
EXTRAPOLATION ON Lp,∞(µ)

MARÍA J. CARRO AND PEDRO TRADACETE

Abstract. We solve the extrapolation problem concerning bounded opera-
tors on Lp,∞(µ); that is, we give end-point estimates for sublinear operators T
such that T : Lp,∞(µ)→ Lp,∞(ν) is bounded with constant less than or equal
to 1/(p − 1)m. Applications to the Hardy-Littlewood maximal operator, the
Hilbert transform and composition of operators are also given.

1. Introduction and motivation

In 1951, Yano ([30]) proved that if T is a sublinear operator such that for every
1 < p < p0 (with p0 fixed)

T : Lp(µ) −→ Lp(ν)

is bounded with constant less than or equal to 1/(p− 1)m, m > 0, with µ and ν
finite measures, then

T : L(logL)m(µ) −→ L1(ν)

is bounded, where

L(logL)m(µ) =

{
f ∈ L0(µ); ||f ||L(logL)m(µ) =

∫ ∞
0

f ∗µ(s)
(

1 + log+ 1

s

)m
ds <∞

}
.

As usual, L0(µ) denotes the space of µ-measurable functions and f ∗µ is the de-
creasing rearrangement of f with respect to the measure µ. Moreover, this result
is sharp, in the sense that L(logL)m(µ) is the biggest domain space satisfying
that Tf ∈ L1(ν), as one can see taking dν = dµ = χ(0,1)dx and T = M , the
Hardy-Littlewood maximal operator.

This result is known as Yano’s extrapolation theorem. Moreover, the condition
on the measures µ and ν can be weakened and one can consider µ and ν σ-finite
measures. In this case, the conclusion is that (see [13])

(1.1) T : L(logL)m(µ) −→ Em(ν)
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2 Extrapolation on Lp,∞(µ)

is bounded, where

Em(ν) =

{
f ∈ L0(µ); sup

t>0

tf ∗∗ν (t)

(1 + log+ t)m
<∞

}
and f ∗∗µ (t) = 1

t

∫ t
0
f ∗µ(s)ds. Observe that if ν is finite, Em(ν) = L1(ν) for every m.

Throughout this paper we shall work with µ and ν σ-finite non-atomic measures
and we shall use the following notation: For every m ≥ 2, let

logm x = logm−1 log1 x,

with

log1 x = 1 + log+ x,

and

L
∏
j∈J

(
logj L

)mj(µ) =

{
f ;

∫ ∞
0

f ∗µ(t)
∏
j∈J

(
logj

1

t

)mj

dt <∞
}
.

In connection with the so-called weak type extrapolation, it is known (see [1],
[14]) that if T is a sublinear operator such that for every 1 < p < p0 (p0 fixed)

T : Lp(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m, then

(1.2) T : L(log1 L)m log3 L(µ) −→ Rm(ν)

is bounded where

Rm(ν) =

{
f ∈ L0(µ); ||f ||Rm = sup

t>0

tf ∗ν (t)

(log1 t)
m
<∞

}
.

If m = 1, it is known that the space L log1 L log3 L(µ) is not optimal, in the sense
that there exists a space D such that L log1 L log3 L(µ) is strictly embedded in
D (see [2] and [14]) with

T : D −→ R1(ν)

bounded. However, it has recently been proved (see [15]) that L log1 L log3 L(µ)
is essentially the largest Lorentz space embedded in D. In particular, the space
L log1 L log4 L(µ) does not embed in D.

Remark 1.1. We should mention here that in order to get the boundedness
(1.1), it is enough to have a weaker hypothesis on T , namely that

T : Lp,1(µ) −→ Lp(ν)

is bounded with constant less than or equal to 1/(p− 1) (see [13]). Similarly, in
order to have (1.2), it is enough to assume that

T : Lp,1(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m.
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Let us now explain the original motivation of this work. In [5], the following
operator was introduced

Af(x) =

∥∥∥∥fχ(0,x)

x− ·

∥∥∥∥
L1,∞(0,1)

.

This operator plays an important role in connection with the following problem
in ergodic theory. Recall that a dynamical system is a probability space (Ω,Σ, µ),
together with a measure preserving transformation τ . The following return times
theorem was proved in [11] (see also [9], [10] and [29]):

Theorem 1.2. Let (Ω,Σ, µ, τ) be a dynamical system. For 1 ≤ p ≤ ∞, given
f ∈ Lp(µ), there is a set Ωf ⊂ Ω with µ(Ωf ) = 1, such that for any other
dynamical system (Ω′,Σ′, µ′, %), g ∈ Lq(µ′) (with 1

p
+ 1

q
= 1), and x ∈ Ωf , the

sequence of means

1

n

n∑
k=1

f(τ kx)g(%ky)

converges µ′-almost everywhere.

The question is to understand whether the fact that f and g lie in dual spaces
is a necessary assumption for this theorem to hold (see [16]). In an attempt to
break this duality, in [3] and [4], it was proved that given a dynamical system
(Ω,Σ, µ, τ), if f ∈ Lp(µ) for any p > 1 (or even if f ∈ L logL(µ)), then there
is a set Ωf ⊂ Ω with µ(Ωf ) = 1 satisfying that for every sequence (Xk) of i.i.d.
random variables on a probability space (Ω′,Σ′, ν) with Xk ∈ L1(ν) and any
x ∈ Ωf

1

n

n∑
k=1

f(τ kx)Xk

converges ν-almost everywhere. However, for a general function in L1(µ) this is
no longer true [5]. One way to prove this is to show that the operator A described
above is not of weak type (1, 1).

Therefore, the question is to find which is the largest space X such that for
every f ∈ X, the above property holds. In this direction, it was proved in [17]
that

A : L log2 L(0, 1) −→ L1,∞(0, 1)

is bounded and in that paper it is also stated that A cannot be bounded in
any Orlicz space strictly bigger that L log3 L(0, 1), leaving as an open question
whether

A : L log3 L(0, 1) −→ L1,∞(0, 1)

is bounded or not.
In our attempt to solve this question we made the following observation: given

a locally integrable function f , if we consider M the Hardy-Littlewood maximal
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operator, it is well-known that

(Mf)∗(t) ≈ 1

t

∫ t

0

f ∗(s)ds.

Therefore, it holds that

||Mf ||L log3 L ≈ ||f ||L log1 L log3 L

and hence, if we were able to prove that

(1.3) A ◦M : Lp −→ Lp,∞

is bounded with constant C/(p− 1), then by the weak extrapolation result men-
tioned above

A ◦M : L log1 L log3 L −→ L1,∞

would be bounded. Thus,

||Ag||L1,∞ . ||g||L log3 L

at least when g belongs to the collection of functions of the form Mf (this would
partially answer in the positive the open question on the operator A).

Hence, since M : Lp −→ Lp,∞ is bounded with a uniform constant independent
of p, it is clear that (1.3) would hold provided that

A : Lp,∞ −→ Lp,∞

is bounded with constant C/(p− 1). At this point, we should mention that this
estimate remains open and although we have succeeded in proving the above

bound with constant smaller than C
log2 1

p−1

p−1
, this is not enough to conclude the

desired result.
However, we still would have to solve the following extrapolation problem: what

kind of endpoint estimate can we get from the boundedness of T : Lp,∞ −→ Lp,∞

with constant less than or equal to 1/(p− 1)? Can we get a better estimate than
from the hypothesis T : Lp −→ Lp,∞ with the same behavior of the constant?
Considering Remark 1.1, it might seem that the answer is negative, but as we
shall later see this is not the case.

In order to make things clearer and also to introduce the context where some
of the applications will take place, let us also consider the following simple and
classical situation. Let T be a sublinear operator such that T is of weak type
(1, 1) and bounded in L∞, and assume that we are interested in studying the
boundedness properties at the extreme point p = 1 of the iterated operators
T (2)f = T (Tf) or, more generally, T (n)f = T (n−1)(Tf).

To this end, using the classical interpolation and extrapolation theory we can
obtain the following result.

Proposition 1.3. Under the above hypothesis in the operator T , it holds that,
for every n ∈ N,

(1.4) T (n) : L(log1 L)n −→ En
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is bounded.

Proof. By interpolation, it is known that T (n) : Lp −→ Lp with constant less than
or equal to C(p − 1)−n and hence, by Yano’s extrapolation theorem the result
follows. �

On the other hand, if an operator T satisfies the above hypothesis, then

(1.5) (Tf)∗(t) .
1

t

∫ t

0

f ∗(s)ds

and hence, by iterating we get

(T (n)f)∗(t) .
1

t

∫ t

0

f ∗(s)
(

log
t

s

)n−1

ds,

from which the boundedness

(1.6) T (n) : L(log1 L)n−1 −→ Rn−1

follows. Observe that

L(log1 L)n ⊂ L(log1 L)n−1, and Rn−1 ⊂ Rn

and hence (1.6) improves essentially (1.4) both in the domain and in the range
spaces. Under this situation, trying to understand why the domain of T (n) could
be improved and if this improvement was consequence of some extrapolation
argument, we found out that the hidden estimates that we have to use in our
extrapolation argument are that

T : Lp,∞ −→ Lp,∞

is bounded with constant less than or equal to C(p− 1)−1

Solving this new extrapolation result is the main contribution of this paper.
To be more precise, our first contribution is Theorem 3.5 where we prove that if
T is a sublinear operator such that

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m. Then,

T : [L(log1 L)m−1 log3 L(µ)]1 −→ R1(ν)

is bounded where

L (log1 L)m log3 L  [L(log1 L)m−1 log3 L]1  L(log1 L)m−1 log3 L.

Thus, we get a better result than if we only use the information that T is weak
type (p, p) with the same behavior of the constant. We believe this fact provides
renewed motivation in the study of bounds for T : Lp,∞ → Lp,∞, with the hope
of improving hitherto known endpoint estimates.

Afterwards, we will apply this result to the case of composition of operators and
we prove in Theorem 3.8 (this is our second main contribution) that if T = T1◦T2
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with T1 : Lp,∞(µ) −→ Lp,∞(µ) bounded with constant less than or equal to
1/(p− 1)m and T2 satisfies certain mild conditions, then

T : L(log1 L)m−1 log3 L(µ) −→ R1(ν)

is bounded; that is we can get rid of the brackets [·] and improve the domain
even further. Applications of our main two results are given in the setting of the
Hardy-Littlewood maximal operator and the Hilbert transform.

We also study the same extrapolation problem for operators bounded on Lp,∞

for every p > p0 with constant less than or equal to 1/(p− p0)m and p0 > 1 fixed.
The final section is devoted to study the functional properties of the brackets

spaces that have appeared in our results and in the appendix we present some
further extrapolation results which may be of interest for the applications.

Throughout the text C will denote a constant independent of the parameters
involved (including p). As usual, the symbol . denotes that an inequality ≤
holds up to some constant C, and similarly, ≈ means that both . and & hold.

2. The class A∗

First, let us define the following classes of operators.

Definition 2.1. Let A be a set of measurable functions on (0,∞). We say that
a sublinear operator T is in the class A∗(µ, ν) if, there exists a function a ∈ A
such that, for every f ∈ L0(µ) for which Tf is well defined,

(2.1) (Tf)∗ν(t) .
∫ ∞

0

a(s)f ∗µ(st)ds.

If the measures µ and ν coincide with the Lebesgue measure, we simply write
A∗.

2.1. Examples. Let us first see examples of operators in several classes A∗ or
A∗(µ, ν).
I) Let A = L∞, then:

I.1) The Hardy-Littlewood operator M ∈ A∗ since a(s) = χ(0,1)(s).
I.2) Let T = H be the Hilbert transform. Then, it is known (see [7]) that

(Tf)∗(t) .
1

t

∫ t

0

f ∗(s)ds+

∫ ∞
t

f ∗(s)
ds

s
=

∫ ∞
0

min
(

1,
1

u

)
f ∗(tu)du

and hence, since a(u) = min
(

1, 1
u

)
, H ∈ A∗.

I.3) With the same proof we can include in A∗(µ, ν) all the operators which
are of joint weak type (1, 1;∞,∞) with respect the measures µ and ν (see [8,
Chapter 3]): If µ and ν coincide with the Lebesgue measure these include the
Riesz transform and some singular integral operators.
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I.4) The Laplace transform defined by

Lf(x) =

∫ ∞
0

e−
t
xf(t)

dt

x

clearly satisfies that L ∈ A∗ since

Lf(x) ≤ Lf ∗(x) =

∫ ∞
0

e−tf ∗(tx)dt.

I.5) The Riemann-Liouville operator with parameter α ≥ 1 defined by

Rαf(x) =
1

xα

∫ x

0

(x− t)α−1f(t)dt

is in A∗, since

Rαf(x) =

∫ 1

0

(1− s)α−1f(sx)ds

and hence

(Rαf)∗(t) ≤
∫ 1

0

(1− s)α−1f ∗(st)ds

and the function a(s) = (1− s)α−1χ(0,1)(s) satisfies the required conditions.
II) Let now A be the set of decreasing functions with compact support in (0, 1).
II.1) Clearly again, M ∈ A∗ and Rα ∈ A∗.
II.2) Let

Tϕf(x) = sup
h>0

1

h

∫ h

0

ϕ
( t
h

)
|f(x− t)|dt

where ϕ is a function with compact support in (0, 1). It was proved in [19], that

(Tϕf)∗(ξ) .
∫ 1

0

ϕ∗(t)f ∗(tξ)dt,

and hence Tϕ ∈ A∗. For instance, for every 0 < α ≤ 1, the operators

M+
α f(x) = sup

r>x

1

(r − x)α

∫ r

x

|f(s)|
(r − s)1−αds

and

M−
α f(x) = sup

r<x

1

(x− r)α

∫ x

r

|f(s)|
(s− r)1−αds

are particular operators of this kind. These operators were studied in [19], [23] and
[24] in connection with Cα sumability criterium for the Lebesgue Differentiation
theorem.
II.3) In general, if we have a sublinear operator T which is bounded in L∞ and
satisfies a restricted weak type inequality

T : Lp,1(µ) −→ Lp,∞(ν),
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then standard techniques in interpolation theory show that

(Tf)∗ν(t) .
∫ 1

0

s
1
p
−1f ∗µ(st)dt

and therefore T ∈ A∗(µ, ν). This is the case, for example, for the Hardy-
Littlewood maximal operator and any measure dµ = dν = u(x)dx with u a
weight in the Muckenhoupt class A1; that is M ∈ A∗(u, u) for every u ∈ A1 (see
[25]).
III) Let now 1 ≤ p0 < p1 ≤ ∞ and let us define

Ap0,p1 =
{
a ↓; a(t) ≤ min(t

1
p0
−1
, t

1
p1
−1

),∀t > 0
}
.

Then every operator T of joint weak type (p0,∞; p1,∞) with respect to µ and ν
(see [8, Chapter 3]) satisfies that T ∈ A∗p0,p1(µ, ν).

2.2. Boundedness properties for operators in the classes A∗.

Proposition 2.2. If A is the set of decreasing and bounded functions satisfying∫ ∞
1

a(t)

tα
dt <∞,

for some 0 < α < 1, then for every T ∈ A∗(µ, ν)
i)

T : L1(µ) −→ L1,∞(ν)

is bounded.
ii) There exists p0 such that for every 1 < p < p0

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to C/(p− 1).

Remark 2.3. As we shall see below, in general, estimates of the form ii) need not
imply the weak type (1, 1) boundedness of T . However, the main advantage of
estimates of the form ii) is that, if µ = ν, then these can be iterated to conclude
that

T (n) : Lp,∞(µ) −→ Lp,∞(µ)

is bounded with constant less than or equal to C/(p − 1)n and this will give us
some information at the end-point of the operator T (n) that cannot be obtained
directly from i).

Proof. For simplicity, we omit the measures µ and ν. The first part follows
directly by a simple change of variable since

||Tf ||L1,∞ = sup
t>0

t(Tf)∗(t) ≤ sup
t>0

t

∫ ∞
0

a(s)f ∗(st)ds

= sup
t>0

∫ ∞
0

a
(s
t

)
f ∗(s)ds . ||f ||1.
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On the other hand, by (2.1), it is clear that

(Tf)∗(t) . ||f ||Lp,∞

∫ ∞
0

a(s)
1

(ts)1/p
ds

and hence,

||Tf ||Lp,∞ . ||f ||Lp,∞

∫ ∞
0

a(s)
1

s1/p
ds

≈ ||f ||Lp,∞

(∫ 1

0

a(s)
1

s1/p
ds+

∫ ∞
1

a(s)
1

s1/p
ds

)
= ||f ||Lp,∞(I + II).

Now, to estimate I, we simply use that a is bounded and we get I . 1
p−1

. In

order to estimate II, we observe that for every p < 1/α,∫ ∞
1

a(t)

t1/p
dt ≤

∫ ∞
1

a(t)

tα
dt = C <∞,

and hence the result follows. �

Similarly:

Proposition 2.4. If Ap0,p1 is the set given in example III), then, for every T ∈
A∗p0,p1(µ, ν),
i)

T : Lp0,1(µ) −→ Lp0,∞(ν)

is bounded.
ii) For every p0 < p < p1

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to C
(p−p0)(p1−p) .

Proof. The first part follows again by a simple change of variable since

||Tf ||Lp0,∞ = sup
t>0

t1/p0(Tf)∗(t) ≤ sup
t>0

t1/p0
∫ ∞

0

a(s)f ∗(st)ds

= sup
t>0

t1/p0−1

∫ ∞
0

a
(s
t

)
f ∗(s)ds ≤

∫ ∞
0

s1/p0−1f ∗(s)ds = ||f ||Lp0,1 .

Also,

(Tf)∗(t) . ||f ||Lp,∞

∫ ∞
0

a(s)
1

(ts)1/p
ds

and hence

||Tf ||Lp,∞ . ||f ||Lp,∞

∫ ∞
0

a(s)
1

s1/p
ds . ||f ||Lp,∞

∫ ∞
0

min(s
1
p0
−1
, s

1
p1
−1

)
1

s1/p
ds

≈ ||f ||Lp,∞

(∫ 1

0

s
1
p0
−1 1

s1/p
ds+

∫ ∞
1

s
1
p1
−1 1

s1/p
ds

)
,

from which the result follows. �
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3. Extrapolation on Lp,∞ with p > 1

Let T be a sublinear operator such that for every 1 < p < p0, with p0 fixed,

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m, for some m > 0. For
simplicity in our presentation, we shall start with the case m = 1 and µ = ν the
Lebesgue measure. Since M : Lp −→ Lp,∞ is bounded with constant uniformly
bounded in p, we have that

T ◦M : Lp −→ Lp,∞

is bounded with the same behavior of the constant and, by Antonov’s result

T ◦M : L log1 L log3 L −→ R1

is bounded; that is,

||T (Mf)||R1 .
∫ ∞

0

f ∗(t) log1

1

t
log3

1

t
dt ≈ ||f ||1 +

∫ 1

0

(
1

t

∫ t

0

f ∗(s)ds

)
log3

1

t
dt

≈ ||Mf ||L1,∞ +

∫ 1

0

(Mf)∗(t) log3

1

t
dt.

Therefore, if

E =
{
g ∈ L1,∞; g = Mf, for some f ∈ L1

loc

}
then

T : E ∩ L log3 L −→ R1

is bounded, where the domain set is embedded with the quasi-norm

||f ||L1,∞∩L log3 L
= ||f ||L1,∞ +

∫ 1

0

f ∗(t) log3

1

t
dt.

We denote with the underline notation L log3 L the fact that we only integrate

in (0, 1).
Question: Which is the best space contained in L1,∞ ∩ L log3 L where T is
bounded?

Observe that if we replace the operator M by any operator S such that, for
some positive constant B > 0,

(3.1)
1

B

1

t

∫ t

0

f ∗(s)ds ≤ (Sf)∗(t) ≤ B
1

t

∫ t

0

f ∗(s)ds,

then, with the same argument as before, we get that

T : ES ∩ L log3 L −→ R1

is bounded where

ES =
{
g ∈ L1,∞; ∃f ∈ L1

loc with g = Sf
}
.
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Moreover, for every g ∈ ES,

||Tg||R . CB||g||L1,∞∩L log3 L

being CB a constant depending only on B. Therefore, if for a fixed constant B,
we define EB the set of functions g ∈ L1,∞ such that, there exists an operator S
satisfying (3.1) and a function f with g = Sf , then

T : EB ∩ L log3 L −→ R1

is bounded.

Remark 3.1. Now, if g ∈ EB, then g∗(t) ≈ 1
t

∫ t
0
f ∗(s)ds and hence supt≤y tg

∗(t) ≈
yg∗(y) and limt→0 tg

∗(t) = 0 and, conversely, if supt≤y tg
∗(t) ≈ yg∗(y) and

limt→0 tg
∗(t) = 0 then the function G(y) = supt≤y tg

∗(t) is quasi-increasing,
G(y)/y is decreasing and G(0+) = 0. Therefore, G is quasi-concave and hence
equivalent to a concave function (cf. [8, Chapter 2]); that is

G(y) =

∫ y

0

g̃(s)ds

with g̃ decreasing. Consequently g∗(t) ≈ 1
t

∫ t
0
g̃(s)ds. From here, it follows that

g∗(t) = h(t)
1

t

∫ t

0

g̃(s)ds

with h, h−1 ∈ L∞ and hence there exists a measure preserving transformation
satisfying that

g(x) = h(σ(x))
1

σ(x)

∫ σ(x)

0

g̃(s)ds

and defining Sf(x) = h(σ(x)) 1
σ(x)

∫ σ(x)

0
f ∗(s)ds we obtain that g = Sg̃ and S

satisfies (3.1) for some B.

That is, EB can be essentially described as the set{
g ∈ L1,∞;

1

B
g∗(t) ≤ 1

t

∫ t

0

g̃(s)ds ≤ Bg∗(t), g̃ decreasing

}
,

and we obtain the following result. In fact, we can state it for arbitrary non-
atomic σ-finite measures µ and ν, since in this case every decreasing function
is the decreasing rearrangement, with respect to the corresponding measure, of
some function.

Proposition 3.2. Let T be a sublinear operator such that for 1 < p < p0, with
p0 fixed,

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1). Then, for every B > 0,

T : EB ∩ L log3 L(µ) −→ R1(ν)
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is bounded, where

EB =

{
g ∈ L1,∞(µ);∃h, 1

B
g∗µ(t) ≤ 1

t

∫ t

0

h∗µ(s)ds ≤ Bg∗µ(t)

}
.

Before stating the next result, which is a consequence of this proposition, let
us introduce some notation. Given a quasi-Banach r.i. space X over a measure
space (Ω,Σ, µ), for each p ≥ 1 let us denote

[X]p =

{
g ∈ Lp,∞(µ);

supt≤y t
1/pg∗µ(t)

y
χ[0,1](y) ∈ X̃

}
endowed with the quasi-norm

‖g‖[X]p = ‖g‖Lp,∞ +

∥∥∥∥supt≤y t
1/pg∗µ(t)

y
χ[0,1](y)

∥∥∥∥
X̃

.

Here X̃ denotes the canonical representation of the space X on the line (0,∞),
that is ‖f‖X = ‖f ∗µ‖X̃ . The basic properties of the spaces [X]p will be collected
later (see Section 5).

Theorem 3.3. Let T be a sublinear operator such that for 1 < p < p0 (with p0

fixed)

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1). Then,

T : [L log3 L(µ)]1 −→ R1(ν)

is bounded.

Proof. Let g ∈ [L log3 L(µ)]1 and let H(y) = supt≤y tg
∗
µ(t). Then g∗µ(y) ≤ H(y)/y

and hence there exists k ∈ L∞ with ||k||∞ ≤ 1 such that g∗µ(y) = k(y)H(y)/y.
Let σ be the measure preserving transformation such that g∗µ(σ(x)) = g(x). Then

g(x) = k(σ(x))
H(σ(x))

σ(x)
.

Let us define Tk(f) = T ((k ◦ σ)f). Then clearly Tk satisfies the hypothesis of
the previous proposition. Now

Tg(x) = Tk

(
H(σ(x))

σ(x)

)
and Hσ(x) = H(σ(x))

σ(x)
satisfies that (Hσ)∗µ = H(y)/y with H quasi-concave. Hence,

there exists a concave function G such that

1

2
H(y) ≤ G(y) ≤ 2H(y).



Maŕıa J. Carro and Pedro Tradacete 13

Now, G(y) =
∫ y

0
g(s)ds with g a decreasing function and since g(s) = h∗µ(s) for

some function h, we obtain that Hσ ∈ EB with B = 2. Therefore, by the previous
proposition we have that

||Tg||R1(ν) = ||Tk(Hσ)||R1(ν) . ||Hσ||L1,∞(µ)∩L log3 L(µ) = ||g||[L log3 L(µ)]1 ,

and we are done. �

Remark 3.4. In this remark we shall omit (by simplicity) the measure µ. We
have that

(3.2) L log1 L log3 L ( [L log3 L]1.

Indeed, if g ∈ L log1 L log3 L, then g∗(t) ≤ 1
t

∫ t
0
g∗(s)ds ∈ L log3 L(0, 1), and

hence
supt≤y tg

∗(t)

y
∈ L log3 L. Also g ∈ L1 and hence g ∈ L1,∞. Moreover, the

embedding is strict: if we take g such that

(3.3) g∗(t) =
1

t log1
1
t

log2
1
t

(
log3

1
t

)3

then clearly g /∈ L log1 L log3 L but
supt≤y tg

∗(t)

y
= g∗(y) ∈ L1,∞ ∩ L log3 L(0, 1).

Therefore, this shows that the end-point estimate that we obtain for an oper-
ator T bounded on Lp,∞ with constant less than or equal to 1

p−1
is better than

the one obtained if we only use the information that such operator is of weak
type (p, p) with the same behavior of the constant, as was mentioned in the
introduction.

With the obvious changes, we also obtain the following result:

Theorem 3.5. Let T be a sublinear operator such that

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m. Then,

T : [L(log1 L)m−1 log3 L(µ)]1 −→ Rm(ν)

is bounded.

Moreover
L (log1 L)m log3 L  [L(log1 L)m−1 log3 L]1.

In the case of finite measures, the above result reads as follows:

Corollary 3.6. Let µ and ν be two finite measures and let T be a sublinear
operator such that

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p− 1)m. Then,

T : [L (log1 L)m−1 log3 L(µ)]1 −→ L1,∞(ν)
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is bounded, where now we have

||g||[L (log1 L)m−1 log3 L(µ)]1 =

∥∥∥∥supt≤y tg
∗
µ(t)

y

∥∥∥∥
L (log1 L)m−1 log3 L

.

Corollary 3.7. If {Tj}nj=1 satisfy the hypothesis of Theorem 3.3, then

T1 ◦ T2 ◦ · · · ◦ Tn : [L(log1 L)n−1 log3 L(µ)]1 −→ Rn(µ)

is bounded. In particular, this boundedness is satisfied by the iterated operator
T (n) with T satisfying the hypothesis of Theorem 3.3.

It is clear that if T1 satisfies the hypothesis of Theorem 3.3 and

T2 : Lp(µ) −→ Lp,∞(µ)

is bounded with constant uniform in p > 1, then

T1 ◦ T2 : L (log1 L) log3 L(µ) −→ R1(ν)

is bounded. However we shall prove in our next theorem that we can obtain the
same result for a wide class of operators T2 which do not satisfy necessarily the
uniform bound assumed above. Moreover, T2 may not be bounded on Lp.

Theorem 3.8. Let n ≥ 1, and let us consider An the set of decreasing and
bounded functions such that∫ ∞

1

a(s)(log1 s)
n−1 log3 s

ds

s
<∞.

Let us suppose

T1 : Lp,∞(µ) −→ Lp,∞(µ)

is bounded with constant 1/(p− 1)n and T2 ∈ A∗n. Then

T1 ◦ T2 : L (log1 L)n log3 L(µ) −→ Rn(µ)

is bounded.

Observe that all the examples given in Section 2 except those in III) are in the
class An. The case III) will be considered in the next section.

Proof. The idea is to apply Theorem 3.5 to the operator T1 and work with (T1 ◦
T2)f = T1(T2f). Using (2.1) and the fact that a is decreasing, we have

supt≤yt(T2f)∗µ(t) . supt≤yt

∫ ∞
0

a(s)f ∗µ(st)ds = supt≤y

∫ ∞
0

a
(u
t

)
f ∗µ(u)du

=

∫ ∞
0

a
(u
y

)
f ∗µ(u)du = y

∫ ∞
0

a(s)f ∗µ(sy)ds.

From here, it follows first since a ∈ L∞ that

T2 : L1(µ) −→ L1,∞(µ)



Maŕıa J. Carro and Pedro Tradacete 15

is bounded and hence,

||(T1 ◦ T2)f ||Rn(µ) = ||T1(T2f)||Rn(µ) . ||T2f ||[L(log1 L)n−1 log3 L(µ)]1

= ||T2f ||L1,∞(µ) +

∫ 1

0

supt≤y t(T2f)∗µ(t)

y

(
log1

1

y

)n−1

log3

1

y
dy

. ||f ||1 +

∫ 1

0

(∫ ∞
0

a(s)f ∗µ(sy)ds

)(
log1

1

y

)n−1

log3

1

y
dy

= ||f ||1 +

∫ ∞
0

f ∗µ(s)

(∫ 1

0

a
(s
y

)(
log1

1

y

)n−1

log3

1

y

dy

y

)
ds.

Now, if s ≤ 1,∫ 1

0

a
(s
y

)(
log1

1

y

)n−1

log3

1

y

dy

y
=

∫ s

0

+

∫ 1

s

(
a
(s
y

)(
log1

1

y

)n−1

log3

1

y

)
dy

y

= I + II

To estimate II we simply use that a is bounded and hence

II .
∫ 1

s

(
log1

1

y

)n−1

log3

1

y

dy

y
.
(

log1

1

s

)n
log3

1

s
,

and to estimate I we proceed as follows:

I =

∫ s

0

a
(s
y

)(
log1

1

y

)n−1

log3

1

y

dy

y
=

∫ ∞
1

a(u)
(

log1

u

s

)n−1

log3

u

s

du

u

.
(

log1

1

s

)n−1

log3

1

s

∫ ∞
1

a(u)
(

log1 u
)n−1

log3 u
du

u

.
(

log1

1

s

)n−1

log3

1

s
.

Finally, if s > 1,

III =

∫ 1

0

a
(s
y

)(
log1

1

y

)n−1

log3

1

y

dy

y
≤
∫ 1

0

a
(1

y

)(
log1

1

y

)n−1

log3

1

y

dy

y

and we argue as in the estimation of I to conclude that III ≤ C < ∞. Conse-
quently,

||(T1 ◦ T2)f ||Rn(µ) .
∫ ∞

0

f ∗µ(s)
(

log1

1

s

)n
log3

1

s
ds,

as we wanted to see. �

Remark 3.9. Observe that if we consider the Hardy-Littlewood maximal oper-
ator M on (0, 1), M : Lp,∞(0, 1)→ Lp,∞(0, 1) is bounded with norm less than or
equal to C/(p− 1) and hence, if we apply the previous theorem, we can conclude
that

M ◦M : L (log1 L) log3 L(0, 1) −→ L1,∞(0, 1)
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is bounded, and, except for the log3 L term, this would be the best result that
can be obtained in the sense that (M ◦M)f = M(Mf) ∈ L1,∞ if and only if
Mf ∈ L1(0, 1) and this happens if and only if f ∈ L (log1 L)(0, 1).

Even though the condition of a ∈ A being bounded is satisfied for many op-
erators, we have already seen that this condition implies that such operators are
of weak type (1, 1). If we want to include the cases of operators which are not
bounded on L1, we have to remove the boundedness assumption for the functions
in A. Then looking again at the proof where this property has been used we also
have the following result, which shall be useful for the applications. For simplicity
we state it for a single measure µ, but the same result holds for operators acting
between different measure spaces.

Theorem 3.10. Let n ≥ 1 and let us assume that

(T2f)∗µ(t) .
∫ ∞

0

a(s)f ∗µ(st)ds

where a is decreasing and such that∫ ∞
1

a(s)(log1 s)
n−1 log3 s

ds

s
<∞.

If
T1 : Lp,∞(µ) −→ Lp,∞(µ)

is bounded with constant C/(p− 1)n, then

T1 ◦ T2 : D −→ Rn(µ)

is bounded, where D is the set of functions f such that

||f ||D = ||T2f ||L1,∞ +

∫ 1

0

f ∗µ(s)a(s)
(

log1

1

s

)n
log3

1

s
ds+

∫ ∞
1

f ∗µ(s)ds

is finite.

In particular:

Corollary 3.11. Let µ and ν be finite measures. Let T1 be such that for 1 < p <
p0,

T1 : Lp,∞(µ) −→ Lp,∞(µ)

is bounded with constant 1/(p− 1) and let T2 be such that

(T2f)∗µ(t) ≤
∫ ∞

0

a(s)f ∗µ(st)ds

where a is a decreasing function. Then,

T1 ◦ T2 : D −→ L1,∞(µ)

is bounded where

||f ||D =

∫ 1

0

f ∗µ(s)a(s) log1

1

s
log3

1

s
ds.
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Proof. Let us assume that µ and ν are probability measures. By Theorem 3.10,
we only have to study for which functions f we have that T2f ∈ L1,∞(µ). Now,
since a is decreasing,

||T2f ||L1,∞(µ) = sup
0<t≤1

t(T2f)∗µ(t) ≤ sup
0<t≤1

∫ 1

0

a
(s
t

)
f ∗µ(s)ds .

∫ 1

0

f ∗µ(s)a(s)ds,

and the result follows. �

3.1. Applications. For a general weight u, it is known (see [22]) that

(3.4) (Mf)∗u(t) .
∫ 1

0

Φu(s)f
∗
u(st)ds,

where

Φu(s) = sup
Q

u(Q)

|Q|
(u−1χQ)∗u(u(Q)s).

As a consequence, we have the following applications of our previous results.

Corollary 3.12. Let u be a weight such that for 1 < p < p0 (with p0 fixed)

(3.5)

∫ 1

0

Φu(s)s
−1/pds .

1

(p− 1)m
.

Then

M : [L(log1 L)m−1 log3 L(u)]1 −→ Rm(u)

is bounded.

Proof. It is enough to observe that, by (3.4) and (3.5), we have that

||Mf ||Lp,∞(u) . ||f ||Lp,∞(u)

∫ 1

0

Φu(s)s
−1/pds . ||f ||Lp,∞(u)

1

(p− 1)m
,

and the result follows by Theorem 3.5. �

Also, we have the following result for an integrable weight u.

Corollary 3.13. Let u be an integrable weight satisfying (3.5) and let T be a
sublinear operator bounded on Lp,∞(u) with constant less than or equal to 1/(p−
1). Then

T ◦M : D −→ L1,∞(u)

is bounded where

||f ||D =

∫ 1

0

f ∗u(s)Φu(s) log1

1

s
log3

1

s
ds.

Proof. It is an immediate consequence of Corollary 3.11. �

A similar result could also be stated for a non-integrable weight u using The-
orem 3.10.
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Remark 3.14. If u ∈ Ap, it was proved in [22] that

Φu(s) ≤
||u||1/pAp

s1/p′
,

where

||u||Ap = sup
Q

( 1

|Q|

∫
Q

u
)( 1

|Q|

∫
Q

u1−p′
)p−1

.

Hence, we have the following examples to which the previous corollaries could be
applied:
i) If u ∈ ∩p>1Ap \ A1 and ||u||Ap .

1
(p−1)

, then

Φu(s) ≤
1

s
inf
p>1

s1/p

p− 1
. log1

1

s
.

ii) If u ∈ ∩p>1Ap \ A1 and ||u||Ap . log 1
(p−1)

, then one can easily see that

Φu(s) . log2

1

s
.

Concerning the case of the Hilbert transform, it was proved in [6] that if u ∈
A∞ = ∪p>1Ap, then

(Hf)∗u(t) .
∫ ∞
t/4

(Mf)∗u(s)
ds

s

which combined with (3.4) gives us

(Hf)∗u(t) .
∫ ∞
t/4

∫ 1

0

Φu(v)f ∗u(vs)dv
ds

s
=

∫ 1

0

Φu(v)

∫ ∞
t/4

f ∗u(vs)
ds

s
dv

=

∫ 1

0

Φu(v)

∫ ∞
vt/4

f ∗u(s)
ds

s
dv =

∫ ∞
0

f ∗u(s)

∫ min(4s/t,1)

0

Φu(v)dv
ds

s

=

∫ ∞
0

f ∗u(st)

∫ min(4s,1)

0

Φu(v)dv
ds

s
=

∫ ∞
0

f ∗u(st)Ψu(s)ds

with

Ψu(s) =
1

s

∫ min(4s,1)

0

Φu(v)dv.

As a consequence, we also have the following results:

Corollary 3.15. Let u be a weight in A∞ such that for every 1 < p < p0 (with
p0 fixed)

(3.6)

∫ 1

0

Ψu(s)s
−1/pds .

1

(p− 1)m
.

Then
H : [L(log1 L)m−1 log3 L(u)]1 −→ Rm(u)

is bounded.
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Since a weight in A∞ is not integrable we cannot have the analogue to Corollary
3.13, but using Theorem 3.10 we can conclude the following result.

Corollary 3.16. Let u be an A∞ weight satisfying (3.6) and let T be a sublinear
operator bounded on Lp,∞(u) with constant less than or equal 1/(p− 1). Then

T ◦H : D −→ L1,∞(u)

is bounded where

||f ||D = ||Hf ||L1,∞(u) +

∫ 1

0

f ∗u(s)Ψu(s) log1

1

s
log3

1

s
ds+

∫ ∞
1

f ∗u(s)ds.

We should mention here that, in the case u ∈ A∞, it is known that Hf ∈
L1,∞(u) if for example f ∈ L1(Mu).

Remark 3.17. All the above results lead us to the following considerations: It
is known that, if u is a weight in the Muckenhoupt class u ∈ Ap (see [12], [21]),
then

M : Lp(u) −→ Lp(u)

is bounded with constant C
p−1
||u||1/p−1

Ap
and

(3.7) M : Lp(u) −→ Lp,∞(u)

is bounded with constant C||u||1/pAp
. But, which is the best bound for the norm

||M ||Lp,∞(u)→Lp,∞(u) in terms of p and u?
We could ask the same question in the context of Calderón-Zygmund oper-

ators T . See [18], [27], [28] and the references there quoted for papers dealing
with the behavior of ||T ||Lp(u)→Lp(u). But again, which is the best bound for
||T ||Lp,∞(u)→Lp,∞(u)?

The same question is of interest concerning the norm of the commutator [T, b]
on Lp,∞(u) with T a Calderón-Zygmund operator and b ∈ BMO.

4. Extrapolation on Lp,∞ with p > p0 > 1

Our next goal is to obtain boundedness properties as those given above for
operators T satisfying an estimate that blows up when p tends to p0 > 1. This
happens for the example III) in Section 2 taking into account Proposition 2.4.

Theorem 4.1. Let T be a sublinear operator such that

T : Lp,∞(µ) −→ Lp,∞(ν)

is bounded with constant less than or equal to 1/(p−p0)m for every p > p0. Then:

T : [L(log1 L)m−1(µ)]p0 −→ Rp0
m (ν)

where

||g||Rp0
m (ν) = sup

t>0

( ∫ t
0
g∗ν(s)

p0ds
)1/p0

(1 + log+ t)m
.
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Proof. We have to follow the same steps as in the proof of the case p0 = 1 using
the following facts:
i) Now, the operators S have to be taken satisfying

(4.1)
1

B

(
1

t

∫ t

0

f ∗µ(s)p0ds

)1/p0

≤ (Sf)∗µ(t) ≤ B

(
1

t

∫ t

0

f ∗µ(s)p0 .ds

)1/p0

ii) We have to use (see [14]) that if

T : Lp(µ) −→ Lp,∞(ν)

with constant 1/(p− p0) then

||Tf ||Rp0
m (ν) . ||f ||Lp0 (µ) +

∫ 1

0

(∫ t

0

f ∗µ(s)p0ds

)1/p0(
log1

1

t

)m−1
dt

t
.

In fact, we have to mention here that although the above boundedness is stated
for operators

T : Lp(µ) −→ Lp(ν)

with constant 1/(p− p0), the proof only uses the fact that these operators satisfy
T : Lp(µ) −→ Γp,∞(ν) with the same behavior of the constant, where

||f ||Γp,∞(ν) = sup
t>0

f ∗∗µ (t)t1/p.

But since p is far from p = 1, this space coincides with the space Lp,∞(µ) and
the constant in the equivalence does not blow up when p→ p0.

Then, with the same proof than in Proposition 3.2, we have that, for every
B > 0,

(4.2) T : EB
p0
∩ L (log1 L)m−1(µ) −→ Rp0(ν)

is bounded, where

EB
p0

=

{
g ∈ Lp0,∞(µ);∃h, 1

B
g∗µ(t) ≤

(
1

t

∫ t

0

h∗µ(s)p0ds

)1/p0

≤ Bg∗µ(t),

}
,

and

||f ||Lp0,∞(µ)∩L (log1 L)m−1(µ) = ||f ||Lp0,∞(µ) +

∫ 1

0

f ∗µ(t)t1/p0−1

(
log1

1

t

)m−1

dt.

Let g ∈ [L(log1 L)m−1(µ)]p0 and let H(y) = supt≤y t
1/p0g∗µ(t). Then g∗µ(y) ≤

H(y)/y1/p0 and hence there exists k ∈ L∞ with ||k||∞ ≤ 1 such that g∗µ(y) =

k(y) H(y)

y1/p0
. Let σ be the measure preserving transformation such that g∗µ(σ(x)) =

g(x). Then

g(x) = k(σ(x))
H(σ(x))

σ(x)1/p0
.
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Let us define Tk(f) = T ((k◦σ)f). Then clearly Tk satisfies the same hypothesis
as Tk. Now

Tg(x) = Tk

(
H(σ(x))

σ(x)1/p0

)
and Hσ(x) = H(σ(x))

σ(x)1/p0
satisfies that (Hσ)∗µ(y) = H(y)/y1/p0 with Hp0 quasi-

concave. Hence, there exists a concave function G such that

1

21/p0
H(y) ≤ G(y)1/p0 ≤ 21/p0H(y)

Now, G(y) =
∫ y

0
g(s)ds with g a decreasing function and since g(s) = h∗µ(y)p0 for

some h, we have that Hσ ∈ EB
p0

with B = 21/p0 . Therefore, by (4.2) we have that

||Tg||Rp0
m

= ||Tk(Hσ)||Rp0
m
. ||Hσ||Lp0,∞(µ)∩L(log1 L)m−1(µ)

= ||Hσ||Lp0,∞ +

∫ 1

0

(Hσ)∗µ(t)t1/p0−1

(
log1

1

t

)m−1

dt

= ||g||[L(log1 L)m−1(µ)]p0
,

and we are done.
�

5. Functional properties of the spaces [X]p

Lemma 5.1. Let X be a quasi-Banach function space with the weak-Fatou prop-
erty. Then [X]p is also a quasi-Banach function space with the weak-Fatou prop-
erty for every p ≥ 1.

Remark 5.2. Recall that a quasi-Banach function space X has the weak-Fatou
property when for every increasing sequence (fn) in X+ such that supn ‖fn‖X <
∞, there exists f ∈ X such that fn ↑ f almost everywhere.

Proof. It is easy to check that

‖f‖[X]p = ‖f‖Lp,∞ +
∥∥∥ sup
t≤y

t1/pf ∗(t)

y

∥∥∥
X̃

defines a quasi-norm.
Let now (fn) in [X]p, such that fn ≥ 0 and

sup
n
‖fn‖[X]p = sup

n

(
‖fn‖Lp,∞ +

∥∥∥ sup
t≤y

t1/pf ∗n(t)

y

∥∥∥
X̃

)
<∞.

Since Lp,∞ is weak-Fatou, it follows that there is f ∈ Lp,∞ such that fn ↑ f
almost everywhere. Now, let

gn(y) = sup
t≤y

t1/pf ∗n(t)

y
.
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Clearly, (gn) is an increasing sequence in X̃+ which by hypothesis satisfies supn ‖gn‖X̃ <

∞. Therefore, gn(y) ↑ g(y) almost everywhere to some g ∈ X̃+. Moreover, since
fn ↑ f , we have that

sup
t≤y

t1/pf ∗n(t)

y
↑ sup
t≤y

t1/pf ∗(t)

y
.

This means that supt≤y
t1/pf∗(t)

y
= g(y) almost everywhere, so it belongs to X̃.

This shows that f ∈ [X]p and hence this space has weak-Fatou.
In particular, under these conditions, [X]p is a quasi-Banach space (cf. [26,

2.35]). �

Remark 5.3. (i) Trivially,

[L log3 L]1 ⊂ L1,∞ ∩ L log3 L

and the embedding is also strict. To see this, we observe that if both spaces
coincide, then∫ 1

0

supt≤y tg
∗(t)

y
log3

1

y
dy . ||g||L1,∞ +

∫ 1

0

g∗(t) log3

1

t
dy

and taking g∗(t) = χ(0,r)(t), we need to have that, for every 0 < r < 1∫ 1

0

min
(

1,
r

y

)
log3

1

y
dy . r +

∫ r

0

log3

1

t
dy

which implies

r

∫ 1

r

1

y
log3

1

y
dy . r +

∫ r

0

log3

1

t
dy

and this is clearly false by making r tends to zero.
(ii) Observe also that the function defined in (3.3) is neither in the space L log2 L.
In fact, taking gm such that

g∗m(t) =
1

t log1
1
t

log2
1
t

(
log3

1
t

)2
log4

1
t
· · · logm−1

1
t

(
logm

1
t

)3

one can see that gm ∈ [L log3 L]1 but gm /∈ L log3 L logk L, for any k 6= 3, k < m.

Proposition 5.4.
1) If X ⊂ Y , then [X]p ⊂ [Y ]p for every p ≥ 1.
2) [[X]1]1 = [X]1

Proof. 1) Clear.
2) Notice that in general we have

‖f‖[[X]p]q = ‖f‖Lq,∞ + ‖f‖Lp,∞ +
∥∥∥ sup
y≤x

y
1
p

x
sup
t≤y

t
1
q f ∗(t)

y
χ(0,1)(x)

∥∥∥
X̃

= ‖f‖Lq,∞ + ‖f‖Lp,∞ +
∥∥∥ sup
t≤y

t
1
p

+ 1
q
−1f ∗(t)

y

∥∥∥
X̃
.
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So, in particular
[[X]1]1 = [X]1.

�

Let us now restrict ourselves to the probability measure case. In this situation
we have better properties.

Proposition 5.5. Let X be an r.i. space over a probability space (Ω,Σ, µ):
1) For every 1 ≤ q ≤ p it holds that [X]p ⊂ [X]q
2) [X]p ⊂ X for every p ≥ 1.
3) For a quasi-concave function ϕ on [0, 1] we consider the Marcinkiewicz space

Mϕ = {f ∈ L0(µ) : sup
t
ϕ(t)f ∗µ(t) <∞}.

It holds that [Mϕ]1 = Mϕ isometrically.
4) If the upper Boyd index αX < 1, then there is a constant C > 0 such that

‖f‖X ≤ ‖f‖[X]1 ≤ C‖f‖X .

Proof. Notice that in the probability case we always have X̃ ⊂ L1,∞[0, 1], this
fact together with the inequality

(5.1) f ∗µ(y) ≤ sup
t≤y

tf ∗µ(t)

y

yield that

‖f‖[X]1 ≈
∥∥ sup
t≤y

tf ∗µ(t)

y

∥∥
X̃
.

1) This is clear.
2) It follows from inequality (5.1) that

‖f‖X ≤ ‖f‖[X]1 .

Now, by (1), we obtain that, for any p ≥ 1,

[X]p ⊂ [X]1 ⊂ X.

3) Let ϕ be an increasing function with ϕ(t)
t

decreasing. We have that

‖f‖[Mϕ] = sup
y
ϕ(y) sup

t≤y

tf ∗µ(t)

y
= sup

t
tf ∗µ(t) sup

y≥t

ϕ(y)

y

= sup
t
ϕ(t)f ∗µ(t) = ‖f‖Mϕ .

4) Let M denote the Hardy-Littlewood maximal operator. It follows that

‖f‖[X]1 =
∥∥∥ sup
t≤y

tf ∗(t)

y

∥∥∥
X̃
≤
∥∥∥1

y

∫ y

0

f ∗(t)dt
∥∥∥
X̃
. ‖M‖X→X‖f‖X .

It is well-known that M : X → X is bounded if and only if αX < 1 (cf. [8,
Chapter 3]). �
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As an immediate application, by property (3) in the last proposition, we have
[Lp,∞(0, 1)]1 = Lp,∞(0, 1).

Notice that in general, the properties described in this last proposition are no
longer true for the infinite measure case.

6. Appendix

With a completely similar proof than in Theorem 3.3, we can show the following
result, for which we first need to recall the following definition due to Kalton [20].

Definition 6.1. A space X is said to be logconvex if, for every an ∈ X,∥∥∥∥ ∞∑
n=0

an

∥∥∥∥
X

.
∞∑
n=0

log1 n ||an||X .

The classical example is X = L1,∞ and the following result is interesting since
on many occasions we may have operators for which the unique information that
we have is that

T : Lp,∞(µ) −→ L1,∞

is bounded with constant less than or equal to 1/(p − 1). Observe that if the
measure is finite Lp,∞(µ) ⊂ L1,∞(µ) and hence this condition is weaker than the
one assumed in Theorem 3.3 but as we see from the following result the conclusion
is the same (the proof is completely similar to Theorem 3.3 and we omit it).

Theorem 6.2. Let T be a sublinear operator such that for 1 < p < p0 (with p0

fixed)
T : Lp,∞(µ) −→ X

is bounded with constant less than or equal to 1/(p− 1). Then:
i) if X is a Banach space,

T : [L1(µ)]1 −→ X

is bounded.
ii) if X is logconvex,

T : [L log3 L(µ)]1 −→ X

is bounded.
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