗ null sequence. Using the identifi-

cation (E ⊗|π| F )∗ = Lr(E,F ∗) given by φ 7→ Tφ where

〈Tφx, y〉 = φ(x⊗ y)

for every x ∈ E, y ∈ F , it follows that Tφn → 0 in the w∗ot. Now, since Lr(E,F ∗)
has w∗ot-PSP, it follows that ‖Tφn‖ → 0. Since ‖φn‖ = ‖Tφn‖, E ⊗|π| F has DPSP.

(3) ⇒ (1): Let (x∗n) ⊂ E∗+ be a weak-∗ null sequence. Pick an arbitrary y∗0 ∈
F ∗+\{0}, and let us define φn(x⊗y) = x∗n(x)y∗0(y). Clearly, φn extends to an element

in (E⊗|π|F )∗+. Moreover, for each u ∈ E⊗|π|F , let xi ∈ E+, yi ∈ F+ for i = 1, . . . , k

be such that

|u| ≤
k∑
i=1

xi ⊗ yi and ‖u‖E⊗|π|F ≈
k∑
i=1

‖xi‖‖yi‖.

We have that

|φn(u)| ≤ φn

( k∑
i=1

xi ⊗ yi
)

= x∗n

( k∑
i=1

y∗0(yi)xi

)
→ 0,

since (x∗n) is weak-∗ null. Thus, by the DPSP of E ⊗|π| F , it follows that ‖φn‖ → 0.

This implies that ‖x∗n‖ → 0. In fact, let x̃n ∈ E+ and ỹ0 ∈ F+ be such that

‖x̃n‖ = ‖ỹ0‖ = 1 satisfying

‖x∗n‖ ≈ 〈x∗n, x̃n〉 and ‖y∗0‖ ≈ 〈y∗0, ỹ0〉.

It follows that

‖φn‖ = sup{φn
(∑

i

|xi| ⊗ |yi|
)

:
∑
i

‖xi‖‖yi‖ ≤ 1} ≥ φn(x̃n ⊗ ỹ0) ≈ ‖x∗n‖‖y∗0‖,

which shows that ‖x∗n‖ → 0. Thus, E has DPSP. The proof for F follows by

symmetry.

�

Recall that given Banach lattices E,F the conjugation mapping defines a positive

isometry from Lr(E,F ) into Lr(F ∗, E∗). From the previous Theorems 2 and 3, it

follows that Lr(E,F ) has wot-PSP provided that Lr(F ∗, E∗) has w∗ot-PSP.

Let us show now an application of Theorem 3. Recently, it has been shown in

[3] that the 2-concavification of a Banach lattice can be identified with its diagonal

in the |π|-tensor square. Recall that given a Banach lattice E (or more generally a

vector lattice), and p > 0 we can introduce the operations x ⊕ y = (xp + yp)
1
p and

λ � x = λ
1
px for x, y ∈ E, λ ∈ R (see [10, Section 1.d]). The set E endowed with

the operators ⊕,� becomes a vector lattice denoted E(p). Following the notation of

[3], given a Banach lattice E, and p > 0 the space E[p] denotes the completion of
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the normed lattice E(p)/ ker ‖ · ‖(p), where

‖x‖(p) = inf
{ n∑

i=1

‖vi‖p : |x| ≤
( n∑
i=1

vpi

)1/p

, vi ∈ E+

}
.

If p > 1 and E is p-convex, then ‖ · ‖(p) is a norm in E(p) and E[p] = E(p) which

coincides with the p-concavification process given in [10, Section 1.d]. While if

0 < p < 1, then E[p] = E( 1
p

) is the 1
p
-convexification of E.

Corollary 1. If a Banach lattice E has DPSP, then E[2] also has DPSP.

Proof. Since E has DPSP, by Theorem 3 it follows that E ⊗|π| E also has DPSP.

Now, by [3, Theorem 11], there is a positive quotient from E ⊗|π| E to E[2]. Thus,

E[2] also has DPSP. �

Iterating this result, we get that if E has DPSP, then E[n] also has DPSP for every

n ∈ N\{0}: Indeed, by [12], E[n] is a positive quotient of E ⊗|π| E ⊗|π| · · · ⊗|π| E,

and the result follows from Theorem 3.

Let us focus now on understanding under which conditions Lr(E,F ) has DPSP.

Definition 3. A couple of Banach lattices (E,F ) satisfy condition (∗) if for every

positive operator T : E → F with ‖T‖ ≤ 1, and every ε > 0, there is u ∈ (E∗ ⊗|π|
F )+, ‖u‖E∗⊗|π|F ≤ 1 and S ∈ Lr(E,F ) with ‖S‖ ≤ ε such that

T ≤ u+ S.

Note that condition (∗) is equivalent to the following density property in Lr(E,F ):

B(E∗⊗|π|F )+

Lr(E,F )
= BL+(E,F ).

Example 1. It is easy to see that the couple (L1(Ω, µ), L∞(Ω′, ν)) satisfy con-

dition (∗) for any measure spaces (Ω, µ), (Ω′, ν). In fact, every positive operator

T : L1(Ω, µ)→ L∞(Ω′, ν) with ‖T‖ ≤ 1 satisfies

T (f) ≤
∫

Ω

fdµ11Ω′ =

∫
Ω

dµ⊗ 11Ω′
(
f
)

for every positive f .

Theorem 4. Let E, F be Banach lattices. Consider the following statements.

(1) Lr(E,F ) has DPSP.

(2) E∗ and F have DPSP.

In general, we have that (1) ⇒ (2). If (E,F ) satisfy condition (∗), then we also

have (2)⇒ (1).

Proof. (1) ⇒ (2): Let us see first that E∗ has DPSP. Let (x∗∗n ) ⊂ E∗∗+ be a weak-∗
null sequence, i.e. 〈x∗∗n , x∗〉 → 0 for every x∗ ∈ E∗. Pick an arbitrary y∗0 ∈ F ∗ with

‖y∗0‖ = 1, and let us define φ
y∗0
n ∈ (Lr(E,F ))∗+ by

φy
∗
0
n (T ) = 〈x∗∗n , T ∗y∗0〉.
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Observe that for a fixed T ∈ Lr(E,F ), we have that φ
y∗0
n (T ) → 0, so by the DPSP

of the space Lr(E,F ) it follows that ‖φy
∗
0
n ‖ → 0.

Now, for each n ∈ N, let us consider x̃∗n ∈ E∗+ with ‖x̃∗n‖ ≤ 1 such that

〈x∗∗n , x̃∗n〉 ≈ ‖x∗∗n ‖,

and take also y0 ∈ F+ with ‖y0‖ ≤ 1 such that 〈y∗0, y0〉 = 1. This allows us to define

the operators Tn : E → F given by

Tn(x) = 〈x̃∗n, x〉y0.

Notice that ‖Tn‖ ≤ 1, and that T ∗n(y∗0) = x̃∗n
Hence, we have that

‖φy∗0n ‖ = sup{〈x∗∗n , T ∗y∗0〉 : T ∈ Lr(E,F ), ‖T‖ ≤ 1}

≥ 〈x∗∗n , T ∗ny∗0〉 = 〈x∗∗n , x̃∗n〉 ≈ ‖x∗∗n ‖,

which shows that ‖x∗∗n ‖ → 0. Thus E∗ has DPSP.

Let us now show that F has DPSP. To this end, let (y∗n) ⊂ F ∗+ be a weak-∗ null

sequence, i.e. 〈y∗n, y〉 → 0 for every y ∈ F . Pick an arbitrary x0 ∈ E with ‖x0‖ = 1,

and let us define ψx0
n ∈ (Lr(E,F ))∗+ by

ψx0
n (T ) = 〈Tx0, y

∗
n〉.

Observe that for a fixed T ∈ Lr(E,F ), we have that ψx0
n (T )→ 0, and since Lr(E,F )

has DPSP, it follows that ‖ψx0
n ‖ → 0.

Now, for each n ∈ N, let us consider ỹn ∈ E+ with ‖ỹn‖ ≤ 1 such that

〈y∗n, ỹn〉 ≈ ‖y∗n‖,

and take also x∗0 ∈ E∗+ with ‖x∗0‖ ≤ 1 such that 〈x∗0, x0〉 ≈ 1. This allows us to define

the operators Tn : E → F given by

Tn(x) = 〈x∗0, x〉ỹn.

Hence, we have that

‖ψx0
n ‖ = sup{〈Tx0, y

∗
n〉 : T ∈ Lr(E,F ), ‖T‖ ≤ 1}

≥ 〈Tnx0, y
∗
n〉 = 〈x∗0, x0〉〈y∗n, ỹn〉 ≈ ‖y∗n‖,

which shows that ‖y∗n‖ → 0. Thus F has DPSP.

(2) ⇒ (1): Suppose now that E∗ and F have DPSP. Let us consider a positive

operator

R : Lr(E,F )→ c0 .

For each x∗ ∈ E∗ and each y ∈ F , consider x∗ ⊗ y ∈ Lr(E,F ) given by

x∗ ⊗ y(x) = 〈x∗, x〉y.
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Let us denote

R(x∗ ⊗ y) =
(
an(x∗, y)

)
.

This allows us to define a sequence of positive operators Tn : E∗ → F ∗ by means of

the identity

〈Tnx∗, y〉 = an(x∗, y).

Now, for every x∗ ∈ E∗ and every y ∈ F , since R takes values in c0 we have that

〈Tnx∗, y〉 = an(x∗, y)→ 0.

Moreover, since E∗ and F have DPSP, by Theorem 3, it follows that Lr(E∗, F ∗)
has w∗ot-PSP. Therefore, we have that ‖Tn‖ → 0. Now, if (E,F ) satisfy condition

(∗), then for every positive operator T : E → F with ‖T‖ ≤ 1 and every ε there is

u ∈ E∗ ⊗|π| F , ‖u‖E∗⊗|π|F ≤ 1, and S ∈ Lr(E,F ) with ‖S‖ ≤ ε such that

T ≤ |u|+ S.

Therefore, for every ε > 0 we have

0 ≤ R(T ) ≤ R(|u|) +R(S) ≤ (‖Tn‖+ ‖R‖ε).

This implies that for every ε > 0 we have

R(BLr(E,F )) ⊂ [0, (‖Tn‖)] + εBc0 .

Since the order interval [0, (‖Tn‖)] is compact in c0, it follows that R is a compact

operator. Thus, Lr(E,F ) has DPSP.

�

As a consequence, taking Example 1 into consideration, we get that Lr(L1(µ), L∞(ν))

has DPSP. Notice that in this case, Lr(L1(µ), L∞(ν)) is an AM -space (see [13]).

Theorem 4 was partially motivated by the following question: If E has DPSP,

must E∗∗ have also DPSP? Note that for the class of AM-spaces this has affirmative

answer. Recall also that there are examples of spaces with PSP (or even Schur

property) whose bidual fails to have PSP:

Example 2. It is easy to check that the space E =
(
⊕
n∈N

`n2
)
`1

has the Schur property.

The bidual E∗∗ would have the PSP if and only if every positive weakly compact

operator on E∗ is M -weakly compact (cf. [16]). However, the space E∗ =
(
⊕
n∈N

`n2
)
`∞

contains a positively complemented copy of `2 [4]. The corresponding projection P :

E∗ → `2 provides a weakly compact operator which cannot be compact (equivalently,

M -weakly compact), hence E∗∗ fails to have PSP.

4. Positive Grothendieck properties in Lr(E,F )

Recall that a Banach lattice E has the positive Grothendieck property (PGP) if

weak-∗ null sequences of positive elements in E∗ are also weakly null. The PGP
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coincides with the Grothendieck property for Banach lattices with the interpolation

property [11, Theorem 5.3.13]. Recall there is a close connection between PSP and

DPSP: a Banach lattice E has DPSP if and only if E∗ has PSP and E has PGP.

In analogy with the above defined properties wot-PSP and w∗ot-PSP for Lr(E,F ∗)
we also have a version of PGP.

Definition 4. Given Banach lattices E and F , we say that Lr(E,F ∗) has w∗ot-

positive Grothendieck property (w∗ot-PGP) if for every sequence of positive operators

(Tn) ⊂ L+(E,F ∗) with Tn → 0 in the w∗ot, we have Tn → 0 weakly.

Recall that we can identify the space (E ⊗|π| F )∗ with Lr(E,F ∗) as follows: for

any φ ∈ (E ⊗|π| F )∗, we consider the operator Tφ : E → F ∗ given by

〈Tφx, y〉 = φ(x⊗ y)

for every x ∈ E, y ∈ F .

Theorem 5. Given Banach lattices E and F , the following are equivalent:

(1) E and F have PGP.

(2) Lr(E,F ∗) has w∗ot-PGP.

(3) E ⊗|π| F has PGP.

Proof. (1) ⇒ (2) For an operator T ∈ Lr(E,F ∗) let us consider Φ(T ) ∈ C(BE∗∗+
×

BF ∗∗+
) given by

Φ(T )(x∗∗, y∗∗) = 〈T ∗∗x∗∗, y∗∗〉

for each x∗∗ ∈ BE∗∗+
and y∗∗ ∈ BF ∗∗+

. It is clear that Φ defines a positive linear

mapping between Lr(E,F ∗) and C(BE∗∗+
×BF ∗∗+

) with

‖Φ(T )‖C(BE∗∗×BF∗∗ ) = ‖T ∗∗‖ = ‖T‖.

Now, if (Tn) ⊂ L+(E,F ∗) is a sequence converging to 0 in the w∗ot, this means

that for every x ∈ E and y ∈ F we have that

〈Tnx, y〉 → 0.

In particular, for a fixed x ∈ E+ we have that Tnx
w∗→ 0 in F ∗, which by the PGP of

F implies that

〈Tnx, y∗∗〉 → 0

for every y∗∗ ∈ F ∗∗. Therefore, for a fixed y∗∗ ∈ F ∗∗+ , we have that T ∗ny
∗∗ w∗→ 0 in E∗,

and since E has PGP this yields that

〈T ∗∗n x∗∗, y∗∗〉 = 〈x∗∗, T ∗ny∗∗〉 → 0

for every x∗∗ ∈ BE∗∗+
and y∗∗ ∈ BF ∗∗+

.

Hence (Φ(Tn)) converges to 0 weakly in C(BE∗∗+
× BF ∗∗+

), thus so does (Tn) in

Lr(E,F ∗). Therefore, Lr(E,F ∗) has w∗ot-PGP.
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(2)⇒ (3) Suppose that Lr(E,F ∗) has w∗ot-PGP, and let us use the identification

(E ⊗|π| F )∗ = Lr(E,F ∗) used before: for any φ ∈ (E ⊗|π| F )∗, we consider the

operator Tφ : E → F ∗ given by

〈Tφx, y〉 = φ(x⊗ y)

for every x ∈ E, y ∈ F .

Now, for any weak-∗ null sequence (φn)n ⊂ (E ⊗|π| F )∗+ we have a sequence of

operators (Tφn)n in L+(E,F ∗) tending to 0 in the w∗ot. Therefore, if Lr(E,F ∗) has

w∗ot-PGP, it follows that Tφn → 0 weakly, and so does the corresponding sequence

(φn)n. This proves that E ⊗|π| F has PGP.

(3)⇒ (1) Let (x∗n) ⊂ E∗+ with xn → 0 in the weak-∗ topology. For a fixed y∗0 ∈ F ∗+,

we can consider the sequence ϕn ∈ (E ⊗|π| F )∗ given by

〈ϕn, x⊗ y〉 = 〈x∗n, x〉〈y∗0, y〉.

It is clear that (ϕn) is a positive weak-∗ null sequence in (E ⊗|π| F )∗, and by hy-

pothesis we have that ϕn → 0 weakly. Since E∗∗ ⊗|π| F ∗∗ can be identified with a

subspace of (E ⊗|π| F )∗∗, in particular we have that for every x∗∗ ∈ E∗∗ and some

y∗∗0 with 〈y∗∗0 , y∗0〉 6= 0 that ϕn(x∗∗ ⊗ y∗∗0 ) → 0. This yields that 〈x∗n, x∗∗〉 → 0 for

every x∗∗ ∈ E∗∗. Thus, E has PSP. By symmetry the same holds for F . �
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