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Abstract. Compactness of the iterates of strictly singular operators on Banach lattices is analyzed.

We provide suitable conditions on the behavior of disjoint sequences in a Banach lattice, for strictly

singular operators to be Dunford-Pettis, compact or have compact square. Special emphasis is given

to the class of rearrangement invariant function spaces (in particular, Orlicz and Lorentz spaces).

Moreover, examples of rearrangement invariant function spaces of fixed arbitrary indices with strictly

singular non power-compact operators are also presented.

1. Introduction

A classical result of V. Milman [26] states that every strictly singular endomorphism on an Lp-
space has a compact square. This fact provides a closer connection on Lp-spaces between strictly
singular and compact operators, which have in general a very different behavior. Recall that an
operator between Banach spaces is strictly singular if it is not an isomorphism when restricted to
any infinite dimensional subspace. This class forms a closed operator ideal that contains the compact
operators and was introduced in connection with the perturbation theory of Fredholm operators [19].
In particular, the sum of a strictly singular operator and a Fredholm operator is again Fredholm with
the same index (cf. [22]), and as a consequence, the spectra of strictly singular operators resembles
that of compact operators. However, notice that, unlike compact operators, strictly singular operators
are not stable under duality (cf. [27], [34]) and fail to have invariant subspaces ([29]).

The aim of this paper is to study extensions of Milman’s result on Lp-spaces to wider classes of
Banach lattices. Hence, we are looking for conditions on a Banach lattice ensuring that the square
(or higher powers) of a strictly singular operator to be compact. Moreover, we also present conditions
which imply that the class of strictly singular operators coincides with that of compact or Dunford-
Pettis operators. Our main applications will focus on rearrangement invariant function spaces, espe-
cially classical Lorentz and Orlicz spaces.

The approach here is mainly based on the analysis of disjoint sequences in a Banach lattice arising
from Kadec̆-Pe lczyński’s dichotomy; according to this every subspace of an order continuous Banach
lattice is either strongly embedded in some L1(µ) or has an almost disjoint sequence (cf. [10]). This
and other related facts have consistently proved the importance of disjoint sequences for understanding
the geometry of Banach lattices and the operators on them (cf. [7], [9]). In particular, under some
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natural assumptions, it can be seen that an operator on a Banach lattice which is not strictly singular
must be invertible on the span of some disjoint sequence or on a Hilbert subspace (see [9]).

A key ingredient here is the notion of disjointly homogeneous Banach lattice, introduced recently in
[8]. This class of Banach lattices is defined by the property that every couple of disjoint normalized
sequences share an equivalent subsequence. In particular, this class contains Lp(µ)-spaces (1 ≤ p ≤
∞), Lorentz function spaces (Lp,q and Λ(W, q)), certain classes of Orlicz function spaces and also some
discrete spaces such as Tsirelson space.

Let us mention that a different extension of Milman’s result has been recently studied in [2], where
the authors introduce the classes of Schreier Sξ-singular operators. These are particular kinds of
strictly singular operators which fill the existing gap between the ideal of compact and strictly singular
operators. Thus, it is proved that on a Banach space with a finite number of non-equivalent classes
of Schreier-spreading sequences, the composition of Schreier Sξ-singular operators is compact (see
also [28]). However, this is a rather restricted class of spaces which does not include, for instance,
Lp(µ)-spaces with 1 ≤ p < 2, so the corresponding results for such spaces require also some duality
arguments. Our approach here does not rely on these techniques nor stability under duality for strictly
singular operators on similar Banach lattices.

The paper is structured as follows. In Section 2, general results are given for the square of strictly
singular operators defined on disjointly homogeneous Banach lattices with finite cotype to be compact
(see Theorem 2.9). A partial result in this direction has been obtained in [8] for the class of regular
operators. Moreover, the interesting case of p-disjointly homogeneous Banach lattices is also studied,
i.e. those where every disjoint normalized sequence has a subsequence equivalent to the unit vector
basis of `p (see Theorem 2.11). In particular, for 1-disjointly homogeneous Banach lattices we show
that every strictly singular operator is Dunford-Pettis while in the case of 2-disjointly homogeneous,
every strictly singular operator is already compact. Thus, this well-known fact for Hilbert spaces (due
to Kato) extends to this Banach lattice class (f.i. for Orlicz spaces Lx

2logα(1+x)). This same property
holds also for discrete disjointly homogenous Banach lattices, f.i. Tsirelson type spaces (see Theorem
2.13).

In Section 3 we give applications to Lorentz function spaces Λ(W, q) and Lp,q. These spaces are
disjointly homogeneous and thus the square of strictly singular operators on them are compact. We
also consider the spaces Lp,∞ and the order continuous part Lop,∞. While a similar result for Lop,∞
spaces also holds, we show that this is not the case for Lp,∞ spaces where the connection between strict
singularity and compactness of iterations is more elusive. Section 4 is devoted to Orlicz function spaces.
First, we provide a characterization of when Orlicz function spaces Lϕ are disjointly homogeneous:
namely, the associated set E∞ϕ , in the sense of [21], has to be the function {tp}, for some 1 ≤ p <∞, up

to equivalence. Notice that, this holds for all regular Orlicz functions ϕ satisfying limt→∞
tϕ′(t)
ϕ(t) = p.

The condition E∞ϕ
∼= {tp} implies, in particular, that the upper and lower indices of the Orlicz space

must coincide. However, a more general result for this bigger class does not hold: we provide examples
of minimal Orlicz function spaces Lϕ (in the sense of [22], see also [13]), with equal indices, on which
strictly singular operators with non-compact squares exist. Moreover, using the existence of different
`p-complemented copies, we also provide examples of Orlicz spaces with different lower and upper
indices where strictly singular non power-compact operators exist (see Proposition 4.5).

Finally, Section 5 deals with strictly singular non power-compact operators on general rearrange-
ment invariant spaces having equal indices. Using real interpolation methods we show two different
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constructions of rearrangement invariant function spaces E, one with equal Boyd indices and the other
one with equal lattice indices, such that strictly singular non power-compact operators exist on E (see
Propositions 5.3 and 5.4). The latter example is based on scales of Tsirelson type spaces instead of
different `p-complemented copies. We thank prof. N. J. Kalton for his helpful remarks regarding these
questions.

2. Compact squares of strictly singular operators

Let us first fix some terminology used in the sequel. By an operator we always mean a bounded
linear operator. Given a Banach space E, we will denote by S(E) (respectively K(E)) the space of all
strictly singular (resp. compact) endomorphisms on E. Two elements x, y in a Banach lattice E are
said to be disjoint whenever |x| ∧ |y| = 0, and a sequence (xn) is called disjoint whenever its elements
are pairwise disjoint.

Recall that every order continuous Banach lattice E with a weak unit can be represented as a Banach
lattice of functions over some probability space (Ω,Σ, µ) in such a way that the formal inclusions
L∞(µ) ↪→ E ↪→ L1(µ) are bounded (cf. [23, Theorem 1.b.14]). Also recall the Kadec-Pe lczyński’s
dichotomy for a normalized sequence (xn) in an order continuous Banach lattice E (see [10], [23]):

(1) either (‖xn‖L1) is bounded away from zero,
(2) or there exist a subsequence (xnk) and a disjoint sequence (zk) in E such that ‖zk−xnk‖ −→ 0

as k →∞.

A Banach lattice E has finite cotype (or finite concavity) if there exist M, q <∞ such that for any
(xi)ni=1 in E it holds that ( n∑

i=1

‖xi‖q
) 1
q ≤M

∥∥∥( n∑
i=1

|xi|q
) 1
q
∥∥∥.

This is equivalent to the fact that E does not contain copies of `n∞ uniformly (cf. [23]). Moreover,
every Banach lattice E with finite cotype satisfies the subsequence splitting property ([33]). This means
that every bounded sequence (xn) in E has a subsequence that can be written as xnk = gk + hk, with
|gk| ∧ |hk| = 0, the sequence (gk) being equi-integrable and (hk) disjoint. Recall that a bounded
sequence (gn) in a Banach lattice of measurable functions over a measure space (Ω,Σ, µ) is equi-
integrable if supn ‖gnχA‖ → 0 as µ(A) → 0. Since every Banach lattice with finite cotype is order
continuous, and hence representable as a Banach lattice of functions, this definition is general enough
for our purposes.

Given 1 ≤ p < ∞, a Banach lattice E satisfies an upper (resp. lower) p-estimate if for certain
constant M > 0∥∥∥ n∑

i=1

xi

∥∥∥ ≤M( n∑
i=1

‖xi‖p
) 1
p

(
resp.

∥∥∥ n∑
i=1

xi

∥∥∥ ≥M( n∑
i=1

‖xi‖p
) 1
p
)

for every sequence of disjoint elements (xi) in E. We recall the definition of the indices of a Banach
lattice E:

s(E) = sup{p ≥ 1 : E satisfies an upper p-estimate}

σ(E) = inf{p ≥ 1 : E satisfies a lower p-estimate}
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It holds that 1 ≤ s(E) ≤ σ(E) ≤ ∞. For a rearrangement invariant (r.i.) function space X on [0, 1]
we will also use the Boyd indices which are given by

pX = lim
s→∞

log s
log ‖Ds‖

qX = lim
s→0+

log s
log ‖Ds‖

,

where Ds : X → X is the dilation operator given by (Dsf)(t) = f(t/s) when t ≤ min(1, s) and zero
otherwise (see [23, Section 2.b]). Notice that in general 1 ≤ s(X) ≤ pX ≤ qX ≤ σ(X) ≤ ∞, but this
inequalities can be strict (see [23, p. 132]).

Definition 2.1. A Banach lattice E has property (C) if it is order continuous, and there exist q <∞
and a probability space (Ω,Σ, µ) such that the inclusions Lq(µ) ↪→ E ↪→ L1(µ) hold.

Notice that condition (C) is a very mild assumption. Indeed, every Banach lattice with a weak
order unit (f.i. separable) and finite cotype satisfies property (C) (see [15, p. 14]). Moreover, every
order continuous rearrangement invariant function space on [0, 1] with upper Boyd index qX <∞ also
has property (C) (though it may have trivial cotype, [23, Proposition 2.b.3]).

Given a Banach lattice E and a Banach space X, an operator T : E → X is AM-compact whenever
T ([−x, x]) is a relatively compact set in X for every x ∈ E+ (recall that the order interval [−x, x] is
the set {y ∈ E : |y| ≤ x}). An operator T : E → X is called M -weakly compact if it maps disjoint
sequences in BE to sequences converging to zero. Notice that if an operator is AM-compact and M -
weakly compact then it is compact ([25, Proposition 3.7.4]). Also recall that an operator T : X → Y

is Dunford-Pettis if it maps weakly null sequences to sequences converging to zero.

Definition 2.2. An operator T : X → X is power-compact if there exists some k ∈ N such that T k

is compact.

We refer the reader to [1], [23] and [25] for unexplained notation and terminology regarding Banach
lattices and operator theory, as well as to [6] for an overview on Orlicz and Lorentz spaces.

We will make use of the following fact for strictly singular operators.

Lemma 2.3. Let E be a Banach lattice with property (C). If an operator T ∈ S(E), then every
equi-integrable sequence (gn) has a subsequence such that (T (gnk)) converges for the L1(µ) norm.

Proof. Since E has property (C), there is a probability space (Ω,Σ, µ) such that Lq(µ) ↪→ E ↪→ L1(µ).
Now, let (gn) be an equi-integrable sequence in E. Then for every ε > 0 there exists Mε < ∞, such
that ‖gnχ{|gn|≥Mε}‖ < ε for all n ∈ N. Therefore, for every ε > 0 we have

(gn) ⊂ [−Mε,Mε] + εBE .

Since T : E → E is strictly singular, Lq(µ) has finite cotype and L1(µ) satisfies a lower 2 estimate, by
[9, Proposition 2.5], it follows that T : Lq(µ) ↪→ E → E ↪→ L1(µ) is AM-compact. Since

(T (gn)) ⊂ T ([−Mε,Mε]) + ε‖T‖BE ,

for every ε > 0, and T ([−Mε,Mε]) is a relatively compact set in the norm of L1(µ), we get that
(T (gn)) is also relatively compact. In particular, there is a subsequence such that (T (gnk)) converges
in the norm of L1(µ). �

The following concept, which was introduced in [8], plays a key role throughout the paper.
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Definition 2.4. A Banach lattice E is disjointly homogeneous whenever for every pair of disjoint
normalized sequences (xn), (yn) in E there exist equivalent subsequences. That is, for some increasing
natural number sequence (nk), some constant C > 0 and every scalar sequence (ak)∞k=1 it holds

C−1
∥∥ ∞∑
k=1

akxnk
∥∥ ≤ ∥∥ ∞∑

k=1

akynk
∥∥ ≤ C

∥∥ ∞∑
k=1

akxnk
∥∥.

The class of disjointly homogeneous Banach lattices includes of course Lp-spaces (1 ≤ p ≤ ∞),
but also other rearrangement invariant function spaces such as Lorentz spaces and certain Orlicz
spaces (see Sections 3 and 4). In addition, other now classical spaces such as Tsirelson’s space and its
modifications also belong to this class (cf. [4]).

Definition 2.5. Given 1 ≤ p ≤ ∞, a Banach lattice is called p-disjointly homogeneous if every disjoint
normalized sequence has a subsequence equivalent to the unit vector basis of `p (c0 when p =∞).

It is clear that every p-disjointly homogeneous Banach lattice is disjointly homogeneous. However
p-disjointly homogeneous spaces for 1 ≤ p ≤ ∞ do not exhaust the class of disjointly homogeneous
Banach lattices. For instance, Tsirelson’s space is an example of a disjointly homogeneous Banach
lattice which is not p-disjointly homogeneous for any 1 ≤ p ≤ ∞ (cf. [8]). Before giving the main
result for disjointly homogeneous Banach lattices we consider the following special case:

Theorem 2.6. Let E be a 1-disjointly homogeneous Banach lattice with finite cotype. Every operator
T ∈ S(E) is Dunford-Pettis.

Proof. Let (xn) be a weakly null sequence in E. We claim that (xnk) is equi-integrable for some
subsequence (nk). Indeed, passing to a subsequence we may assume that xn = gn + hn where as
usual (gn) is equi-integrable, (hn) disjoint and |gn| ∧ |hn| = 0. If (hn) were seminormalized then, since
E is 1-disjointly homogeneous, (hn) would have a subsequence equivalent to the unit vector basis of
`1. However, since (gn) must have some subsequence converging weakly to g ∈ E, it follows that
(hn = xn − gn) has a subsequence converging weakly to g. This is impossible since the unit vector
basis of `1 is not weakly Cauchy. Therefore, (xnk) is equi-integrable and Lemma 2.3 implies that,
passing to a further subsequence, (T (xnk)) tends to zero in L1(µ). Now, if (T (xnk)) does not tend
to zero in the norm of E, then, by Kadec-Pe lczyński’s dichotomy (T (xnk)) has a subsequence, still
denoted (nk), which is equivalent to a disjoint sequence, hence equivalent to the unit vector basis of
`1. This yields that for scalars (ak)∞k=1 and some constant C > 0 we have

C
∞∑
k=1

|ak| ≤
∥∥∥ ∞∑
k=1

akT (xnk)
∥∥∥ ≤ ‖T‖∥∥∥ ∞∑

k=1

akxnk

∥∥∥ ≤ ‖T‖( sup
k
‖xnk‖

) ∞∑
k=1

|ak|.

Therefore, T is an isomorphism on a subspace isomorphic to `1, in contradiction with the fact that T
is strictly singular. �

Corollary 2.7. Let E be a 1-disjointly homogeneous Banach lattice with finite cotype. Every operator
T ∈ S(E) has compact square.

Proof. It is clear that a 1-disjointly homogeneous Banach lattice E cannot contain a subspace isomor-
phic to c0 ([23, p. 35]), in particular E is weakly sequentially complete [23, Theorem 1.c.4]. Since, by
Rosenthal’s Theorem [22, Theorem 2.e.5], every non weakly compact operator into a weakly sequen-
tially complete Banach space is an isomorphism on a subspace isomorphic to `1, we therefore conclude
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that every T ∈ S(E) is weakly compact. By Theorem 2.6, every T ∈ S(E) is Dunford-Pettis. Notice
that the composition of a weakly compact with a Dunford-Pettis operator gives a compact operator.
Hence, T 2 is compact. �

We pass to study the compactness of the square of strictly singular operators on disjointly homo-
geneous Banach lattices.

Lemma 2.8. Let E be a disjointly homogeneous Banach lattice with property (C). If T ∈ S(E) then
T 2 is AM-compact.

Proof. Fix x ∈ E+; since E is order continuous it is enough to show that every weakly null sequence
(gk) in [−x, x] has a subsequence such that ‖T 2(gkj )‖ converges to zero. Hence, if ‖T 2(gk)‖ does
not tend to zero in E then, passing to a subsequence, we can assume that (T (gk)) and (T 2(gk)) are
seminormalized. Since T is strictly singular, by Lemma 2.3 we have that both sequences (T (gk))
and (T 2(gk)) tend to zero in the norm of L1(µ). Now, by the Kadec-Pe lczyński’s dichotomy, either
(T 2(gk)) tends to zero in the norm of E or both (T (gk)) and (T 2(gk)) have subsequences equivalent
to disjoint sequences in E. Since E is disjointly homogeneous, the latter case would imply that T is
an isomorphism on the span of some subsequence [T (gkj )], which is a contradiction with the fact that
T is strictly singular. Hence, we must have that T 2(gk)→ 0 in the norm of E, which proves that T 2

is AM-compact. �

Theorem 2.9. Let E be a disjointly homogeneous Banach lattice with finite cotype and an uncondi-
tional basis. Every operator T ∈ S(E) has a compact square.

Proof. By Lemma 2.8 and [25, Proposition 3.7.4], it is enough to show that T ∈ S(E) implies that T 2

is M-weakly compact.
Let (hk) be a disjoint sequence in BE . First notice that a disjointly homogeneous Banach lattice

whose dual is not order continuous is 1-disjointly homogeneous (cf. [25, Theorem 2.4.14]). Thus, by
Corollary 2.7, we can suppose that E∗ is order continuous, which, in particular, implies that (hk) is
weakly null. Let us prove that the sequence (T 2(hk)) tends to zero in norm.

By the subsequence splitting property, passing to a subsequence we can write T (hk) = uk + vk

with (uk) equi-integrable, (vk) disjoint and |vk| ∧ |uk| = 0. If (vk) is seminormalized then, since E is
disjointly homogeneous, there exist a subsequence (kj) and a constant C > 0 such that for any n ∈ N
and scalars (aj)nj=1

C−1
∥∥∥ n∑
j=1

ajvkj

∥∥∥ ≤ ∥∥∥ n∑
j=1

ajhkj

∥∥∥ ≤ C∥∥∥ n∑
j=1

ajvkj

∥∥∥.
Moreover, since E has an unconditional basis and (T (hk)) is weakly null, we can assume, passing to a
further subsequence, that (T (hk)) is an unconditional basic sequence. Hence, using that |vk| ≤ |T (hk)|
and [23, Theorem 1.d.6] we would have∥∥∥ n∑

j=1

ajhkj

∥∥∥ ≤ C
∥∥∥ n∑
j=1

ajvkj

∥∥∥ = C
∥∥∥( n∑

j=1

|ajvkj |
2
) 1

2
∥∥∥

≤ C
∥∥∥( n∑

j=1

|ajT (hkj )|
2
) 1

2
∥∥∥ ≤ CB∥∥∥ n∑

j=1

ajT (hkj )
∥∥∥
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where B is a constant involving the unconditional basis constant of (T (hk)) and the cotype constant
of E. This means that T is invertible on the span of [hkj ] in contradiction with the fact that T is
strictly singular. Therefore, (T (hk)) is equi-integrable, and by Lemma 2.3, the sequence (T 2(hk))
tends to zero in the norm of L1. Now, by Kadec-Pe lczyński’s dichotomy, the sequence (T 2(hk)) is
either equivalent to a disjoint sequence or convergent to zero in the norm of E. Note that since E is
disjointly homogeneous, the first case would lead to a contradiction with the strict singularity of T .
This finishes the proof. �

In most applications, the existence of an unconditional basis on the space is granted. However in
several cases we can safely avoid this assumption:

Lemma 2.10. Let E be an order continuous p-disjointly homogeneous Banach lattice for some 2 ≤
p ≤ ∞. Every operator T ∈ S(E) is M-weakly compact.

Proof. Let (hn) be a normalized disjoint sequence in E. By hypothesis, we can assume, passing to
a subsequence, that it is equivalent to the unit vector basis of `p. By [23, Proposition 1.a.9] we can
consider a closed ideal X of E containing (T (hn)) which can be represented as an order dense ideal
in L1(µ) over some probability space (Ω,Σ, µ) (cf. [23, Theorem 1.b.14]). Since p ≥ 2 the operator
R : `2 → L1(µ) defined by R(

∑
k akek) =

∑
k akT (hk) is well defined and strictly singular. Hence, by

[9, Proposition 2.1], R is compact and so the sequence (T (hn)) tends to zero in the norm of L1(µ).
If (T (hn)) were not convergent to zero in the norm of E, then by Kadec-Pe lczyński’s dichotomy we
could extract a subsequence equivalent to a disjoint sequence, hence equivalent to the unit vector basis
of `p. This would imply that T is an isomorphism on a subspace isomorphic to `p, in contradiction
with the fact that T is strictly singular. This proves that (T (hn)) converges to zero in E, and so T is
M -weakly compact. �

Theorem 2.11. If E is a p-disjointly homogeneous Banach lattice (2 ≤ p ≤ ∞) with property (C),
then every operator T ∈ S(E) has a compact square.

Proof. Lemmas 2.8 and 2.10 yield that every operator T ∈ S(E) is M-weakly compact and has a
AM-compact square. In particular, T 2 is compact [25, Proposition 3.7.4]. �

It is well known that strictly singular operators on L2(µ) spaces are compact. This property is
shared by 2-disjointly homogeneous Banach lattices as the following result shows:

Theorem 2.12. Let E be a 2-disjointly homogeneous Banach lattice with property (C). Every operator
T ∈ S(E) is compact.

Proof. It is clear that E does not contain any sublattice isomorphic to c0 nor `1, hence, E is reflexive
(cf. [1, Theorem 14.23]).

First, let us show that T is AM -compact. Let (gn) be a sequence in [−x, x] for some x ∈ E+. Since
E is reflexive, passing to a subsequence and taking differences, we can assume that (gn) is weakly
null. We will prove that (Tgn) converges to zero in E. Let us suppose that ‖T (gn)‖ ≥ α > 0, for
every n ∈ N. Since |gn| ≤ x and E is order continuous, for every ε > 0 there exists M < ∞, such
that ‖gnχ{|gn|≥M}‖ < ε for all n ∈ N. Since the sequence gMn = gnχ{|gn|<M} is contained in the order
interval [−M,M ], passing to some subsequence we can assume that (gMn ) converges weakly to a certain
g ∈ [−M,M ]. Moreover, since ‖gnχ{|gn|≥M}‖ ≤ ε, and (gn) is weakly null, it follows that ‖g‖ ≤ ε.
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Let zn = gMn − g. Clearly, (zn) is weakly null. Moreover, it holds that

‖Tzn‖ ≥ ‖TgMn ‖ − ‖Tg‖ ≥ ‖Tgn‖ − (‖T (gnχ{|gn|≥M})‖+ ‖Tg‖) ≥ α− 2‖T‖ε,

which is bounded below for ε small enough. Since |zn| ≤ 2M and (zn) is weakly null in E, passing to
a subsequence we can assume that it is an unconditional basic sequence in Lq(µ) with unconditional
constant K. Hence, using [23, Theorem 1.d.6], for some constants C,D <∞, we have∥∥∥ k∑

n=1

anzn

∥∥∥
E
≤ C

∥∥∥ k∑
n=1

anzn

∥∥∥
Lq
≤ CK

∫ 1

0

∥∥∥ k∑
n=1

anrn(t)zn
∥∥∥
Lq
dt

≤ CKD
∥∥∥( k∑

n=1

|anzn|2
) 1

2
∥∥∥
Lq
≤ 2CKDM

( k∑
n=1

|an|2
) 1

2
,

for any sequence of scalars (an)kn=1. Therefore, by [9, Proposition 2.1], ‖T (zn)‖L1 → 0. Hence, if (Tzn)
is not convergent to zero in E, then by Kadec-Pe lczyński’s dichotomy we can extract a subsequence
(still denoted (Tzn)) which is disjoint and equivalent to the unit vector basis of `2. However, this
would yield the following estimation( k∑

n=1

|an|2
) 1

2 ≤ A
∥∥∥ k∑
n=1

anT (zn)
∥∥∥ ≤ A‖T‖∥∥∥ k∑

n=1

anzn

∥∥∥ ≤ B( k∑
n=1

|an|2
) 1

2
,

for certain constants A and B. But this means that T is an isomorphism on a subspace isomorphic
to `2, in contradiction with the strict singularity of T .

Therefore, we can assume that (Tzn) is contained in some Kadec-Pe lczyński set, and since ‖T (zn)‖L1 →
0, this means that ‖T (zn)‖E → 0. In particular, we get

‖T (gn)‖ ≤ ‖T (zn)‖+ ‖T (g)‖+ ‖T (gn − gMn )‖ ≤ ε+ 2‖T‖ε

for n large enough. Since ε was arbitrary this shows that (T (gn)) tends to zero in the norm of E.
Therefore, T is AM -compact.

Finally, Lemma 2.10 yields that T is M -weakly compact. Since the operator T is AM -compact and
M -weakly compact, we conclude, by [25, Proposition 3.7.4], that T is compact. �

When it comes to discrete Banach lattices some additional remarks are in order. In the discrete case
the class of disjointly homogeneous Banach lattices E with a basis of disjoint vectors is a rather small
class, since “most” basic sequences in E are equivalent to disjoint sequences. Among the examples,
apart from the spaces `p or c0, and `p-sums of finite dimensional Banach lattices, we can also consider
the Tsirelson space and some of its generalizations, such as Tsirelson-like spaces Tθ (see [4]), and
Baernstein spaces Bp (see [4, Chapter 0]). However, Lorentz and Orlicz sequence spaces (distinct from
spaces `p) are not disjointly homogenous.

In this discrete setting we can improve Theorem 2.9, obtaining, as a particular case, the known
result which establishes that strictly singular endomorphisms on `p must be compact (cf. [22, p. 76]).

Theorem 2.13. Let E be a discrete Banach lattice with a disjoint basis. If E is disjointly homogeneous
then every operator T ∈ S(E) is compact.

Proof. Suppose first that E∗ is not order continuous, then by [25, Theorem 2.4.14], this is equivalent
to E being 1-disjointly homogeneous, so in particular E does not contain a subspace isomorphic to
c0 and is weakly sequentially complete (cf. [23, Theorem 1.c.4]). Assume T is not compact and let



STRICTLY SINGULAR AND POWER-COMPACT OPERATORS 9

(xn) be a bounded sequence in E such that (T (xn)) has no convergent subsequence. By Rosenthal’s
Theorem, passing to a subsequence, we have that either (T (xnk)) is equivalent to the unit vector basis
of `1 or it is weakly Cauchy. In the first case, for some constant C > 0 and scalars (ai) we have

C
n∑
i=1

|ai| ≤
∥∥ n∑
i=1

aiT (xni)
∥∥ ≤ ‖T‖∥∥ n∑

i=1

aixni
∥∥ ≤ ‖T‖(sup

n
‖xn‖)

n∑
i=1

|ai|,

which contradicts that T is strictly singular.
Alternatively, if (T (xnk)) is weakly Cauchy, we have, since E is weakly sequentially complete,

that (T (xnk)) is weakly convergent. Let us consider the sequence (yk = xn2k
−xn2k+1

). It follows that
(T (yn)) is weakly null and also seminormalized because (T (xn)) has no convergent subsequence. Hence,
since E is discrete, we obtain from [22, Proposition 1.a.12] that the sequence (T (yn)) is equivalent to
a disjoint sequence, and so, passing to a further subsequence, it must be equivalent to the unit vector
basis of `1. Therefore, for some constant M > 0 and scalars (ai) we have

M
n∑
i=1

|ai| ≤
∥∥ n∑
i=1

aiT (yni)
∥∥ ≤ ‖T‖∥∥ n∑

i=1

aiyni
∥∥ ≤ 2‖T‖(sup

n
‖xn‖)

n∑
i=1

|ai|,

which is again a contradiction with the fact of T be strictly singular.
Let us consider now the case that E∗ is order continuous. Since order intervals on a discrete

Banach lattice with a disjoint basis are compact, every operator T : E → E is AM -compact. Hence,
by [25, Proposition 3.7.4] , it suffices to show that every strictly singular operator on E is M-weakly
compact. Let (xn) be a bounded disjoint sequence which, by [25, Theorem 2.4.14], is weakly null.
Suppose that for some α > 0 and some sequence (nk) we have ‖T (xnk)‖ > α for every k ∈ N.
Then, since the sequence (T (xnk)) is also weakly null, by [22, Proposition 1.a.12], and passing to a
further subsequence, we can assume that (T (xnk)) is equivalent to a disjoint sequence in E. Since
E is disjointly homogeneous, this implies that T is an isomorphism on [xnj ] for some subsequence.
Therefore, it cannot happen that ‖T (xnk)‖ > α for any α > 0, that is (T (xn)) tends to zero, and so
T is M-weakly compact. This finishes the proof. �

It would be interesting to know under which conditions the converses of Theorems 2.6, 2.9 and
2.12 hold. For instance, in the case of rearrangement invariant function spaces E on [0, 1], does
S(E) = K(E) imply that E is 2-disjointly homogeneous?

3. Strictly singular operators on Lorentz spaces

We consider now rearrangement invariant function spaces on [0, 1]. We refer to [23] for the basic
definitions and properties of these spaces.

Recall that given 1 ≤ q < ∞ and W a positive, non-increasing function in [0, 1], such that
limt→0W (t) = ∞, W (1) > 0 and

∫ 1
0 W (t)dt = 1, the Lorentz function space Λ(W, q) ([24]) is the

space of all measurable functions f on [0, 1] such that

‖f‖ =
( ∫ 1

0
f∗(t)qW (t)dt

)1/q
<∞,

where f∗ denotes the decreasing rearrangement of a function f .
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Let us also recall that for 1 < p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q is the space of all
measurable functions f in [0, 1] such that

‖f‖p,q =


(∫∞

0 (t1/pf∗(t))q dtt

)1/q

<∞ for 1 ≤ q <∞,

sup
t>0

t1/pf∗(t) <∞, if q =∞.

In order to use the results of the previous section we need the following important result ([10,
Proposition 5.1],[3]):

Proposition 3.1. Let (fn)n be a disjoint normalized sequence in Λ(W, q) (resp. Lp,q). For each ε > 0,
there exists a subsequence (fnk) which is (1 + ε)-equivalent to the unit vector basis of `q, whose span
is a complemented subspace of Λ(W, q) (resp. Lp,q) with projection constant smaller than (1 + ε).

Thus Lorentz function spaces Λ(W, q) and Lp,q are q-disjointly homogeneous. And as a consequence
of Theorems 2.9, 2.12, and Corollary 2.7 in Section 2 we get the following:

Proposition 3.2. Given 1 < p < ∞ and 1 ≤ q < ∞, every operator T ∈ S(Λ(W, q)) or T ∈ S(Lp,q)
has a compact square. Moreover, if q = 2 then T is already compact, while if q = 1, then T is
Dunford-Pettis.

It is well-known that strictly singular non-compact operators exist on Lp,q spaces for q 6= 2. For
instance, consider a complemented subspace isomorphic to `q and the span of the Rademacher functions
which is isomorphic to `2. Denote P1 : Lp,q → `q and P2 : Lp,q → `2 the corresponding projections,
is,t : `s → `t the canonical inclusion, and Q : `q ↪→ Lp,q and R : `2 ↪→ Lp,q the corresponding
embeddings. When q < 2, we can consider T = Riq,2P1 ∈ S(Lp,q)\K(Lp,q), and when q > 2, take
S = Qi2,qP2 ∈ S(Lp,q)\K(Lp,q) (cf. [12]).

Note also that these results do not hold for Lorentz spaces on the unbounded interval (0,∞) and
that the spaces Lp,q(0,∞) (p 6= q) are not disjointly homogeneous (notice that Lp,q(0,∞) contains
disjoint sequences whose span is isomorphic to `p,q).

The behavior of the extreme Lorentz spaces Lp,∞ is different:

Proposition 3.3. There exists an operator T ∈ S(Lp,∞), for p 6= 2, whose cube T 3 is not compact.

In order to show this we first give a precise way of embedding `p as a complemented subspace in
Lp,∞ (notice that for p < 2 even Lp can be embedded as a complemented subspace of Lp,∞, this follows
from work of N. Kalton, see [17, Prop. 3.4]).

Proposition 3.4. Given 1 < p <∞, there exists a disjoint normalized sequence (fn) in Lp,∞ whose
span is complemented and isomorphic to `p.

Proof. Let (tn) ⊂ [0, 1] with tn ↓ 0, and for n ≥ 1 consider the functions on [0, 1] defined by

fn(t) =
p− 1
p

(t− tn)−
1
pχ(tn+1,tn)(t).
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We claim that the closed linear span [fn] is isomorphic to `p. Indeed, since ‖f‖Lp,∞ = sups>0 s(µf (s))
1
p ,

where µf (s) = µ{|f(t)| > s}, and for each n ∈ N we have

µfn(s) = µ
{
t ∈ (tn+1, tn) : t < tn +

(p− 1
p

)p 1
sp

}

=


tn − tn+1 if s ≤ p−1

p(tn−tn+1)
1
p
,(

p−1
p

)p
1
sp if s > p−1

p(tn−tn+1)
1
p
,

it holds that ‖fn‖Lp,∞ = p−1
p . Let us see that ‖

n∑
i=1
aifi‖Lp,∞ ∼ (

n∑
i=1
|ai|p)

1
p for any scalars (ai)ni=1.

Indeed, since (fi)ni=1 are disjoint, we have

‖
n∑
i=1

aifi‖Lp,∞ = sup
s>0

s
( n∑
i=1

µfi(
s

|ai|
)
) 1
p ≥ s0

( n∑
i=1

µfi(
s0

|ai|
)
) 1
p

= s0

[(p− 1
p

)p n∑
i=1

|ai|p

sp0

] 1
p

=
p− 1
p

( n∑
i=1

|ai|p
) 1
p

where s0 is any number greater than maxi
{

|ai|p−1

p(ti−ti+1)
1
p

}
. And, since Lp,∞ satisfies an upper p-estimate

([5]), we also have
∥∥ n∑
i=1
aifi

∥∥
Lp,∞

≤ C
( n∑
i=1
|ai|p

) 1
p for certain constant C > 0.

Now, to construct a projection onto [fn], let us consider a Banach limit B ∈ `∗∞. The operator
R : Lp,∞ → `p(0, 1) given by

Rx(t) = B
(
n

(1− 1
p

)
∫ t+ 1

n

t
x(s)ds

)
for x ∈ Lp,∞ and 0 < t < 1, is bounded and has norm one [31]. We define now the operator
P : Lp,∞ → Lp,∞ by

Px(t) =
∞∑
k=1

Rx(tk)fk(t).

Notice that P can be seen as the composition

Lp,∞
P //

R
��

Lp,∞

`p(0, 1) T // `p
?�
J

OO

where Tx(t) = x(t)χ{tk}(t) and J((ak)) =
∑∞

k=1 akfk. Hence P is bounded. Moreover, we have

Rfk(t) =

{
0 if t 6= tk

1 if t = tk

Indeed, for t 6= tk we have

n
(1− 1

p
)
∫ t+ 1

n

t
fk(s)ds ≤ n(1− 1

p
) p− 1

p

∫ t+ 1
n

t
(t− tk)−

1
pds ≤ n−

1
p (t− tk)−

1
p −→
n→∞

0.
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While for t = tk, and n > 1
tk

, we have

n
(1− 1

p
)
∫ tk+ 1

n

tk

fk(s)ds = n
(1− 1

p
) p− 1

p

∫ 1
n

0
s
− 1
pds = 1.

Therefore, P (fk) = fk, which yields that P is a projection onto [fk] as claimed. �

Proof of Proposition 3.3. It is well-known that the Lorentz sequence space `p,∞ embeds as a comple-
mented sublattice into Lp,∞ (see [20]), and the Rademacher functions span a complemented subspace
of Lp,∞ isomorphic to `2 (cf. [23, Theorem 2.b.4]). We can also consider a complemented subspace
isomorphic to `∞ in Lp,∞ (cf. [23, Proposition 1.a.7, and p. 105]). Therefore, Proposition 3.4 provides
a complemented subspace of Lp,∞ isomorphic to `p ⊕ `p,∞ ⊕ `2 ⊕ `∞. Hence, for p < 2 we can define
the operator T given by

Lp,∞
T //

P
��

Lp,∞

`p ⊕ `p,∞ ⊕ `2 ⊕ `∞
S // `p ⊕ `p,∞ ⊕ `2 ⊕ `∞

J

OO

where P is a projection, J an isomorphic embedding, and for (x, y, z, w) ∈ `p ⊕ `p,∞ ⊕ `2 ⊕ `∞, the
operator S(x, y, z, w) = (0, x, y, z) is a “shift-like” operator. Clearly, T is strictly singular, and T 3 is
not compact.

Similarly, for p > 2 we consider the operator T given by

Lp,∞
T //

P
��

Lp,∞

`2 ⊕ `p ⊕ `p,∞ ⊕ `∞
S // `2 ⊕ `p ⊕ `p,∞ ⊕ `∞

J

OO

where now the shift operator S is defined S(x, y, z, w) = (0, x, y, z). Thus, we get as before that T is
strictly singular, and T 3 is not compact. �

Similarly we can define strictly singular operators on L2,∞ whose square is not compact. However,
we do not know whether there exists some n ∈ N such that Tn is compact whenever T ∈ S(Lp,∞); we
do not even know whether every operator T ∈ S(Lp,∞) is power-compact.

When it comes to the order continuous part Lop,∞ of Lp,∞, every strictly singular operator on Lop,∞
has compact square. This follows from Theorem 2.11, since Lop,∞ is∞-disjointly homogeneous and his
Boyd indices equal p.

A similar statement also holds for order continuous Marcinkiewicz spaces M(ϕ) with finite upper
Boyd index (since they are also ∞-disjointly homogeneous Banach lattices, cf. [30]).

4. Strictly singular operators on Orlicz spaces

Recall that given an Orlicz function ϕ, the Orlicz function space Lϕ on [0, 1] is the space of all

measurable functions f on [0, 1] such that
∫ 1

0 ϕ
(
|f(t)|
r

)
dλ <∞ for some r > 0. The norm is defined by

‖f‖ = inf
{
r > 0 :

∫ 1

0
ϕ
( |f(t)|

r

)
dλ ≤ 1

}
.

Let us consider the associated sets to the Orlicz function ϕ in the space C(0,∞) ([21]):
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E∞ϕ,s =
{ϕ(rt)
ϕ(r)

: r ≥ s
}
, E∞ϕ =

⋂
s>0

E∞ϕ,s , and C∞ϕ = conv(E∞ϕ ).

As usual, we will write E∞ϕ ∼= {F} whenever every function in E∞ϕ is equivalent to certain function
F at 0. It turns out that this condition actually characterizes disjointly homogeneous Orlicz spaces.
Namely, we have the following:

Theorem 4.1. An Orlicz space Lϕ is disjointly homogeneous if and only if E∞ϕ ∼= {F} for certain
function F . Moreover, Lϕ is disjointly homogeneous if and only if it is p-disjointly homogenous for
some 1 ≤ p ≤ ∞, and in this case E∞ϕ ∼= {tp}.

Proof. Suppose first that there are two functions F and G in E∞ϕ , which are not equivalent at 0. Since
F ∈ E∞ϕ , there exists an increasing sequence (tn) such that ϕ(tnx)

ϕ(tn) converge to F (x) uniformly for
x ∈ [0, 1]. We can actually take (tn) such that ϕ(tn) ≥ 2n and∣∣ϕ(tnx)

ϕ(tn)
− F (x)

∣∣ < 1
2n

for all x ∈ [0, 1] and every n ∈ N. Let us consider fn = tnχAn where (An) is a sequence of disjoint sets
with µ(An) = 1

ϕ(tn) . Notice that∫ 1

0
ϕ(
∞∑
n=1

λnfn) =
∞∑
n=1

ϕ(λntn)µ(An) =
∞∑
n=1

ϕ(λntn)
ϕ(tn)

is convergent if and only if
∑∞

n=1 F (λn) <∞. Therefore, (fn) is equivalent to the unit vector basis of
`F . Similarly, we can construct a disjoint sequence in Lϕ equivalent to the unit vector basis of `G.

Now, assuming Lϕ is disjointly homogeneous, and using the fact that the unit vector basis of any
Orlicz sequence space is symmetric, and in particular subsymmetric, we would get that F and G are
equivalent at 0. This contradiction proves that E∞ϕ ∼= {F} for some F whenever Lϕ is disjointly
homogeneous.

For the converse, assume E∞ϕ ∼= {F}, so we also have that C∞ϕ = conv(E∞ϕ ) ∼= {F}. Thus, given a
sequence (fn) in Lϕ of normalized disjoint functions, by [21, Proposition 3], there exists a subsequence
(fnk) equivalent to the unit vector basis of `G for some G ∈ C∞ϕ . Therefore, G and F are equivalent
at 0 and so every disjoint sequence in Lϕ has a subsequence equivalent to the unit vector basis of `F .
This proves that an Orlicz space is disjointly homogeneous if and only if the set E∞ϕ reduces to one
function (up to equivalence at 0).

To prove the second statement, assume that Lϕ is disjointly homogeneous. Notice that we can
assume that Lϕ is reflexive, otherwise Lϕ would contain `1 or c0 and as a consequence it would be 1-
or ∞-disjointly homogeneous (cf. [1, Theorem 14.23]). Now, by the previous part of the proof, there
is F such that E∞ϕ ∼= {F}. We want to prove that F (t) is equivalent to tp for some 1 < p <∞. By a
classical result of Polya, it suffices to show that F is quasi-multiplicative, that is, there exists C > 0
such that

1
C
<

F (xy)
F (x)F (y)

< C

for every x, y ∈ [0, 1].
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To this end, since F ∈ E∞ϕ , for any increasing sequence (tn) tending to ∞, the sequence (ϕ(tn·)
ϕ(tn) )∞n=1

converges uniformly on [0, 1] to F . Then, for x, y ∈ [0, 1] we have

F (xy)
F (x)F (y)

= lim
n

ϕ(tnxy)
ϕ(tn)

ϕ(tnx)
ϕ(tn)

ϕ(tny)
ϕ(tn)

= lim
n

ϕ(tnxy)
ϕ(tny)

ϕ(tn)
ϕ(tnx)

=
Fy(x)
F (x)

where Fy(x) := limn
ϕ(tnyx)
ϕ(tny) . Now, using that E∞ϕ ∼= {F}, which in particular implies that this set

is compact, it can be seen that for certain constant C > 0, it holds that 1
C ≤

Fy(x)
F (x) ≤ C for every

x, y ∈ [0, 1]. This completes the proof. �

Notice that the second statement of the previous theorem can also be deduced from the first part
together with the fact that Orlicz spaces are stable [11].

Corollary 4.2. Let ϕ be an Orlicz function such that E∞ϕ ∼= {tp}, for some 1 ≤ p < ∞, then every
operator T ∈ S(Lϕ) has a compact square. Furthermore for p = 2, the operator T is already compact,
while for p = 1, T is Dunford-Pettis.

Proof. By Theorem 4.1 Lϕ is p-disjointly homogeneous. Now, for 1 ≤ p <∞ and p 6= 2, by Theorem
2.9 and Corollary 2.7, if T ∈ S(Lϕ) then the square T 2 is compact. Clearly, for p = 2, Theorem
2.12 yields that every T ∈ S(Lϕ) is compact, and for p = 1, Theorem 2.6 yields that T is Dunford-
Pettis. �

For example, the spaces Lϕ with ϕ(x) = xp logα(1 + x) for −∞ < α < ∞ are p-disjointly homo-
geneous. Notice that, the condition E∞ϕ

∼= {tp} implies equality of the indices s(Lϕ) = σ(Lϕ) = p.

Recall that for Orlicz function spaces the associated lattice indices and Boyd indices coincide, i.e.
s(Lϕ) = pLϕ and σ(Lϕ) = qLϕ (cf. [23, p. 139]). Many regular Orlicz functions satisfy the condition
E∞ϕ
∼= {tp}, for example the class of all Orlicz functions such that

lim
t→∞

tϕ′(t)
ϕ(t)

= p.

In general we cannot weaken this condition on E∞ϕ , as the following shows:

Proposition 4.3. There exist Orlicz spaces Lϕ with indices s(Lϕ) = σ(Lϕ) = p, and an operator
T ∈ S(Lϕ) whose square T 2 is not compact.

Proof. Let 2 < p <∞. Consider the Orlicz spaces Lϕ defined by the functions

ϕ(t) ≡ ϕp,q(t) = tp exp{q
∞∑
k=1

(
1− cos

(πlogt
2k

))
}

for t > 0, ϕ(0) = 0, where |q| > 0. These Orlicz functions, first introduced for q = 1 in [15], are minimal
functions in the sense of [22] with indices p (see [14, Proposition 2]). Hence, by [13, Proposition 2],
the spaces Lϕ has a complemented subspace isomorphic to `ϕ.

Now, since ϕ(t) ≥ tp the inclusion `ϕ ↪→ `p is bounded, and since for q big enough `ϕ has no
complemented subspace isomorphic to `p (see [18, Theorem 3.4] and also [14, Corollary 1.7]), it follows
that the inclusion `ϕ ↪→ `p is strictly singular.

Consider the decomposition Lϕ[0, 1] = Lϕ[0, 1
3 ]⊕Lϕ[1

3 ,
2
3 ]⊕Lϕ[2

3 , 1], and denote by PR : Lϕ[0, 1
3 ]→

[rn] the projection onto the span of the Rademacher functions on [0, 1
3 ], and by Pϕ : Lϕ[1

3 ,
2
3 ]→ `ϕ the

projection onto `ϕ.
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Define the operator T : Lϕ → Lϕ by the following factorization diagram

Lϕ[0, 1
3 ]

PR
��

⊕Lϕ[1
3 ,

2
3 ]

Pϕ
��

⊕Lϕ[2
3 ,

1
3 ]

T // Lϕ[0, 1
3 ]⊕Lϕ[1

3 ,
2
3 ]⊕Lϕ[2

3 ,
1
3 ]

`2 ⊕ `ϕ
S // `ϕ

Jϕ

OO

⊕ `p

Jp

OO

where S denotes the formal inclusion, and Jϕ and Jp are isomorphic embeddings. The operator T is
well defined, and strictly singular since so are the inclusions `2 ↪→ `ϕ and `ϕ ↪→ `p. However, T 2 is
not compact, since it maps the Rademacher functions on [0, 1

3 ] to the canonical basis of `p. �

Proposition 4.4. There exist Orlicz spaces Lϕ with indices s(Lϕ) = σ(Lϕ) = 2 and an operator
T ∈ S(Lϕ) such that T is not compact.

Proof. Consider the function ϕ = ϕ2,q for q > 0 as defined in the above Proposition. Thus the space
Lϕ contains complemented copies of `ϕ and `2. Moreover, since ϕ2,q(x) ≥ x2 at 0 and `ϕ has no
complemented copy of `2, we deduce that the inclusion `ϕ ↪→ `2 is strictly singular. Therefore, we can
consider the operator

Lϕ
T //

P
��

Lϕ

`ϕ ⊕ `2
S // `ϕ ⊕ `2

?�

OO

where P is a projection and S(x, y) = (0, x). Clearly, T is strictly singular but not compact. �

Clearly the Orlicz spaces given above are not disjointly homogenous (this follows from Theorem
2.9). More generally, it holds that every minimal Orlicz function space Lϕ (different from Lp) is not
disjointly homogenous. Indeed, recall that in general for each ψ ∈ C∞ϕ there exists a sequence of
normalized disjoint functions in Lϕ equivalent to the symmetric canonical basis of `ψ ([21, Proposition
4]). Now, since ϕ is minimal, we have, by [13, Proposition 1], that E∞ϕ,1 = E∞ϕ = Eϕ = Eϕ,1 and
the set E∞ϕ,1 contains uncountable many mutually non-equivalent Orlicz functions (see the proof of
[22, Theorem 4.b.9]). Hence, using the symmetry, we deduce that in Lϕ there are uncountable many
sequences of normalized disjoint functions with no equivalent subsequence.

Notice also that in the class of all Orlicz spaces Lϕ with different indices (s(Lϕ) 6= σ(Lϕ)) there are
no disjointly homogenous spaces. This follows from the fact that for each p ∈ [s(Lϕ), σ(Lϕ)] we have
tp ∈ C∞ϕ and there exist sequences of normalized disjoint functions in Lϕ that are equivalent to the
canonical basis of `p ([21, Proposition 4]).

Within this class there exist Orlicz spaces with strictly singular operators which are not power-
compact:

Proposition 4.5. Given 1 ≤ p < q < ∞, there exist Orlicz spaces Lϕ with indices σ(Lϕ) = p and
s(Lϕ) = q and an operator T ∈ S(Lϕ) which is not power-compact.

Proof. Given any strictly increasing sequence (pn) contained in [p, q], we can consider an Orlicz function
space Lϕ[0, 1] with σ(Lϕ) = p and s(Lϕ) = q and which contains complemented copies of `pn for every
n (cf. [14]). Let us denote by Pn : Lϕ → Lϕ, the projection onto each `pn , which will be spanned by a
sequence of functions supported in [2−n, 2−n+1]. Now, for every k ∈ N, denote mk =

∑k
n=1 n = k(k+1)

2 .
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Let us consider the operator Tk given by

Lϕ
Tk //

Rk ��

Lϕ

mk+1⊕
j=mk+1

`pj
Sk //

mk+1⊕
j=mk+1

`pj

?�
ik

OO

where Rk(f) = (Pmk+1(f), . . . , Pmk+1
(f)), Sk(f1, . . . , fk) = (0, f1, . . . , fk−1) is a “shift” operator and

ik is just the isomorphic embedding. Clearly, Tk is a bounded operator in Lϕ, acting only on functions
supported in [2−mk+1 , 2−mk ]. In particular, TiTj = 0 unless i = j. Moreover, Tk is strictly singular
but (Tk)k−1 is not compact (although (Tk)k = 0).

Let us consider the operator

T =
∞∑
k=1

Tk
2k‖Tk‖

.

Clearly, T is bounded, and since ∥∥∥T − n∑
k=1

Tk
2k‖Tk‖

∥∥∥→ 0

when n→∞, we have that T is strictly singular because so is
∑n

k=1
Tk

2k‖Tk‖
for every n ∈ N.

Let us see that T k is not compact for any k ∈ N. To this end, let (ekn)∞n=1 denote the sequence of
norm one functions in Lϕ, supported in [2−mk+2 , 2−mk+1 ], which corresponds to the unit vector basis of
`pmk+1

. Hence, by construction ((Tk+1)k(ekn))∞n=1 correspond to the unit vector basis of `pmk+2
, which

is weakly null and of norm one.

Now, if N > k is sufficiently large so that
∥∥∥T k − (∑N

n=1
Tn

2n‖Tn‖

)k∥∥∥ < 1
2(2k‖Tk+1‖)k

, then, using the

fact that Tn acts only on functions supported in [2−mn+1 , 2−mn ], it follows that

‖T k(ekn)‖ ≥
∥∥∥( N∑

n=1

Tn
2n‖Tn‖

)k
(ekn)

∥∥∥− ∥∥∥T k(ekn)−
( N∑
n=1

Tn
2n‖Tn‖

)k
(ekn)

∥∥∥
≥ ‖(Tk+1)k(ekn)‖

(2k‖Tk+1‖)k
− 1

2(2k‖Tk+1‖)k

=
1

2(2k‖Tk+1‖)k
.

This means that (T k(ekn)) is bounded away from zero for every n ∈ N, so T k is not compact. �

We do not know whether strictly singular non power-compact endomorphisms can be given on
Orlicz spaces Lϕ with equal indices s(Lϕ) = σ(Lϕ).

5. Strictly singular non power-compact operators on r. i. spaces

Let us start by showing that in rearrangement invariant spaces the results above on the behavior
of the iterations of a given operator turn into results on the behavior of the composition of (different)
operators.

Proposition 5.1. Given a rearrangement invariant space X on [0, 1] and n ∈ N, the following state-
ments are equivalent:
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(1) If an operator T ∈ S(X), then the power Tn is compact.
(2) If T1, . . . , Tn belong to S(X), then the composition Tn . . . T1 is compact.

Proof. Let us prove the non-trivial implication. Consider

Xi =
{
x ∈ X : x = xχ[ i

n+1
, i+1
n+1

]

}
for i = 0, 1, . . . , n. Clearly, each Xi is isomorphic to X, so we can denote these isomorphisms by

Ji : X → Xi, and we can decompose X =
n⊕
i=0
Xi. Now, if T1, . . . , Tn belong to S(X), then we can

consider the operator T :
n⊕
i=0
Xi →

n⊕
i=0
Xi given by the following matrix

T =


0 0 0 · · · 0

J1T1J
−1
0 0 0 · · · 0

0 J2T2J
−1
1 0 · · · 0

...
. . . . . . . . .

...
0 0 · · · JnTnJ

−1
n−1 0


Since the operators Ti are strictly singular, T is strictly singular. By hypothesis, Tn is compact, and
in matrix form this operator is the following

Tn =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

JnTn · · ·T1J
−1
0 0 · · · 0


This implies that the composition Tn · · ·T1 is compact, because Ji are isomorphisms. �

In particular it follows from Theorem 2.9 that for disjointly homogeneous rearrangement invariant
spaces the composition of two strictly singular endomorphisms is compact.

Remark 5.2. An inspection of the proofs in Section 2 (in particular Theorem 2.9) shows that, in
order to obtain compactness for higher powers of a strictly singular operator, the condition of disjointly
homogeneous can be weakened as follows: assume that given n ∈ N, for any family of n disjoint
normalized sequences (y1

i )i, . . . , (y
n
i )i on a Banach lattice E, there are two indices j1, j2 ∈ {1, . . . , n}

such that (yj1i )i and (yj2i )i share an equivalent subsequence, then every T ∈ S(E) satisfies that Tn ∈
K(E). This clearly allows us to apply the results on Section 2 to operators defined on direct sums of
disjointly homogeneous spaces.

The examples of r.i. function spaces with strictly singular and non power-compact endomorphisms
given in previous sections have different lattice indices. In fact, these are Orlicz spaces with different
indices containing complemented sublattices isomorphic to `p for different values of p (Proposition 4.5).
In this Section we provide examples of rearrangement invariant spaces showing that these conditions
are far from necessary.

Let us first recall an interpolation construction which is useful for finding r.i. spaces with certain
given properties (see [23, Section 2.g] for details). Let (X1, X2) be an interpolation pair of Banach
spaces. For positive scalars a, b let k(·, a, b) denote the norm on X1 +X2 given by

k(z, a, b) = inf{a‖x1‖X1 + b‖x2‖X2 : z = x1 + x2}.
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Let Y be a Banach space with a normalized unconditional basis (yn) whose unconditional constant is
one, and let (an), (bn) be sequences of positive scalars such that

∑∞
n=1 min(an, bn) <∞. Now, we define

the space K(X1, X2, Y, (an), (bn)) as the space of all elements z ∈ X1 +X2 such that
∞∑
n=1

k(z, an, bn)yn

converges in Y , endowed with the norm

‖z‖K(X1,X2) = sup
m

∥∥ m∑
n=1

k(z, an, bn)yn
∥∥
Y
.

This construction defines a Banach space which is an interpolation space between X1 and X2 [23,
Proposition 2.g.4].

Hence, if X1 and X2 are r.i. spaces, so is Z = K(X1, X2, Y, (an), (bn)). Moreover, if the sequences
(an) and (bn) are chosen properly, then Z contains a complemented subspace isomorphic to Y . Namely,
if (mn) denotes an increasing sequence of numbers satisfying the lacunarity condition

(1)
1
mn

n−1∑
i=1

mi +mn

∞∑
i=n+1

1
mi

<
1

2n+1
,

then, as in the proof of [23, Theorem 2.g.5], we can construct a subspace of K(X1, X2, Y, ( 1
mn

), (mn))
isomorphic to Y (see also [22, Proposition 3.b.4]).

Now, we can give an example of an r.i. space with equal Boyd indices and a strictly singular non
power-compact endomorphism.

Proposition 5.3. Given 1 < p < ∞, there exists a rearrangement invariant space E on [0, 1] with
Boyd indices qE = pE = p and an operator T ∈ S(E) which is not power-compact.

Proof. It is well-known that the universal space U of Pe lczyński, which contains a complemented
subspace isomorphic to any Banach space with unconditional basis, can be represented as an r.i.
function space on [0, 1] (see [23, Theorem 2.g.5]). In fact, we can consider the interpolated space

E = K(Lp, Lϕ, U, (
1
mn

), (mn)),

where ϕ(t) = tp log t and (mn) satisfy the lacunarity condition (1). By the previous comments and
the universality of U , it follows that U is isomorphic to the space E, which is an r.i. space with Boyd
indices pE = qE = p because pLp = qLp = pLϕ = qLϕ = p.

Now, we can proceed as in Proposition 4.5, since the space E has complemented subspaces isomor-
phic to `pn for any increasing sequence (pn). Hence, we can construct an operator T ∈ S(E) which is
not power-compact. �

Observe that in this last Proposition, despite that the Boyd indices coincide, the space E contains
subspaces isomorphic to `p’ s for different values of p. This condition can be removed as it is shown
in the following result.

Proposition 5.4. Given 1 ≤ p < ∞ there exists a rearrangement invariant space X on [0, 1] with
lattice indices s(X) = σ(X) = p and an operator S ∈ S(X) which is not power-compact.

Before giving the construction of this space we need to recall some facts concerning Tsirelson-like
spaces (see [4]). For every θ ∈ (0, 1), let us denote T pθ the p-convexified Tsirelson-like space Tθ, which
is defined as follows. Recall that the space Tθ is the completion of the space of eventually null sequence
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of real numbers under the norm ‖ · ‖ = limm ‖ · ‖m, where the norms ‖ · ‖m are given as follows. First,
for a sequence x = (an) and a set of natural numbers E ⊂ N we denote Ex = (bn) with

bn =

{
an if n ∈ E,
0 otherwise.

Now we can define for x = (an) and each m ≥ 0
‖x‖0 = maxn |an|,

‖x‖m+1 = max{‖x‖m,max θ
k∑
i=1
‖Eix‖m},

where the inner max is taken over all choices of k ≤ E1 < E2 < . . . < Ek (as in the definition of
Tsirelson’s space). Let (tθn) denote the unit vector basis of Tθ. Now, for 1 < p < ∞, the space T pθ is
defined as the p-convexification of Tθ, thus the norm of an element x = (an) is given by

‖x‖T pθ =
∥∥∑

n

|an|ptθn
∥∥1/p

Tθ
.

We need now a lemma following [4, Theorem X.a.3].

Lemma 5.5. For any 0 < θ, ϕ < 1 with θ 6= ϕ, the spaces T pθ and T pϕ are totally incomparable.

Proof. Let us denote (t(θ,p)n )n the unit vector basis of the space T pθ . Suppose that there exists some
infinite dimensional space Z which embeds isomorphically both in T pθ and T pϕ. Hence, using [4, Propo-
sition X.e.2.(a)] and taking appropriate subsequence we get that (t(θ,p)kn

)n and (t(ϕ,p)kn
)n are equivalent

basic sequences. As in the proof of [4, Theorem X.a.3], using [4, Proposition IV.c.8] we reach a
contradiction. �

Proof of Proposition 5.4. First, fix a strictly decreasing sequence of numbers (θn) inside (0, 1), and let
us consider the space

Y =
⊕
`p

T pθn .

That is, if (yij) denotes the double indexed sequence formed by one at the coordinates (i, j) and zero
in the remaining coordinates, then for a double indexed sequence (aij) we have

‖
∑
i,j

aijyij‖Y =
(∑

i

∥∥∑
j

aijt
(θi,p)
j

∥∥p
T pθi

) 1
p .

Notice that for every k ∈ N we can consider a “truncated shift” of order k, Sk : Y → Y in the following
way. First, let us denote mk =

∑k
n=1 n. If x =

∑
i,j aijyij denotes an element of Y , that is (aij)j ∈ T pθi

for every i, then we set

Sk(x) =
mk+1−1∑
i=mk+1

∑
j

a(i−1)jyij .

Clearly, by Lemma 5.5, for every k ∈ N the operator Sk is strictly singular and, since (Sk)k(ymkj) =
y(mk+1−1)j , then (Sk)k is not compact. Hence, arguing as in Proposition 4.5, we can define a strictly
singular operator S : Y → Y that is not power-compact.

Moreover, by construction, since every T pθ is p-convex and q-concave for every q > p, so is Y .
Moreover, (yij)∞i,j=1 is clearly an unconditional basis of Y . Hence, we can consider the space X =
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K(Lp, Lϕ, Y, {m−1
n }, {mn}), where ϕ(t) = tp log t is an Orlicz function (of index p) and the sequence

(mn) satisfies the lacunarity condition (1).
Finally, by [23, Proposition 2.g.4 and 2.g.6], X is a rearrangement invariant space which is p-convex

and q-concave for every q > p, and such that Y is complemented in X. This allows us to extend the
operator S : Y → Y to an operator on X with the required properties. �
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