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Abstract. Spectral properties of strictly singular and disjointly strictly singular operators on
Banach lattices are studied. We show that even in the case of positive operators, the whole
spectral theory of strictly singular operators cannot be extended to disjointly strictly singular.
However, several spectral properties of disjointly strictly singular operators are given.

1. Introduction

This note is devoted to the spectral theory of disjointly strictly singular and related classes
of operators. In particular, it is well known that the spectra of positive operators on Banach
lattices have richer structure than general operators. The monographs [23] and [26] are basic
references for this theory.

Moreover, positive operators are a good source of models for applications in other math-
ematical disciplines, such as mathematical economy or biology (see [2]). In particular, in
mathematical biology these operators have been useful for modeling the behavior of growing
systems. In some of these applications, the interest focusses on finding positive equilibria in the
evolution of a given system which turns out to be equivalent to finding positive eigenvectors
for a positive operator (see [6]).

In particular, in [5], it was proved that for a certain class of mutation and selection regimes
there exists a unique positive equilibrium density that is globally stable. This is achieved since
the family of operators Uα, describing the behavior of the system under study, are dominated
by an operator U with some compact power Un:

0 ≤ Uα ≤ U : L1 → L1.

From this fact, by Aliprantis-Burkinshaw’s domination theorem for positive compact operators
[3], it follows that U3n

α are compact operators too, and by Krein-Rutman’s theorem there is a
positive eigenvector fα for each Uα so that (see [5, Theorem 4.1]):

Uα(fα) = r(Uα)fα.

It would be helpful to find out whether this technique can be extended to wider classes of
operators (i.e. wider than the class of operators dominated by a positive compact operator).

As far as the spectral theory is concerned, compact operators have a very nice spectrum:
it is an at most countable set whose only accumulation point is 0, and every non-zero point
in the spectrum is an eigenvalue whose corresponding eigenspace is finite dimensional. So our
first interest will be to understand how the results for compact operators can be extended to
operators with similar spectra.

Moreover, we will study the spectral properties of disjointly strictly singular operators, which
are a natural extension of strictly singular operators on Banach lattices [16]. In particular, we
will show that even in the case of positive operators there exist disjointly strictly singular
operators which are not Riesz. However, an stability property for the eigenvalues of disjointly
strictly singular operators is given (Theorems 4 and 5).
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We will also introduce a related class of operators: Complementedly strictly singular opera-
tors. This class coincides with disjointly strictly singular operators in some spaces and carries
some special structure regarding its spectrum (Corollaries 1 and 2).

The paper is organized as follows. In the next section we present basic facts concerning
Riesz operators and the Krein-Rutman theorem, and in particular, we show that the arguments
used above in Bürger’s application work for positive operators dominated by strictly singular
operators. In Section 3 the spectral properties of disjointly strictly singular operators are
studied. Finally, Section 4 is devoted to the basic properties of the class of complementedly
strictly singular operators, as well as its relation with strictly singular and disjointly strictly
singular operators.

We refer the reader to [1], [22], [23], and [26] for any unexplained terminology concerning
Banach lattices and positive operators.

2. Riesz operators and Krein-Rutman theorem

As usual, given a Banach space X, L(X) (respectively K(X)) denotes the space of bounded
linear (resp. compact) operators T : X → X.

Recall that an operator T ∈ L(X) is called Riesz when every λ ∈ σ(T )\{0} is an isolated point
in σ(T ) and the corresponding spectral projection Pλ(T ) has finite rank [1, §7.5]. Equivalently,
T is a Riesz operator if and only if its essential spectral radius, which is the spectral radius
of the operator in the Calkin algebra L(X)/K(X), is zero. Notice that if T is Riesz, then its
spectrum is at most countable, 0 is the only point in the accumulation of σ(T ), and every
λ ∈ σ(T )\{0} is an eigenvalue which is also a pole of the resolvent R(λ, T ).

It is clear that every compact operator is a Riesz operator, but this is a much larger class.
Recall that an operator is strictly singular (or Kato) if it is never invertible when restricted
to infinite dimensional subspaces. This class was introduced in [21] in connection with the
perturbation of Fredholm operators. In particular, it holds that if S is strictly singular and F
is a Fredholm operator (of index h(F )) then S + F is also Fredholm (with h(S + F ) = h(F )).
In particular, this implies that every strictly singular operator is Riesz (cf. [1]).

Strictly singular operators, due to their infinite dimensional character, provide moreover an
important tool for understanding the geometry of Banach spaces. There is a vast literature
exploiting their properties and several new results related to them (see for instance [9], [15]).

In connection with the application mentioned in the introduction, it would be helpful to
know if a positive operator dominated by a Riesz operator is also Riesz. As far as we know
this problem remains open (see [12] for a discussion on this and other domination problems).
However, a domination result holds for positive strictly singular operators [11]:

Theorem 1. Let E be a Banach lattice, and 0 ≤ S ≤ T : E → E. If T is strictly singular,
then S4 is also strictly singular.

Another important ingredient in Bürger’s application is Krein-Rutman theorem. It is well-
known that the spectral radius of a positive operator is always a point of the spectrum [23,
Proposition 4.1.1]. Krein-Rutman theorem claims that for a positive compact operator T with
non-zero spectral radius r(T ), then r(T ) is an eigenvalue with a positive eigenvector. The proof
of this fact can be extended to positive Riesz operators as follows (cf. [23, Theorem 4.1.4]):

Theorem 2. Let T : E → E be a positive Riesz operator such that r(T ) > 0. Then there exists
a positive x > 0 in E such that T (x) = r(T )x.

Proof. Since T is positive and r(T ) > 0, by [23, Proposition 4.1.1] we have that r(T ) ∈ σ(T ),
and the resolvent R(λ, T ) is a positive operator in E for every λ > r(T ).

Since T is Riesz, it follows that r(T ) is a pole of the resolvent R(λ, T ). Let k be the order of
this pole. Hence,

lim
λ→r(T )

(λ− r(T ))kR(λ, T ) 6= 0
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so, if the limit is taken considering λ > r(T ), then for x ∈ E

S(x) = lim
λ→r(T )+

(λ− r(T ))kR(λ, T )(x)

defines a positive operator which is not identically zero. Let x ∈ E+ be such that S(x) 6= 0.
Since,

(r(T )I − T )S = lim
λ→r(T )

(λ− r(T ))k(λI − T )R(λ, T ) = 0

it follows that r(T )Sx = TSx, so Sx is a positive eigenvector for T . �

We will see now that Krein-Rutman theorem holds for positive operators dominated by
strictly singular operators. It seams natural to ask whether using these results, similar results
to that of [5] can be given, under weaker assumptions (that allow strictly singular operators
into the picture).

Theorem 3. Let E be a Banach lattice and let 0 ≤ S ≤ T : E → E be positive operators with
T strictly singular. If S has non-zero spectral radius r(S) > 0, then S has a positive eigenvector
x > 0 such that S(x) = r(S)x.

Proof. Since T is strictly singular, by Theorem 1, we have that S4 is also strictly singular. In
particular, S4 is a Riesz operator, but this implies that S is also Riesz. Theorem 2 yields the
result. �

Under quite general assumptions, strictly singular operators can be described in terms of
two related notions: AM-compactness and disjoint strict singularity. Recall that an operator
T : E → Y from a Banach lattice E to a Banach space Y is called

• AM-compact if it maps order bounded sets into compact sets,
• disjointly strictly singular if it is not invertible on the span of any disjoint sequence in
E.

A recent result, [10, Theorem 2.4], asserts that for a Banach lattice E with finite cotype, an
operator T : E → Y which is AM-compact and disjointly strictly singular is strictly singular
(see also [13]).

Observe that the spectral theory of AM-compact operators is not as satisfactory as that of
strictly singular operators. First, notice that every operator T : `2 → `2 is AM-compact [23, p.
218], so any compact set K ∈ C can be the spectrum of an AM-compact operator. Moreover,
the shift operator mapping each sequence (x1, x2, . . .) in `2 to (0, x1, x2, . . .), defines a positive
operator S : `2 → `2 with r(S) = 1 (since ‖Sn‖ = 1 for every n ∈ N), but clearly S(x) = x
holds only when x = 0. This shows that Krein-Rutman theorem does not hold for AM-compact
operators.

According to the previous mentioned result from [10], since strictly singular operators have
nice spectral properties and AM-compact operators are as bad as they can be, one might expect
that disjointly strictly singular operators have better spectral properties. The following section
is devoted to this discussion.

3. Spectra of disjointly strictly singular operators

We will focus now on spectral properties of disjointly strictly singular operators. Recall
that an operator T : E → X between a Banach lattice E and a Banach space X is disjointly
strictly singular (DSS) if it is never invertible when restricted to the span of a disjoint sequence.
This class of operators contains that of strictly singular operators and have proved useful for
understanding the properties of strictly singular operators on Banach lattices (see [10], [11],
[27]).

Remark 1. Notice that on an infinite dimensional Banach lattice E, every DSS operator
T ∈ L(E) satisfies 0 ∈ σ(T ).
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On certain spaces, the class of disjointly strictly singular operators coincides with that of
strictly singular operators. This is the case for instance in atomic Banach lattices, C(K) spaces
[24] and L1(µ) spaces:

Proposition 1. Every DSS operator T : L1(µ)→ L1(µ) is strictly singular.

Proof. Let us see that if T : L1 → L1 is DSS, then it is also `2-singular (i.e. T is not invertible
on any subspace isomorphic to `2). Indeed, if this were not the case, then by [4], T would be
invertible when restricted to some subspace of L1 of the form (

⊕
`2)1, which actually consists

of disjoint copies of subspaces isomorphic to `2; thus, T would be invertible on the span of a
disjoint copy of `1. This contradiction shows that T is `2-singular, and by [10, Theorem A], T
must be strictly singular. �

Similarly, we have

Proposition 2. Let E be a p-concave Banach lattice (p < ∞), and T : E → E a regular
disjointly strictly singular operator. If T : L1 → L1 is also disjointly strictly singular, then
T 2 : E → E is strictly singular.

Proof. First notice that since T : E → E is regular, by a change of density we can assume that
T : L1 → L1 is also bounded [28]. If T 2 : E → E is not strictly singular, then by [10], there
must exist a sequence (fn)n in E, equivalent to the unit vector basis of `2, and such that T 2

is an isomorphism when restricted to [fn]. Since T : E → E is disjointly strictly singular, it
follows that in both subspaces [fn] and [Tfn], the norms ‖ · ‖E and ‖ · ‖L1 are equivalent [20].

Thus, the extension T̃ : L1 → L1 preserves an isomorphic copy of `2.
As above, by Bourgain’s characterization of Dunford-Pettis operators on L1 [4], it follows

that T̃ preserves a copy of (
⊕

`2)`1 . However, this is a contradiction with the fact that T̃ is
disjointly strictly singular. �

In the following results, Lp will denote the space Lp[0, 1] endowed with Lebesgue measure,
however everything works for an Lp(µ) space over any finite measure.

For the eigenvalues of a DSS operator on Lp we have the following stability property.

Theorem 4. Let 1 < p < 2 and T : Lp → Lp be a DSS operator. The set of eigenvalues of
T : Lr → Lr for any r ∈ [p, 2) (and their corresponding eigenspaces) is independent of r.

Proof. First, by [18] there is an isometry J : Lp → Lp such that JTJ−1 : L2 → L2 is bounded.
Clearly, since the eigenvalues of T coincide with those of JTJ−1, we can suppose that T is
bounded also on L2. Moreover, by interpolation T : Lr → Lr is also bounded for any r ∈ [p, 2].

Now, for p < r < 2 we clearly have Lr ⊂ Lp. Thus, every eigenvalue (respectively eigenvector)
of T : Lr → Lr is an eigenvalue (resp. eigenvector) of T : Lp → Lp. To see the converse, let λ
be an eigenvalue of T : Lp → Lp and denote

Xλ = ker(λI − T ) ⊆ Lp.

By [19, Proposition 1], Xλ embeds in Lr, so λ is also an eigenvalue (with the same eigenspace)
for T : Lr → Lr. �

In the case of positive DSS operators the previous stability property can be further extended.
Before giving this result we need several facts. Recall that an operator T : E → Y between a
Banach lattice E and a Banach space Y is called M-weakly compact if ‖Tun‖ → 0 for every
disjoint normalized sequence (un) in E. Also recall that an operator T : X → E is called
L-weakly compact if ‖yn‖ → 0 for every disjoint sequence in the solid hull of T (BX).

Lemma 1. Let T : Lp → Lp be a positive operator 1 < p <∞. The following are equivalent:

(1) T is disjointly strictly singular.
(2) T is M-weakly compact.
(3) T is L-weakly compact.
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Proof. Clearly, every M-weakly compact operator is disjointly strictly singular. For the con-
verse, assume T is not M-weakly compact, so there is a disjoint normalized sequence (un) in Lp
such that ‖Tun‖ ≥ α > 0. Observe that (|un|) is also a disjoint normalized sequence, and so
it is equivalent to the unit vector basis of `p. In particular (|un|) as well as (T |un|) are weakly
null sequences of positive elements. It follows that ‖T |un|‖L1 → 0, so by [20], (T |un|) must be
equivalent to a disjoint sequence in Lp. Therefore, the restriction T |[|un|] is an isomorphism, so T
is not DSS. This proves the equivalence of the first two statements. The remaining equivalence
follows from [23, Theorem 3.6.17]. �

Notice that with exactly the same proof this fact also holds for reflexive disjointly homoge-
neous Banach lattices (see [13]).

The following result is an interpolation fact that may be interesting in its own.

Proposition 3. Let T : Lp → Lp be a positive DSS operator for some 1 < p < ∞. Then
T : Lr → Lr is also DSS for every 1 < r <∞.

Proof. First notice that by [28], there is a positive isometry J on Lp such that JTJ−1 : Lr → Lr
is bounded for any 1 ≤ r ≤ ∞. Since the statement for T and JTJ−1 are equivalent, without
loss of generality we replace T with JTT−1.

Given any set A ⊂ [0, 1] of positive measure, let us define the operator PA(x) = χA · x which
is bounded on Lq for every 1 ≤ q ≤ ∞ with ‖PA‖Lq = 1.

Suppose first p ≥ 2. According to [17, Proposition 4.1], we have that for any sequence (An)
of disjoint measurable sets in [0, 1] limn ‖TPAn‖Lp = 0. We claim that for any 1 < r < ∞ it

also holds that limn ‖TPAn‖Lr = 0. Indeed, for 1 < r < p, let 1
r

= θ + 1−θ
p

with θ ∈ (0, 1). For

any sequence (An) of disjoint measurable sets, by Riesz interpolation theorem, we have

‖TPAn‖Lr ≤ ‖TPAn‖θL1
‖TPAn‖

(1−θ)
Lp

→ 0

since ‖TPAn‖L1 is bounded. A similar argument works for p < r <∞ using that ‖TPAn‖L∞ is
bounded.

Now, suppose that T : Lr → Lr is not DSS, by Lemma 1, this means that for some disjoint
sequence (xn) with ‖xn‖r = 1 we have ‖Txn‖r ≥ α > 0. Let An denote the support of the
element xn. Hence,

‖TPAn‖Lr ≥
‖TPAnxn‖r
‖xn‖r

= ‖Txn‖r ≥ α,

which contradicts the fact proved above that limn ‖TPAn‖Lr = 0. Thus, T : Lr → Lr must be
DSS.

It remains to prove the case when p < 2. Again, using [17, Proposition 4.1], it holds that
limn ‖PAnT‖Lp = 0 for any sequence (An) of disjoint measurable sets. Arguing as above, we
can prove that in this case limn ‖PAnT‖Lr = 0 also holds for any sequence of disjoint sets (An)
and any 1 < r <∞.

Now, if T : Lr → Lr is not DSS, then Lemma 1 implies that there exists a disjoint sequence
(yn) in Lr with |yn| ≤ |Txn| for some ‖xn‖r ≤ 1 and such that ‖yn‖r ≥ β > 0. Let An denote
the support of the element yn. Hence,

‖PAnT‖Lr ≥
‖PAnTxn‖r
‖xn‖r

≥ ‖PAnTxn‖r ≥ ‖yn‖r ≥ β,

which contradicts the fact proved above that limn ‖PAnT‖Lr = 0. Therefore, T : Lr → Lr must
be DSS. �

Now, we can finally prove the stability result for eigenvalues of positive DSS operators.

Theorem 5. Let T : Lp → Lp be a positive DSS operator. The set of eigenvalues of T : Lr → Lr
(and corresponding eigenspaces) for 1 < r <∞ is independent of r.
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Proof. Notice that without loss of generality we can assume that T : Lr → Lr is bounded with
‖T‖Lr ≤ 1 for every 1 ≤ r ≤ ∞ [28]. Moreover, by Proposition 3, T : Lr → Lr is DSS for every
1 < r <∞.

Let 1 < r < q <∞. Since Lq ⊂ Lr we have that any eigenvector for T : Lq → Lq is also an
eigenvector for T : Lr → Lr associated to the same eigenvalue. To prove the converse we will
follow the lines of [19, Proposition 1].

Let λ be an eigenvalue of T : Lr → Lr and consider

Xλ = ker(λI − T ) ⊂ Lr.

We will see that Xλ also embeds in Lq. First, since T : Lr → Lr is DSS, by Lemma 1, we have
that T (BLr) is an L-weakly compact set of Lr (see [23, §3.6]). Hence, by [23, Proposition 3.6.2],
for every ε > 0 there is xε in Lr such that

T (BLr) ⊂ [−xε, xε] + εBLr .

Now, if we truncate xε with some Mε > 0 such that(∫
|xε|>Mε

|xε|rdµ
) 1
r ≤ ε,

we then have that

T (BLr) ⊂MεBL∞ + 2εBLr .

Now, since Tx = λx for x ∈ Xλ, for each n ∈ N we have

λnBXλ ⊂ T n(BLr) ⊂ 2MεBL∞ + (2ε)nBLr .

Therefore, for any unit vector x ∈ Xλ we can write x = xn + yn with ‖xn‖∞ ≤ 2Mε
1
|λ|n and

‖yn‖r ≤
(

2ε
|λ|

)n
. Hence, for every n ∈ N we have xn+1 − xn = yn − yn+1 which satisfy

‖xn+1 − xn‖∞ ≤ 4Mε
1

|λ|n+1
, ‖yn − yn+1‖r ≤ 2

( 2ε

|λ|

)n
as long as ε ≤ |λ|

2
.

Since r < q, for θ = r
q

we have

‖xn+1 − xn‖q ≤ ‖xn+1 − xn‖1−θ
∞ ‖yn − yn+1‖θr ≤ 2

(2Mε

|λ|

)1−θ[(2ε)θ

|λ|

]n
which is a summable sequence if ε < |λ|1/θ

2
. Now, since ‖x− xn‖r → 0 we have that

x = x1 +
∞∑
n=1

xn+1 − xn

in Lr, and if ε < |λ|1/θ
2

, this also holds in Lq. This means that for some constant Cq,r > 0 we
have

‖x‖r ≤ ‖x‖q ≤ Cq,r‖x‖r
for every x ∈ Xλ. �

We have seen that disjointly strictly singular operators have in some cases very nice spectral
properties. However, despite DSS operators are closely related to strictly singular, the spectra
of the former does not have any structure in general as the following shows.

Example 1. Given any compact set K ⊂ C, there exists a DSS operator T : Lp → Lp with
1 < p <∞ (p 6= 2), such that σ(T ) = K ∪ {0}.
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Proof. Indeed, given a compact set K ⊂ C, let {λn}∞n=1 be a dense sequence in K. Let T :
Lp → Lp be defined by:

Lp

P

��

T // Lp

[rn]
m // [rn]

J

OO

where (rn) denotes the Rademacher functions which span a complemented subspace in Lp, P
is the corresponding projection, J is an isomorphic embedding, and m : [rn] → [rn] is defined
by

m(
∞∑
n=1

anrn) =
∞∑
n=1

anλnrn.

It is clear that T = JmP is a DSS operator, since so is P (notice that every sequence of
disjoint elements in Lp[0, 1] is equivalent to the unit vector basis of `p while the sequence of
Rademacher functions (rn) is equivalent to the unit vector basis of `2). Moreover, λn is an

eigenvalue of T for every n, so in particular K = {λn}∞n=1 ⊂ σ(T ). Since 0 ∈ σ(T ) always holds
we have the inclusion K ∪ {0} ⊂ σ(T ).

For the converse, let λ /∈ K, λ 6= 0 and pick δ > 0 such that |λ − λn| > δ for every n. This
allows us to consider the operator Sλ : Lp → Lp as follows. Let Lp = [rn]⊕ Y , and define

Sλ : [rn]⊕ Y −→ [rn]⊕ Y∑∞
n=1 anrn + y 7−→

∑∞
n=1

an
λ−λn rn + 1

λ
y

Since δ > 0 and λ 6= 0 it is clear that Sλ is bounded. A straightforward computation shows
also that

(λ− T )Sλ = Sλ(λ− T ) = I.

This proves that λ /∈ σ(T ), so we have σ(T ) = K ∪ {0}. �

The following example provides a positive DSS operator which is not strictly singular nor
even Riesz.

Example 2. Let ∆ = {−1, 1}N be the Cantor group endowed with its Haar measure µ =
Π∞n=1µn, where µn(−1) = µn(1) = 1

2
. For a fixed sequence (εn)n in (0, 1) converging to some

ε ∈ (0, 1) with supn εn < 1, let us consider ν = Π∞n=1νεn, where νεn(1) = 1+εn
2

and νεn(−1) =
1−εn

2
. Let

(Tf)(x) =

∫
∆

f(xy)dν(y).

T is a positive DSS operator on Lp(∆) for 1 < p < 2 whose point spectrum contains the set
{εn1 · . . . · εnk : n1 < . . . < nk, k ∈ N}.

Proof. Since T is defined as convolution by the probability measure ν, it is a contraction on
Lp(∆) for every 1 ≤ p ≤ ∞. Indeed,

‖Tf‖p =
(∫

∆

∣∣∣ ∫
∆

f(xy)dν(y)
∣∣∣pdµ(x)

) 1
p

≤
∫

∆

(∫
∆

|f(xy)|pdµ(x)
) 1
p
dν(y)

=

∫
∆

‖f‖pdν(y)

= ‖f‖p.
Let us consider the characters on ∆ given by rn(x) = xn. It is clear that

(Trn)(x) =

∫
∆

rn(xy)dν(y) = rn(x)

∫
∆

rn(y)dν(y) = εnrn(x).
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And similarly, for any finite set A = {n1, . . . , nk} ⊂ N if we denote wA = rn1 · . . . · rnk , we get

TwA = εn1 · . . . · εnkwA.
This shows the last assertion of the claim concerning the point spectrum of T .

We claim that T is in fact bounded from Lp(∆) to some Lr(∆) with p < r. To show this, by
interpolation, it is enough to prove that for some s < 2, T : Ls(∆)→ L2(∆) is bounded.

It is well known that the family {wA : A ⊂ N, |A| <∞} forms an orthogonal basis of L2(∆)
(called the Walsh basis). Let Wn denote the linear span of {wA : |A| = n}, and notice that the
union

⋃
nWn is dense in Lp(∆), for any 1 ≤ p <∞. Moreover, for s < 2 there is a constant Cs

(which tends to 1 as s→ 2) so that for all f ∈ Wn,

‖f‖2 ≤ Cn
s ‖f‖s

(see [19, §5], [25]). Let 1 < s < 2 be such that supj εjCs < 1. Now, for f ∈ Wn, using the
orthogonality of wA we have

‖Tf‖2 ≤ (sup
j
εj)

n‖f‖2 ≤ (Cs sup
j
εj)

n‖f‖s.

Therefore, since supj εjCs < 1, for any f ∈
⋃
nWn we have ‖Tf‖2 ≤ ‖f‖s. Hence, by the

density of
⋃
nWn in Ls, we see that T : Ls(∆)→ L2(∆) is bounded for some s < 2, as desired.

This proves that T : Lp(∆) → Lp(∆) is disjointly strictly singular, since it factors through
Lr(∆) for some r > p, and `p is not isomorphic to any subspace of Lr(∆). �

Notice, that for every k, εk is an accumulation point in the spectrum of the above defined
operator. Hence, this operator is not a Riesz operator.

4. Complementedly strictly singular operators

In this section we introduce a new class of operators related to strictly singular operators.
We will study their relation with disjointly strictly singular operators as well as their spectral
properties.

Definition 1. Given Banach spaces X and Y , an operator T : X → Y is called complementedly
strictly singular (CSS) if for any complemented subspace Z ⊂ X such that the restriction T |Z
is an invertible operator we must have dim(Z) <∞.

We present now some basic properties of the class of CSS operators:

Proposition 4. CSS(X, Y ) is closed in L(X, Y ).

Proof. Let Tn ∈ CSS(X, Y ) be such that ‖Tn − T‖ → 0 for some T ∈ L(X, Y ). Suppose
T /∈ CSS(X, Y ), then there exists a complemented subspace M ⊂ X with infinite dimension,
such that the restriction T |M is invertible. Therefore, for some α > 0 and every x ∈M we have
‖Tx‖ ≥ α‖x‖.

Let n0 ∈ N be such that ‖T − Tn0‖ ≤ α
2
. Thus, for each x ∈M we have

‖Tn0x‖ ≥ ‖Tx‖ − ‖(T − Tn0)x‖ ≥ α‖x‖ − α

2
‖x‖ =

α

2
‖x‖.

This means that Tn0 is invertible on M , and this is a contradiction with the fact that Tn0 is
CSS. �

Clearly, every strictly singular operator is a CSS operator, however the converse is not true.

Example 3. A CSS operator which is not strictly singular.

Proof. We use the construction given in [10, Theorem C]. Recall that Lr(`q) denotes the Banach
lattice which consists of sequences x = (x1, x2, . . .) of elements in Lr such that

‖x‖Lr(`q) =
∥∥( ∞∑

n=1

|xn|q
) 1
q
∥∥
Lr
<∞.
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Given 1 < r < p < 2 < q <∞ and s ∈ (p, 2) there exists an operator T : Lp → Lr(`q) which is
not invertible on any subspace of Lp isomorphic to `2 nor `p, but it is invertible on a subspace
isomorphic to `s.

Clearly this operator is not strictly singular. Yet, since every complemented subspace of Lp
is either isomorphic to `2 or contains a complemented subspace isomorphic to `p [20], it follows
that T is CSS. �

However, there is a family of spaces where the class of CSS operators coincides with that of
strictly singular. Recall that a Banach space X is called subprojective if every infinite dimen-
sional subspace M ⊂ X, contains another subspace N ⊂ M which is also infinite dimensional
and complemented in X. Hence, it is clear that if X is subprojective every operator T : X → Y
is strictly singular if and only if it is complementedly strictly singular. The family of subprojec-
tive spaces includes the spaces `p (1 ≤ p <∞), c0, Lp(µ) for p ≥ 2, and several other examples
(see [29]).

It is worth noting that a compact perturbation of a CSS operator is also CSS:

Proposition 5. Let T : X → Y be a CSS operator. If S : X → Y is compact, then T + S is
also CSS.

Proof. Let us suppose that (T + S)|M is invertible for some M ⊂ X with dim(M) =∞. Thus,
there is α > 0 such that ‖(T + S)x‖ ≥ α‖x‖ for every x ∈M . Since S is compact, there exists
N ⊂ M of finite codimension in M with ‖S|N‖ < α

2
(cf. [14, III.2.3]). Therefore, for every

x ∈ N we have

‖Tx‖ ≥ ‖(T + S)x‖ − ‖Sx‖ ≥ α‖x‖ − α

2
‖x‖ =

α

2
‖x‖.

Hence, T is invertible on N but since T is CSS, N cannot be complemented in X. Moreover,
since dim(M/N) <∞, the subspace M cannot be complemented in X either. �

In connection with this result, a natural question arises: Is the class of CSS operators between
two Banach spaces a linear subspace of the bounded operators?

4.1. CSS vs. DSS. It is well-known that every sequence of disjoint functions on Lp (1 ≤
p < ∞) spans a complemented subspace isomorphic to `p. It follows that every CSS operator
T : Lp → Y is necessarily DSS. This fact can be extended to the class of disjointly subprojective
Banach lattices. Recall that a Banach lattice E is called disjointly subprojective if for every
disjoint sequence (fn) in E, there is a sequence (gn) of blocks of (fn), such that their span [gn] is
complemented in E. The family of disjointly subprojective Banach lattices includes Lp spaces,
Lorentz Lp,q and Λp

w spaces (for 1 ≤ p <∞) [7].
Although, in general, the classes of DSS and CSS operators need not coincide, on some spaces

they do.

Proposition 6. For any Banach space Y , every operator T : L1(µ)→ Y is CSS if and only if
it is DSS.

Proof. As mentioned above, since every disjoint sequence in L1(µ) spans a complemented sub-
space isomorphic to `1, if T is CSS, then it must be DSS. Conversely, suppose T is DSS but
there is an infinite dimensional subspace X ⊂ L1(µ) such that T |X is invertible. We claim that
this subspace must be reflexive and hence cannot be complemented. Indeed, if X contains a
sequence equivalent to the unit vector basis of `1, then by [8] T would be invertible on the
span of a disjoint sequence equivalent to the unit vector basis of `1. Since T is DSS this cannot
happen, so X does not contain any subspace isomorphic to `1. It follows that X must be
reflexive (cf. [22, Vol. II, Theorem 1.c.5]). �

In general, the classes of CSS and DSS operators are incomparable. The simplest example
of a DSS operator which is not CSS is given by the projection on the span of the Rademacher
functions on Lp for any p 6= 2, P : Lp → Lp. Indeed, this operator is clearly non CSS since it is
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invertible on the span of the Rademacher functions, but it is DSS since every disjoint sequence
in Lp spans a subspace isomorphic to `p.

The next example requires a bit more technology.

Example 4. A CSS operator which is not DSS.

Proof. We build this example by a simple modification of [10, Theorem C]. Let T : Lp → Lr(`q)
be the operator given by this result. Consider now the space Hp which is linearly isomorphic
to Lp and is a discrete Banach lattice with the order induced by the unconditional Haar basis.
Let H : Hp → Lp denote the corresponding isomorphism, and consider the operator

TH : Hp → Lr(`q).

As in Example 3, the operator TH is CSS since it is not invertible on any subspace isomorphic
to `p nor `2 and every complemented subspace of Hp (which is isomorphic to Lp) must contain
one of these spaces. However, the operator TH is not DSS, since by construction, the operator
T is invertible on the span of a sequence (gn) equivalent to the unit vector basis of `s (with
p < s < 2). Using a perturbation argument [22, Vol. I, Prop. 1.a.11] it is easy to see that
one can take a block sequence of the Haar basis in Lp arbitrarily close to (gn) so that TH is
invertible on this disjoint sequence in Hp spanning `s. �

4.2. Spectra of CSS operators. Let us discuss now the spectral properties of CSS operators.
Clearly, if X is infinite dimensional, then 0 is in the spectrum of any CSS operator T : X → X.

Given an operator T : X → X, recall that a subset σ ⊂ σ(T ) is called a spectral set of T if
both σ and σ(T )\σ are closed in the relative topology of σ(T ). It follows from the well-known
Spectral Mapping Theorem (cf. [1, §6.4]) that to any non-trivial spectral set σ of an operator
T we can associate two complemented subspaces Yσ, Zσ of X such that X = Yσ ⊕ Zσ with
T (Yσ) ⊂ Yσ, T (Zσ) ⊂ Zσ in such a way that σ(T |Yσ) = σ and σ(T |Zσ) = σ(T )\σ.

Lemma 2. Let X be a Banach space and T : X → X a CSS operator. Any non-trivial spectral
set σ ⊂ σ(T ) with 0 /∈ σ is finite.

Proof. Let σ be a non-trivial spectral set such that 0 /∈ σ. Hence, as was mentioned above there
exist complemented subspaces Yσ, Zσ of X with T (Yσ) ⊂ Yσ, T (Zσ) ⊂ Zσ and X = Yσ⊕Zσ, in
such a way that

σ(T |Yσ) = σ and σ(T |Zσ) = σ(T )\σ.

Since 0 /∈ σ(T |Yσ), it follows that T |Yσ is invertible. However, T is a CSS operator, so we
must have that dim(Yσ) <∞. This implies that σ = σ(T |Yσ) is a finite set. �

Corollary 1. The spectrum σ(T ) is a finite set if and only if 0 is an isolated point of σ(T ).

Proof. Clearly if 0 is not isolated, then σ(T ) contains infinitely many points. For the converse,
suppose that 0 is an isolated point in σ(T ). Then σ(T )\{0} is a non-trivial spectral set, so by
Lemma 2 it is finite. It follows that σ(T ) is finite as well. �

Corollary 2. All the accumulation points of σ(T ) belong to the connected component of σ(T )
containing {0}.

Proof. Let λ ∈ σ(T ) be an accumulation point which is not in the connected component of
σ(T ) containing {0}. Therefore, there exists two closed and open sets σ1, σ2 in σ(T ) with
σ1∪σ2 = σ(T ) and such that λ ∈ σ1 and 0 ∈ σ2. Now, it follows that σ1 is a non-trivial spectral
set with 0 /∈ σ1, so by Lemma 2, σ1 must be finite. However, since λ is an accumulation point
of σ(T ) belonging to σ1, and since σ1 is open in σ(T ) it follows that σ1 is not finite. This
contradiction proves the result. �
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