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Abstract. The notion of positively norming set, a specific definition

of norming type sets for Banach lattices, is analyzed. We show that

the size of positively norming sets (in terms of compactness and order

boundedness) is directly related to the existence of lattice copies of L1-

spaces. As an application, we provide a version of Kadec-Pelczynski’s

dichotomy for order continuous Banach function spaces. A general de-

scription of positively norming sets using vector measure integration is

also given.

1. Introduction

Norming sets in Banach spaces have shown to be useful tools for studying

several geometric and topological properties and have produced an impor-

tant number of results in the literature ([24, 25, 26]). Recall that a subset

B of the dual E∗ of a Banach space E is said to be norming (or weak*-

norming) if infx∈SE supx∗∈B |〈x, x∗〉| > 0, where SE is the unit sphere of E.

In this paper we are interested in a specific definition of norming type set

for Banach lattices, and in particular for Banach function spaces.

Definition 1.1. Given a Banach function space X(µ) a set N ⊂ B+
X′ will

be called positively α-norming (for 0 < α ≤ 1) if

inf
‖f‖X=1

sup
g∈N

∫
|f |gdµ = α.
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We will say that N is positively norming if it is positively α-norming for

some α ∈ (0, 1].

Our motivation in this work stems mainly from two facts. On the one

hand, there are several recent results relating the weak* closure of norming

sets with embedding isomorphic copies of `1 ([5, 15]). In this direction, in

this paper we will show that in fact the `1-structure of a Banach lattice

is closely related to the compactness of its positively norming sets (see

Theorem 3.2).

On the other hand, the notion of positively norming set has shown to

be useful in recent applications of the representation of order continuous

Banach lattices as spaces of integrable functions with respect to vector mea-

sures. This tool provides a characterization of those subspaces of Banach

function spaces that are strongly embedded in L1-spaces (see [3]). Actually,

this technique has shown that in the setting of spaces of integrable func-

tions the notion of positively norming set seems to be more natural and

useful than that of norming set. Thus, the aim of this paper is to study

positively norming sets in Banach function spaces and give some applica-

tions to the lattice structure of the spaces —mainly its `1-structure— using

vector measure representations.

The paper is organized in five sections. After the introductory Sections

1 and 2, Section 3 is devoted to present our main results regarding char-

acterizations by means of positively norming sets of geometric and topo-

logical properties of Banach function spaces. In Section 4, a version of

Kadec-Pelczynski’s disjointification method in terms of the measure of non-

compactness of positively norming sets is given. Finally, in Section 5 we

show how integration with respect to vector measures can be used to obtain

concrete representations of positively norming sets for order continuous Ba-

nach lattices. These results are related to the recent developments on the

spaces of integrable functions with respect to a vector measure given in

[3, 11].

Acknowledgements. The authors would like to thank the anonymous ref-

eree for his/her remarks and improvements to this paper.
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2. Basic facts concerning positively norming sets

Let us start by recalling some fundamental results on norming sets for

Banach spaces. A particular case of norming sets are the so called James

boundaries, or simply boundaries, that are defined by the following prop-

erty: for every x ∈ E, there is x∗ ∈ B such that ‖x‖ = 〈x, x∗〉. These

sets have shown to be useful for describing the weak topology of the space.

Rainwater’s Theorem and Simons further developments (see [25, 26]) estab-

lish that a bounded sequence (xn)∞n=1 in E converges weakly to x if and

only if (〈xn, x∗〉)∞n=1 converges to x for every x∗ ∈ B. The general version of

this result is due to Pfitzner, and states that a bounded set of E is weakly

compact if and only if it is compact for the topology σ(B,E) ([24]).

In our approach, the measure of non-compactness of a positively norming

set has turned out a useful tool for our purposes. The measure of non-

compactness (for operators) on Banach lattices have been widely used to

quantify the relation between the compactness properties and the order

properties of operators on Banach lattices (see [9], [27]).

Let us recall now some definitions concerning Banach lattices and Banach

function spaces. If F is a Banach lattice, we write F+ for its positive cone

as usual. Let (Ω,Σ, µ) be a σ-finite measure space. A Banach function

space X(µ) over µ (X for short) is a Banach ideal of classes of µ-a.e. equal

locally integrable functions endowed with a lattice norm that contains all

characteristic functions of sets of finite measure. If f, g ∈ X(µ) we write

f ∨ g for the pointwise supremum of both functions. A Banach function

space is said to be order continuous if for each decreasing sequence of positive

functions (fn)∞n=1, fn ↓ 0 implies limn ‖fn‖ = 0. If X(µ) is order continuous,

its dual space X∗ can be represented as the function space X ′(µ), that

is called the Köthe dual of X(µ) —i.e. the elements of the dual can be

represented as integrals—, and the converse is also true. A weak unit is a

function f > 0 of X(µ). Throughout the paper, BX will denote the unit

ball of X, and we will write BX′+
for the set BX′ ∩ (X ′)+. For a general

Banach lattice, we will use also the symbol BX∗+
for the set BX∗ ∩ (X∗)+.

For unexplained terminology on Banach lattices, Banach function spaces

and vector measure integration we refer to [19, 20, 23].
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For a Banach space E and a vector valued countably additive measure

m : Σ→ E we write 〈m,x′〉 for the measure defined by composing m with

x′ ∈ E∗, and |〈m,x′〉| for its variation. The function ‖m‖ : Σ→ R+ given by

‖m‖(A) := supx′∈BE∗ |〈m,x
′〉|(A) is called the semi-variation of ‖m‖ in A,

and the total variation of ‖m‖ is defined as ‖m‖(Ω). A Rybakov measure

for m is a positive scalar measure arising as |〈m,x′0〉| for some element

x′0 ∈ E∗, which moreover “controls” m, that is |〈m,x′0〉|(A) = 0 if and only

if ‖m‖(A) = 0. It is well known that such a measure always exists (see [10,

Ch.IX,2]).

Recall also, that a Σ-measurable function is said to be weakly integrable

with respect to m if it is integrable with respect to all the scalar measures

|〈m,x′〉|, x′ ∈ E∗. Besides, if for each A ∈ Σ there is an element
∫
A
fdm in E

such that 〈
∫
A
fdm, x′〉 =

∫
A
fd〈m,x′〉 for all x′ ∈ X∗, then we say that f is

integrable with respect to m. When classes of ‖m‖-a.e. equal functions are

considered as elements of a linear space, the Banach function spaces L1
w(m)

—weakly integrable functions— and L1(m) —integrable functions— arise.

These are Banach function spaces over any Rybakov measure |〈m,x′0〉| with

the a.e. order and the norm ‖f‖ := supx′∈BE∗
∫
|f |d|〈m,x′〉|. For 1 < p <∞

the spaces Lp(m) and Lpw(m) are defined as in the scalar measure case as

the p-convexifications of the spaces L1(m) and L1
w(m), respectively (see [23,

Chapter 3]).

Recall that an important class of norming sets are w*-thick sets (intro-

duced by Fonf in [13]) as those that cannot be written as increasing count-

able unions of non-norming sets (see [1, 11]). This class has been recently

applied in the context of the vector valued integration of measurable func-

tions in [1] and [11]. In the first one, a characterization of weak*-thick sets

by means of integrability properties of a certain class of functions defined

by the set is given (see [1]). This result has its roots in classical facts about

vector measures involving total sets (see [13, Theorem 1], and [10, p.16,

p.54]). In the second one, it is shown that the set of weakly integrable func-

tions with respect to a vector measure m coincides with the corresponding

set of weakly integrable functions when only the elements of a weak*-thick

set are considered for defining the set of scalar measures associated to m

([11, Theorem 2.2]).
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Let us briefly introduce now the relation between vector measures and

positively norming sets. Recall that an order continuous Banach lattice

with weak unit can always be represented isometrically as an L1(m) space

of a Banach space valued vector measure m : Σ → E (see [23, Chapter 3,

Proposition 3.9] and the references therein). For instance, if E is a Banach

function space, the vector measure m that provides the isometry between E

and L1(m) is given by A m(A) := χA ∈ E, A ∈ Σ. These results suggest

that in order to study norming type sets for a Banach lattice it is enough to

consider norming sets for spaces L1(m). The advantage of this approach is

that these sets have a canonical description as follows. Let µ be a Rybakov

measure for a vector measure m. The set of “Radon-Nikodym derivatives”

R(m) = {h ∈ (L1(m))′ : h =
d|〈m,x∗〉|

dµ
, x∗ ∈ BE∗}

is positively 1-norming for L1(m) and has some special properties. For

example, in the case mentioned above (m(A) := χA), a direct computation

shows that the set R(m) is simply the positive cone of the dual space E ′.

We will show in Section 5 that in fact, all positively norming sets of an

order continuous Banach lattice with a weak unit can be written essentially

as such a set R(m) up to convex hulls. In fact, the definition of positively

norming set appears originally in this setting with the aim of characterizing

subspaces of p-convex order continuous Banach function spaces that are

strongly embedded in an L1-space: it is known (see Theorem 3.2 in [3]) that

the norm of every such subspace S of Lp(m) can be computed (equivalently)

by means of ‖f‖ν =
∫
R(m)
〈|f |, h〉 dν(h), where ν is a regular Borel measure

on a subset R(m) for m defined as above.

Let us start now with some basic facts regarding positively norming sets.

Consider S, the subset of BL∞(µ) given by all the functions as S := {χA −
χAc : A ∈ Σ}, where Ac denotes the complement Ω \ A of A ∈ Σ. The

symbol M ·H denotes the pointwise product of the sets of functions M and

H. The proof of the following result is straightforward.

Lemma 2.1. Let X(µ) be an order continuous Banach function space. For

a subset N ⊆ B+
X∗, the following statements are equivalent:

(1) N is positively norming.
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(2) S ·N is norming.

(3) The w∗-closed convex hull of S ·N contains a ball.

The next lemma provides the first instance of the relation between Banach

lattice properties of positively norming sets and those of the corresponding

space.

Lemma 2.2. Let X(µ) be a Banach function space over a finite measure µ.

X(µ) is order continuous if and only if every positively norming set N for

X(µ) is uniformly integrable (or equivalently, it is relatively weakly compact

as a subset of L1(µ)).

Proof. Since µ is finite, we have the inclusion

i : L∞(µ) ↪→ X(µ).

If X(µ) is order continuous, the interval [−χΩ, χΩ] ⊆ X(µ) is weakly com-

pact ([20, Theorem 2.4.2]) and so the inclusion i is weakly compact. By the

order continuity of X(µ) we have X(µ)∗ = X(µ)′, and so by duality

i∗ : X(µ)′ ↪→ L1(µ)

is also weakly compact. Since N ⊆ BX(µ)′ for each positively norming set,

we have the direct implication.

For the converse, notice that the positively norming set BX′+
is included

in L1(µ), and so all the elements of X(µ)∗ can be identified with integrable

functions, i.e., the Köthe dual coincides with the topological dual. This

implies order continuity of X(µ) (see [19, p.29]). �

3. Geometry of Banach lattices and positively norming sets

In this section we analyze the relation between Banach lattice geome-

try and compactness properties of positively norming sets. In particular,

we study the connection between L1-subspaces and compact subsets of a

positively norming set, order properties, disjointness and equi-integrability.

3.1. Norm compactness and AL-spaces. The size of norming sets for

Banach spaces has shown to be directly related to the L1-structure of their

subspaces. The reader can find in the references [5, 14, 15, 16] a deep
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analysis regarding the existence of isomorphic copies of `1 in Banach spaces

with small norming sets. In the case of positively norming sets, this relation

is even more direct. It is clear that for L1(µ) over a σ-finite measure space

(Ω,Σ, µ) we can consider the positively norming set {χΩ} ⊂ L∞(µ), since

‖f‖L1(µ) =
∫
|f |χΩdµ, f ∈ L1(µ).

Therefore, in this case we can take a positively norming set consisting

of a single element. Notice that a norming set on an infinite dimensional

Banach space must always be an infinite set, so there might be a big contrast

between the size of positively norming sets and norming sets on a Banach

lattice. Our next result provides a characterization of AL-spaces in terms of

compactness properties of positively norming sets. Let us introduce some

helpful notation before.

Definition 3.1. Given a Banach function space X(µ), for each positively

norming set N ⊂ BX′+
we define the measure of non-compactness of N in

X ′ as

κ(N,X ′) = inf{ε > 0 : ∃x′1, . . . , x′k ∈ X ′, with N ⊂
k⋃
j=1

B(x′k, ε)},

where B(x′, ε) is the ball of center x′ and radius ε in X ′.

It is clear from the definition that a positively norming set N is relatively

compact in X ′(µ) if and only if κ(N,X ′) = 0.

Theorem 3.2. Let X(µ) be an order continuous Banach lattice over a finite

measure µ. The following statements are equivalent:

(1) The norm of X(µ) is equivalent to the norm of L1(µ).

(2) There exists g ∈ BX′+
such that {g} is positively norming.

(3) There exists a norm-compact positively norming set in BX′+
.

(4) There exist α ∈ (0, 1] and a positively α-norming set N ⊂ BX′+
with

κ(N,X ′) < α.

(5) There exists an order bounded positively norming set in BX′+
.

Proof. (1) ⇒ (2) As was mentioned above, we can take g = χΩ. It is clear

that ∫
Ω

|f |dµ = ‖f‖L1 ≥ α‖f‖X
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for some α ∈ (0, 1]. Since X(µ) ⊂ L1(µ) —recall that all the functions in X

are locally integrable and µ is finite—, the converse inequality always holds.

(2)⇒ (3) and (3)⇒ (4) are trivial.

(4)⇒ (5) Let N ⊂ BX′+
be a positively α-norming set with κ(N,X ′) < α,

which means that there exist δ ∈ (0, α) and x′1, . . . , x
′
k ∈ BX′ such that

N ⊂
k⋃
j=1

B(x′j, δ).

Now, for every f ∈ X and ε > 0 there is g ∈ N such that

(1− ε)α‖f‖X ≤
∫
|f |gdµ.

Let us pick x′j such that ‖g − x′j‖X′ < δ. It follows that

(1− ε)α‖f‖X ≤
∫
|f |gdµ ≤

∫
|f ||g − x′j|dµ+

∫
|f ||x′j|dµ

≤ δ‖f‖X +
∫
|f |
∨k
j=1 |x′j|dµ.

Hence, for every f ∈ X

((1− ε)α− δ)‖f‖X ≤
∫
|f |

k∨
j=1

|x′j|dµ.

Taking ε small enough, this means that ‖
∨
j |x′j|‖−1

∨
j |x′j| is positively

norming and order bounded.

(5) ⇒ (1) Let N ⊂ BX′+
be an order bounded positively norming set for

X. Let α ∈ (0, 1] such that

α‖f‖X ≤ sup
g∈N

∫
|f |gdµ

Since N is order bounded, there is h ∈ X ′ such that |g| ≤ h for every

g ∈ N . Moreover, since L∞(µ) ⊂ X(µ) ⊂ L1(µ), we have that the inclusion

L∞(µ) ⊂ X ′(µ) has dense image. In particular, we can take h0 ∈ L∞(µ)

such that

‖h− h0‖X′ ≤
α

2
.

Now, we have

α‖f‖X ≤ sup
g∈N

∫
|f |gdµ ≤

∫
|f |h ≤

∫
|f ||h− h0|dµ+

∫
|f ||h0|dµ.
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We can therefore conclude that

α

2‖h0‖L∞
‖f‖X ≤ ‖f‖L1 .

Since there is a constant k > 0 such that the inequality ‖f‖L1 ≤ k‖f‖X
holds for every f ∈ X, this proves (1). �

3.2. Disjoint elements in positively norming sets. Notice that in the

particular case when X = c0 we can consider a positively norming set for

X, N = {e∗n : n ∈ N}, given by the unit vector basis of c∗0 = `1, since for

every x = (xn) ∈ c0:

‖x‖c0 = sup
n
|xn| = sup

n
〈|x|, e∗n〉.

Therefore, in this case we can take a positively norming set which consists

of disjoint terms. More generally we have:

Theorem 3.3. Let X(µ) be an order continuous Banach function space.

The following are equivalent:

(1) There is a positively norming set N = {gγ : γ ∈ Γ} which consists

of disjoint elements.

(2) X(µ) is lattice isomorphic to a c0 (disjoint) sum of L1-spaces:(
⊕γ∈Γ L

1(µγ)
)
c0

(where the spaces L1(µγ) might be finite dimensional, i.e. `1
n.)

Proof. Let us see first that (1) ⇒ (2). Recall that an order continuous

Banach function space is order complete. Let N = {gγ : γ ∈ Γ} be a

positively norming set for X with gγ ∧ gβ = 0 for any gγ 6= gβ in N . For

each γ ∈ Γ let Ωγ = {ω ∈ Ω : gγ(ω) 6= 0}, which are disjoint sets in Ω;

otherwise, we would find a non trivial element f in X not supported in

the union of the sets Ωγ. Notice that since N is positively norming for X,

Ω =
⋃
γ∈Γ Ωγ. Let us denote

Xγ = {f ∈ X : f = fχΩγ}.



10 E. A. SÁNCHEZ PÉREZ AND P. TRADACETE

For each γ ∈ Γ, we can endow Xγ with the norm

‖f‖γ =

∫
|f |gγdµ

which makes this space isomorphic to a space of the form L1(µγ) for some

scalar measure µγ. Now, given any f ∈ X we can consider Pγ(f) = fχΩγ ∈
Xγ and since N is positively norming we have

‖f‖X ≈ sup
γ∈Γ

∫
|f |gγdµ = sup

γ∈Γ

∫ ∨
β∈Γ

Pβ(|f |)gγdµ = sup
γ∈Γ
‖Pγ(f)‖L1(µγ).

This shows that X is isomorphic to
(
⊕γ∈Γ L

1(µγ)
)
c0

as claimed.

To see that (2)⇒ (1), let

T : X(µ)→
(
⊕γ∈Γ L

1(µγ)
)
c0

be a lattice isomorphism. Without loss of generality we can suppose that

‖T−1‖ ≥ 1. Let us denote the support of each µγ by Ωγ, and let us consider

N = {T ∗(χΩγ ) : γ ∈ Γ} ⊂ BX′+
.

Since Ωγ are disjoint measure spaces, T ∗(χΩγ ) are also disjoint. Let us see

that N is positively α-norming for α = 1/‖T−1‖. Indeed, for every f ∈ X
we have

1

‖T−1‖
‖f‖X ≤ ‖T (f)‖(

⊕γ∈ΓL1(µγ)

)
c0

= sup
γ∈Γ

∫
Ωγ

|T (f)|dµ

= sup
γ∈Γ

∫
T (|f |)χΩγdµ = sup

γ∈Γ

∫
|f |T ∗(χΩγ )dµ.

�

Notice that σ-finiteness of the measure is not essential in the proof above.

Let us finish this section by analyzing the natural `p-version of the previ-

ous theorem. The result above motivates the following definition, that will

be used also in Section 5. Let 1 < p < ∞. Given a sequence of positive

measurable functions N = (fn)∞n=1, we define the p-convex cover cop(N) of

N as the set of all (measurable) functions
∑∞

n=1 anfn (defined pointwise),

where
∑∞

n=1 a
p
n ≤ 1.
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Definition 3.4. Given a Banach function space X(µ), a sequence N =

(x′n)∞n=1 of pairwise disjoint functions in BX′+
is a (p)-convex 1-norming set

for X(µ) if for all f ∈ X,

‖f‖X(µ) = sup
g∈cop′ (N)

∫
|f |gdµ,

where 1
p

+ 1
p′

= 1.

Proposition 3.5. Let 1 < p <∞. Let X(µ) be an order continuous Banach

function space and consider a disjoint sequence N = (x′n)∞n=1 of BX′+
. Then

N is a (p)-convex 1-norming set for X(µ) if and only if the norm ‖ · ‖X(µ)

coincides with the norm |‖f‖|N,p :=
(∑∞

i=1

( ∫
|f |x′idµ

)p)1/p

, f ∈ X(µ).

Proof. Take a (p)-convex 1-norming disjoint sequence {xn}∞n=1 and write Ωn

for the support of each x′n. The following calculation for the norm shows

the “only if” part of the proof.

‖f‖ = sup
g∈cop′ (N)

∫
|f |gdµ = sup

(an)∈B
`p
′

∫
|f |(

∞∑
n=1

anx
′
n)dµ

= sup
(an)∈B

`p
′

∞∑
n=1

an

∫
|f |x′ndµ =

( ∞∑
n=1

(∫
|f |x′ndµ

)p)1/p

for all f ∈ X(µ). The proof of the converse follows the same lines.

�

The disjointness of (p)-convex norming sets allows us to prove the follow-

ing theorem that is the natural generalization of the result for c0 given in

Theorem 3.3.

Theorem 3.6. Given an order continuous Banach function space X(µ) the

following are equivalent:

(1) There is a (p)-convex 1-norming disjoint sequence N = {xn}∞n=1 for

X(µ).

(2) X(µ) is lattice isometric to an `p-sum of L1 spaces as(
⊕∞n=1 L

1(µn)
)
`p
,

where the spaces L1(µn) might be finite dimensional, i.e. `1
k.
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The proof is a consequence of the same kind of arguments that proves

Theorem 3.3. Finally, let us provide a simple application of this result that

characterizes `p-type spaces.

Corollary 3.7. Let 1 < p < ∞. Let X(µ) be a Banach function space.

Assume that there is a (p)-convex 1-norming set for X(µ). Then X(µ) is p-

concave (and, in particular, order continuous). Moreover, X(µ) is p-convex

if and only if X(µ) is isomorphic to Lp(µ).

Proof. By Proposition 3.5, |‖ · ‖|N,p equals the norm of X(µ). Take a finite

set of functions f1, ..., fn ∈ X(µ). Then

(
n∑
j=1

‖fj‖pX)
1
p =

( n∑
j=1

[( ∞∑
i=1

∣∣∣ ∫ |fj|x′idµ∣∣∣p) 1
p
]p) 1

p

=
( ∞∑
i=1

n∑
j=1

∣∣∣ ∫ |fj|x′idµ∣∣∣p) 1
p

≤
( ∞∑
i=1

n∑
j=1

∣∣∣ ∫ |fj|px′idµ∣∣∣[ ∫ x′idµ
] p
p′
) 1
p

≤ K
( ∞∑
i=1

∣∣∣ ∫ [( n∑
j=1

|fj|p)
1
p

]p
x′idµ

∣∣∣) 1
p

= K‖(
n∑
j=1

|fj|p)
1
p‖.

This proves the first statement. The proof of the second part is a direct

application of the Maurey-Rosenthal Theorem (see [7, Cor.5]). �

3.3. Non-reflexive Banach lattices. It is well-known that a Banach lat-

tice is reflexive if and only if it does not contain a subspace isomorphic to

`1 or c0, or equivalently when it does not contain a sublattice isomorphic to

`1 or c0 ([19, Theorem 1.c.5], [21]).

Recall that a set M in a Banach function space X(µ) is called equi-

integrable if

lim
µ(A)→0

sup
f∈M
‖fχA‖X(µ) = 0.

Remark 3.8. If there is an equi-integrable positively norming set N for X,

then X cannot contain a subspace isomorphic to c0. In order to see this, let

N be a positively norming set for X. If X contains a subspace isomorphic
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to c0, then we can find xn ∈ B+
X disjoint such that

‖
∑
n

anxn‖ ≈ sup
n
|an|.

Let yn ∈ N such that ∫
ynxn ≥ C > 0.

If An denotes the support of xn, then ynχAn are disjoint vectors with

ynχAn ≤ yn such that ‖ynχAn‖ ≥ C. Thus, N cannot be equi-integrable.

Remark 3.9. Let us comment that for positive norming sets of the form

R(m) that were considered in [3] (see Section 5) equi-integrability is related

to an important property of the integration operator. Recall that for a

vector measure m : Σ → E the integration operator Im : L1(m) → E is

given by

Im(f) =

∫
fdm.

If X(µ) is identified with L1(m), then the set

R(m) = {d|〈m,x
∗〉|

dµ
: x∗ ∈ BE∗}

is equi-integrable precisely when the adjoint of the integration operator Im

is L-weakly compact [20, 3.6]. This is equivalent to Im being M -weakly

compact [20, Prop. 3.6.11], i.e. every norm bounded disjoint sequence (xn)

in L1(m) must satisfy ‖Im(xn)‖E → 0.

When a Banach lattice X contains a sublattice isomorphic to `1 (which

is always complemented [20, Proposition 2.3.11]), it is easy to see that one

can find a positively norming set whose size is essentially smaller than the

whole BX∗+
. Namely,

cow
∗
(N) ( BX∗+

.

In the case of reflexive function spaces such as Lp(µ) (1 < p <∞), the only

positively norming sets one can easily consider correspond to dense subsets

of B(Lp′ )+ . In this case we cannot hope any strict inclusion as the given

above. Even for c0, for which a positively norming set like N = {e∗n : n ∈ N}
exists (where e∗n denotes the n-th unit vector of the basis of `1 = c∗0), it also
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holds that

cow
∗
(N) = B`1 + .

These examples and the philosophy of the results in [5], [14], [15], [16] might

lead to the thinking that if for some positively norming set N , cow
∗
(N) is

small compared to BX∗+
then X must contain `1. The following example

shows that this is simply not the case:

Example 3.10. Let us consider the Schreier space which consists of se-

quences of scalars (an) ∈ c00 such that

‖(an)‖X = sup{
∑
i∈S

|ai| : S = {n1 < n2 < . . . < nk},with k ≤ n1} <∞.

This expression defines a norm which turns its completion into a Banach

lattice with the order given by the unit vector basis which does not contain

a copy of `1 (cf. [4]). Let us denote this space by X.

It is easy to check that the set

N = {11S : S = {n1 < n2 < . . . < nk}with k = n1}

is positively norming for X (where 11S denotes the element of X∗ given by

〈11S, (an)〉 =
∑

n∈S an).

However, BX∗+
\cow∗(N) is still very big. In particular, it is not a relatively

compact set. In fact, the sequence (11{2n,2n+1})n≥2 belongs to this set and

has no convergent subsequence.

Notice that a similar fact also holds for the space (
⊕

`1
n)c0 .

In order to clarify the embedding of `1 sublattices in our context, let us

introduce first some notation. Given g ∈ BX′+(µ) and ε > 0, let us define

the sets

Xg,ε = {f ∈ X+(µ) : ‖f‖X ≤ (1 + ε)〈g, f〉}.

It is easy to check that the sets Xg,ε are closed and convex in X(µ).

Moreover, a set N ⊂ BX′+(µ) is positively 1-norming for X(µ) if and only if

X+(µ) =
⋂
ε>0

⋃
g∈N

Xg,ε.

In particular, if a positively norming set N contains only an element g, we

have X+ = ∩ε>0Xg,ε. This is essentially the case we have in Theorem 3.11
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(1) below. We will also define the lattice dimension of a set A ⊂ X(µ) as

follows:

dimL(A) = sup{n ∈ N : ∃x1, . . . , xn ∈ A, |xi| ∧ |xj| = 0}.

Theorem 3.11. Let X(µ) be an order continuous Banach function space

over a probability measure µ. It holds that:

(1) X(µ) contains a sublattice isomorphic to `1 if and only if for every

ε > 0 there is g ∈ BX′+
such that dimL(Xg,ε) =∞.

(2) X(µ) has trivial type if and only if for every ε > 0 it holds that

supg∈BX′+
dimL(Xg,ε) =∞.

Proof. (1) Suppose first that X(µ) contains a sublattice isomorphic to `1.

By a classical result of James ([17], see also [22]), for every ε we can find

a further sublattice (1 + ε)-isomorphic to `1. Let us denote this sublattice

by U = [un], where (un)∞n=1 denotes the sequence of positive normalized

disjoint elements that correspond to the image of the unit vector basis of `1

under the above mentioned isomorphism. By [20, Proposition 2.3.11], there

is a positive projection P : X(µ) → U ' `1. It is not hard to see from the

proof that we can take this projection with ‖P‖ ≤ 1 + ε.

Let us consider now e = (1, 1, . . .) ∈ `∞ = (`1)∗, and let g = P ∗(e)/‖P‖ ∈
BX′+

. It clearly holds that

〈g,
∣∣ ∞∑
n=1

anun
∣∣〉 = 〈g,

∞∑
n=1

|an|un〉 =
1

‖P‖
〈P ∗(e),

∞∑
n=1

|an|un〉

=
1

‖P‖
〈e, P

( ∞∑
n=1

|an|un
)
〉 =

1

‖P‖

∞∑
n=1

|an| ≥
1

1 + ε

∥∥∥ ∞∑
n=1

anun

∥∥∥.
Therefore, (un)∞n=1 ⊂ Xg,ε which implies that dimL(Xg,ε) =∞.

Conversely, suppose that for every ε > 0 there is g ∈ BX′+
such that

dimL(Xg,ε) = ∞. Let ε = 1, then there is g1 ∈ BX′+
such that for every

n ∈ N we can find positive disjoint elements xn1 , . . . , x
n
n with

‖xni ‖ = 1, 〈g1, x
n
i 〉 ≥

1

2

for i = 1, . . . , n. Applying Kadec-Pelczynski’s dichotomy ([18], see also

Section 4) to the double sequence (xni )1≤i≤n, n∈N we either have:
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(a) there is an almost disjoint subsequence (xnkik )∞k=1; or,

(b) there are positive constants k1, k2 such that k1‖xni ‖L1(µ) ≤ ‖xni ‖X(µ) ≤
k2‖xni ‖L1(µ).

Case (a) yields that for any sequence of scalars (ak)
∞
k=1 we have

∞∑
k=1

|ak| ≥
∥∥∥ ∞∑
k=1

akx
nk
ik

∥∥∥ ≈ ∥∥∥ ∞∑
k=1

|ak|xnkik
∥∥∥ ≥ 〈g1,

∞∑
k=1

|ak|xnkik 〉

=
∞∑
k=1

|ak|〈g1, x
nk
ik
〉 ≥ 1

2

∞∑
k=1

|ak|

Now, if case (b) holds, let us see that (xni )1≤i≤n, n∈N cannot be equi-integrable

in L1(µ). In fact, if Ank denotes the support of (xni ), then since µ is a

probability measure, for every n ∈ N, there is in such that µ(Anin) ≤ 1
n
.

Moreover, for every n ∈ N we have

sup
1≤j≤k, k∈N

∫
Anin

|xkj |dµ ≥
∫
Anin

|xnin|dµ = ‖xnin‖L1(µ) ≥
1

k2

.

Hence,

lim
n→∞

sup
1≤j≤k, k∈N

∫
Anin

|xkj |dµ ≥
1

k2

although µ(Anin)→ 0 as n→∞. This shows as claimed that (xni )1≤i≤n, n∈N

is not equi-integrable and by [2, Theorem 5.2.9], there is a subsequence

(xnkik )k∈N equivalent to the unit vector basis of `1 in the norm of L1(µ) (with

constant as close to one as desired). Therefore, we have

∞∑
k=1

|ak| ≈
∥∥∥ ∞∑
k=1

akx
nk
ik

∥∥∥
L1(µ)

≤
∥∥∥ ∞∑
k=1

akx
nk
ik

∥∥∥
X(µ)
≤

∞∑
k=1

|ak|.

(2) For the second statement, if X(µ) has trivial type, then for every

ε > 0 and every n ∈ N there exist x1, . . . , xn disjoint in X(µ) such that

1

1 + ε

n∑
i=1

|ai| ≤
∥∥∥ n∑
i=1

aixi

∥∥∥ ≤ n∑
i=1

|ai|,

(cf. [19, Theorem 1.f.12]). Let U = span{|x1|, . . . , |xn|}. It is clear that U

is a sublattice of X, and we can consider biorthogonal normalized positive
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elements y∗1, . . . , y
∗
n ∈ U∗ satisfying

max
j=1,...,n

|bj| ≤
∥∥∥ n∑
j=1

bjy
∗
j

∥∥∥ ≤ (1 + ε) max
j=1,...,n

|bj|.

Let y∗ = 1
1+ε

∑n
j=1 y

∗
j . By [20, Proposition 1.5.7] y∗ extends to a positive

functional g ∈ BX′+
, and we have

〈g, |xi|〉 =
1

1 + ε
‖xi‖

which shows that {|x1|, . . . , |xn|} ⊂ Xg,ε. Therefore, dimL(Xg,ε) ≥ n, and

since for every n ∈ N there is such a g, the result follows.

Conversely, if for every ε > 0

sup
g∈BX′+

dimL(Xg,ε) =∞,

this means that for every ε > 0 and n ∈ N there is g ∈ BX′+
, and x1, . . . , xn

positive disjoint satisfying

‖xi‖ = 1 〈g, xi〉 ≥
1

1 + ε
.

Therefore, it follows that

n∑
i=1

|ai| ≥
∥∥∥ n∑
i=1

aixi

∥∥∥ ≥ 〈g, n∑
i=1

|ai|xi〉 =
n∑
i=1

|ai|〈g, xi〉 ≥
1

1 + ε

n∑
i=1

|ai|.

This shows that X(µ) contains `1
n uniformly, so it has trivial type [19, 1.f.12].

�

It is clear that the spaces given in Example 3.10 have trivial type but

do not contain sublattices isomorphic to `1. Therefore, these spaces satisfy

condition (2), but not condition (1) in Theorem 3.11.

Positively norming sets also characterize when a sublattice having an

`1-structure is a band, as the following result shows.

Theorem 3.12. An order continuous Banach function space X(µ) contains

a band isomorphic to a space L1(ν) —where ν is absolutely continuous with

respect to µ— if and only if there exists A ∈ Σ with µ(A) > 0 and a

positively norming set N ⊂ BX′+
whose elements restricted to A are order

bounded, i.e. χA ·N is an order bounded set.
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Proof. Let us suppose first that there is a positively norming set N ⊂ BX′+
,

a measurable set A with µ(A) > 0 and h ∈ X ′+(µ) such that for every g ∈ N
we have χAg ≤ χAh. Let Y be the band of X(µ) generated by χA, that is

Y = {fχA : f ∈ X(µ)}.

For every y ∈ Y we have that

α‖y‖X(µ) ≤ sup
g∈N

∫
g|y|dµ = sup

g∈N

∫
A

g|y|dµ

≤
∫
A

h|y|dµ ≤ ‖hχA‖X′(µ)‖y‖X(µ).

Therefore, the band Y is isomorphic to the space L1(ν) (where dν = χAhdµ).

Conversely, if Z ⊂ X(µ) is a band isomorphic to L1(ν), then Z is of the

form

Z = {fχA : f ∈ X(µ)},

for some measurable set A with µ(A) > 0. Moreover, the orthogonal band

Z⊥ corresponds to

Z⊥ = {fχΩ\A : f ∈ X(µ)},

and we have positive band projections P : X(µ)→ Z and P⊥ : X(µ)→ Z⊥

corresponding to the multiplication by χA and χΩ\A respectively.

Let f ∗ ∈ Z∗ be the element corresponding to the constant one function of

the space where L1(ν) is defined, i.e. f ∗ = P ∗(χA), which gives a positively

norming set for L1(ν)). Now, if N0 ⊂ BX′+
is any positively norming set for

Z⊥ which is supported outside of A (for instance, (P⊥)∗(B(Z⊥)∗+
) will work),

then

N = {P ∗(f ∗) + g : g ∈ N0}

is positively norming for X(µ) and satisfies the required conditions. �

4. Kadec-Pelczynski’s dichotomy and positively norming sets

In what follows we assume that µ is finite. The motivation of this section

is to find a version of the classical Kadec-Pelzcynski dichotomy for sub-

spaces of order continuous Banach lattices in terms of positively norming

sets. Recall that a simpler version of this dichotomy states that a bounded
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sequence (xn) in an order continuous Banach lattice X either has a subse-

quence equivalent to a disjoint sequence in X, or there is a constant C > 0

satisfying

‖xn‖L1 ≤ ‖xn‖X ≤ C‖xn‖L1

for every n ∈ N (see [12] and [18]).

Let us introduce first the notion of positively norming set for a subspace

of a Banach lattice.

Definition 4.1. Let X(µ) be an order continuous Banach lattice with weak

unit. Given a (closed) subspace Y ⊂ X(µ), we say that N ⊂ B+
X′(µ) is

positively α-norming for Y if

inf
f∈Y,‖f‖X=1

sup
g∈N

∫
|f |gdµ = α.

The proof of next result follows the lines of Theorem 3.2.

Lemma 4.2. Let Y be a subspace of X(µ). If there exists some α ∈ (0, 1]

and a positively α-norming set for Y , N ⊂ BX′+
, such that κ(N,X ′) < α,

then Y is strongly embedded in L1(µ) (i.e ‖f‖X ≈ ‖f‖L1 for f ∈ Y ).

Proof. Let N ⊂ BX′+
be positively α-norming for Y with κ(N,X ′) < α.

Thus, there exist δ ∈ (0, α) and x′1, . . . , x
′
k ∈ BX′ such that

N ⊂
k⋃
j=1

B(x′j, δ).

Since we have a continuous inclusion X(µ) ⊂ L1(µ), it follows that the

adjoint inclusion L∞(µ) ⊂ X ′(µ) has dense image. Therefore, we can take

yδ ∈ L∞(µ) such that

‖ max
j=1,...,k

|x′j| − yδ‖X′ ≤
α− δ

2
.

Now, since N is positively α-norming, for every f ∈ Y and any ε > 0

there is g ∈ N such that

α‖f‖X ≤
∫
|f |gdµ+ ε.
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Let us pick x′j such that ‖g − x′j‖ < δ. It follows that

α‖f‖X ≤
∫
|f |gdµ+ ε ≤

∫
|f ||g − x′j|dµ+

∫
|f ||x′j|dµ+ ε

≤ δ‖f‖X +

∫
|f | max

j=1,...,k
|x′j|dµ+ ε

≤ δ‖f‖X +

∫
|f |( max

j=1,...,k
|x′j| − yδ)dµ+

∫
|f |yδdµ+ ε

≤ (δ +
α− δ

2
)‖f‖X + ‖f‖L1‖yδ‖L∞ + ε

and since this holds for every ε > 0, we have that

α− δ
2

1

‖yδ‖L∞
‖f‖X ≤ ‖f‖L1 ,

for every f ∈ Y . Since the converse inequality ‖f‖L1 ≤ k‖f‖X always

holds for some constant k > 0, it follows that Y is strongly embedded in

L1(µ). �

Recall that a sequence (yn)∞n=1 of a Banach lattice X is called almost

disjoint if there is another sequence (hn)∞n=1 in X with |hn| ∧ |hm| = 0, for

n 6= m, such that ‖yn − hn‖X → 0.

Lemma 4.3. Let Y be a subspace of X(µ). If for every α ∈ (0, 1] and

every positively α-norming set N for Y , it holds that κ(N,X ′) ≥ α, then Y

contains an almost disjoint normalized sequence.

Proof. The hypothesis implies in particular that for every α ∈ (0, 1], the set

{χΩ} is not positively α-norming for Y . This means that for every α ∈ (0, 1]

there is y ∈ Y such that

‖y‖X = 1 and

∫
Ω

|y|dµ < α.

Observe that such an element y satisfies that

µ({t ∈ Ω : |y(t)| ≥
√
α}) <

√
α.

Actually, otherwise we would have that

α >

∫
Ω

|y|dµ ≥
∫
{t:|y(t)|≥

√
α}
|y(t)|dµ(t) ≥

√
αµ({t ∈ Ω : |y(t)| ≥

√
α}) ≥ α
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which is a contradiction.

Therefore for every ε ∈ (0, 1) we can find yε ∈ Y such that ‖yε‖X = 1

and

µ({t ∈ Ω : |yε(t)| ≥ ε}) < ε.

From this fact, in combination with the order continuity of the space X(µ)

it is not hard to find a sequence of normalized elements yn in Y and a

disjoint sequence hn in X(µ) such that ‖yn − hn‖X → 0 (see for instance

[12, Th.4.1] for details). �

The last two lemmas together provide the following version of Kadec-

Pelczynski’s dichotomy for a subspace of an order continuous Banach lattice

in terms of the measure of non-compactness of its positively norming sets.

Theorem 4.4. Let X(µ) be an order continuous Banach lattice with weak

unit, and Y ⊂ X(µ) be a closed subspace. Then we have that

(1) either there exist α ∈ (0, 1] and a positively α-norming set N ⊂ BX′

for Y with κ(N,X ′) < α: in this case Y is a strongly embedded

subspace of L1(µ), i.e ‖f‖X ≈ ‖f‖L1 for f ∈ Y ;

(2) or for every α ∈ (0, 1] and every positively α-norming set N ⊂ BX′

for Y it holds that κ(N,X ′) ≥ α: in this case Y contains an almost

disjoint sequence.

5. Representation of positively norming sets and vector

measures

Let X(µ) be an order continuous Banach function space over a finite

measure µ. Hence, X(µ) is representable as L1(m) for some measure m, i.e.

the identity map is an order isometry between X(µ) and L1(m) (see [23,

Chapter 3]). As we mentioned in Section 2, in [3], the authors considered

the set

R(m) := {d|〈m,x
∗〉|

dµ
: x∗ ∈ BE∗},

where m is an E-valued vector measure that represents X in the sense

explained above. This set is positively norming for L1(m) = X(µ) (see the

third example of positively norming set in Section 1 of [3]). Our interest is

to show that this class of sets provides a standard procedure for defining
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positively norming sets. In particular, we will see that every positively

norming set for X(µ) arises essentially in this way, i.e. it can be described

as R(m) for a vector measure m representing order isometrically X(µ) (see

Theorem 5.3). In fact all the representations of order continuous Banach

function spaces X(µ), over a finite measure µ, as L1(m) for some vector

measure m can be considered essentially as representations for some `∞(N)-

valued vector measure defined by a norming set N .

An easy example of the type of sets we are considering is the following.

If 1 < p < ∞ and µ is as above, the vector measure m : Σ → Lp(µ),

m(A) := χA, A ∈ Σ, defines the space L1(m) = Lp(µ). The set

R(m) = {g ∈ Lp′(µ) : g =
d|〈m,h〉|

dµ
= |h|, h ∈ BLp′ (µ)}

equals the intersection of the positive cone of Lp
′

and BLp′ (µ) and so it is

positively norming.

Lemma 5.1. Let N be a bounded set of positive functions in L1(µ), and let

us consider the mapping mN : Σ→ `∞(N) given by mN(A) = (
∫
A
gdµ)g∈N .

The following statements hold.

(1) If N is a relatively weakly compact subset of L1(µ), then mN is a

σ-additive vector measure.

(2) If N is so that mN is σ-additive and the space L1(mN) of integrable

functions with respect to the vector measure mN associated to a set

N is included in L1(µ), then N is relatively weakly compact in L1(µ).

Proof. Since N is a relatively weakly compact set in L1(µ), then by [2, The-

orem 5.2.9] it is uniformly integrable. Therefore, if we consider a sequence

(Ai)
∞
i=1 of disjoint measurable sets in Σ, we have

lim
n→∞

mN(
∞⋃
i=n

Ai) = lim
n→∞

sup
g∈N

∫
∪∞n Ai

gdµ = 0.

This is equivalent to mN(
⋃∞
i=1Ai) =

∑∞
i=1 mN(Ai) for every sequence

(Ai)
∞
i=1 of disjoint sets, so mN is a σ-additive vector measure.

Conversely, if mN is σ-additive we can define the space L1(mN) of inte-

grable functions with respect to mN , that is order continuous. The set N ,
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that can be written as N = {d|〈mN ,eg〉|
dµ

= g |g ∈ N} (where eg is the element

of `1(N) corresponding to the coordinate given by g) is norming for L1(mN).

Recall that by assumption L1(mN) is a Banach function space over µ. Then

by Lemma 2.2, we have that N is weakly compact in L1(µ). �

Notice that the requirement of (2) in the result above is satisfied if there

is a function f ∈ N such that f, 1/f ∈ L∞(µ), (for instance if χΩ ∈ N). In

this case there are 0 < δ1, δ2 such that δ1 < f(w) < δ2, w ∈ Ω, and then a

direct computation shows that L1(mN) ↪→ L1(µ).

Proposition 5.2. Let m : Σ → E be a σ-additive vector measure, let µ

be a Rybakov measure for m and consider the positively norming set N for

L1(m) given by N := {d|〈m,x′〉|/dµ : x′ ∈ BE∗}. Take the vector measure

mN : Σ → `∞(N) defined as in Lemma 5.1. Then L1(mN) = L1(m) and

L1
w(mN) = L1

w(m).

Proof. First by Lemma 2.2 and Lemma 5.1(1), mN is σ-additive and so

L1(mN) is an order continuous Banach function space with a weak unit.

Since µ is a Rybakov measure for m, χΩ ∈ N , i.e. L1(m) and L1(mN)

are included in L1(µ). Also, µ is a Rybakov measure for mN , since µ =

|〈m,x′0〉| for a certain x′0 in the unit sphere of E∗, and so it can be written

as |〈mN , ex′0〉|, where ex′0 is the coordinate functional in `∞(N) defined by the

element d|〈m,x′0〉|/dµ of N . Notice that mN is a positive vector measure,

and so ‖f‖L1(mN ) = ‖
∫
|f |dmN‖`∞(N) for all the integrable functions f (see

[23, Lemma 3.13], [8]). Take a simple function f . Then

‖f‖L1(m) = sup
x′∈BE∗

∫
|f | d|〈m,x

′〉|
dµ

dµ = ‖
∫
|f | dmN‖`∞(N) = ‖f‖L1(mN ).

Since simple functions are dense in both spaces, we obtain L1(mN) = L1(m).

The other equality is given by the fact that the Köthe bidual of L1(m)

coincides with L1
w(m) (see [6, Prop.2.4]) and so L1

w(mN) = (L1(mN))′′ =

(L1(m))′′ = L1
w(m). �

Integration with respect to vector measures defined on `∞-spaces has been

studied recently in [11, Ex.2.13]. The authors analyze several w*-thick sets

for `∞ for the aim of studying when integration with respect to the measures

defined by these sets coincide with the weak integrability with respect to m.
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Using the results in this paper, in what follows we will show how integration

with respect to mN can be related to the scalar integrals with respect to m,

when the positively norming set N is given by R(m) and it is countable.

We need to introduce some notation. Ifm : Σ→ E is a countably additive

vector measure and Λ ⊆ E∗ is a norming set, following [11] we write L1
Λ(m)

for the set of all measurable functions such that f ∈ L1(〈m,x∗〉) for every

x∗ ∈ Λ, and L1,s
Λ for the space of all the measurable functions for which

there is a vector integral satisfying the barycentric equality 〈
∫
fdm, x′〉 =∫

fd〈m,x′〉 for all the elements of Λ. By the arguments in Example 2.13

and Theorem 2.10 in [11], we obtain for the corresponding spaces of classes

of ‖m‖-equal functions the following equalities

L1
w(mN) = L1

`1(mN) = L1,s
`1 (mN) = L1,s

{e∗i :i∈N}(mN).

This means that in order to check if a (class of) function(s) belongs to the

space of weakly integrable functions it is enough to check its integrability

with respect to all measures 〈mN , (λi)〉 for (λi) in `1. However, it can be

shown that for some particular vector measures m,

L1(m) ( L1,s
{e∗i :i∈N}(m) ( L1

{e∗i :i∈N}(m),

again as a consequence of Example 2.13 in [11].

Therefore, integrability with respect to `∞-valued vector measures can be

essentially checked by evaluating the scalar measures given by the elements

of `1. In the same direction, let us finish the paper with a geometric de-

scription of the natural positively norming sets associated to this class of

vector measures.

Theorem 5.3. Let X(µ) be an order continuous Banach function space

over the finite measure µ. Suppose that N is a positively norming set in

B+
X′, and let N0 be the set of extreme points of the w∗-closed convex hull of

N . Let us consider the vector measure mN0 : Σ→ `∞(N0) defined as above.

It holds that

R(mN0)
w∗

= {d〈mN0 , y
′〉

dµ
: y′ ∈ B+

`1(N0)}
w∗

= cow
∗
(N).
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Proof. Since X(µ) is order continuous, it follows by Lemma 2.2 that BX(µ) is

a relatively weakly compact set of L1(µ). In particular, N0 is also relatively

weakly compact in L1(µ). It is now easy to check that for g ∈ N0 the Dirac

measures δg ∈ B+
`∞(N0)∗ correspond to the extreme points of the set

{d〈m, y
′〉

dµ
: y′ ∈ B+

`1(N0)} ⊂ B+
`∞(N0)∗ .

Hence, by the Krein-Milman theorem we have

{d〈m, y
′〉

dµ
: y′ ∈ B+

`1(N0)}
w∗

= cow
∗
(N),

where A
w∗

denotes the weak-∗ closure of a set A in (`∞(N0))∗.

Now, we claim that

{d〈m,x〉
dµ

: x ∈ B+
`1(N0)}

w∗

= {d〈m,x〉
dµ

: x ∈ B+
(`∞(N0))∗}

w∗

.

Indeed, the second term equals R(m)
w∗

. Let Im : L1(m) → `∞(N0) be the

integration map associated to the vector measure m. Then

R(m) = I∗m(B+
`∞(N0)∗) = I∗m(B+

`1(N0))
w∗

⊂ I∗m(B+
`1(N0))

w∗

(we use Goldstein’s theorem and the fact that I∗m is (w∗, w∗)-continuous).

This gives us the containment ⊇. The other inclusion is clear. �

Notice that when N is norming we have that cow
∗
(N) is the whole BX∗

and then the result above is uninformative. However, recall that a positively

norming might consist of a single element, and so in this case its weak-∗
closed convex hull is just a singleton.
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p-convex Banach function spaces, Positivity (to appear).

[4] P. Casazza and T. J. Shura, Tsirelson’s space. Lecture Notes in Mathematics, 1363

Springer-Verlag, Berlin, 1989.
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