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Abstract. We study several properties of disjointly homogeneous Banach lattices with
a special focus on two questions: the self-duality of this class and the existence of
disjoint sequences spanning complemented subspaces. Positive results concerning these
problems are provided. Moreover, we give examples of reflexive disjointly homogenous
spaces whose dual spaces are not, answering the first question in the negative.

1. Introduction

This paper is devoted to the study of several properties of disjointly homogeneous

Banach lattices. Recall that a Banach lattice E is disjointly homogeneous if two arbi-

trary sequences of normalized pairwise disjoint elements in E always have equivalent

subsequences.

This class of spaces was first introduced in [10]. More recently, in [9], the general

problem of obtaining compactness of the iterations of a strictly singular operator T on a

Banach lattice E was considered. The motivation behind the study of this problem was

a classical result by V. D. Milman ([21]) which states that strictly singular operators in

Lp(µ), 1 ≤ p ≤ ∞, have compact square. The key property needed for the results in [9]

is that the space E is disjointly homogeneus (see [9, Thm. 2.9]).

Remarkably, Lp(µ) spaces exhibit a particularly strong version of disjoint homogeneity

as every normalized disjoint sequence is equivalent to the unit vector basis of `p. Actually,

this property characterizes Lp spaces (see also Proposition 2.2 and the explanations before

it). Examples of disjointly homogeneous Banach lattices also include Lorentz spaces of

the form Λ(W, p)[0, 1], for which every normalized disjoint sequence has a subsequence

equivalent to the unit vector basis of `p (see [8]). Among other examples of disjointly

homogeneus Banach lattices we can find Tsirelson and related spaces (see [10] and the

last section of this paper). Moreover, a characterization of disjointly homogeneous Orlicz
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spaces Lϕ[0, 1] was given in [9]: there exists some 1 6 p < ∞ such that every function

in the set

E∞ϕ =
⋂
s>0

{ϕ(rt)
ϕ(r)

: r > s
}
⊂ C(0, 1)

is equivalent to the function tp. In particular, Orlicz functions of the form ϕ(t) =

tp logα(1 + t) yield more examples of disjointly homogeneus Orlicz spaces Lϕ[0, 1].

The paper addresses two particular aspects concerning disjointly homogeneous spaces.

Firstly, we consider the question of the self-duality of this property. In other words, is

the dual E∗ disjointly homogeneous if and only if E is? Secondly, we are interested in

the existence of complemented subspaces generated by disjoint sequences.

Regarding the first aspect, some partial results in this direction were given in [10] : If

E is ∞-disjointly homogeneous (i.e., every normalized pairwise disjoint sequence has a

subsequence equivalent to the unit vector basis of c0), then E∗ is 1-disjointly homogenoeus

(i.e., every normalized pairwise disjoint sequence has a subsequence equivalent to the unit

vector basis of `1). However, the converse was shown untrue: the Lorentz space Lp,1(0, 1)

is 1-disjointly homogeneous, while its dual, Lp′,∞, is not disjointly homogeneous.

Therefore, in the pursuit of positive results concerning the self duality of disjointly

homogeneous Banach lattices, we will restrict to the reflexive case. The main obstacle

we recurrently encounter is the bad behaviour of the Hahn-Banach extensions of the

biorthogonal functionals of a given disjoint basic sequence in the space. Actually, we will

present examples of reflexive disjointly homogeneous Orlicz spaces on (0,∞) whose dual

spaces are not disjointly homogeneous, answering the above question in the negative. To

do this, we first need to develop a criterion for an Orlicz space on (0,∞) to be disjointly

homogeneous, in the spirit of [9, Theorem 4.1] for probability spaces (see Theorem 5.1).

Nevertheless, in an attempt to obtain partial positive results we isolate a property P

on the Banach lattice E (see Definition 3.1), which ensures that if E∗ is disjointly homo-

geneous then E must also be. It turns out that property P is very much connected with

the second aspect considered in our study: the existence of disjoint sequences spanning

complemented subspaces. In fact, among disjointly homogenous spaces, property P char-

acterizes those spaces which have a positive disjoint sequence spanning a complemented

subspace.
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Apparently, it is unkown whether an arbitrary Banach lattice always contains a posi-

tive disjoint sequence whose span is complemented. For a wide class of Banach lattices,

such as rearrangement invariant spaces or those with an infinite atomic part, such a

sequence always exists. But, to our knowledge, there is no criterion to decide what

lattices have this property, if not all of them. However, as noticed above, in the class

of disjontly homogenous Banach lattices a criterion can be given using property P (see

Theorem 4.4). In addition to this characterization we show that every disjoint sequence

of a disjointly homogenous non-reflexive Banach lattice E has a subsequence whose span

is complemented in E. Similarly, for 1 < p < ∞, if a Banach lattice E is p-disjointly

homogeneous (that is, every normalized disjoint sequence in E has a subsequence equiv-

alent to the unit basis of `p), then every such subsequence is complemented under the

additional assumption that E is p-convex.

Thus, a natural question arises: when does every disjoint sequence in E have a subse-

quence whose span is complemented? We introduce the class of disjointly complemented

Banach lattices as those which meet that requirement. This class includes, beyond

Lp-spaces, Lorentz spaces Λ(W, p)[0, 1] and some Orlicz spaces. We explore some con-

nections between disjointly homogeneous and disjointly complemented spaces and obtain

some partial results.

The paper is organized as follows. After some preliminaries and discussion on the

basic notions of the paper, in Section 3 we present positive results concerning the stability

under duality for the class of disjointly homogeneous Banach lattices (see Proposition 3.4

and Theorem 3.5.) Section 4 is devoted to the study of disjointly complemented Banach

lattices and results on complemented disjoint sequences. In Section 5 we will present

examples of reflexive p-disjointly homogeneous Banach lattices whose dual spaces are

not disjointly homogeneous. Finally, the last sectionis devoted to other definitions close

to that of disjointly homogeneous, and the connections between them. In particular,

when the p-sum of p-disjointly homogeneous spaces is considered, it becomes clear that

the constant in the definition of a disjointly homogeneous space cannot be overlooked,

and this motivates the notion of uniformly disjointly homogeneous Banach lattice. Some

connections are also established between disjointly homogeneous Banach lattices and the

positive Schur property as well as with spaces having a Rosenthal basis.
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2. Basic definitions and preliminaries

We follow standard terminology concerning Banach spaces and Banach lattices as in

the monographs [17, 18, 20].

For a sequence (xn) in a Banach space, we write [xn] for the closed linear span of the

sequence. Given basic sequences (xn), (yn), and C > 0, the notation (xn)
C∼ (yn) means

that for every scalars (an)∞n=1

C−1
∥∥∥ ∞∑
n=1

anyn

∥∥∥ 6 ∥∥∥ ∞∑
n=1

anxn

∥∥∥ 6 C
∥∥∥ ∞∑
n=1

anyn

∥∥∥.
The notion of disjointly homogeneous Banach lattice has been previously considered

in [9] and [10]. Let us recall its definition.

Definition 2.1. A Banach lattice E is disjointly homogeneous (DH) if for every

pair (xn), (yn) of normalized disjoint sequences in E, there exist C > 0 and a common

subsequence (nk) such that (xnk)
C∼ (ynk).

Notice that in this definition it is equivalent to consider only positive disjoint normal-

ized (or even semi-normalized) sequences.

Our interest here will mainly focus on Banach lattices for which there is 1 ≤ p <

∞ such that every normalized disjoint sequence has a subsequence equivalent to the

unit vector basis of `p (respectively c0). These form an important class of DH spaces,

which will be denoted p-disjointly homogeneous , in short p-DH (resp. ∞-disjointly

homogeneous, ∞-DH).

This class of spaces includes the spaces Lp(µ), Lorentz spaces of the form Lp,q(µ) or

Λ(W, p)(µ), and some Orlicz spaces Lϕ(µ) (see [9] for details).

Observe that in the definition of DH Banach lattice it is important to allow the pos-

sibility of passing to subsequences in order to get the required equivalence. Otherwise,

the class of spaces reduces to the spaces Lp(µ) or c0(Γ), as the following shows.
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Proposition 2.2. Let E be an order continuous Banach lattice for which every pair of

normalized disjoint sequences are equivalent. Then E is order isomorphic to Lp(µ) (for

some 1 6 p <∞) or c0(Γ).

Proof. By [18, Lemma 1.b.13], it is enough to show that every normalized disjoint se-

quence in E is equivalent to the unit vector basis of `p or c0. Indeed, let (xn) be a

normalized disjoint sequence in E. If (yn) is a normalized block sequence of (xn), then

by hypothesis it must be equivalent to (xn). Hence, (xn) is equivalent to all its normal-

ized block sequences, so by Zippin’s theorem [17, Theorem 2.a.9], it follows that (xn) is

equivalent to the unit basis of `p or c0 as desired. �

Recall that every reflexive Banach lattice is order continuous. We will routinely use

the following standard representation technique.

Remark 2.3. Recall that an order continuous Banach lattice E with a weak unit can

be represented as a dense order ideal in L1(µ) for some probability measure µ [18, The-

orem 1.b.14], so we can consider E as a Köthe function space. Suppose that (xn) is a

sequence in an order continuous Banach lattice E. Let u =
∑∞

n=1
xn

2n‖xn‖ , then the closed

ideal Bu generated by u is a projection band in E, (xn) ⊂ Bu, and u is a weak unit in

Bu; hence Bu can be represented as in [18, Theorem 1.b.14]. Thus, every sequence in E

is contained in some Köthe function space. Furthermore, B∗u is a projection band in E∗,

and if E (or E∗) is disjointly homogeneous then so is Bu (resp., B∗u).

We will also use the following standard fact.

Lemma 2.4. Suppose that X is a reflexive Banach space, (xn) and (x∗n) are two basic

sequences in X and X∗, respectively, and T ∈ L(X) is such that Tx =
∑∞

n=1 x
∗
n(x)xn for

every x ∈ X. Then

(i) T ∗x∗ =
∑∞

n=1 x
∗(xn)x∗n for each x∗ ∈ X∗ (in particular, the series converges in

X∗);

(ii) If (yn) and (y∗n) are two basic sequences in X and X∗, respectively, such that

(xn)
C1∼ (yn) and (x∗n)

C2∼ (y∗n) with constants C1, C2 > 0, then Sx :=
∑∞

n=1 y
∗
n(x)yn

converges for every x ∈ X and ‖S‖ 6 C1C2‖T‖.
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Proof. (i) Fix x∗ ∈ X∗. For every m ∈ N and x ∈ X, we have

∣∣∣〈 m∑
n=1

x∗(xn)x∗n, x
〉∣∣∣ =

∣∣∣ m∑
n=1

x∗(xn)x∗n(x)
∣∣∣ =

∣∣∣〈x∗, m∑
n=1

x∗n(x)xn
〉∣∣∣

6 ‖x∗‖
∥∥∥ m∑
n=1

x∗n(x)xn

∥∥∥ 6 K‖x∗‖
∥∥Tx∥∥ 6 K‖x∗‖‖T‖‖x‖,

where K is the basis constant of (xn). It follows that
∥∥∥∑m

n=1 x
∗(xn)x∗n

∥∥∥ 6 K‖x∗‖‖T‖
for each m. Since X is reflexive, (x∗n) is boundedly complete, hence

∑∞
n=1 x

∗(xn)x∗n

converges; denote it Rx∗. For every x ∈ X, we have

〈Rx∗, x〉 =
∞∑
n=1

x∗(xn)x∗n(x) = 〈x∗, Tx〉,

so that R = T ∗.

(ii) It follows from the assumptions and from (i) that the following operators are

bounded on E and E∗, respectively

x 7→
∞∑
n=1

x∗n(x)yn, x∗ 7→
∞∑
n=1

x∗(yn)x∗n, x∗ 7→
∞∑
n=1

x∗(yn)y∗n, and x 7→
∞∑
n=1

y∗n(x)yn.

The norm estimate follows from the same chain. �

3. Stability under duality: positive results

In this section we present positive results concerning the stability under duality of

reflexive DH Banach lattices.

We have mentioned in the introduction that Lp(µ) spaces are the simplest example

of DH Banach lattices since every normalized disjoint sequence is equivalent to the unit

basis of `p. It is clear that for these spaces, the dual is also DH. A similar fact holds

for the Lorentz spaces Λ(W, q) and Lp,q (see [9]), since in these spaces every normalized

disjoint sequence has a subsequence equivalent to the unit basis of `q.

It was proved in [9] that an Orlicz space Lϕ[0, 1] is disjointly homogeneous if and only

if every function in the associated set

E∞ϕ =
⋂
s>0

{ϕ(rt)
ϕ(r)

: r > s
}
⊂ C(0, 1)
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is equivalent to the function tp for some fixed 1 6 p <∞. In this case, it is immediate that

for the conjugate Orlicz function ϕ′, every function in E∞ϕ′ is equivalent to the function

tp
′
, which is tantamount to the space Lϕ[0, 1]∗ = Lϕ′ [0, 1] being disjointly homogeneous.

Therefore, for all the examples given above, we have stability under duality for the

DH property. Let us give now some motivation for the general case. Suppose that E is

a reflexive Banach lattice such that E∗ is DH. Given two disjoint normalized sequences

(xn) and (yn) in E, we would like to find subsequences that are equivalent. One can find

two disjoint normalized sequences (x∗n) and (y∗n) in E∗ such that x∗n(xm) = y∗n(ym) = δnm

for each n,m ∈ N. Since E∗ is DH, after passing to subsequences we may assume that

(x∗n) and (y∗n) are equivalent in E∗. On the other hand, for each m, we can consider

x∗m as a functional on [xn] (formally speaking, we are taking the restriction of x∗m to

[xn]); moreover, since E is reflexive, (x∗m) is a basis of [xn]∗. Then for any coefficients

α1, . . . , αm we have

∥∥ m∑
i=1

αixi
∥∥ = sup

{∣∣∣〈 m∑
i=1

αixi,
m∑
i=1

βix
∗
i

〉∣∣∣ :
∥∥ m∑
i=1

βix
∗
i

∥∥
[xn]∗
6 1
}

= sup
{∣∣∣ m∑

i=1

αiβi

∣∣∣ :
∥∥ m∑
i=1

βix
∗
i

∥∥
[xn]∗
6 1
}
.

In general, clearly
∥∥∑m

i=1 βix
∗
i

∥∥
[xn]∗

6
∥∥∑m

i=1 βix
∗
i

∥∥
E∗

. However, if we could somehow

control the converse estimate, we could continue, using the equivalence of (x∗n) and (y∗n)

in E∗: ∥∥ m∑
i=1

αixi
∥∥ ∼ sup

{∣∣∣ m∑
i=1

αiβi

∣∣∣ :
∥∥ m∑
i=1

βix
∗
i

∥∥
E∗
6 1
}

∼ sup
{∣∣∣ m∑

i=1

αiβi

∣∣∣ :
∥∥ m∑
i=1

βiy
∗
i

∥∥
E∗
6 1
}
∼
∥∥ m∑
i=1

αiyi
∥∥,

which would imply that (xn) and (yn) are equivalent. In particular, such an argument

would work if we could find a bounded operator S : [xn]∗ → E∗ such that Sx∗m = x∗m

for each m and a similar operator for (yn). This observation motivates the following

definition.

Definition 3.1. A Banach lattice E has property P if for every disjoint positive nor-

malized sequence (fn) ⊂ E there exists an operator T : E → [fn], such that some
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subsequence (T ∗f ∗nk) is equivalent to a seminormalized disjoint sequence in E∗ (here (f ∗n)

denote the corresponding biorthogonal functionals in [fn]∗).

Remark 3.2. Given a disjoint sequence (fn) as in the above definition, we can consider

Px =
∑∞

k=1 f
∗
nk

(x)fnk , the canonical projection from [fn] onto [fnk ] (which has ‖P‖ = 1

because (fn) is 1-unconditional). If E has property P, then we can now view

PTx =
∞∑
k=1

f ∗nk(Tx)fnk =
∞∑
k=1

(
T ∗f ∗nk

)
(x)fnk

as a bounded operator on E.

Next, we provide several equivalent characterizations of property P.

Proposition 3.3. Let E be a reflexive Banach lattice. The following are equivalent:

(i) For every disjoint positive normalized sequence (fn) ⊂ E there exists a positive

operator T : E → [fn], with lim infn dist
(
fn, T (BE)

)
< 1.

(ii) For every disjoint positive normalized sequence (fn) ⊂ E there exists a positive

operator T : E → [fn], such that ‖T ∗f ∗n‖9 0.

(iii) E has property P.

Proof. (i)⇒(ii): Indeed, let (fn) be a positive normalized disjoint sequence in E and

suppose (i) holds for some positive operator T . Hence, we can consider a sequence (xk)

in BE, and a subsequence (fnk) such that ‖fnk − Txk‖ 6 α for some α < 1. Now, for

every k ∈ N it follows that

‖T ∗f ∗nk‖ = sup
{
〈T ∗f ∗nk , x〉 : x ∈ BE

}
> 〈f ∗nk , Txk〉

= 〈f ∗nk , fnk〉 − 〈f
∗
nk
, fnk − Txk〉 > 1− ‖f ∗nk‖‖fnk − Txk‖ > 1− α > 0.

Thus, it follows that (ii) holds.

(ii)⇒(iii): Suppose that (fn) is a positive normalized disjoint sequence in E. As in

Remark 2.3 we may assume that E is a Köthe function space. Consider the biorthogonal

functionals (f ∗n) which are a basis of the dual [fn]∗. Let T be as in (ii). Since (f ∗n)

is weakly null and T ∗ : [fn]∗ → E∗ is positive, it follows that the sequence (T ∗f ∗n) is

weakly null and positive. In particular, we have that ‖T ∗f ∗n‖L1 → 0. By hypothesis,

‖T ∗f ∗n‖ 9 0, it follows, by Kadec-Pe lczyński dichotomy [18, Prop. 1.c.8], that some
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subsequence of (T ∗f ∗n) is equivalent to a seminormalized disjoint subsequence. Hence E

has property P.

(iii)⇒(i): Given a sequence of normalized positive disjoint elements (fn) in E, let

Y = [fn]. By hypothesis there is an operator T : E → Y such that (T ∗f ∗nk) is equivalent

to some disjoint seminormalized sequence (h∗k) in E∗. Replacing h∗k with |h∗k| if necessary,

we may assume h∗k > 0. Passing to a subsequence and scaling, we may assume, in

addition, that ‖h∗k‖ = 1.

Combining Remark 3.2 with Lemma 2.4(ii), we conclude that Rx =
∑∞

k=1 h
∗
k(x)fnk

defines a bounded operator on E. For each k ∈ N, pick hk ∈ E+ with ‖hk‖ 6 1,

h∗k(hk) > ‖h∗k‖/2 and h∗k(hj) = 0 for j 6= k. Hence, we have that

lim inf
n

dist(fn, R(BE)) 6 lim
k
‖fnk −Rhk‖ 6 lim

k

(
1− ‖h∗k‖/2

)
< 1.

Thus, R satisfies the required conditions for (i). �

Let us see now a partial positive result for the stability under duality of DH property.

Proposition 3.4. Let E be a reflexive Banach lattice satisfying an upper p-estimate. If

E∗ is q-DH (with 1
p

+ 1
q

= 1), then E is p-DH.

Proof. Let (xn) be a disjoint normalized sequence in E and let us see that it has a

subsequence equivalent to the unit vector basis of `p. To this end, let us choose a

disjoint normalized sequence (x∗n) in E∗ such that x∗n(xm) = δnm for all n,m ∈ N. Since

E∗ is q-DH, we may assume, after passing to a subsequence, that the sequence (x∗n) is

C-equivalent to the unit vector basis of `q. Given any coefficients α1, . . . , αm, since E has

an upper p-estimate, we have
∥∥∑m

n=1 αnxn
∥∥ 6M

(∑m
n=1|αn|p

)1/p
. On the other hand,∥∥∥ m∑

n=1

αnxn

∥∥∥ = sup
{〈 m∑

n=1

αnxn, x
∗〉 : x∗ ∈ BE∗

}
> sup

{〈 m∑
n=1

αnxn,
m∑
n=1

βnx
∗
n

〉
:
∥∥ m∑
n=1

βnx
∗
n

∥∥ 6 1
}

> C sup
{ m∑
n=1

αnβn :
( m∑
n=1

|βn|q
)1/q

6 1
}

= C
( m∑
n=1

|αn|p
)1/p

.

�
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In particular, if a reflexive Banach lattice E is p-DH and satisfies a lower p-estimate,

for some 1 < p <∞, then E∗ is q-DH (with 1
p

+ 1
q

= 1).

We provide next a duality result for Banach lattices with property P which generalizes

in a certain sense the previous result. In particular, this can be applied to Banach lattices

in which every disjoint positive sequence has a subsequence whose span is complemented

by a positive projection (see Section 4). Examples of these include Lp spaces, Lorentz

function spaces Λ(W, p) for p <∞, Tsirelson’s space, etc.

Theorem 3.5. Let E be a reflexive Banach lattice with property P. If E∗ is DH, then

E is DH. Moreover, in the particular case when E∗ is p-DH, for some 1 < p <∞, then

E is q-DH with 1
p

+ 1
q

= 1.

Proof. Let (xn) and (yn) be two disjoint normalized sequences in E. As in Remark 2.3, we

may assume that E is a Köthe function space. Let (x∗n) be the biorthogonal functionals

to (xn) in [xn]∗, that is, x∗n(xm) = δmn. By hypothesis, there exists an operator T :

E → [xn] such that some subsequence (T ∗x∗nk) is equivalent to a seminormalized disjoint

subsequence (g∗k).

Using the Köthe function space representation of E, we can find a normalized disjoint

sequence (h∗k) in E∗ which is biorthogonal to (ynk), that is, h∗m(ynk) = δmk. Since E∗ is

DH, there is a subsequence (kj) such that the sequences (g∗kj) and (h∗kj) are equivalent.

It follows that (T ∗x∗nkj
)
C∼ (h∗kj) for some constant C > 0.
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Given scalars α1, . . . , αm, following the argument at the beginning of the section we

get ∥∥∥ m∑
j=1

αjxnkj

∥∥∥ = sup
{∣∣∣〈 m∑

j=1

αjxnkj ,
m∑
j=1

βjx
∗
nkj

〉∣∣∣ :
∥∥ m∑
j=1

βjx
∗
nkj

∥∥
[xn]∗
6 1
}

= sup
{∣∣∣ m∑

j=1

αjβj

∣∣∣ :
∥∥ m∑
j=1

βjx
∗
nkj

∥∥
[xn]∗
6 1
}

6 sup
{∣∣∣ m∑

j=1

αjβj

∣∣∣ :
∥∥ m∑
j=1

βjT
∗x∗nkj

∥∥
E∗
6 ‖T ∗‖

}
6 C‖T ∗‖ sup

{∣∣∣ m∑
j=1

αjβj

∣∣∣ :
∥∥ m∑
j=1

βjh
∗
kj

∥∥ 6 1
}

= C‖T ∗‖ sup
{∣∣∣〈 m∑

j=1

αjynkj ,
m∑
j=1

βjh
∗
kj

〉∣∣∣ :
∥∥ m∑
j=1

βjh
∗
kj

∥∥ 6 1
}

6 C‖T ∗‖
∥∥∥ m∑
j=1

αjynkj

∥∥∥.
An analogous argument starting now with (ynkj ) and (xnkj ) yields a further subsequence

(nkji ) such that
∥∥∑m

i=1 αiynkji

∥∥ 6 C ′
∥∥∑m

i=1 αixnkji

∥∥ for certain further subsequences and

some constant C ′ > 0 independent on the scalars α1, . . . , αm. Therefore, (xnkji
) and

(ynkji
) are equivalent, which proves that E is DH.

Notice that in the particular case when E∗ is p-DH, then in the above chain of in-

equalities, the disjoint sequence (h∗kj) can be taken to be equivalent to the unit vector

basis of `p, thus we have:

sup
{∣∣∣ m∑

j=1

αjβj

∣∣∣ :
∥∥∥ m∑
j=1

βjh
∗
kj

∥∥∥ 6 1
}
≈
( m∑
j=1

|αj|q
)1/q

.

In this case, the argument above shows that E is q-DH as claimed. �

4. Complemented disjoint sequences

Recall that a sequence (xn) is said to be complemented in E if there is a projection P

on E with RangeP = [xn].

Notice that if P is a positive projection onto the span of a disjoint sequence (xn) ⊂ E,

and (x∗n) denote the biorthogonal functionals, then, in general, the sequence (P ∗x∗n) need

not be disjoint in E∗:
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Example 4.1. Take E = R3 and let

x1 =
[

1
0
0

]
, x2 =

[
0
1
0

]
, and P =

[
1 0 1
0 1 1
0 0 0

]
.

Note that Pe1 = x1, Pe2 = x2, and Pe3 = x1+x2. It follows from (P ∗x∗n)i = 〈P ∗x∗n, ei〉 =

〈x∗n, P ei〉 that

P ∗x∗1 =
[

1
0
1

]
and P ∗x∗2 =

[
0
1
1

]
,

so that P ∗x∗1 and P ∗x∗2 are not disjoint.

Nevertheless, if a disjoint positive sequence spans a complemented subspace, then we

will see that one can always find a positive projection whose adjoint sends the biorthog-

onal functionals to a disjoint sequence.

Proposition 4.2. Let E be a reflexive Banach lattice, (fn) a positive disjoint sequence,

and R ∈ L(E) a projection onto [fn]. Then there exists a positive disjoint sequence (g∗n)

in E∗ with 〈g∗n, fm〉 = δn,m such that the operator Px =
∑∞

n=1 g
∗
n(x)fn defines a positive

projection onto [fn] with ‖P‖ 6 ‖R‖.

Proof. For x ∈ E, we can write Rx =
∑∞

n=1 h
∗
n(x)fn, where h∗n ∈ E∗ satisfy 〈h∗n, fm〉 =

δn,m. Let Pn denote the band projection onto the band generated by fn. We claim that

Qx =
∑∞

n=1 P
∗
nh
∗
n(x)fn defines a bounded operator Q ∈ L(E) with ‖Q‖ 6 ‖R‖.

Indeed, let P d
n denote the projection onto the orthogonal band to fn. Consider the

operators R1 = (P1−P d
1 )R(P1−P d

1 ) and Q1 = (R+R1)/2. Since P1−P d
1 is an isometry,

we have ‖Q1‖ 6 ‖R‖. It follows from Q1 = P1RP1 + P d
1RP

d
1 that

Q1x = P ∗1 h
∗
1(x)f1 +

∞∑
n=2

h∗n(P d
1 x)fn

for every x ∈ E. Proceeding inductively, for n > 1, we consider Rn = (Pn−P d
n)Qn−1(Pn−

P d
n), and Qn = (Qn−1 +Rn)/2 which is given by

Qnx =
n∑
k=1

P ∗kh
∗
k(x)fk +

∑
k>n

h∗k(P
d
n . . . P

d
1 x)fk

and ‖Qn‖ 6 ‖R‖. In particular,∥∥∥ n∑
k=1

P ∗kh
∗
k(x)fk

∥∥∥ 6 ‖Qnx‖ 6 ‖R‖
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for every n and every x ∈ BE. Since (fn) is a disjoint sequence and E is reflexive, it

follows that the series
∑∞

k=1 P
∗
kh
∗
k(x)fk converges and

∥∥∑∞
k=1 P

∗
kh
∗
k(x)fk

∥∥ 6 ‖R‖. This

proves the claim.

Since the sequence (P ∗nh
∗
n) is disjoint, it is 1-equivalent to

(
|P ∗nh∗n|

)
in E∗. It follows

from Lemma 2.4(ii) that Sx =
∑∞

n=1|P ∗nh∗n|(x)fn defines a bounded operator on E with

‖S‖ 6 ‖R‖. Note that for each n we have
〈
|P ∗nh∗n|, fn

〉
>
〈
P ∗nh

∗
n, fn

〉
= 1. Put

g∗n =
1〈

|P ∗nh∗n|, fn
〉 |P ∗nh∗n|.

Then (g∗n) is a positive disjoint sequence in E∗ with 〈g∗n, fm〉 = δmn and 0 6 g∗n 6 |P ∗nh∗n|.
It follows that Px =

∑∞
n=1 g

∗
n(x)fn defines a positive operator with P 6 S; hence

‖P‖ 6 ‖R‖. It is easy to see that P is a projection onto [fn]. �

Corollary 4.3. Given a positive disjoint sequence (en) in a reflexive Banach lattice E,

the following are equivalent:

(i) The subspace [en] is complemented in E.

(ii) There exists a disjoint positive sequence (e∗n) in E∗ with 〈e∗n, em〉 = δmn such

that
∑∞

n=1 e
∗
n(x)en converges for each x ∈ E. In this case, the map P : x 7→∑∞

n=1 e
∗
n(x)en defines a positive projection from E onto [en].

Note also that if the sequence (en) is normalized then for each n we have ‖e∗n‖ >
|e∗n(en)| = 1 and |e∗n(x)| =

∥∥e∗n(x)en
∥∥ 6 ‖Px‖ 6 ‖P‖‖x‖, so that the sequence (e∗n) is

seminormalized.

Question. Does every reflexive Banach lattice contain a complemented positive disjoint

sequence?

This question has a positive answer for most examples of Banach lattices considered in

the literature. For instance, let E be a Banach lattice with a Schauder basis such that the

order is compatible with the basis. It is easy to see that such a basis is 1-unconditional,

and it is clear in this case that E has a positive disjoint complemented sequence.

Another family of spaces satisfying the same property is that of rearrangement in-

variant spaces. Using the averaging projection, it is well known that any sequence of

normalized positive characteristic functions over a family of disjoint sets is complemented

in any rearrangement invariant space (cf. [18, Theorem 2.a.4]).
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On the other hand, it is well known that in a non-atomic order continuous Banach

lattice E, every unconditional basic sequence (un) spanning a complemented subspace is

equivalent to a disjoint sequence (fn) spanning also a complemented subspace provided,

that [un] is lattice anti-euclidean (that is, [un] does not contain uniformly complemented

lattice copies of `n2 for every n, see [3, Theorem 3.4]).

Notice also that according to Corollary 4.3 and Lemma 2.4(i), it follows that a reflexive

Banach lattice E contains a complemented positive disjoint sequence if and only if E∗

does.

Theorem 4.4. Let E be a DH Banach lattice. E has property P if and only if E contains

a complemented positive disjoint sequence.

Proof. Suppose first that E contains a complemented positive disjoint sequence (en).

Now, let (e∗n), and P be as in Corollary 4.3, and let (fn) be a normalized disjoint sequence

in E. Passing to subsequences, we may assume that (fn) is equivalent to (en), so that

Ren = fn defines an isomorphism operator from [en] onto [fn]. Put T = RP . Then

Tx =
∑∞

n=1 e
∗
n(x)fn for every x ∈ E. It follows that T ∗x∗ =

∑∞
n=1 x

∗(fn)e∗n for each

x∗ ∈ [fn]∗. In particular, T ∗f ∗n = e∗n. Therefore, E satisfies property P.

Conversely, suppose E has property P and pick a normalized disjoint sequence (fn)

in E+. By hypothesis, there is an operator T : E → [fn] such that (T ∗f ∗nk) is equivalent

to some disjoint normalized sequence (g∗k). Let (gk) be a disjoint normalized sequence

in E such that g∗k(gm) = δkm. Passing to a further subsequence, if necessary, we may

assume that (gk) is equivalent to (fnk). Using Lemma 2.4(ii), we conclude that the map

x 7→
∑∞

k=1 g
∗
k(x)gk is in L(E). It is easy to see that this is a projection onto [gk]. �

In most instances of DH spaces, like the Lp, Lorentz spaces and some Orlicz spaces it

holds that every disjoint sequence has a complemented subsequence. This motivates the

study of the following class.

Definition 4.5. A Banach lattice E is called disjointly complemented (DC) if every

disjoint sequence (xn) has a subsequence whose span is complemented in E.

We will study next the relation between DC and DH Banach lattices. More precisely,

we are interested in studying whether DH Banach lattices are also DC.
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4.1. Non-reflexive case. Let us consider first the case of non-reflexive Banach lattices.

Recall that if E is non-reflexive, then E either contains a lattice copy of c0 or of `1 (cf.

[20, Theorem 2.4.15]). Therefore, if E is DH and non-reflexive, it follows that it is either

1-DH or ∞-DH.

Proposition 4.6. If E is a separable Banach lattice and ∞-DH then it is DC.

Proof. Let (xn) be a disjoint normalized sequence in E. Since E is ∞-DH, we can find

a subsequence (xnk) which is equivalent to c0. Then [xnk ] is complemented in E by

Sobczyk’s theorem [1, 2.5.9] that in a separable Banach space every subspace isomorphic

to c0 is complemented. �

For the 1-DH case, we will use the following fact [20, Lemma 2.3.11]: If a positive

disjoint sequence in a Banach lattice is equivalent to the unit vector basis of `1 then its

closed span is complemented. It follows easily that if E is 1-DH, then every positive

disjoint sequence has a complemented subsequence. The next proposition shows that

this remains true even for non-positive disjoint sequences.

Proposition 4.7. If E is a 1-DH Banach lattice, then E is DC.

Proof. Suppose that (xn) is a normalized disjoint sequence in E. Passing to a subse-

quence, we may assume that (xn) is equivalent to the unit vector basis (en) of `1.

Suppose that x−nk → 0 for some subsequence (nk). Passing to a subsequence and using

the Principle of Small Perturbations (cf. [1, Theorem 1.3.9]), we may assume that (xn) is

equivalent to (x+
n ) and (xn) is complemented whenever (x+

n ) is complemented. However,

(x+
n ) is complemented by [20, Lemma 2.3.11]. The argument for the case when x+

nk
→ 0

for some subsequence (nk) is similar.

Suppose now that neither (x+
n ) nor (x−n ) has a null subsequence. In particular, there

exists C > 0 such that C−1 6 ‖x±n ‖ 6 C for all n. Passing to subsequences of (xn) twice,

we may assume that both (x+
n ) and (x−n ) are c-equivalent to the unit vector basis (en) of

`1 for some c > 0.

Claim: the sequence (zn) given by

zn =

 x+
k if n = 2k − 1

x−k if n = 2k
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is still equivalent to the unit vector basis of `1. Indeed, consider a linear combination

z :=
∑2m

n=1 λnzn. Then ‖z‖ 6 C
∑2m

n=1|λn|. On the other hand, since (zn) is disjoint, we

have
∥∥∑m

n=1 λ2n−1x
+
n

∥∥ 6 ‖z‖ and
∥∥∑m

n=1 λ2nx
−
n

∥∥ 6 ‖z‖, so that

2m∑
n=1

|λn| =
m∑
n=1

|λ2n−1|+
m∑
n=1

|λ2n| 6 c
(∥∥∥ m∑

n=1

λ2n−1x
+
n

∥∥∥+
∥∥∥ m∑
n=1

λ2nx
−
n

∥∥∥) 6 2c‖z‖.

This proves the claim.

As mentioned above, by [20, Lemma 2.3.11], there exists a projection P on E with

RangeP = [zn]. Since (zn) and (xn) are both equivalent to (en), the map

R
( ∞∑
n=1

anzn
)

=
∞∑
n=1

a2n−1 − a2n

2
xn

defines a bounded operator R : [zn] → [xn]. It is easy to check that RP is a projection

of E onto [xn]. �

Combining the preceding propositions, we get the following.

Corollary 4.8. If E is a separable non-reflexive Banach lattice which is DH, then E is

DC.

Clearly, the separability of E is essential here: `∞ is non-reflexive and DH, however

it is not DC. In fact, every normalized disjoint sequence is equivalent to the unit vector

basis of c0 and by Phillips-Sobczyk’s theorem (cf. [1, Theorem 2.5.5], [17, Theorem

2.a.7]), the space `∞ does not contain any complemented subspace isomorphic to c0.

It turns out that 1-DH Banach lattices have been considered previously under a dif-

ferent approach. Recall that a Banach lattice E has the positive Schur property if every

weakly null sequence (xn) of positive vectors is norm convergent, see [13, 23, 24, 25]. It

follows from, e.g., [20, Corollary 2.3.5] that it suffices to verify this condition for disjoint

sequences.

Proposition 4.9. A Banach lattice E is 1-DH if and only if E has the positive Schur

property .

Proof. Assume that E fails the positive Schur property. Then there exist a positive

disjoint normalized weakly null sequence. Clearly, it has no subsequences equivalent to

the unit vector basis of `1. Thus E is not 1-DH.
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Conversely, assume that E has the positive Schur property. Take a normalized disjoint

positive sequence (xn) in E and apply Rosenthal’s `1 Theorem. Suppose that (xnk) is a

weakly Cauchy subsequence of (xn). Since E has the positive Schur property, it does not

contain c0, hence it is weakly sequentially complete. Therefore, (xnk) converges weakly.

Then (xnk) is weakly null by, e.g., [1, Lemma 1.6.1]. It follows that (xnk) is norm null,

which is a contradiction. This shows that (xn) has no weakly Cauchy subsequences and,

therefore, by Rosenthal’s `1 Theorem, (xn) has a subsequence equivalent to the unit

vector basis of `1. Hence E is 1-DH. �

4.2. Reflexive case. Recall that in Theorem 3.5 it was proved that a reflexive Banach

lattice E with property P is disjointly homogeneous provided so is E∗.

Question. Is every reflexive DH Banach lattice DC?

We have the following partial result in this direction.

Proposition 4.10. Let E be a reflexive Banach lattice containing a complemented pos-

itive disjoint sequence. If E and E∗ are DH, then E is DC.

Proof. Let (xn) be a disjoint normalized sequence in E, and let (x∗n) be a sequence of

biorthogonal functionals to (xn) in E∗, which without loss of generality can be taken as

a disjoint normalized sequence. Consider now (en) and (e∗n) as in Corollary 4.3. Since E

is DH, passing to subsequences we have that (enj) ∼ (xnj).

Now, since E∗ is DH, it follows that for some further subsequence (e∗njk
) ∼ (x∗njk

).

Note that, the map x 7→
∑∞

k=1 e
∗
njk

(x)enjk is still a bounded projection in L(E). By

Lemma 2.4(ii), the map x 7→
∑∞

k=1 x
∗
njk

(x)xnjk is a bounded operator on E. Clearly, this

is a projection onto [xnjk ]. �

Let us recall the p-convexification E(p) and p-concavification E(p) of a Banach lattice

E (see [18, pp. 53,54]). Recall that, given a Banach lattice E and 1 6 p < ∞, we may

define new vector space operations on E via x ⊕ y =
(
x1/p + y1/p

)p
and α � x = αpx

and the norm ‖x‖E(p) = ‖x‖1/p; this results in a Banach lattice denoted E(p) and called

the p-convexification of E (the lattice operations are the same as in E). Conversely, the

p-concavification E(p) of E is defined as E with new vector space operations x ⊕ y =(
xp + yp)1/p and α � x = α1/px and the same lattice operations; E(p) is a vector lattice.
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If E is p-convex with constant M then E(p) becomes a Banach lattice under a certain

norm, which will be denoted by ‖·‖E(p)
, which satisfies 1

Mp‖x‖p 6 ‖x‖E(p)
6 ‖x‖p for

every x ∈ E.

Recall that if x ⊥ y then x ⊕ y = x + y in both E(p) and E(p). It follows that if (xn)

is a disjoint sequence in E then for linear combinations of xn’s in E(p) we have∥∥∥ n⊕
k=1

αk � xk
∥∥∥
E(p)

=
∥∥∥ n∑
k=1

αpkxk

∥∥∥1/p

.

This immediately yields the following proposition.

Proposition 4.11. Let E be a Banach lattice. It holds that:

(i) E is DH if and only if E(p) is DH. Moreover, E is q-DH if and only if E(p) is

pq-DH.

(ii) Suppose that E is p-convex, then E is DH if and only if E(p) is DH. Similarly,

in this case E is q-DH if and only if E(p) is q/p-DH.

The following lemma is based on [5, Lemma 2.6] (see also the paragraph in [5] preceding

Lemma 2.5).

Lemma 4.12. Suppose that 1 < p < ∞ and E is a p-convex order continuous Banach

lattice with a weak unit and (xn) is a disjoint sequence in E equivalent to the unit vector

basis of `p. Then there is a one-to-one lattice homomorphism J : E → Lp(µ) for some

measure µ such that the restriction of J to [xn] is an isomorphism.

Proof. Let E(p) be the p-concavification of E; we write ⊕ and � for the vector operations

in E(p). We claim that in E(p), the sequence (xn) is equivalent to the unit vector basis of

`1. Indeed, suppose that M is the p-convexity constant of E, and (xn) is C-equivalent

to the unit vector basis of `p. For any scalars α1, . . . , αn we have∥∥∥⊕-
n∑
k=1

αk � xk
∥∥∥
E(p)

>
1

Mp

∥∥∥⊕-
n∑
k=1

αk � xk
∥∥∥p =

1

Mp

∥∥∥ n∑
k=1

α
1/p
k xk

∥∥∥p > C

Mp

n∑
k=1

|αk|.

The reverse estimate follows from the triangle inequality, since E(p) is a Banach lattice.

Clearly, the sequence
(
|xn|
)
, viewed as a sequence in E(p) is still equivalent to the

unit vector basis of `1. Define a functional f on the linear span of
(
|xn|

)
in E(p) via

f
(
⊕-
∑n

k=1 αk�|xk|
)

=
∑n

k=1 αk. Clearly, f is continuous, hence it extends to a functional
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in E∗(p). Being an order continuous Banach lattice with a weak unit, E(p) admits a strictly

positive functional g ∈ E∗(p). Let h = |f | ∨ g; then h ∈ E∗(p) is strictly positive and

h
(
|xn|
)
> f

(
|xn|

)
= 1 for every n.

It is easy to see that the map x 7→ h
(
|x|
)

defines a lattice norm on E(p). It follows,

as in [18, p. 53], that the map |||x||| :=
[
h
(
|x|
)]1/p

defines a lattice norm on the p-

convexification of E(p), which, as a vector lattice, coincides with E, so we view |||·||| as a

norm on E. If x ⊥ y in E then

|||x+ y|||p = h
(
|x+ y|

)
= h

(
|x| ⊕ |y|

)
= h

(
|x|
)

+ h
(
|y|
)

= |||x|||p + |||y|||p .

It follows that the completion of
(
E, |||·|||

)
is an ALp-space; hence is lattice isometric to

Lp(µ) for some measure µ. Let J : E → Lp(µ) be the natural embedding. Clearly, J is a

lattice homomorphism. In particular, (Jxn) is a disjoint sequence in Lp(µ). Furthermore,

it follows from ‖Jxn‖ = |||xn||| > 1, that (Jxn) is semi-normalized; hence it is equivalent

to the unit vector basis of `p. Since both (xn) and (Jxn) are equivalent to the unit vector

basis of `p, it follows that J is an isomorphism on [xn]. �

Corollary 4.13. If E is a p-convex order continuous Banach lattice with 1 < p < ∞
and (xn) is a disjoint sequence in E equivalent to the unit vector basis of `p then [xn] is

complemented.

Proof. Without loss of generality, E has a weak unit; otherwise replace E with the (pro-

jection) band generated by (xn). Let J : E → Lp(µ) be as in Lemma 4.12. Then (Jxn) is a

disjoint seminormalized sequence in Lp(µ), hence there is a projection P : Lp(µ)→ [Jxn].

Now the operator J−1PJ is a projection from E to [xn]. �

Corollary 4.14. Let E be a p-DH Banach lattice which is p-convex with 1 < p < ∞.

Then E is DC.

Proof. Since E is p-DH, it is reflexive, hence order continuous. Let (xn) be a disjoint nor-

malized sequence in E. Passing to a subsequence, we may assume that (xn) is equivalent

to the unit vector basis of `p. Now apply Corollary 4.13. �
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5. Reflexive DH spaces with non-DH dual

In this section, we present examples of reflexive DH Banach lattices whose duals are

not DH. The examples are given in the class of Orlicz function spaces on the interval

(0,∞) and the class of weighted Orlicz sequence spaces.

Recall that given an Orlicz function ϕ on [0,∞) (i.e. a continuous convex increasing

function with ϕ(0) = 0 and ϕ(t)→∞ as t→∞), the Orlicz space Lϕ(0,∞) is the space

of measurable functions f : [0,∞)→ R such that∫ ∞
0

ϕ
(∣∣f(t)

∣∣/s)dt <∞,
for some s > 0. This space becomes a Banach lattice with the usual operations and the

norm

‖f‖ = inf
{
s > 0 :

∫ ∞
0

ϕ
(∣∣f(t)

∣∣/s)dt 6 1
}
.

Recall also that an Orlicz function ϕ is said to satisfy the ∆2-condition if there is C > 0

such that ϕ(2t) 6 Cϕ(t) for every t > 0. Note that an Orlicz space Lϕ(0,∞) is separable

if and only if ϕ satisfies the ∆2-condition (cf. [18]).

Now, let us give a useful characterization of p-DH Orlicz function spaces Lϕ(0,∞)

(a similar result in the case of Orlicz function spaces on the [0, 1] interval was given in

[9]). Recall that Cϕ(0,∞) = convEϕ(0,∞) in the space C(0, 1), where Eϕ(0,∞) is the

closure of the set{
F ∈ C(0, 1) : F (·) =

ϕ(s·)
ϕ(s)

, for some s ∈ (0,∞)
}
.

Theorem 1.1 in [19] asserts that if an Orlicz function F is equivalent to a function in

Cϕ(0,∞) then Lϕ(0,∞) contains a lattice copy of `F and, conversely, every normalized

disjoint sequence in Lϕ(0,∞) contains a subsequence equivalent to the unit vector basis

of `F for some F ∈ Cϕ(0,∞). See [19] for more details.

Theorem 5.1. Let Lϕ(0,∞) be a separable Orlicz space. Given 1 6 p < ∞, the space

Lϕ(0,∞) is p-DH if and only if Cϕ(0,∞) ∼= {tp}.

Proof. Let us show first the sufficient part. Let (fn) be a sequence of disjoint normalized

functions in Lϕ(0,∞). Then by Theorem 1.1(i) in [19] there exists a subsequence (fnk)

such that (fnk) is equivalent to the unit vector basis (ek) of an Orlicz sequence space `F
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for some function F ∈ Cϕ(0,∞). Hence, as Cϕ(0,∞) ' {tp} we conclude that Lϕ(0,∞)

is p-DH.

Let us now show now the necessity part. Suppose that there exists a function F ∈
Cϕ(0,∞) which is not equivalent to the function tp on [0, 1]. Then, applying Theorem

1.1.(ii) in [19], we get that there exists a disjoint normalized sequence (fn) in Lϕ(0,∞)

such that (fn) is equivalent to the unit vector basis (en) in `F . If Lϕ(0,∞) is p-DH then

there exists a subsequence (fnk) which is equivalent to the canonical basis of `p. Hence

by the symmetry of the basis of `F , we conclude that `F = `p, so the function F is

equivalent to tp, which is a contradiction. �

Theorem 5.2. Let 1 < p < ∞ and an Orlicz function ϕ(t) agrees with tp on [0, 1] and

ϕ(t) ' tp log(1+t) on [1,∞). Then the Orlicz space Lϕ(0,∞) is a reflexive p-DH Banach

lattice whose dual is not DH.

Proof. First, let us prove that Lϕ(0,∞) is p-DH by showing that Cϕ(0,∞) ' {tp}.
Indeed, by [19, p. 242], every function F ∈ Cϕ(0,∞) can be expressed as a convex

combination of functions F = aF1 + bF2 + cF3, where F1 ∈ Cϕ,1, F2 ∈ C∞ϕ and

F3(t) =

∫ ∞
1

ϕ(st)

ϕ(s)
dµ(s)

for t ∈ [0, 1], where µ is a probability measure in [1,∞) with µ({1}) = 0.

Now, from the hypothesis we clearly have F1 ∼ tp at 0, and also F2 ∼ tp at 0 since

lims→∞
sϕ′(s)
ϕ(s)

= p.

Hence it remains only to show that F3 ∼ tp at 0. Since ϕ is equivalent to a p-convex

function, there exists a constant M > 0 such that

sup
s>0

ϕ(st)

ϕ(s)
6Mtp

for t near 0 (cf. [22]). Thus, F3(t) 6 Mtp near 0. We also have Dϕ(t) 6 F3(t) at 0,

where D =
∫∞

1
dµ(s)
ϕ(s)

<∞. Therefore the function F3 is equivalent to tp at 0. Thus, using

Theorem 5.1, we conclude that Lϕ(0,∞) is p-DH.

Let us prove now that the dual space of Lϕ(0,∞) is not q-DH. First notice that the

dual space is the Orlicz space Lψ(0,∞) where

ψ(t) = tq for t ∈ [0, 1] and ψ(t) ' tq

logq−1(1 + t)
for t ∈ [1,∞)
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(see [15, p. 58]). We claim that the set Cψ(0,∞) contains the family of Orlicz functions

Gα(t) ∼ tq|log t|α for every 0 < α < q − 1.

Let us consider now the family of finite measures µα on [1,∞) defined by

µα([1,∞)) =

∫ ∞
1

ds

s logq−α(1 + s)

for 0 < α < q − 1. Then the functions

Fα(t) =

∫ ∞
1

ψ(st)

ψ(s)
dµα(s),

which belong to Cψ(0,∞) as mentioned above, satisfy

Fα(t) '
∫ 1/t

1

tq logq−1(1 + s)dµα(s) +

∫ ∞
1/t

tq logq−1(1 + s)

logq−1(1 + ts)
dµα(s)

= tq

(∫ 1/t

1

ds

s log1−α(1 + s)︸ ︷︷ ︸
Iα(t)

+

∫ ∞
1/t

ds

s logq−1(1 + ts) log1−α(1 + s)︸ ︷︷ ︸
Jα(t)

)
.

Now, for 0 < α < min{1, q − 1}, we have

Iα(t) =

∫ 1/t

1

ds

s log1−α(1 + s)
∼ |log t|α

for t near 0. Furthermore, as

Jα(t) =

∫ ∞
1/t

ds

s logq−1(1 + ts) log1−α(1 + s)
=

∫ ∞
1

du

u logq−1(1 + u) log1−α(1 + u
t
)
,

we get limt→0 Jα(t) = 0.

Hence, the function Fα is equivalent to tq|log t|α at 0. Thus, the function tq|log t|α

belongs (up to equivalence) to the set Cψ(0,∞) for every 0 < α < min{1, q− 1}, and we

conclude, using Theorem 5.1 that Lψ(0,∞) is not DH. �

We pass now to give examples of atomic reflexive p-DH Banach lattices whose duals

are not DH. These will be given within the class of weighted Orlicz sequence spaces (cf.

[11]).

Recall that given a sequence of positive numbers w = (wn) and an Orlicz function

ϕ, the weighted Orlicz sequence space `ϕ(w) is the space of all sequences (xn) such that∑∞
n=1 ϕ( |xn|

s
)wn < ∞ for some s > 0, endowed with the Luxemburg norm. Notice that

the unit vectors form an unconditional basis of `ϕ(w) when ϕ satisfies the ∆2-condition.



DISJOINTLY HOMOGENEOUS BANACH LATTICES 23

Theorem 5.3. Let w = (wn) be a sequence of positive numbers such that there is a

subsequence (wnk) with wnk → 0 and
∑∞

k=1 wnk = ∞. If ϕ is an Orlicz function as in

the previous theorem then the weighted Orlicz sequence space `ϕ(w) is p-DH but its dual

is not DH.

Proof. It is clear that `ϕ(w) is p-DH Banach lattice since `ϕ(w) is lattice isomorphic to

the sublattice [χAn ] of the space Lϕ(0,∞) for any sequence of disjoint sets (An) with

µ(An) = wn.

Let us show now that the dual of `ϕ(w), which is canonically identified with the

weighted Orlicz sequence space `ψ(w) ([11, Prop. 5]), is not DH. For that we will show

that for every function Fα in the set C∞ψ (0,∞), the Orlicz sequence space `Fα is lattice

isomorphic to a sublattice of `ψ(w) (in particular, for the functions Fα ∼ tq|log t|α at 0).

Indeed, given a function F ∈ Cψ(0,∞), there exist a disjoint normalized function

sequence (fn) in Lψ(0,∞) such that (fn) is equivalent to the canonical basis (ek) of `Fα .

Now there exist disjoint simple functions hn =
∑rn

i=1 ai,nχAi,n such that the sequence (hn)

is equivalent to (fn).

Consider now the family of all characteristic disjoint functions (χAi,n)n=1,...,∞
i=1,...,rn

. It is

clear that the space generated by this family is lattice isomorphic to the weighted Orlicz

sequence space `ψ(w◦) where w◦ is the weight sequence defined by w◦ = (µ(Ai,n)). Now

using the universal property of the sequence space `ϕ(w) (cf. [6, Prop. 3.1]) we conclude

that `ψ(w) has a sublattice which is lattice isomorphic to `ψ(w◦). Hence `ψ(w) also has

a sublattice lattice isomorphic to the space `Fα and thus `ψ(w) is not DH. �

Observe that this same kind of example cannot be constructed for Orlicz spaces over

a probability space (see the begining of Section 3, and [9]). This motivates the following.

Question. Is there a reflexive p-DH rearrangement invariant function space on the in-

terval [0, 1] whose dual is not DH?

A different kind of an example of a p-DH space whose dual is not DH will be presented

in Subsection 6.2 .
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6. Further remarks

6.1. Quasi-DH spaces. Notice that in [10] the definition of DH Banach lattices was

slightly different. So, in order to avoid any confusion of terminology, let us introduce

here the following.

Definition 6.1. A Banach lattice E is quasi disjointly homogeneous (quasi-DH)

if for every pair (xn), (yn) of normalized disjoint sequences in E, there exist subsequences

(xnk) and (ymk), and some constant C > 0 such that (xnk)
C∼ (ymk).

Notice that there is a subtle difference between this notion and that of DH. For quasi-

DH Banach lattices, unlike for the DH case, the subsequences (nk) and (mk) need not

be the same. In particular, every DH Banach lattice is quasi-DH. However, we do not

know if these notions coincide in general.

Our terminology is consistent with that used in [9]. We remark that, however, Defini-

tion 6.1 was given as the definition of a DH space in [10], but the proofs of Theorems 3.2

and 3.6 in [10] only work for DH spaces under the terminology of the current paper.

Notice that for most classical Banach lattices both notions coincide. For instance, this

is the case for stable Banach lattices (in the sense of Krivine-Maurey, [16], see also [2]).

Proposition 6.2. Let E be a stable Banach lattice. Then E is quasi-DH if and only if

it is p-DH for some 1 ≤ p ≤ ∞.

Proof. Let (xn) be a disjoint normalized sequence in E. Since E is stable, so is [xn].

Therefore, by [16] there is some 1 ≤ p ≤ ∞ such that `p is isomorphic to a subspace of

[xn]. In particular, there exists a block sequence (yn) of (xn), which is equivalent to the

unit vector basis of `p. Since (xn) is a disjoint sequence, so is (yn), hence we have that E

contains a disjoint normalized sequence equivalent to the unit vector basis of `p. Since

E is quasi-DH, every disjoint normalized sequence in E has a subsequence equivalent to

a subsequence of (yn). Thus, E is p-DH. �

Although we do not know if DH and quasi-DH Banach lattices form the same class,

several of the results given in the previous sections can be translated to the framework of

quasi-DH spaces. For instance, we can study the duality for quasi-DH Banach lattices,

and in particular, one can wonder if a result like Theorem 3.5 holds for this class. It turns
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out that the proof of Theorem 3.5 is not entirely spoiled for quasi-DH spaces. If we start

with two disjoint normalized sequences (xn) and (yn) in a Banach lattice E, whose dual

is quasi-DH, then the problem arises when we pass to subsequences of the corresponding

disjoint sequences (g∗k) and (h∗k) in E∗, since these may be different subsequences. Then

the computations in the proof of Theorem 3.5 show that (xnk) is dominated (as a basic

sequence) by some subsequence (ymk). Iterating this process, some further subsequence

of (ymk) is also dominated by another subsequence of (xnk). However, this need imply

that they are equivalent.

Notice also that the first part of the proof of Theorem 4.4 also works for quasi-DH

Banach lattices, so in this case, property P follows from the fact that the space contains

a complemented positive disjoint sequence.

In [10], we showed that Tsirelson space provides an example of quasi-DH Banach

lattice which is not p-DH for any 1 ≤ p ≤ ∞. We will show now that the argument can

be improved to show that actually, Tsirelson space is in fact DH.

Example 6.3. Tsirelson space T is a DH Banach lattice which is not p-DH, for any

1 ≤ p ≤ ∞.

Proof. Let us denote (tj) the unit basis of the space T (which is an unconditional basis

for T ). Every normalized disjoint sequence in T has a subsequence equivalent to a block

basis, which, by [4, Prop. II.4], is equivalent to a certain subsequence of the unit basis.

Therefore, it suffices to show that any two subsequences (tkm) and (tjm) have a common

equivalent subsequence. To prove this we need the following Ramsey-type result:

Claim: Given two infinite subsequences (km) and (jm) of N, there is an infinite subse-

quence (mn) such that either

(i) kmn < jmn for every n; or

(ii) kmn > jmn for every n.

To prove this fact, let us suppose we already have m1, . . . ,mn such that kmi < jmi for

every i = 1, . . . , n. Now, suppose there always exists m > mn such that km < jm, then

we let

mn+1 = min{m > mn : km < jm},
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and keep the induction going on, so we get condition (i). If on the contrary, at some

step n, there is no such m, it follows that for every m > mn we have km > jm, and this

provides an infinite set satisfying (ii). Thus, the claim is proved.

For simplicity, let us assume that we have (mn) satisfying (i), i.e. kmn < jmn for every

n. Now, let n1 = 1, so kmn1
< jmn1

. Next, let n2 be large enough so that kmn2
> jmn1

,

and in general, for each i let ni such that kmni > jmni−1
. Thus we get a subsequence

(mni) satisfying

jmni−1
< kmni < jmni .

Using [4, Prop. II.4] once more, we get that (tjmni ) and (tkmni ) are equivalent. Thus, T

is DH.

Since T contains no subspace isomorphic to `p for 1 ≤ p <∞, nor c0, it follows clearly

that T is not p-DH.

�

Notice that a similar argument shows that T ∗ is also DH (see [4, p. 23]. In particular

T is DC by Proposition 4.10 (this also follows from [4, Prop. II.6]).

6.2. Uniformly DH spaces. The constant appearing in the definition of a DH space

(see Def. 2.1) plays a significant role when `p-sums of p-DH spaces are considered. This

is clarified with the following example

Example 6.4. The `p-sum of p-DH spaces need not be p-DH.

Proof. Given n ∈ N, let Xn denote the completion of the space of all eventually zero

sequences c00 with respect to the norm∥∥(ak)
∥∥
Xn

= sup
{ n∑
i=1

|aki|+
(∑
i>n

|aki |p
) 1
p

: k1 < k2 < . . . < ki < . . .
}
.

It is clear that ‖·‖Xn defines a lattice norm, which is actually equivalent to the `p

norm. Indeed, we have∥∥(ak)
∥∥
Xn
>

n∑
k=1

|ak|+
(∑
k>n

|ak|p
) 1
p
>
∥∥(ak)

∥∥
`p
,

while for every increasing sequence (ki) we have
n∑
i=1

|aki |+
(∑
i>n

|aki |p
) 1
p
6 (n

1
q + 1)

( ∞∑
i=1

|aki |p
) 1
p
6 (n

1
q + 1)

∥∥(ak)
∥∥
`p
,
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where 1
p

+ 1
q

= 1. Hence, taking suprema on the left hand side of the previous inequality

we get
∥∥(ak)

∥∥
Xn
6 (n

1
q + 1)

∥∥(ak)
∥∥
`p
. In particular, the space Xn is clearly p-DH.

Let us denote Y :=
(⊕∞

n=1Xn

)
`p

endowed with the `p-sum of the corresponding norms

‖ · ‖Xn . We claim that, Y is not p-DH. Indeed, let (e
(n)
k ) denote the canonical basis of

Xn. For a fixed n ∈ N, the vectors (e
(n)
k ) form a normalized disjoint sequence in Y which

is equivalent to the unit vector basis of `p. Now, let

xk =
∞∑
n=3

1

(n log2 n)1/p
e

(n)
k .

It follows that (xk) is a semi-normalized disjoint sequence in Y . However, given any

subsequence (xki) and m ≥ 1 we have∥∥ m∑
i=1

xki
∥∥
Y
≥ m

( ∞∑
n=m

1

n log2 n

) 1
p ≥ m

log1/p(m+ 1)
,

where we used the fact that for n ≥ m, ‖
∑m

i=1 e
(n)
ki
‖Xn = m. Thus, (xki) is not equivalent

to the unit vector basis of `p. Hence, Y is not p-DH.

�

After the previous example it seems only natural to introduce the following

Definition 6.5. A Banach lattice E is uniformly disjointly homogeneous if there

is a constant C > 0 such that every two disjoint normalized sequences (xn) and (yn) in

E, have subsequences such that (xnk)
C∼ (ynk).

Clearly, every uniformly disjointly homogeneous Banach lattice E is DH. Next, we are

going to investigate whether the converse of this is true. As usual, by a Banach lattice

ordered by basis we mean a Banach lattice with a basis (xn) such that
∑∞

n=1 αnxn > 0 Change notation. We
believe “ordered by” is

better than “with”, (e.g.
Lp[0, 1] is also a Banach
lattice with a basis)

iff αi ≥ 0 for each n. Clearly, in this case, (xn) is disjoint and, therefore, unconditional.

Proposition 6.6. Suppose that E is a Banach lattice ordered by a basis, 1 < p, q < ∞
and 1

p
+ 1

q
= 1. If E is p-DH and E∗ is q-DH then E is uniformly DH.

Proof. The proposition follows easily from [14, Corollary 2(i)]. Observe that E satisfies

the (Sp) condition of [14]. Indeed, suppose that (xn) is a weakly null sequence in E.

It is easy to see that if (xn) is norm null then it trivially has a subsequence which

satisfies an upper `p-estimate. On the other hand, if (xn) is not norm null then by [17,
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Proposition 1.a.12] it has a subsequence equivalent to a disjoint sequence, hence, by

assumption, equivalent to the unit vector basis of `p. It follows that E satisfies (Sp).

Being p-DH for p > 1, E is reflexive, hence E∗ is also a Banach lattice ordered by a

basis. Applying a similar reasoning we conclude that E∗ satisfies (Sq). Since E∗ is q-DH

and q > 1, E∗ does not contain a (lattice) copy of `1, hence the conclusion now follows

from [14, Corollary 2(i)]. �

Note that under the assumptions of Proposition 6.6, it also follows from [14, Corol-

lary 2(i)] that E is (uniformly) DC.

Theorem 6.7. For every 1 < p < ∞, there exists a super-reflexive Banach lattice X

ordered by a basis which is p-DH but not uniformly DH. Moreover, X∗ is not DH.
Back to the original

proof, with some expla-
nations for the definition

of
S
n≥1(xnk )k∈N

Proof. Let us take first 1 < p < 2. By [12], there exists a subspace Y of Lp such that every

weakly null normalized sequence in Y has a subsequence equivalent to the unit vector

basis of `p, but without a uniform bound on the constant of equivalence. Therefore, for

each n ∈ N we can consider a normalized weakly null sequence (xnk)k∈N ⊂ Y such that no

subsequence is n-equivalent to the unit vector basis of `p. After passing to subsequences

and perturbing, we may assume that for every n, k ∈ N there exist pnk < qnk < pnk+1 and

scalars (a
(n,k)
j )j∈[pnk ,q

n
k ] such that

xnk =

qnk∑
j=pnk

a
(n,k)
j hj,

where (hj)j∈N denotes the Haar system (which is an unconditional basis in Lp.) Let now

fix a surjective function f : N→ N with the property that for every n ∈ N the set f−1(n)

is infinite. We construct now a basic sequence (en) inductively as follows: Let k0 = 0

and

e0 = x
f(0)
0 .

For n ∈ N n ≥ 1, let kn be large enough so that q
f(n−1)
kn−1

< p
f(n)
kn

and define

en = x
f(n)
kn

.

By construction (en) is a weakly null unconditional basic sequence (being a block se-

quence of (hn)) which is equivalent to some sequence in Y . Let Xp denote the span of
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(en) in Lp, which becomes a super-reflexive Banach lattice with the order induced by the

basis.

Since Xp is isomorphic to a subspace of Y , it follows that every weakly null, normalized

sequence in Xp has a subsequence equivalent to the unit vector basis of `p. Hence, Xp is

p-DH, but for every n ∈ N the sequence (ek)k∈f−1(n) has no subsequence n-equivalent to

the unit vector basis of `p. Hence, Xp is not uniformly DH.

Let Xp = X. Thus, we have shown that for each 1 < p < 2, there exists a Banach

lattice Xp ordered by a basis, which is p-DH but not uniformly DH. Now let 2 < p <∞.

Let Xp be the (2p/3)-convexification of X3/2. By Proposition 4.11, we get that Xp is

p-DH. As in Proposition 4.11, it is easy to see that a Banach lattice E is uniformly

r-DH iff E(p) is uniformly rp-DH, so that Xp cannot be uniformly DH. It is also easy to

see that the basis of X3/2 becomes a (disjoint) basis of Xp. Now, for p ≥ 2, let Xp be

the (2p/3)-convexification of X3/2. By Proposition 4.11, we get that Xp is p-DH and it

cannot be uniformly DH.

We have now shown that for every 1 < p < ∞, there exists a Banach lattice Xp

ordered by a basis (en) which is p-DH but not uniformly DH. We claim that X∗p is

not DH. Suppose it is. Since Xp is reflexive, (x∗n) is a basis of X∗p . Since Xp is p-DH,

some subsequence (xnk) is equivalent to the unit vector basis of `p. It follows that (x∗nk)

is equivalent to the unit vector basis of `q. Hence, X∗p is q-DH. It now follows from

Proposition 6.6 that Xp is uniformly DH, a contradiction. �

6.3. DH property and Rosenthal bases. In Theorem 5.3 we have constructed ex-

amples of reflexive atomic Banach lattices (with the order induced by a 1-unconditional

basis), which are DH, but whose dual are not. In this section, we study the case of

DH Banach lattices ordered by a subsymmetric basis. Recall that a basis (xn) is called

subsymmetric if it is unconditional and every subsequence (xni) is equivalent to (xn) (cf.

[17, Chapter 3]).

Also, recall that a normalized basis (en) in a Banach space X is said to be a Rosenthal

basis if every normalized block-sequence of (en) contains a subsequence equivalent to

(en). It is an open question whether such a basis is necessarily equivalent to the unit basis

of `p or c0, see [7] for further details and partial results in this direction. In particular,
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it was observed in [7, p. 397] that a Rosenthal basis (xn), always satisfies that every

subsequence (xni) is equivalent to (xn).

Proposition 6.8. Let E be a reflexive Banach lattice ordered by a subsymmetric basis

(en). Then E is DH if and only if (en) is a Rosenthal basis.

Proof. Suppose that E is DH, and let (xk) be a block-sequence of (en). Then there is a

subsequence of (xk) which is equivalent to a subsequence of (en) and, therefore, to (en)

itself because (en) is subsymmetric. Hence, (en) is a Rosenthal basis.

Conversely, suppose that (en) is a Rosenthal basis. Pick any two disjoint seminor-

malized sequences (xk) and (yk). By Bessaga-Pelzcynski’s selection principle, we may

assume that (xk) and (yk) are block-sequences of (en). By the assumption, there exists

a subsequence (xki) which is equivalent to (en). Furthermore, there is a subsequence

(ykij ) which is equivalent to (en). Since (en) is subsymmetric, (xkij ) ∼ (en), so that

(xkij ) ∼ (ykij ). �

Let X be a Banach space with a Rosenthal basis (en). It was proved in [7, Theorem

1, Proposition 7] that (en) is equivalent to the unit basis of `p or c0 if (en) is “uniformly”

Rosenthal or if E∗ also has a Rosenthal basis. In view of Proposition 6.8, we can now

restate these statements in terms of disjoint homogenuity as follows.

Proposition 6.9. Let E be a reflexive Banach lattice ordered by a subsymmetric nor-

malized basis (en). Then (en) is equivalent to the unit basis of `p for some 1 < p <∞ if

any of the following conditions is satisfied:

(i) E is uniformly DH, or

(ii) E and E∗ are both DH.

If in particular, (en) is symmetric, then Proposition 6.9(ii) also follows from [17, The-

orem 3.a.10] due to Altshuler. Indeed, if E is DH and (vn) is a sequence generated by

one vector (which is automatically symmetric), then (vn) and (en) have equivalent sub-

sequences, hence are themselves equivalent. Now, apply the same argument to (e∗n) in

E∗.

We do not know whether every reflexive Banach lattice with a subsymmetric basis

which is DH must be isomorphic to `p for some 1 < p < ∞. In this direction, if we
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consider the symmetric version of Tsirelson space (see [4, Chapter X, B]), which does

not contain `p subspaces, then it is not hard to see that this space fails being DH.

However, we can give the following result.

Corollary 6.10. Let E be a reflexive Banach lattice with property P such that E contains

a disjoint subsymmetric sequence. If E∗ is DH, then E is p-DH for some 1 < p <∞.

Proof. By Theorem 3.5, E is DH. It follows from Theorem 4.4 that E contains a com-

plemented disjoint sequence, say (ei). By assumption, we may assume that (ei) is sub-

symmetric. Let (e∗i ) be as in Corollary 4.3. It is easy to see that, being a sublattice of

E∗, the space [e∗i ] is DH. On the other hand, it is easy to see that [e∗i ] can be identified

with [ei]
∗. Applying Proposition 6.9(ii) to [ei] we conclude that (ei) is equivalent to the

unit vector basis of `p for some p. Therefore, E is p-DH. �

We would like to thank an anonymous referee for correcting a mistake in the initial

version of Example 6.4 and for suggesting Proposition 6.6 and Theorem 6.7 to us.

References

[1] F. Albiac and N.J. Kalton, Topics in Banach space theory. Graduate Texts in Mathematics 233,
Springer, (2006).

[2] S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable Banach spaces. Israel J. Math. 57
(1987), 68–88.

[3] P.G. Casazza and N.J. Kalton, Uniqueness of unconditional bases in Banach spaces. Israel J. Math.
103 (1998), 141–175.

[4] P.G. Casazza and T.J. Shura, Tsirelson’s Space. Lecture notes in Math. 1363, Springer-Verlag
(1989).

[5] D. Chen, W.B. Johnson, and B. Zheng, Commutators on (
∑

`q)p. Studia Math. 206 (2011), no. 2,
175–190.

[6] L. Drewnowski, F-spaces with a basis which is shrinking but not hyper-shrinking. Studia Math. 64
(1979), no. 2, 97–104.

[7] V. Ferenczi, A.M. Pelczar, and C. Rosendal, On a question of Haskell P. Rosenthal concerning a
characterization of c0 and `p. Bull. London Math. Soc. 36 (2004), no. 3, 396–406.

[8] T. Figiel, W.B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional
structure with applications to Lorentz funtion spaces. J. Approximation Theory 13 (1975), 395–412.

[9] J. Flores, F.L. Hernández, E.M. Semenov, and P. Tradacete, Strictly singular and power-compact
operators on Banach lattices. Israel J. Math. 188 (2012), 323–352.

[10] J. Flores, P. Tradacete, and V.G. Troitsky, Disjointly homogeneous Banach latices and compact
product of operators. J. Math. Anal. Appl. 354 (2009), 657–663.

[11] F. Fuentes and F.L. Hernández, On weighted Orlicz sequence spaces and their subspaces. Rocky
Mountain J. Math. 18 (1988), no. 3, 585–599.

[12] W. B. Johnson and E. Odell, Subspaces of Lp which embed into `p. Compositio Math. 28 (1974),
37–49.
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