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Abstract. We study rearrangement invariant spaces on which the classes of strictly singular

and compact operators coincide. The relation between this property and the fact that every

normalized disjoint sequence in the space has a subsequence equivalent to the unit vector basis

of `2 is analyzed.

1. Introduction

A classical result of J. Calkin [6] states that the only non-trivial closed ideal of operators in

Hilbert space is the ideal of compact operators. In particular, as pointed out by T. Kato [16],

on Hilbert spaces the ideals of strictly singular and compact operators coincide. This same

property is also shared by the spaces `p (for 1 6 p < ∞) and c0 (see also [12], [13]). More

recently, this result has been extended to more instances of Banach lattices by means of the

notion of disjointly homogeneous Banach lattice [9].

Our aim in this note is to study Banach spaces satisfying this property. Namely, we will say

that a Banach space has Kato property when every strictly singular endomorphism is necessarily

compact. Our interest here will focus on rearrangement invariant spaces, and in particular, on

Lorentz, Orlicz and Marcinkiewicz spaces.

Let us begin by recalling the terminology employed in [9]. A Banach lattice E is called

disjointly homogeneous if any two sequences (xn), (yn) of pairwise disjoint normalized elements

in E have an equivalent subsequence (xnk
) ∼ (ynk

). Similarly, E will be called 2-disjointly ho-

mogenous when every sequence of pairwise disjoint normalized elements in E has a subsequence

equivalent to the unit vector basis of `2. Several properties of this class of spaces have been

recently studied in [11], [9] and [10].

The importance of disjointly homogeneous spaces arises by the following facts that were given

in [9]:

Theorem 1.1. Let E be a discrete Banach lattice with a disjoint basis that is disjointly homo-

geneous. Then every strictly singular operator T ∈ L(E) is compact.

Theorem 1.2. Let E be a separable 2-disjointly homogeneous Banach lattice with finite cotype.

Then every strictly singular operator T ∈ L(E) is compact.
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Theorem 1.3. Let E be a 2-disjointly homogeneous rearrangement invariant space on [0, 1]

with upper Boyd index qE <∞. Then every strictly singular operator T ∈ L(E) is compact.

Our aim in this note is to study whether converse statements to these theorems hold.

Observe that since `p spaces are not 2-disjointly homogeneous for p 6= 2, but `p has Kato

property, the converse of Theorem 1.2 is in general false. In a similar fashion, let X denote the

space isomorphic to Lp,2 for 1 < p < 2, with the lattice structure given by the unconditional

Haar basis. Clearly, since Lp,2 is 2-disjointly homogeneous, by Theorem 1.2, X has Kato

property, but for every p < q 6 2, X contains a sequence of disjoint vectors spanning a

subspace isomorphic to `q. Therefore, the converse to Theorem 1.1 is also false.

Our interest will hence focus on the converse to Theorem 1.3. Namely, we have the following:

Question 1.4. Let X be an r.i. space on [0, 1] such that every strictly singular operator

T ∈ L(E) is compact. Must X be 2-disjointly homogeneous?

The paper is organized as follows: after some preliminaries on rearrangement invariant spaces,

in Section 3 we study several facts concerning Kato property and 2-disjointly homogeneous

spaces. In Section 4, we show that non-reflexive spaces fail Kato property and provide a

characterization of Lorentz spaces with Kato property. Finally, Section 5 is devoted to the

study of Orlicz spaces with Kato property.

2. Notation and preliminaries

Let us recall here some notions mainly related to rearrangement invariant spaces. The reader

is referred to the monographs [5] and [19] for further considerations.

Let (Ω,Σ, µ) be [0, 1] or R+ (with Lebesgue measure). A rearrangement invariant (r.i.)

function space X over (Ω,Σ, µ) is a Banach lattice of measurable functions on Ω satisfying the

following properties:

(1) If f ∈ X, and g is a measurable function with the same distribution as f , then g ∈ X
and ‖f‖ = ‖g‖.

(2) The Köthe dual X ′ is a norming subset of X∗.

Observe that for an r.i. space X we have the following norm-one inclusions:

L∞(Ω,Σ, µ) ∩ L1(Ω,Σ, µ) ⊂ X ⊂ L∞(Ω,Σ, µ) + L1(Ω,Σ, µ)

where ‖f‖L∞∩L1 = max{‖f‖L1 , ‖f‖L∞}, and ‖f‖L1+L∞ =
∫ 1

0
f ∗(t)dt (here, f ∗ denotes the

decreasing rearrangement of f).

Given an r.i. space X, the function

ϕX(t) = ‖χ[0,t]‖X

for t > 0, is called the fundamental function of X. It is clear that ϕX is an increasing function

in t, satisfying that

ϕX(t)ϕX′(t) = t.
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In particular, ϕ(t)/t is decreasing in t.

Among r.i. spaces, our attention will focus on Orlicz, Lorentz and Marcinkiewicz spaces. Let

us recall their definitions.

Given an Orlicz function M (i.e. a continuous convex increasing function with M(0) = 0 and

limt→∞M(t) =∞), the Orlicz function space LM(0,∞) is the space of all measurable functions

f on (0,∞) such that
∫∞

0
M
(
|f(t)|
r

)
dλ <∞ for some r > 0. The norm is defined by

‖f‖ = inf

{
r > 0 :

∫ ∞
0

M
( |f(t)|

r

)
dλ 6 1

}
.

The space LM [0, 1] is defined similarly with functions on [0, 1].

An Orlicz function M is said to satisfy the ∆2-condition at ∞ (respectively, at 0) when

lim supt→∞M(2t)/M(t) < ∞ (resp. lim supt→0M(2t)/M(t) < ∞). Note that the space

LM [0, 1] is separable if and only if M satisfies the ∆2 condition at ∞. If M denotes the

Young conjugate function, then

(LM [0, 1])′ = LM [0, 1].

Recall that given 1 6 q < ∞ and w a positive, non-increasing function in R+, such that

limt→0w(t) = ∞, limt→∞w(t) = 0,
∫ 1

0
w(t)dt = 1 and

∫∞
0
w(t)dt = ∞, the Lorentz function

space Λq
w(R+) [21] is the space of all measurable functions f on R+ such that

‖f‖Λq
w

=
( ∫ ∞

0

f ∗(t)qw(t)dt
)1/q

<∞.

If the conditions on w are only imposed on the interval [0, 1], and we define the norm by

integrating over [0, 1], then we obtain the Lorentz function space Λq
w[0, 1].

As a particular case, for 1 < p <∞ and 1 6 q 6∞, we can consider the Lorentz space Lp,q

is the space of all measurable functions f in R+ such that

‖f‖p,q =


(∫∞

0
(t1/pf ∗(t))q dt

t

)1/q

<∞ for 1 6 q <∞,

sup
t>0

t1/pf ∗(t) <∞, if q =∞.

Let ϕ : R+ → R+ be an increasing function, with ϕ(t)/t decreasing and such that ϕ(t) = 0

only when t = 0. Given such a function, we can consider the Marcinkiewicz function space

Mϕ(R+) consisting of measurable functions such that

‖f‖Mϕ = sup
t>0

ϕ(t)

t

∫ t

0

f ∗(s)ds <∞.

Similarly, we can consider the Lorentz space Λϕ which consists of those measurable functions

with

‖f‖Λϕ =

∫ ∞
0

f ∗(s)dϕ(s) <∞.
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Note that if limt→0 ϕ(t) = 0 and we take w on R+ positive and decreasing such that ϕ(t) =∫ t
0
w(s)ds, then Λϕ = Λ1

w. Observe also that the fundamental function of these spaces satisfy

ϕΛϕ = ϕMϕ = ϕ.

Given an r.i. space X and its corresponding fundamental function ϕX , we can consider the

Lorentz and Marcinkiewicz spaces associated with ϕX , and it holds that (see [5, Theorem 2.5.3]

or [17])

ΛϕX
⊂ X ⊂MϕX

.

For an r.i. space X we also recall the definition of the Boyd indices (see [19, Section 2.b])

which are given by

pX = lim
s→∞

log s

log ‖Ds‖
qX = lim

s→0+

log s

log ‖Ds‖
,

where Ds : X → X is the dilation operator which in case Ω = R+ is given by (Dsf)(t) = f(t/s),

while in the case of Ω = [0, 1], it is given by

(Dsf)(t) =

{
f(t/s) for t 6 min(1, s)

0 elsewhere.

Recall that the Haar system (hn)∞n=1 is the sequence of functions on [0, 1] given by h1(t) = 1,

and for k = 0, 1, . . ., j = 1, 2, . . . , 2k

h2k+j(t) =


1 for t ∈

[
j−1
2k
, 2j−1

2k+1

]
,

−1 for t ∈
[

2j−1
2k+1 ,

j
2k

]
,

0 otherwise.

Written in this way, the vectors hn are normalized in L∞, but we might consider their normal-

ization in any other r.i. space. The Haar system is a monotone basis of every separable r.i.

space on [0, 1], which is unconditional if and only if 1 < pX and qX <∞ (see [19, Proposition

2.c.1, Theorem 2.c.6]).

The Rademacher functions on [0, 1] are given by

rn(t) = sign sin 2nπt

for n ∈ N. These form an orthonormal sequence in L2[0, 1], which are in fact equivalent to the

unit vector basis of `2 in any r.i. space sufficiently far away from L∞ ([19, Theorem 2.b.4]).

An r.i. space (or more generally, a Banach lattice) X is said to be q-concave for some

1 6 q 6∞, if there exists a constant M <∞ so that( n∑
i=1

‖xi‖q
) 1

q
6M

∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥, if 1 6 q <∞,

or

max
16i6n

‖xi‖ 6M
∥∥∥ n∨
i=1

|xi|
∥∥∥, if q =∞,
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for every choice of (xi)
n
i=1 in X (cf. [19, 1.d]). The smallest possible value of M is denoted by

M(q)(X).

Similarly, X is p-convex for some 1 6 p 6∞, if there exists a constant M <∞ such that∥∥∥( n∑
i=1

|xi|p
) 1

p
∥∥∥ 6M

( n∑
i=1

‖xi‖p
) 1

p
, if 1 6 p <∞,

or ∥∥∥ n∨
i=1

|xi|
∥∥∥ 6M max

16i6n
‖xi‖, if p =∞,

for every choice of (xi)
n
i=1 in X. The smallest possible value of M is denoted by M (p)(X).

Recall that an operator between Banach spaces is strictly singular if it is not an isomorphism

when restricted to any infinite dimensional subspace. This class forms a closed operator ideal

that contains the compact operators and was introduced in connection with the perturbation

theory of Fredholm operators [16]. In particular, the sum of a strictly singular operator and

a Fredholm operator is again Fredholm with the same index (cf. [18]), and as a consequence,

the spectra of strictly singular operators resembles that of compact operators. However, notice

that, unlike compact operators, strictly singular operators are not stable under duality (cf. [25],

[28]) and fail to have invariant subspaces ([26]).

Throughout, given a Banach space X we will denote by S(X) (respectively K(X)) the ideal

of strictly singular (resp. compact) endomorphisms on X.

3. Kato property and 2-disjointly homogeneous spaces

As we mentioned T. Kato showed that the classes of strictly singular and compact operators

coincide on Hilbert spaces. Thus, we introduce the following notation.

Definition 3.1. A Banach space X has Kato property whenever S(X) = K(X).

Taking into account the results presented in the introduction (see also [9]), examples of

spaces with Kato property include Hilbert spaces, Lorentz spaces of the form Lp,2[0, 1] and

Λ(W, 2)[0, 1], Orlicz spaces Lϕ[0, 1] where ϕ(t) = t2 logα(1 + t), sequence spaces like `p, c0,

Tsirelson space (and some of its modifications)... But also, new “exotic” spaces such as the

space XAH , constructed in [3] as a solution to the scalar-plus-compact problem, has Kato

property.

Clearly, Kato property is an isomorphic property. Moreover, we have the following:

Proposition 3.2. Let X be a Banach space with Kato property. Suppose that for some subspace

Y ⊂ X, there is Z ⊂ X such that Y ' X/Z, then Y also has Kato property.

Proof. Suppose there is some operator T : Y → Y which is strictly singular but not compact.

Let Q : X → Y be the onto mapping induced by the quotient X/Z, and J : Y → X be an
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isomorphic embedding. Put S = JTQ:

X
S //

Q ����

X

Y
T // Y

?�
J

OO

Since T is strictly singular, so is S. Now, since T is not compact, there is some bounded

sequence (yn) in Y such that (Tyn) has no convergent subsequence. Thus, using that Q is onto,

by the open mapping theorem, we can find a bounded sequence (xn) in X such that Qxn = yn.

Clearly, since J is an isomorphic embedding, the sequence S(xn) = JTQ(xn) = JT (yn) has no

convergent subsequence. Therefore, S is not compact in contradiction with the fact that X has

Kato property. �

Corollary 3.3. Every complemented subspace of a space with Kato property also has Kato

property.

Let us recall the definition of 2-disjointly homogeneous Banach lattice and introduce a weaker

version that will be useful for our purposes.

Definition 3.4.

• A Banach lattice E is 2-disjointly homogeneous (in short 2DH), if every normalized

sequence of disjoint elements in E, has a subsequence equivalent to the unit vector basis

of `2.

• Let X be an r.i. space on [0, 1]. We say that X is restricted-2DH if for every sequence

of disjoint sets (An)∞n=1 in [0, 1] there is a subsequence such that ( 1
‖χAnk

‖χAnk
)∞k=1 is

equivalent to the unit vector basis of `2.

It is clear if a space is 2DH, then it is restricted-2DH. We also have

Proposition 3.5. Let X be an r.i. space on [0, 1]. The space X is restricted-2DH if and

only if every subsequence of disjoint elements of the normalized Haar basis in X has a further

subsequence equivalent to the unit vector basis of `2.

Proof. The direct implication is clear: if (hnk
) is a subsequence of disjoint elements of the

normalized Haar basis, then it is equivalent to (|hnk
|) which is a sequence of (normalized)

characteristic functions over disjoint dyadic intervals. Thus, if the space X is restricted-2DH,

then this sequence has a further subsequence equivalent to the unit vector basis of `2.

For the converse implication, assume that every subsequence of disjoint elements of the

normalized Haar basis in X has a further subsequence equivalent to the unit vector basis of `2.

As before, since we are dealing with a sequence of disjoint elements and using the fact that the

space is rearrangement invariant, this is equivalent to the statement that for every sequence

(Dk) of pairwise disjoint sets of dyadic measure (that is µ(Dk) = 2−nk for some nk ∈ N), there
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is a subsequence such that the normalized characteristic functions

1

ϕ(2−nkj )
χDkj

are equivalent to the unit vector basis of `2. Here, ϕ(t) = ‖χ(0,t)‖X is the fundamental function

of X.

Now, let (Ak) be a sequence of disjoint sets in [0, 1]. Without loss of generality we can assume

that for some increasing sequence (nk) of natural numbers, the measure of Ak satisfies

2−nk 6 µ(Ak) 6 2−nk+1.

Passing to a further subsequence if necessary, we can find sets

Bk ⊂ Ak ⊂ Ck

such that µ(Bk) = 2−nk and µ(Ck) = 2−nk+1, with the additional assumption that (Ck) (as well

as (Bk)) are pairwise disjoint. Now, by the previous paragraph, taking further subsequences

(once for (Ck) and once more for (Bk)), we can suppose that both

1

ϕ(2−nk)
χBk

and
1

ϕ(2−nk+1)
χCk

are equivalent to the unit vector basis of `2. Thus, for some constants K > 0 and every sequence

of scalars (ak)
∞
k=1 we have∥∥∥ ∞∑

k=1

ak
ϕ(µ(Ak))

χAk

∥∥∥ > 1

2

∥∥∥ ∞∑
k=1

ak
ϕ(µ(Ak)/2)

χAk

∥∥∥ > 1

2

∥∥∥ ∞∑
k=1

ak
ϕ(2−nk)

χAk

∥∥∥
>

1

2

∥∥∥ ∞∑
k=1

ak
ϕ(2−nk)

χBk

∥∥∥ > K

2

( ∞∑
k=1

a2
k

) 1
2
.

Where in the first inequality we have used that ϕ(2t) 6 2ϕ(t). Similarly, there is a constant

K ′ > 0 satisfying that∥∥∥ ∞∑
k=1

ak
ϕ(µ(Ak))

χAk

∥∥∥ 6 2
∥∥∥ ∞∑
k=1

ak
ϕ(2µ(Ak))

χAk

∥∥∥ 6 2
∥∥∥ ∞∑
k=1

ak
ϕ(2−nk+1)

χAk

∥∥∥
6 2

∥∥∥ ∞∑
k=1

ak
ϕ(2−nk+1)

χCk

∥∥∥ 6 2K ′
( ∞∑
k=1

a2
k

) 1
2
.

Thus, there is a subsequence of (χAk
/ϕ(µ(Ak))) equivalent to the unit vector basis of `2 as we

wanted to show. �

This allows us to prove the following

Corollary 3.6. Let X be an r.i. space on [0, 1] which is isomorphic (as a Banach space) to a

2DH r.i. space Y . Then X is restricted-2DH.
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Proof. It follows from [15, Theorem 6.1], since either X = Y up to equivalence of norms, or

X = L2[0, 1], or the Haar basis in X is equivalent to a sequence of disjoint elements in Y and

the result follows from Proposition 3.5. �

Duality properties of DH Banach lattices have been recently studied in [10]. It turns out

that restricted-2DH r.i. spaces are stable under duality.

Proposition 3.7. An r.i. space X on [0, 1] is restricted-2DH if and only if X ′ is restricted-

2DH.

Proof. Observe that Proposition 3.5 allows us to work with disjoint sequences of the Haar basis.

Now, let (hn) and (h∗n) denote the normalized Haar basis of X and X∗ respectively, and let h∗nk

be a disjoint sequence of the normalized Haar basis in X∗. Since X is restricted-2DH, there is

a subsequence (hnkj
) which is equivalent to the unit vector basis of `2. Therefore, we have

∥∥ n∑
j=1

ajh
∗
nkj

∥∥
X∗

= sup
{〈 n∑

j=1

ajh
∗
nkj
, x
〉

: ‖x‖X = 1
}

= sup
{〈 n∑

j=1

ajh
∗
nkj
,

n∑
j=1

bjhnkj

〉
: ‖

n∑
j=1

bjhnkj
‖X = 1

}
≈ sup

{ n∑
j=1

ajbj :
( n∑
j=1

b2
j

)1/2
= 1
}

=
( n∑
j=1

a2
j

)1/2
.

This shows that the sequence (h∗nkj
) is equivalent to the unit vector basis of `2, and so X∗ is

also restricted-2DH. The converse is proved by duality. �

We have several questions concerning restricted-2DH r.i. spaces.

We do not know if an r.i. space X on [0, 1] which is restricted-2DH, must be 2-DH. If this

were the case, then by Corollary 3.6, we would get that if an r.i. space X is isomorphic to

another 2-DH r.i. space Y , then X is also 2-DH. We will see in Theorem 5.1 that this is the

case in the setting of Orlicz spaces on [0, 1].

On the other hand, in the Lorentz space Lp,∞, every sequence of normalized characteristic

functions of disjoint sets has a subsequence whose span is isomorphic to c0 [7]. Thus, this is

a restricted-∞DH space. However, Lp,∞ is not ∞-DH since it contains a normalized disjoint

sequence whose span is isomorphic to `p (see [9]).

4. Kato property in Lorentz and Marcinkiewicz spaces

Let us consider first the case of non-reflexive r.i. spaces.
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Theorem 4.1. If an r.i. space E contains a sublattice isomorphic to `1, then there exists a

non-compact strictly singular operator in E.

Proof. By [22, Prop. 2.3.11], every sublattice isomorphic to `1 is complemented in E. Let us

denote by X the complemented sublattice in E isomorphic to `1, (xn) a normalized sequence

in X equivalent to the canonical basis of `1 and by P the projection onto X. Denote by R(E)

the subspace generated by the Rademacher system rk(t) = sign(sin 2kπt), k ∈ N .

It is well-known that the canonical basis in R(E) is symmetric and that R(E) 6= l1 for any

r.i. space E 6= L∞ ([19], 2.c.10 ). Now, since the strict inclusion from `1 into any symmetric

sequence space is always strictly singular ( [14], Cor. 3.2) ,we have that the inclusion operator

I : `1 → R(E)

is strictly singular. Denote by J the isometric embedding of R(E) into E . Consider now the

operator T = JIP in E . Since I is strictly singular we have that also T is strictly singular .

And since T sends (xk) into (rk) we have that T is not compact.

�

In particular in every Lorentz space Λ(ϕ) there exist non-compact strictly singular operators.

Theorem 4.2. If an r.i. space E on [0, 1] contains a subspace isomorphic to c0, then there

exists a non-compact strictly singular operator in E.

Proof. Given f ∈ L1[0, 1], let (ck(f)) be its sequence of coeficients with respect to the Rademacher

system, that is

ck(f) =

∫ 1

0

f(t)rk(t)dt,

for k ∈ N. By Riemann-Lebesgue Lemma, the expression R(f) = (ck(f))∞k=1 defines a bounded

operator

R : L1 → c0.

Observe that the r.i. space E must be different from L1 since it contains a subspace isomorphic

to c0. Hence, by [4, Theorem 5], there exists a space F with symmetric basis such that F ⊂ c0

with strict inclusion (F 6= c0), satisfying that the operator R : E → F is bounded.

Let

J : c0 → E and IF,c0 : F ↪→ c0

denote respectively an isomorphic embedding and the formal identity mapping. Now, consider

the operator

T = JIF,c0R : E → E.

By [14], since F 6= c0, the operator IF,c0 is strictly singular. Hence, so is T . Moreover, T is not

compact since it maps the Rademacher sequence in E to a normalized sequence equivalent to

the unit vector basis of c0. �
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In particular, in every Marcinkiewicz space Mϕ, there is a strictly singular non-compact

operator, and the same holds for the order continuous part (Mϕ)o.

Corollary 4.3. Let X be a non-reflexive r.i. space on [0, 1]. Then X fails Kato property.

Proof. By Lozanovskii’s theorem every non-reflexive Banach lattice contains a sublattice iso-

morphic to c0 or `1. Therefore, Theorems 4.1 and 4.2 together yield the conclusion. �

For the class of Lorentz spaces Lp,q[0, 1] the relation between Kato property and 2DH is clear:

Theorem 4.4. Let 1 < p <∞, 1 6 q 6∞. The following conditions are equivalent

(1) Lp,q[0, 1] has Kato property,

(2) Lp,q is 2DH,

(3) q = 2.

Proof. The implication 2 ⇒ 1 follows from [9]. By [7, Lemma 3.1] any normed disjointly

supported sequence of Lp,q contains a subsequence equivalent to the unit vector basis of `q.

Therefore 3⇒ 2.

So we must prove the implication 1 ⇒ 3. Let 1 < q < 2. Consider the operator A = Riq,2S

where S is the conditional expectation

Sx(t) =
∞∑
k=1

1

2k

∫ 2−k+1

2−k

x(s)ds χ(2−k,2−k+1)(t),

iq,2 is the identical operator from lq into l2 and

R(x1, x2, . . .) =
∞∑
k=1

xkrk(t),

rk(t) are the Rademacher functions, k ∈ N. It is well known [19, Theorem 2.a.4], that S is a

projection of norm 1 in any r.i. space, in particular in Lp,q. The subspace generated by sequence

2k/pχ(2−k,2−k+1)(t) in Lp,q is isomorphic to lq, 1 < p <∞ [7]. Therefore S acts from Lp,q into lq.

By Khintchine inequality R acts from l2 into Lp,q. So, A is a bounded operator in Lp,q. Clearly

A ∈ SS(Lp,q) \K(Lp,q).

Let 2 < q < ∞. Consider the operator B = Qi2,qP where P is the orthogonal projector on

the Rademacher system, i2,q is the identical operator from l2 into lq and

Q(x1, x2, . . .) =
∞∑
k=1

xk2
k
pχ(2−k,2−k+1)(t).

Since P is a bounded operator in Lr for any r ∈ (1,∞) and Lp,q is an interpolation space with

respect to Lr (1 < r < ∞) then P acts from Lp,q into l2. The operator Q is an isomorphic

embedding of lq into Lp,q. Therefore B is a strictly singular and non-compact operator in Lp,q.

So, there exists a strictly singular and non compact operator in Lp,q if q 6= 2. �
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Taking into account that every disjoint sequence in a Lorentz space of the form Λ(W, p)[0, 1]

has a subsequence equivalent to the unit vector basis of `p [8, Proposition 5.1], a similar argu-

ment as above shows that Λ(W, p)[0, 1] has Kato property, if and only if it is 2DH, if and only

if p = 2.

5. Kato property in Orlicz spaces

First, note that by Corollary 4.3, non-reflexive Orlicz spaces do not have Kato property. We

need to recall the following classical notation [20]: For an Orlicz function M satisfying the

∆2-condition at ∞, consider the set of (continuous) functions on [0, 1]

E∞M =
⋂
s>1

{M(r ·)
M(r)

: r > s
}
.

Theorem 5.1. For an Orlicz space LM [0, 1], the following are equivalent:

(1) LM [0, 1] is 2DH.

(2) LM [0, 1] is restricted-2DH.

(3) Every function in E∞M is equivalent to the function ϕ(t) = t2 at 0.

Proof. The equivalence between (1) and (3) has already been established in [9, Theorem 4.1].

Also, (1) implies (2) trivially. Let us prove that the implication (2)⇒ (3) also holds.

First, note that for every ψ ∈ E∞M , there exist a sequence of pairwise disjoint sets (An) such

that the unit vector basis in the Orlicz space `ψ is equivalent to the sequence( χAn

‖χAn‖

)∞
n=1

= (M−1(1/µ(An))χAn)∞n=1.

Indeed, given ψ ∈ E∞M , take an increasing sequence (sn) with M(sn) > 2n such that for every

n ∈ N
sup
t∈[0,1]

∣∣∣M(snt)

M(sn)
− ψ(t)

∣∣∣ < 1

2n
.

Now, let (An) be a sequence of disjoint sets such that µ(An) = 1
M(sn)

< 1
2n

. We have

‖χAn‖ =
1

M−1(1/µ(An))
,

so for arbitrary scalars (λn)∞n=1 we have∫ 1

0

M
( ∞∑
n=1

λn
χAn(t)

‖χAn‖

)
dµ =

∞∑
n=1

M
(
λnM

−1(
1

µ(An)
)
)
µ(An) =

∞∑
n=1

M(λnsn)

M(sn)
≈

∞∑
n=1

ψ(λn).

Therefore,
( χAn

‖χAn‖

)∞
n=1

is equivalent to the unit vector basis of `ψ.

Now, if (2) holds, then there is a subsequence of
( χAn

‖χAn‖

)∞
n=1

which is equivalent to the unit

vector basis of `2. Hence, the unit vector basis of `ψ has a subsequence equivalent to the basis

of `2. But since the basis of `ψ is symmetric, we get that `ψ = `2, or equivalently ψ(t) ≈ t2.

Hence, (3) holds. �
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It follows from the results in [9] (see Theorem 1.3 above) that a 2DH Orlicz space on [0, 1]

has Kato property. A partial converse under proper convexity assumptions is given next.

Theorem 5.2. Let M be an Orlicz function satisfying ∆2-condition at ∞, and suppose that

LM [0, 1] is 2-convex (or 2-concave). It holds that LM [0, 1] has Kato property if and only if it is

2DH.

Proof. Suppose that LM [0, 1] is 2-convex and not 2DH. Then, by Theorem 5.1, there exists a

function ψ ∈ E∞M that is not equivalent to t2 at 0. Let us take an increasing sequence sn →∞
such that

ψ(t) = lim
n→∞

M(snt)

M(sn)

for t ∈ [0, 1].

By the 2-convexity of LM [0, 1], the function M is equivalent at ∞ to a 2-convex function,

and by [27, p. 28], we have that

sup
s> 1

t

M(ts)

M(s)
6 Kt2

for some constant K > 0 and every 0 < t < 1. Therefore, ψ(t) 6 Kt2 at 0.

Now, the function ψ is also 2-convex and not equivalent to t2 at 0, so by [14, Proposition

5.10] it follows that the formal inclusion

i2,ψ : `2 ↪→ `ψ

is a strictly singular operator. Let us consider now, the operator

T : LM [0, 1]→ LM [0, 1]

given by T = Ji2,ψR, where R : LM [0, 1] → `2 denotes the projection onto the span of the

Rademacher functions, and J : `ψ → LM [0, 1] denotes an isomorphic embedding. It is clear

that T is strictly singular but not compact. Hence, LM [0, 1] fails Kato property.

Similarly, if the space LM [0, 1] is 2-concave, we follow the same steps by considering a 2-

concave Orlicz sequence space `ψ different from `2 such that the formal inclusion

iψ,2 : `ψ ↪→ `2

defines a strictly singular operator (using also [14]). �

We do not know whether Theorem 5.2 can be extended to 2-convex or 2-concave r.i. spaces

on [0, 1].

It can be shown that condition (3) in Theorem 5.1 which characterizes 2DH Orlicz spaces

can be rewritten as the formula

sup
0<t<∞

lim sup
u→∞

M(tu)

t2M(u)
<∞.

Strengthening this condition slightly we get further necessary conditions for Kato property on

an Orlicz space. We will separately prove two preliminary lemmas first.
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Lemma 5.3. Let M be an Orlicz function satisfying the ∆2-condition at ∞ and

(1) lim
t→0

lim
u→∞

M(tu)

t2M(u)
=∞.

Then there exist a sequence of disjoint measurable sets (Ak) in [0, 1], and an Orlicz function F

such that (χAk
/‖χAk

‖) is equivalent to the unit vector basis of `F , the inclusion `F ⊂ `2 holds,

and it is a strictly singular operator.

Proof. By assumption (1) there exist monotone sequences (bk) and (dk) increasing to ∞ such

that

M

(
u√
k

)
k > bkM(u)

for any u > dk, and k ∈ N. Let us denote ck = 1
M(dk)

. Then we have

M

(
1√
k
M−1

(
1

ck

))
ckk > bk

and moreover

(2) M

(
1√
k
M−1

(
1

cnk

))
cnk

k > bk

for any increasing subsequence (nk).

Without lost of generality we may assume that
∞∑
k=1

ck 6 1. Let (Fk) be a sequence of disjoint

measurable sets in [0, 1], with µ(Fk) = ck, for every k ∈ N. Then
∥∥∥M−1

(
1
ck

)
χFk

∥∥∥
LM

= 1. By

[20, Prop. 3], there exist an Orlicz function F and a subsequence (nk) such that [xnk
] = `F

where xk = M−1
(

1
ck

)
χFk

, k ∈ N. Let Ak = Fnk
, for k ∈ N.

Using (2) we get

m∑
k=1

M

(
1√
m
M−1

(
1

cnk

))
cnk
>

1

a

m∑
k=m

2

M

(
1√
k
M−1

(
1

cnk

))
cnk
>

1

a
bm

2

m∑
k=m

2

1

k
>

ln 2

a
bm

2

for any even m where a is the ∆2-constant of M . Hence

lim
m→∞

1√
m

∥∥∥∥∥
m∑
k=1

xnk

∥∥∥∥∥
LM

= lim
m→∞

1√
m

∥∥∥∥∥
m∑
k=1

M−1

(
1

cnk

)
χAk

∥∥∥∥∥
LM

=∞

and

lim
m→∞

1√
m
‖(1, 1, . . . , 1︸ ︷︷ ︸

m

, 0, 0, . . .)‖`F =∞.

This means that lim
t→0

F (t)/t2 = ∞. Now, by Kalton’s theorem [18, Thm. 4.a.10] the inclusion

`F ⊂ `2 is strictly singular. �

Lemma 5.4. Let M be an Orlicz function, such that the complementary function M satisfies

∆2-condition at ∞, and

lim
t→0

lim
u→∞

M(tu)

t2M(u)
= 0.
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Then, there exist a sequence of disjoint measurable sets (Ak) in [0, 1], and an Orlicz function F

such that (χAk
/‖χAk

‖) is equivalent to the unit vector basis of `F , the inclusion `2 ⊂ `F holds

and it is a strictly singular operator.

Proof. We shall repeat the plan and notation of Lemma 5.3. There exist monotone sequences

bk → 0, and dk →∞ such that

M

(
u√
k

)
k 6 bkM(u)

for any u > dk, and k ∈ N. If we denote ck = 1
M(dk)

, then

(3) M

(
1√
k
M−1

(
1

cnk

))
cnk

k 6 bk

for any increasing subsequence nk, k ∈ N.

Without lost of generality we may assume that
∞∑
k=1

ck 6 1. Let (Fk) be a sequence of

disjoint subsets of [0, 1], with µ(Fk) = ck, for k ∈ N. Then
∥∥∥M−1

(
1
ck

)
χfk

∥∥∥
LM

= 1. By [20,

Prop. 3] there exist an Orlicz function F and subsequence (nk) such that [xnk
] = `F where

xk = M−1
(

1
ck

)
χFk

. Let Ak = Fnk
, for k ∈ N.

Using (3) we get

2m∑
k=m+1

M

(
1√
k
M−1

(
1

ck

))
cnk
6

2m∑
k=m+1

bk
k
6 bm+1

for any m ∈ N. Since M satisfies the ∆2-condition at ∞, then

lim
m→∞

∥∥∥∥∥ 1√
m

2m∑
k=m+1

xnk

∥∥∥∥∥
LM

= 0.

Hence

lim
m→∞

1√
m
‖(0, 0, . . . , 0︸ ︷︷ ︸

m

, 1, 1, . . . , 1︸ ︷︷ ︸
m

, 0, 0, . . .)‖lF = 0.

Therefore, we have that lim
t→0

F (t)/t2 = ∞. And by Kalton’s theorem [18, Thm. 4.a.10] we

conclude that the inclusion `F ⊂ `2 is strictly singular. �

These Lemmas allow us to give the following necessary conditions for Kato property on Orlicz

spaces.

Corollary 5.5. Let LM [0, 1] be a reflexive Orlicz space. If

lim
t→0

lim
u→∞

M(tu)

t2M(u)
∈ {0,∞},

then LM [0, 1] fails to have Kato property.

It remains open whether every Orlicz space LM [0, 1] with Kato property must be 2DH.

However, in the infinite measure case we can provide examples of reflexive Orlicz function

spaces LM(0,∞) with Kato property which are not 2DH:
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Theorem 5.6. Consider the Orlicz function M defined by

M(t) =


1

log 2
t2 t ∈ [0, 1]

t2

log (1+t)
t ∈ [1,∞).

The reflexive Orlicz space LM(0,∞) has Kato property but is not 2DH.

Proof. It follows from [15, Thm 8.6 and page 216] that the space LM = LM(0,∞) is isomorphic

to the Orlicz space LM [0, 1] since M at 0 is t2. Now, the space LM [0, 1] is 2DH since C∞M = {t2}
(see Theorem 5.1), hence we get by Theorem 1.2, that K(LM [0, 1]) = S(LM [0, 1]). Thus,

K(LM) = S(LM), so LM has Kato property.

Let us shown now that LM is not a 2DH Banach lattice. According to [24, Theorem 1.1], we

have to show that there is an Orlicz function F , non-equivalent to t2 at 0 , belonging to the

set CM(0,∞), where CM(0,∞) := convEM(0,∞) in the space C(0, 1). Recall that

EM(0,∞) = {F ∈ C(0, 1) : F (t) =
M(st)

M(s)
, 0 < s <∞, t ∈ (0, 1)}

Now , using [24, p.242], we have that every function F ∈ CM(0,∞) can be expressed as a

convex combination of three functions F1, F2 and F3, where F1 ∈ CM,1 , F2 ∈ C∞M and

F3(t) =

∫ ∞
1

M(st)

M(t)
dµ(s)

for t ∈ [0, 1], where µ is a probability measure in [1,∞) with µ(1) = 0.

In our case we have clearly that F1(t) ∼ t2 at 0, and F2(t) ∼ t2 at 0.

Let us consider now the finite measure µ on [1,∞) defined by

µ([1,∞)) =

∫ ∞
1

ds

s log2(1 + s)
,

Then the associated function Fµ ≡ F satisfies that

F3(t) =

∫ 1/t

1

t2 log(1 + s) dµ(s) +

∫ ∞
1/t

t2 log(1 + s)

log(1 + ts)
dµ(s)

= t2
( ∫ 1/t

1

ds

s log(1 + s)
+

∫ ∞
1/t

ds

s log(1 + ts) log(1 + s)

)
Now, it holds that ∫ 1/t

1

ds

s log(1 + s)
∼ log(|log t|)

for t near 0. And the integral∫ ∞
1/t

ds

s log(1 + ts) log(1 + s)
=

∫ ∞
1

du

u log(1 + u) log(1 + u
t
)

tends to 0 as t goes to 0 .
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Hence the function F ∈ CM(0,∞) is equivalent to the function t2 log(| log t|) at 0. Therefore

there is disjoint normalized function sequence in LM(0,∞) which is not equivalent to the canonic

basis of `2 and thus LM(0,∞) is not 2DH. �
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P. Tradacete, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911,

Leganés, Madrid, Spain.

E-mail address: ptradace@math.uc3m.es


