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AND PEDRO TRADACETE

Abstract. We characterize by means of a vector norm inequality the
space of operators that factorize through a p-summing operator from
an Lr-space to an Ls-space. As an application, we prove a domination
result in the sense of Dodds-Fremlin for p-summing operators on Banach
lattices with cotype 2, showing moreover that this cannot hold in general
for spaces with higher cotype. We also present a new characterization
of Banach lattices satisfying a lower 2-estimate in terms of the order
properties of 2-summing operators.

1. Introduction

Factorization of operators on Banach spaces through Lp-spaces is a funda-
mental tool for obtaining results in operator theory. The Maurey-Rosenthal
factorization technique provides such a factorization for operators between
Banach lattices when the adequate concavity/convexity requirements on
the spaces and the operator are fulfilled. In [5, 6], it was proved that the
principles that lie under the arguments that prove these theorems can also
be generalized in order to include in the same scheme other factorization
theorems that can be considered as independent. Essentially, a separation
argument based on the Hahn-Banach Theorem (or equivalently, Ky Fan’s
Lemma) applied to bilinear forms defined by the operators provides a dom-
ination result (in the sense of Pietsch) that can be translated in order to
obtain the factorization result. A relevant result that can be proved as an
application of this technique is the one that relates an inequality of the form∥∥∥( n∑

k=1

|T (λkxk)|s
)1/s∥∥∥

F
≤ K‖(λk)‖t

∥∥∥( n∑
k=1

|xk|r
)1/r∥∥∥

E
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for an operator T : E → F (where E is an r-convex Banach lattice, T is
s-concave and 1/s = 1/t+ 1/r) with the factorization

E(µ)
T //

Mf

��

F (ν)

Lr(µ)
R // Ls(ν)

Mg

OO

(see Theorem 3.1 in [6]). Notice that in this case, the operator R that ap-
pears in the scheme is clearly bounded and carries the concavity properties
of the original operator T .

Let us assume now that the original operator T is p-summing. We want
to factor T through a scheme as the one given above but with the additional
requirement that the operator that provides the factorization also carries
the p-summability. We shall show which is the inequality that must be
fulfilled by an operator T for this to happen. Since by the ideal property
of p-summing operators the converse is always true, the inequality must be
stronger than the one that characterize p-summing operators. Thus, the
first part of this paper is devoted to characterizing the space of operators
that factorize through a p-summing operator defined between an Lr-space
and an Ls-space.

In the second part of the paper we use the results in the second section
to study the domination problem (in Dodds-Fremlin’s sense) for p-summing
operators. Recall that Dodds-Fremlin Theorem [8] asserts that given posi-
tive operators 0 ≤ R ≤ T : E → F between Banach lattices such that E and
F ∗ are order continuous then R is compact whenever T is. This problem
has also been studied for the classes of weakly compact [17], Dunford-Pettis
[12], and strictly singular operators ([9], [10]) among others. However, the
same problem for non-closed operator ideals (such as the ideal of p-summing
operators) does not seem to have been studied in the literature. The main
reason for this appears to be the fact that, in general, “local properties”
of Banach spaces, such as summability, just do not fit properly within the
lattice structure. So, in general we cannot hope to get a statement of the
kind: if 0 ≤ R ≤ T : E → F with T p-summing, then R is p-summing
(see Proposition 3.6). Hence, it might be even more surprising that such a
statement holds if E and F have cotype 2. Namely, if πp(T ) denotes the
p-summing constant of T , that is

πp(T ) = sup
{( m∑

i=1

‖Txi‖p
) 1

p
: sup
‖x∗‖E∗≤1

( m∑
i=1

|〈x∗, xi〉|p
) 1

p ≤ 1
}
,

we show in Theorem 3.3 that for some fixed constant C < ∞, πp(R) ≤
Cπp(T ) whenever 0 ≤ R ≤ T : E → F and both E and F have cotype 2.
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In Section 4 we also present some remarks concerning the constant in-
volved in the domination results, showing that we cannot expect it to be
one even in the simplest cases. More precisely, we show that this is not the
case for absolutely summing operators between `21 and `22, nor for 2-summing
operators between `31 and `22. Notice that in these cases the domination the-
orems hold trivially due to Grothendieck’s inequality, moreover these spaces
have cotype 2.

Our notation regarding Banach lattices and operators is standard. Our
fundamental references on Banach lattices and p-summing operators are [13]
and [7], respectively.

2. Factorization theorems for concave-summing operators
between Banach lattices

Let us start by recalling the definitions of convexity/concavity and lower/upper
estimates for Banach lattices. The connections among these notions and
type/cotype of Banach lattices can be found in [13, 1.d-1.f].

Given a Banach lattice E and a Banach space X, an operator T : E → X
is q-concave for 1 ≤ q ≤ ∞, if there exists a constant M <∞ so that( n∑

i=1

‖Txi‖q
) 1

q

≤M

∥∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥∥, if 1 ≤ q <∞,

or

max
1≤i≤n

‖Txi‖ ≤M

∥∥∥∥ n∨
i=1

|xi|
∥∥∥∥, if q =∞,

for every choice of vectors (xi)
n
i=1 in E. The smallest possible value of M is

denoted by M(q)(T ).
Similarly, an operator T : X → E is p-convex for 1 ≤ p ≤ ∞, if there

exists a constant M <∞ such that∥∥∥∥( n∑
i=1

|Txi|p
) 1

p
∥∥∥∥ ≤M

( n∑
i=1

‖xi‖p
) 1

p

, if 1 ≤ p <∞,

or ∥∥∥∥ n∨
i=1

|Txi|
∥∥∥∥ ≤M max

1≤i≤n
‖xi‖, if p =∞,

for every choice of vectors (xi)
n
i=1 in X. The smallest possible value of M

is denoted by M (p)(T ). Recall that a Banach lattice is q-concave (resp.
p-convex) whenever the identity operator is q-concave (resp. p-convex).
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A Banach lattice E satisfies a lower (resp. upper) p-estimate whenever
there exists a constant M <∞ such that∥∥∥∥ n∑

i=1

xi

∥∥∥∥ ≥M−1
( n∑

i=1

‖xi‖p
) 1

p
(

resp.

∥∥∥∥ n∑
i=1

xi

∥∥∥∥ ≤M

( n∑
i=1

‖xi‖p
) 1

p
)

for every choice of pairwise disjoint elements (xi)
n
i=1 in E.

Definition 2.1. Given a Banach lattice E, a subset A ⊂ E is called r-
convex (for 1 ≤ r <∞) if it is solid and for any x1, . . . , xn ∈ A and scalars

(ai)
n
i=1 such that

∑n
i=1 |ai|r ≤ 1, we have that

(∑n
i=1 |aixi|r

)1/r
∈ A.

Recall that a subset A of a Banach lattice is solid if x ∈ A whenever
|x| ≤ |y| and y ∈ A. It is easy to see that if A ⊂ E is r-convex, then it is
s-convex for every 1 ≤ s ≤ r. In particular, every r-convex set is convex.

Recall that given a Banach space X, the prepolar of a set A ⊂ X∗ is the
set

A0 = {x ∈ X : 〈ϕ, x〉 ≤ 1 ∀ϕ ∈ A}.
The following fact is based on a standard construction (see for instance
[15]).

Lemma 2.2. Given a Banach lattice E and A ⊆ BE∗ an r-convex set, then
the prepolar set A0 generates an r′-concave Banach lattice (where 1

r
+ 1
r′

= 1)
which we denote by E(A), whose norm is given by the Minkowski functional
of A0 and such that there is a (continuous) extended quotient mapping QA :
E → E(A) with dense range.

Proof. Let φ denote the Minkowski functional corresponding to A0. Hence,
for x ∈ E we have

φ(x) = inf{λ > 0 : x ∈ λA0} = inf{λ > 0 : 〈ϕ, x〉 ≤ λ ∀ϕ ∈ A}.

Since A is solid, it follows that A0 is a convex, balanced and solid subset of
E with 0 ∈ A0. Hence, φ(·) defines a lattice semi-norm on E. Now, notice
that since A ⊆ BE∗ , it follows immediately that BE = (BE∗)0 ⊆ A0, so in
particular φ(x) ≤ ‖x‖ for every x ∈ E.

Now, let Iφ = {x ∈ E : φ(x) = 0}, which is clearly a closed ideal of E.
Let E(A) denote the completion of the quotient E/Iφ endowed with the
norm induced by φ. It is a Banach lattice. Moreover, since φ(x) ≤ ‖x‖E,
the quotient mapping extends to a lattice homomorphism QA : E → E(A),
whose range is clearly dense.

Let us see now that E(A) is an r′-concave Banach lattice. First notice
that by the definition of Iφ, the duality between an element ϕ of A and any
element x+Kerφ ∈ E/Iφ is well defined by 〈ϕ, x+Kerφ〉 = 〈x, ϕ〉.
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Let us take ε > 0. Given x1, . . . , xn in E+, by the definition of φ,
there are ϕ1, . . . , ϕn ∈ A such that 〈xi, ϕi〉 ≥ ε/n + φ(xi). Hence, since(∑n

i=1 |aiϕi|r
)1/r ∈ A, by [13, Prop. 1.d.2(iii)], for any positive (ai)

n
i=1 with∑n

i=1 a
r
i ≤ 1, we have

n∑
i=1

aiφ(xi) ≤
n∑
i=1

ai〈xi, ϕi〉+ ε ≤
〈( n∑

i=1

|xi|r
′
)1/r′

,
( n∑
i=1

|aiϕi|r
)1/r〉

+ ε

≤ φ
(( n∑

i=1

|xi|r
′
)1/r′)

+ ε.

Therefore, taking suprema over all (ai)
n
i=1 with

∑n
i=1 a

r
i ≤ 1, we get( n∑

i=1

φ(xi)
r′
) 1

r′ ≤ φ
(( n∑

i=1

xr
′

i

) 1
r′
)
.

Since this inequality holds for all x1, . . . , xn in E+ and QA is a lattice ho-
momorphism whose image is dense in E(A), this implies that E(A) is r′-
concave. �

Example 2.3. Let E = L2(0, 1) and consider

A = {f ∈ L2(0, 1) : ‖f‖L2 ≤ 1, fχ[ 1
2
,1] = 0}.

Clearly A is 2-convex in E, and the construction of Lemma 2.2 in this
case yields that E(A) = L2(0,

1
2
), and QA : L2(0, 1) → L2(0,

1
2
) is the

corresponding band projection.

Example 2.4. Let E = Lp(0, 1) and A = BLq′
for q < p (1

p
+ 1

p′
= 1 =

1
q

+ 1
q′

). It follows that A is q′-convex in Lp′(0, 1), and in this case we have

E(A) = Lq(0, 1) and QA : Lp(0, 1) ↪→ Lq(0, 1) is the formal inclusion.

The following result follows the lines of Theorem 3.1 in [6] (see also [5]).
It is a specialized version of this result in which the factorizing operator R is
required to be p-summing. Recall that if E(µ) is a Banach function space,
we write E ′ for its Köthe dual and E∗ for its dual. Also recall that the
p-power of a Banach function space E(µ) (also called p-concavification cf.
[13]) is the space of elements E(µ)[p] = {f ∈ L0(µ) : |f |1/p ∈ E(µ)}. This is

a quasi-Banach lattice endowed with the quasi-norm ‖f‖E(µ)[p] = ‖|f |1/p‖pE,

which is equivalent to a norm whenever the space E(µ) is p-convex (see [14]
for details).

In the following results we assume for the aim of simplicity thatM (p)(E) =
1 and M(s)(F ) = 1; by Proposition 1.d.8 in [13], this is not a restriction on
the lattices E and F .
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Theorem 2.5. Let 1 < s ≤ p < ∞ and t such that 1/s = 1/p + 1/t. Let
1 ≤ r ≤ ∞. Let E(µ) be a Banach function space and F (ν) be an s-concave
Banach function space. Let T : E(µ) → F (ν) be an operator. Then the
following are equivalent:

(1) There is an r′-convex weak* closed set A ⊆ BE∗ and a constant
K > 0 such that for every x1, ..., xn ∈ E(µ) and λ1, ..., λn ∈ K,∥∥∥∥( n∑

k=1

|T (λkxk)|s
) 1

s
∥∥∥∥
F

≤ K‖(λk)‖t sup
x∗∈A

( n∑
k=1

|〈xk, x∗〉|p
) 1

p

.

(2) There exist an r-concave Banach function space E(A), a lattice ho-
momorphism QA (of norm one), a positive function g ∈ BM(Ls(ν),F (ν))

(i.e. defining a multiplication operator) and a p-summing operator
R : E(A)→ Ls(ν) such that the following diagram commutes.

E(µ)
T //

QA

��

F (ν)

E(A)
R // Ls(ν)

Mg

OO

Moreover, in the factorization πp(R) ≤ K.

Proof. Let us prove (1) ⇒ (2). It is a direct consequence of Theorem 3.2 in
[6], that is based in Theorem 1 in [5]; however, since the assumptions in the
definition of Banach function space in these papers are more restrictive than
the ones that we assume here (a version of the Fatou property is assumed
there) we give a sketch of the proof for showing that this requirement is not
needed. For doing this we consider two cases.

(a) F is q-convex for some q > 1. By duality the condition in (1) is
equivalent to( n∑

k=1

|〈T (λkxk), y
∗
k〉|
)
≤ K‖(λk)‖t sup

x∗∈A

( n∑
k=1

|〈xk, x∗〉|p
) 1

p
∥∥∥∥( n∑

k=1

|y∗k|s
′
)1/s′∥∥∥∥

F ∗

for every x1, ..., xn ∈ E, λ1, ..., λk ∈ R and y∗1, ..., y
∗
k ∈ F ∗. Also by duality,

this is equivalent to( n∑
k=1

|〈T (xk), y
∗
k〉|t

′
) 1

t′

≤ K sup
x∗∈A

( n∑
k=1

|〈xk, x∗〉|p
) 1

p
∥∥∥∥( n∑

k=1

|y∗k|s
′
)1/s′∥∥∥∥

F ∗

for every x1, ..., xn ∈ E and y∗1, ..., y
∗
k ∈ F ∗. Now, notice that the map x 

〈x, ·〉 ∈ `∞(A) defines an homogeneous representation of E in the r-convex
lattice `∞(A), in the sense of [5]. In the same way the map y∗  y∗ ∈ F ∗
is the trivial homogeneous representation of F ∗ in F ∗, and so the argument
follows the lines of the proof of [5, Theorem 1]; note that since the space F ∗
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is s′-convex we obtain that (F ∗)[s′] is a Banach function space. Moreover,
F ∗ is also q′-concave with q′ <∞, since F is q-convex. This implies that F ∗

is order continuous (cf. [13, 1.a]). Using all this, we can define the convex
family of concave functions Φ : P(A) × B((F ∗)[s′])

∗ → R, where P(A) is the
set of probability measures on the compact set A, each Φ depending on
finite families of vectors x1, ..., xn ∈ E and y∗1, ..., y

∗
n ∈ F ∗, as

Φ(δ, ψ) := K
t′

p

∫
A

( n∑
k=1

|〈xk, x∗〉|p
)
dδ+K

t′

s′
(
〈
n∑
k=1

|y∗k|s
′
, ψ〉
)
−

n∑
k=1

|〈T (xk), y
∗
k〉|t

′
.

Notice that the Dirac deltas of points of A, when considered in the in-

tegral, attain the maximum in the expression supx∗∈A
(∑n

k=1 |〈xk, x∗〉|p
) 1

p

and the norm in F ∗ is attained by the elements of B((F ∗)[s′])
∗ . Ky Fan’s

Lemma gives a probability measure η ∈ B`∞(A)∗ and other positive func-
tional ϕ ∈ B((F ∗)[s′])

∗ such that for all x ∈ E and y∗ ∈ F ∗,

|〈T (x), y∗〉|t′ ≤ K
t′

p
(

∫
A

|〈x, x∗〉|p dη) +K
t′

s′
ϕ(|y∗|s′).

A simple trick using the homogeneity of these expressions (see the end of
the proof of Theorem 1 in [5]) gives also

|〈T (x), y∗〉| ≤ K(

∫
A

|〈x, x∗〉|p dη)1/pϕ(|y∗|s′)1/s′ .

Now, we take into account that F and F ∗ are order continuous, as has
been already mentioned above. Then clearly (F ∗)[s′] is order continuous
too. Therefore ((F ∗)[s′])

′ = ((F ∗)[s′])
∗ and M(Ls(µ), F ) = M(F ∗, Ls′(µ)) =

(((F ∗)[s′])
′)[1/s′] (isometrically).

Thus, we obtain that there is a probability measure η and a function
0 ≤ ω ∈ L0(µ) in BM(Ls(µ),F ) such that

|〈T (x), y∗〉| ≤ K
(∫

A

|〈x, x∗〉|pdη
)1/p(∫

|y∗|s′ωs′dν
)1/s′

for every x ∈ E and y∗ ∈ F ∗.
Consequently, we obtain the inequality(∫ ( |T (x)|

ωs′
)s
ωs
′
dν
)1/s

=
(∫ |T (x)|s

ωs
dν
)1/s
≤ K

(∫
A

|〈x, x∗〉|pdη
)1/p

. (∗)

(b) F is not q-convex for any q > 1. In this case a convexification
procedure must be used, exactly as it is described in the proof of [6, Theorem
3.2]: since F is a Banach function space, the 1/2-th power F[1/2] of F is 2-
convex. Then, changing the multiplication by scalars defined in both spaces
`∞(A)[1/2]r = `∞(A) and F[1/2], it is possible to define a homogeneous form
uT : `∞(A) × (F[1/2])

′ → R such that the arguments in (a) can also be
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applied (notice that the bilinearity of the map (x, y∗) 〈T (x), y∗〉 has not
been used in the arguments above: only homogenity is needed). Therefore,
the inequality (*) obtained in case (a) also holds for this case.

By Pietsch’s domination theorem, the inequality (*) can be understood
as p-summability of the operator T : E(A) → Ls(dν/ω

s), at least for the
elements of E(A) that are the image by QA of elements in E, for which
the operator is defined. But notice that we have shown that the operator
T can be considered as taking values in Ls(dν/ω

s), and by Lemma 2.2
the operator T can be extended to E(A), since the image of E by QA is
dense in E(A). Let us denote this extension by T0 : E(A) → Ls(µ/ω

s),
for which we have πp(T0) ≤ K. Now, if we consider the multiplication
isometry M1/ω : Ls(µ/ω

s) → Ls(µ), then the map M1/ω ◦ T0 is also p-
summing. Therefore, we have that the composition R = M1/ω ◦ T0 is a
p-summing operator from E(A) to Ls(ν) with πp(R) ≤ ‖M1/ω‖πp(T0) ≤ K.
Considering the multiplication operator Mg given by g = ω, this provides
the desired factorization.

The converse is given by the following straightforward computations. For
every x1, ..., xn ∈ E(µ) and λ1, ..., λn ∈ R,

∥∥∥( n∑
k=1

|λkT (xk)|s
)1/s∥∥∥

F
=

∥∥∥( n∑
k=1

|λkMg(R(QA(xk)))|s
)1/s∥∥∥

F

≤
∥∥∥g( n∑

k=1

|λkR(QA(xk))|s
)1/s∥∥∥

F

≤ ‖Mg‖
( n∑
k=1

∫
|λkR(QA(xk))|s dµ

)1/s
≤ ‖Mg‖ ‖(λk)‖t

( n∑
k=1

‖R(QA(xk))‖p
)1/p

≤ ‖Mg‖ ‖(λk)‖t πp(R) sup
y∗∈U

( n∑
k=1

|〈xk, y∗〉|p
)1/p

where U = Q∗A(BE(A)∗) is an r′-convex weak*-closed set included in BE∗ .
This proves the result. �

Remark 2.6. A key observation for the next section, which follows from
the previous proof, is the fact that the factorization given in Theorem 2.5
behaves well with respect to the Banach lattices order. That is, if 0 ≤ S ≤
T : E → F and T satisfies the conditions of the Theorem, then there is a
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similar factorization for S. Namely,

E
S //

QA

��

F

E(A)
P // Ls

Mg

OO

where 0 ≤ P ≤ R : E(A) → Ls. Notice that this does not follow directly
from Pietsch’s Factorization theorem (see also Remark 3.4).

Corollary 2.7. Let 1 < s ≤ p <∞ and let t be such that 1/s = 1/p+ 1/t.
Let 1 ≤ r ≤ ∞. Let E(µ) and F (ν) be r-convex and s-concave Banach
function spaces, respectively. Suppose also that E is σ-order continuous
and let T : E(µ)→ F (ν). Then the following are equivalent:

(1) There is an r′-convex weak* closed set A ⊆ BE∗ such that for every
x1, ..., xn ∈ E(µ) and λ1, ..., λn ∈ K,∥∥∥( n∑

k=1

|T (λkxk)|s
) 1

s
∥∥∥
F
≤ ‖(λk)‖t sup

x∗∈A

( n∑
k=1

|〈xk, x∗〉|p
) 1

p
.

(2) There exist positive functions f ∈M(E(µ), Lr(µ)) and g ∈M(Ls(ν), F (ν)),
as well as a p-summing operator R : Lr(µ)→ Ls(ν) such that

E(µ)
T //

Mf

��

F (ν)

Lr(µ)
R // Ls(ν)

Mg

OO

Moreover, in this case πp(R) ≤ K.

Proof. Let us see (1) ⇒ (2). An application of Theorem 2.5 gives a fac-
torization T = Mg ◦ R0 ◦ QA where R0 : E(A) → Ls(ν) is p-summing.
Therefore, the positive operator QA is defined from an r-convex Banach
function space into an r-concave Banach lattice, so by Krivine’s theorem
[13, Theorem 1.d.11] QA factorizes through a scheme QA = S ◦Mf , where
Mf : E(µ)→ Lr(µ) is a multiplication operator and S : Lr(µ)→ E(A) (see
also [5, Corollary 5] or [14, Corollary 6.17]). Notice also that R = R0 ◦ S is
p-summing, since R0 is. The desired factorization is thus obtained. For the
converse, just adapt the final computations in the proof of Theorem 2.5. �

Remark 2.8. A simple duality argument shows that in the case that E is
not σ-order continuous the result remains valid whenever T ′(F ′(ν)) ⊂ E ′(µ).

Remark 2.9. Notice that a simple argument similar to the one that proves
Theorem 2.5 gives the equivalence between the following statements for an
operator T between Banach function spaces E(µ) and F (ν).
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(1) There exist an r-convex set A ⊆ BE∗ and a constant K > 0 such
that for every x1, · · · , xn ∈ E,( n∑

k=1

‖T (xk)‖p
)1/p
≤ K sup

ϕ∈A

( n∑
k=1

|〈xk, ϕ〉|p
)1/p

.

(2) There is an r-concave Banach lattice E(A), a (norm one) lattice
homomorphism QA : E → E(A) with dense range and a p-summing
map R such that the following diagram commutes.

E(µ)
T //

QA ##GG
GG

GG
GG

G
F (ν)

E(A)

R

;;wwwwwwww

Moreover, if this holds, πp(R) ≤ K. Note that r-convexity/s-
concavity conditions for E or F respectively are not needed in this
case.

3. Dodds-Fremlin domination for p-summing operators

As an application of the factorization results given in the previous section,
we present several results regarding the domination problem for p-summing
operators. We are interested in finding out conditions on Banach lattices E
and F such that whenever 0 ≤ R ≤ T : E → F and T is p-summing, then
R is also p-summing. Precisely, if πp(T ) denotes the p-summing norm of T ,
then we would like to know whether or not there exists a constant C <∞
such that πp(R) ≤ Cπp(T ) whenever 0 ≤ R ≤ T : E → F . In the next
section, we present some remarks concerning the constant C involved, in
particular we show that this constant cannot be avoided (i.e. C = 1) even
in the simplest finite dimensional cases.

Notice that this problem is not trivial in general. Indeed, [9, Examples
3.12 and 3.14] provide positive operators which are p-summing and dominate
operators which are not strictly singular. A direct application of Dvoretzky-
Rogers Theorem (cf. [7, p. 2]) shows these dominated operators are not
p-summing as well.

Recall that a sequence (xn) in a Banach space X is weakly p-summable if

supx∗∈BX∗

(∑
n |〈x∗, xn〉|p

) 1
p is bounded, equivalently xn = T (en) for some

T : `p′ → X (where (en) is the unit vector basis of `p′ and 1
p

+ 1
p′

= 1).

Similarly, (xn) is called strongly p-summable when
(∑

n ‖xn‖p
) 1

p converges.
Hence, an operator T : E → F is p-summing if it maps weakly p-summable
sequences into strongly p-summable. The main obstruction that avoids a
general domination result for p-summing operators stems from the fact that
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weak summability is not a lattice property. Namely, the sequence (|xn|)
need not be weakly p-summing although (xn) was. This is just because an
operator T : `p′ → E need not have a bounded modulus (cf. [1]).

There is a connection with the restricted class of “positive p-summing”
operators, introduced in [3], which are exactly those for which the afore-
mentioned problem is no longer an obstruction. In particular, a domination
theorem holds trivially for this class. Notice that this terminology might be
misleading: a p-summing operator which is positive need not be a “positive
p-summing” operator.

Our analysis mainly focuses on the class of 2-summing operators, whereas
many of the results given here can be easily extended to the general case of
p-summing operators.

In order to motivate the first positive results, we consider operators on
a Hilbert space. In finite dimension, an operator T : `n2 → `n2 can be con-
sidered as an n × n matrix (aij)

n
i,j=1. Clearly, `n2 with the coordinate-wise

ordering becomes a Banach lattice, where two operators T = (aij) and
R = (bij) satisfy 0 ≤ R ≤ T whenever 0 ≤ bij ≤ aij for every i, j = 1, . . . , n.
Notice that for operators on Hilbert space, the classes of 2-summing oper-
ators and Hilbert-Schmidt operators coincide. Moreover

π2(aij) =
( n∑
i=1

n∑
j=1

a2ij

) 1
2
,

Hence, it is clear that π2(R) ≤ π2(T ) whenever 0 ≤ R ≤ T : `n2 → `n2 . Note
that the same proof works for operators on the infinite dimensional `2. We
present below a more general argument for operators into a general Hilbert
space (see Proposition 3.2).

However, there exist other simple cases in which a domination theorem
holds. Recall that a Banach lattice E is an AM-space if ‖x∨y‖ = ‖x‖∨‖y‖
for any x, y ∈ E+. Typically, these spaces are of the form C(K) or L∞(µ).

Proposition 3.1. Let 0 ≤ R ≤ T : E → F be positive operators from an
AM-space E to Banach lattice F . If T is p-summing for some 1 ≤ p <∞,
then R is p-summing.

Proof. By [13, Theorem 1.d.10], every positive operator from a C(K) is
p-summing if and only if it is p-concave. The result follows from the fact
that( n∑

k=1

‖R(xk)‖p
) 1

p ≤
( n∑
k=1

‖T (|xk|)‖p
) 1

p ≤M(p)(T )
∥∥∥( n∑

k=1

|xk|p
) 1

p
∥∥∥.
�

The following proposition will be useful.
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Proposition 3.2. Let 0 ≤ R ≤ T : E → L2(µ). If T is absolutely summing,
then so is R. Moreover, π1(R) ≤ Cπ1(T ).

Proof. If T is absolutely summing, then it is 1-concave (see [13, p. 56]). In
particular, R is also 1-concave, and by Krivine’s theorem [13, Thm. 1.d.11]
R can be factored through an L1 space. Thus, by Grothendieck’s theorem
(cf. [7, Theorem 3.4]) R is absolutely summing. �

As we will see in Section 4, we cannot remove the constant C in Propo-
sition 3.2. This can be shown even considering operators from `21 to `22.

We present next our main result on domination. Recall that a Banach
lattice has cotype 2 if and only if it is 2-concave. In a certain sense, Theorem
2.5 allows us to reduce to the case of operators into L2(µ), and then apply
Proposition 3.2.

Theorem 3.3. Let 1 ≤ p <∞. Given Banach lattices E and F with cotype
2 and 0 ≤ S ≤ T : E → F , if T is a p-summing operator, then S is also
p-summing with πp(S) ≤ Cpπp(T ). Where here Cp is a universal constant
(depending only on p and the cotype constants of E and F ).

Proof. First of all, since both E and F have cotype 2, it follows that for
every 1 < p < ∞, the class of p-summing operators coincides with that of
absolutely summing operators (cf. [7, Corollary 11.16]). In particular, T is
2-summing.

Now, using Pietsch Domination Theorem (cf. [7, 2.12]), together with
Khintchine’s Inequality, we can deduce that for every x1, · · · , xn ∈ E, the
following inequality holds(∫ 1

0

∥∥∥ n∑
i=1

ri(t)T (xi)
∥∥∥2dt) 1

2 ≤ C ′ sup
{( n∑

i=1

|〈x∗, xi〉|2
) 1

2
: x∗ ∈ BE∗

}
.

Actually, C ′ can be taken equal to = B2π2(T ), where B2 is the constant
appearing in Khintchine’s inequality for L2 (cf. [7, 12.5]).

Furthermore, since F is a 2-concave Banach lattice, Maurey-Khinchine’s
inequality (cf. [13, Theorem 1.d.6]) yields that for every x1, · · · , xn ∈ E, we
have ∥∥∥( n∑

i=1

|T (xi)|2
) 1

2
∥∥∥ ≤ C ′′ sup

{( n∑
i=1

|〈x∗, xi〉|2
) 1

2
: x∗ ∈ BE∗

}
.

In particular, this means that for every x1, . . . , xn in E, and λ1, . . . , λn ∈
K we have∥∥∥( n∑

i=1

|T (λixi)|2)
1
2

∥∥∥
F
≤ ‖(λi)‖∞ sup

x∗∈A

( n∑
i=1

|〈x∗, xi〉|2
) 1

2
,
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where A = BE∗ is a 2-convex set because E is 2-concave. Therefore, The-
orem 2.5 with s = r = 2 (and t = ∞) implies that we can factor T in the
following way

E
T //

R ""EEEEEEEE F

L2(µ)
Mg

<<yyyyyyyy

where R : E → L2(µ) is 2-summing and Mg : L2(µ)→ F is a multiplication
operator for some g ∈ M(L2(µ), F ). Moreover, it can be seen from the
proof of Theorem 2.5 that if 0 ≤ S ≤ T , then S also factors as

E
S //

U ""EEEEEEEE F

L2(µ)
Mg

<<yyyyyyyy

with 0 ≤ U ≤ R : E → L2(µ).
Now, since R : E → L2(µ) is absolutely summing (cf. [7, Corollary

11.16]), Proposition 3.2 implies that U : E → L2(µ) is absolutely summing.
In particular, we get that S is p-summing (for 1 ≤ p <∞) and the proof is
finished. �

Remark 3.4. An important step in the previous proof was the fact that a
positive operator T : E → F (where E and F have cotype 2 and F ′ is order
continuous) which is 2-summing can be factored as

E
T //

R ""EEEEEEEE F

L2(µ)
Mg

<<yyyyyyyy

where R : X → L2(µ) is a positive 2-summing operator and g is a positive
function. This fact, which is a consequence of Theorem 2.5, is still true
without any condition on E.

It is worth noting here that this factorization cannot be obtained as a
particular case of the canonical factorization for 2-summing operators given
by Pietsch’s Theorem, since this factorization cannot be expected to respect
positivity (cf. [7]). Notice that this would imply, in particular, that any
positive 2-summing operator factorizes through an L∞(µ) by positive oper-
ators. We provide an easy counterexample showing this cannot happen in
general.
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Example 3.5. Given n ∈ N, consider the identity operator idn : `n1 → `n1 .
It is well known that π2(idn) ≤

√
n (see [4]). On the other hand, it is easy

to see that ι(idn) = n, where ι denotes the integral norm of the operator.
Now, it can be proved that any positive operator T : L∞(µ) → L1(µ)
is integral with ‖T‖ = ι(T ) (see [4]). This fact, together with the ideal
property of integral operators, tells us that ‖u‖‖v‖ ≥ n for every pair of
positive operators u : `n1 → L∞(µ), v : L∞(µ) → `n1 such that id = v ◦ u.
A standard argument from local theory shows that there exist 2-summing
positive operators from L1(ν) into L1(ν) which do not factorize through any
L∞(µ) by positive operators.

The following result tells us that we cannot expect a positive answer to
the domination problem when the range space has cotype greater than 2.
Recall that a Banach lattice E satisfies a lower 2-estimate whenever there is
a constant M <∞ such that, for every choice of pairwise disjoint elements
(xi)

n
i=1 in E, we have ( n∑

i=1

‖xi‖p
) 1

p ≤M
∥∥∥ n∑
i=1

xi

∥∥∥.
It is well-known that a Banach lattice E which has cotype 2 must also satisfy
a lower 2-estimate, and if E satisfies a lower 2-estimate, then E has cotype
q for every q > 2 [13]. However, there exist Banach lattices which satisfy a
lower 2-estimate but are not of cotype 2 (cf. [13, Example 1.f.19]).

Proposition 3.6. Let E be a Banach lattice with finite cotype. Suppose that
for some constant C < ∞, the 2-summing operators from E to a Banach
lattice F satisfy π2(R) ≤ Cπ2(T ) whenever 0 ≤ R ≤ T : E → F . Then F
satisfies a lower 2-estimate.

Proof. We proceed by contradiction. Suppose that F does not satisfy a
lower 2-estimate. Hence, for every N ∈ N there exist xN1 , . . . , x

N
m disjoint in

F+ such that ( m∑
i=1

‖xNi ‖2
) 1

2
> N

∥∥∥ m∑
i=1

xNi

∥∥∥.
Now, since E has finite cotype, it can be represented as a Banach lattice

of measurable functions on some (Ω,Σ, µ) such that, for some p < ∞, the
inclusions Lp(µ) ↪→ E ↪→ L1(µ) are bounded, say with norm one (cf. [11,
p.14]). We can therefore consider a family (rk) of Rademacher functions on
Ω which are weakly 2-summable with sup{

∑n
k=1〈x∗, rk〉2 : x∗ ∈ BLp} ≤ Bp,

where Bp is the constant appearing in Khintchine’s inequality for Lp(µ)
(hence independent of n).
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Let us now define for N ∈ N the operator TN : E → F given by

TN(f) =

∫
fdµ

m∑
i=1

xNi ,

and RN : E → F given by

RN(f) =
m∑
i=1

(∫
fr+i dµ

)
xNi .

Clearly, these operators satisfy 0 ≤ RN ≤ TN . Moreover, since TN is a rank

one operator it holds that π2(TN) = ‖TN‖ ≤
∥∥∥∑m

i=1 x
N
i

∥∥∥. Meanwhile, since

the Rademacher functions are weakly 2-summable in E, we have

π2(RN) ≥ 1
Bp

(∑m
k=1 ‖RN(rk)‖2

) 1
2

= 1
Bp

(∑m
k=1 ‖

∑m
j=1

∫
rkr

+
j dµx

N
j ‖2
) 1

2

= 1
Bp

(∑m
k=1 ‖

1
2
xNk ‖2

) 1
2

> 1
2Bp

N
∥∥∥∑m

k=1 x
N
k

∥∥∥.
Since this holds for every N ∈ N there cannot be a constant C <∞ such

that π2(R) ≤ Cπ2(T ) holds whenever 0 ≤ R ≤ T : E → F . Hence, we have
reached a contradiction. �

Remark 3.7. Notice that, according to Proposition 3.1, the hypothesis of
finite cotype in the previous construction cannot be removed.

A particular case of the proof of Theorem 3.3 together with Proposition
3.6 actually yield the following characterization of Banach lattices satisfying
a lower 2-estimate.

Theorem 3.8. Let F be a Banach lattice. Then F satisfies a lower 2-
estimate if and only if for every 2-concave Banach lattice E, domination
holds for the ideal Π2(E,F ) of 2-summing operators.

Proof. Suppose F satisfies a lower 2-estimate, and let 0 ≤ R ≤ T : E → F
be such that π2(T ) <∞. Hence, for every x1, · · · , xn ∈ E, we have( n∑

i=1

‖T (xi)‖2
) 1

2 ≤ π2(T ) sup
{( n∑

i=1

|〈x∗, xi〉|2
) 1

2
: x∗ ∈ BE∗

}
.

As in the proof of Theorem 3.3, Pietsch Domination Theorem, together
with Khinchine’s Inequality, imply that(∫ 1

0

∥∥∥ n∑
i=1

ri(t)T (xi)
∥∥∥2dt) 1

2 ≤ B2π2(T ) sup
{( n∑

i=1

|〈x∗, xi〉|2
) 1

2
: x∗ ∈ BE∗

}
.
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Now, since F satisfies a lower 2-estimate, in particular it is q-concave for
every q > 2, so we can also use Maurey-Khinchine’s inequality ([13, Theorem
1.d.6]) and we get∥∥∥( n∑

i=1

|T (xi)|2
) 1

2
∥∥∥ ≤ C sup

{( n∑
i=1

|〈x∗, xi〉|2
) 1

2
: x∗ ∈ BE∗

}
for every x1, · · · , xn ∈ E, and some constant C <∞. Since E is 2-concave,
the set BE∗ is clearly 2-convex, and we can apply Theorem 2.5. The rest of
the argument follows the one given in the proof of Theorem 3.3.

The converse implication follows directly from Proposition 3.6. �

Question 3.9. What can we say about the case of operators from a Ba-
nach lattice without cotype 2? Is there a domination theorem if the range
space has cotype 2? Note that there is a domination theorem for absolutely
summing operators, so we cannot expect a counterexample in the form of
3.6.

4. A remark on the constant involved in the domination
theorem

The aim of this section is to show that we can not remove the constant
appearing in Theorem 3.3. We will show that this constant is necessary
even in the simplest cases. In the first example, we will show the existence
of two positive operators 0 ≤ S ≤ T : `21 → `22 such that π1(S) > π1(T ).
Note that these spaces satisfy the conditions of Theorem 3.3. Furthermore,
the domination is trivial here because of the Grothendieck’s Theorem. It
is also interesting to note that we can not expect a similar example for
the 2-summing norm on these spaces. This is a consequence of the non
trivial fact that every operator T from `21 into `22 satisfies ‖T‖ = π2(T ) (see
[2]) and the easy fact that the operator norm is monotone with respect
to domination. However, we will show that if we consider `31, there exist
operators 0 ≤ S ≤ T : `31 → `22 such that π2(S) > π2(T ).

We begin with the example for the 1-summing norm.

Example 4.1. Let 0 < ε < ε0 and consider the operator Tε : `21 → `22
defined by

Tε(e1) = e1 + εe2
Tε(e2) = 1√

2
(e1 + e2).

It is clear that 0 ≤ Tε ≤ Tε′ whenever 0 ≤ ε ≤ ε′. We will see, how-
ever, that π1(Tε) is not an increasing function of ε. Indeed, recall that the
application A : `2∞ → `21 defined by

A(e1) = 1
2
(e1 + e2)

A(e2) = 1
2
(e1 − e2)
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is a linear isometry. Thus, by the injectivity of the ideal of 1-summing
operators, it suffices to compute the 1-summing norm, or equivalently, the
integral norm (cf. [4]) of the operator T̃ε : `2∞ → `22 defined by

T̃ε(e1) = 1
2
((1 + 1√

2
)e1 + (ε+ 1√

2
)e2)

T̃ε(e2) = 1
2
((1− 1√

2
)e1 + (ε− 1√

2
)e2).

An easy computation shows that

π1(Tε) =
1

2
[(2 + ε2 +

√
2(1 + ε))

1
2 + (2 + ε2 −

√
2(1 + ε))

1
2 ].

It is easy to see that this function is decreasing in a certain interval [0, ξ),
for some ξ > 0. Namely, the function π1(Tε) has the following form (see
Figure 4.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.3

1.31

1.32

Figure 1. π1(Tε) as a function of ε

Next, we show an example for the 2-summing norm:

Example 4.2. Consider now the operator Tε : `31 → `22 defined by

Tε(e1) = e1 + εe2
Tε(e2) = 1√

2
(e1 + e2)

Tε(e3) = εe1 + e2.

Due to the simplicity of the operator we are able to compute the exact value
of π2(Tε). Obviously, we have Tε ≥ Tε′ if ε ≥ ε′. We will see that π2(Tε)
does not respect this order.
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It is well known (see for instance [16, Proposition 9.7]) that the 2-summing
norm of this operator can be obtained as

π2(T ) = sup{π2(Tu) : u : `22 → `31, ‖u‖ ≤ 1}.

We will calculate π2(Tε)
2 just to avoid the square root. Then, we have to

solve the following problem:

max{(x1+
1√
2
x2+εx3)

2+(εx1+
1√
2
x2+x3)

2+(y1+
1√
2
y2+εy3)

2+(εy1+
1√
2
y2+y3)

2},

subject to the restrictions

(x1 + x2 + x3)
2 + (y1 + y2 + y3)

2 ≤ 1,
(x1 + x2 − x3)2 + (y1 + y2 − y3)2 ≤ 1,
(x1 − x2 + x3)

2 + (y1 − y2 + y3)
2 ≤ 1,

(−x1 + x2 + x3)
2 + (−y1 + y2 + y3)

2 ≤ 1.

Now, by mean of several changes of variable and because of the “simplic-
ity” of the geometry of the problem, the previous optimization problem can
be reduced to the following one:

max
0≤u≤1

fε(u) =
1

2
{[C(ε)

√
u+ (1 + ε)]2 + (1− u)D(ε)2},

where C(ε) =
√

2 − (1 + ε) and D(ε) = 1 − ε (we save the reader against
the tedious calculations).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.04

1.045

1.05

1.055

1.06

1.065

Figure 2. π2(Tε) as a function of ε
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Now it is easy to see that this function is decreasing in a certain [0, ξ),

for some ξ > 0. Actually, we can represent the function ε 7→
√
fε(uε) or,

which is the same

ε 7→ π2(Tε),

in an interval [0, ξ) (see Figure 4.2).
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