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Abstract. Given an operator T : X → Y between Banach spaces, and a
Banach lattice E consisting of measurable functions, we consider the point-wise
extension of the operator to the vector-valued Banach lattices TE : E(X) →
E(Y ) given by TE(f)(ω) = T (f(ω)). It is proved that for any Banach lattice
E which does not contain c0, the operator T is an isomorphism on a subspace
isomorphic to c0 if and only if so is TE . An analogous result for invertible
operators on subspaces isomorphic to `1 is also given.

1. Introduction

In the 1970’s S. Kwapien [13] and G. Pisier [16] gave the following results for
vector valued Lp spaces.

Theorem 1.1. For 1 ≤ p < ∞, Lp(µ,X) contains an isomorphic copy of c0 if
and only if X does.

Theorem 1.2. For 1 < p < ∞, Lp(µ,X) contains an isomorphic copy of `1 if
and only if X does.

These results were also proved in a different way by J. Bourgain in [3] and [4].
More generally, given a Banach space X, and a Köthe Function space E over a
measure space (Ω,Σ, µ), we denote by E(X) the space of X-valued µ-measurable
functions f , such that the mapping ω 7→ ‖f(ω)‖X belongs to E. E(X) equipped
with the norm

‖f‖E(X) = ‖ ‖f(ω)‖X‖E
forms a vector-valued Banach lattice. W. Hensgen proved in [9] that E(X) contains
a subspace isomorphic to c0 if and only if E or X do.

The relation between X and E(X) has been extensively studied by several au-
thors, see for instance [6], [15], and [17].
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Our aim in this note is to study whether this kind of results can be extended
to the operator setting. Precisely, given an operator T : X → Y between Banach
spaces, we will consider the operator

TE : E(X)→ E(Y ),

defined by TE(f)(ω) = T (f(ω)) for any f ∈ E(X) and ω ∈ Ω. Thus, we want to
study which invertibility properties are shared by T and TE.

Given a Banach space Z, we say that an operator T : X → Y is Z-singular
whenever the restriction T |M is not an isomorphism for any subspace M ⊂ X
isomorphic to Z. The notion of `p-singular operator are of particular importance,
since these have been used recently to study certain properties of strictly singular
operators (see [7] and [11]).

The main results of this note are the following:

Theorem 1.3. Let E be a Banach lattice which does not contain a subspace iso-
morphic to c0, and let T : X → Y be an operator between Banach spaces. The
operator TE : E(X)→ E(Y ) is c0-singular if and only if so is T : X → Y .

Theorem 1.4. Let E be an order continuous Banach lattice, such that E∗ is also
order continuous, and let T : X → Y be an operator between Banach spaces. The
operator TE : E(X)→ E(Y ) is `1-singular if and only if so is T : X → Y .

As an application of Theorem 1.3, we also give a version, in the context of
operators, of a result by Hoffmann-Jorgensen [10] for sums of vector-valued random
variables (see Theorem 3.5).

Notice that the hypothesis imposed on Theorems 1.3 and 1.4 in the Banach
lattices involved, allows us to use the techniques considered in the second section,
where order continuity plays a key role. Recall that a Banach lattice which does
not contain c0 is in particular order continuous [14, 1.a], while for a dual Banach
lattice E∗ being order continuous and not containing c0 are equivalent statements.
Remarks 3.2 and 3.4 will further clarify these requirements.

We refer the reader to [2], and [14], for unexplained terms and notation on
Banach lattices, and to [5] for a detailed survey on vector-valued Lp spaces and
related questions.

The author thanks Professor J. Mendoza for very useful conversations and help-
ful remarks.

2. Tools

Recall that an order continuous Banach lattice E with a weak unit can be
considered as a Köthe Function space, that is, an (in general not closed) order ideal
of L1(Ω,Σ, µ) for certain probability space (Ω,Σ, µ), such that E ↪→ L1(Ω,Σ, µ)
is continuous with norm smaller than or equal to one (see [14, Prop. 1.b.14] for
details). Recall also that in an order continuous Banach lattice every ideal is
complemented by a positive projection (see [14, 1.b]).
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For the proof of Theorem 1.3, we need the following vector valued version of
Kadec-Pelczynski disjointness method (see [8] and [12] for the classical version of
this result).

Proposition 2.1. Given a Banach space X. Let E be an order continuous Banach
lattice over a finite measure space (Ω,Σ, µ), and let M be a separable subspace of
E(X). If we consider the formal inclusion i : E(X) ↪→ L1(X), then one of the
following holds:

(1) the restriction i|M is an isomorphic embedding,
(2) or there exist a normalized sequence (fn)∞n=1 in M and a disjoint sequence

(gn)∞n=1 in E(X), such that ‖fn − gn‖E(X) → 0 when n→∞.

Proof. Given ε > 0, and f ∈ E(X), let us consider the set

σ(f, ε) = {ω ∈ Ω : ‖f(ω)‖X ≥ ε‖f‖E(X)}.
Now for ε > 0, let us also consider the Kadec-Pelczynski sets

KP(ε) = {f ∈ E(X) : µ(σ(f, ε)) ≥ ε}.
Now, given a separable subspace M of E(X), let us suppose first that M ⊂
KP(ε), for some ε > 0. Hence for every f ∈M we have

‖f‖E(X) ≥ ‖f‖L1(X) =

∫
Ω

‖f(ω)‖Xdµ ≥
∫
σ(f,ε)

‖f(ω)‖Xdµ ≥ ε2‖f‖E(X).

Therefore, in this case, the inclusion i : E(X) ↪→ L1(X) when restricted to the
subspace M is an isomorphic embedding.

Suppose now that M is not contained in KP(ε), for any ε > 0. Therefore, there
exists f1 in M with f1 /∈ KP(4−2) and ‖f1‖E(X) = 1. Thus,

µ(σ(f1, 4
−2)) < 4−2,

and
‖χΩ\σ(f1,4−2)f1‖E(X) ≤ 4−2.

Since E is order continuous, there exists δ1 > 0 such that ‖χAf1‖E(X) < 4−3,
whenever µ(A) < δ1. Let j2 < 2 = j1 be such that 4−j2 < δ1. Hence, there exists
f2 ∈M with ‖f2‖E(X) = 1 and f2 /∈ KP(4−j2), which in turn means that

µ(σ(f2, 4
−j2)) < 4−j2 < δ1,

and so
‖χσ(f2,4−j2 )f1‖ ≤ 4−(j1+1).

Moreover,

‖χΩ\σ(f2,4−j2 )f2‖E(X) ≤ ‖4−j2χΩ\σ(f2,4−j2 )‖E(X) ≤ 4−j2 .

We can continue this construction inductively and we get a normalized sequence
(fn)∞n=1 in M , and a sequence (jn)∞n=1 of natural numbers such that
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(1) µ(σ(fn, 4
−jn)) < 4−jn ,

(2) ‖χΩ\σ(fn,4−jn )fn‖E(X) ≤ 4−jn ,

(3) ‖χσ(fn,4−jn )fi‖E(X) ≤ 4−(jn−1+1), for i = 1, . . . , n− 1.

Now, if we consider

σn = σ(fn, 4
−jn)−

∞⋃
i=n+1

σ(fi, 4
−ji),

then σn ∩ σm = ∅ whenever n 6= m. Let us define gn = χσnfn, which is a disjoint
sequence in E(X). Moreover, it holds

‖fn − gn‖E(X) = ‖χΩ\σnfn‖E(X) ≤ ‖χΩ\σ(fn,4−jn )fn‖E(X) + ‖χ⋃∞
i=n+1 σ(fi,4−ji )fn‖E(X)

≤ 4−jn +
∞∑

i=n+1

‖χσ(fi,4−ji )fn‖E(X) ≤ 4−jn +
∞∑

i=n+1

4−(ji−1+1)

≤ 1
3
4−(jn−1).

Therefore, ‖fn − gn‖ → 0 when n→∞, as claimed. �

Notice that if E is an order continuous Banach lattice defined over an infinite
measure space (Ω,Σ, µ), and M is a separable subspace of E(X), then there exists
a closed order ideal I of E, which can be considered as a function space over a
finite measure space (Ω1,Σ1, µ1), such that M is a subspace of I(X) ⊂ E(X) (see
[14, Prop. 1.a.9]).

The following property of disjoint sequences in E(X) will be useful.

Lemma 2.2. Let E be a Köthe Function space over (Ω,Σ, µ), and X a Banach
space. Suppose that (fn)∞n=1 is a normalized disjoint sequence in E(X), and denote
ϕn(ω) = ‖fn(ω)‖ which is also disjoint and normalized. Then (fn)∞n=1 and (ϕn)∞n=1

are 1-equivalent unconditional basic sequences.

Proof. For each natural number n, since f1, . . . , fn are disjoint elements of E(X),
we can consider B1, . . . , Bn ∈ Σ such that

⋃n
i=1Bi = Ω and fi is supported on Bi,

for each i = 1, . . . , n. Hence for scalars (ai)
n
i=1, we have:∥∥∥∥ n∑

i=1

aifi

∥∥∥∥
E(X)

=

∥∥∥∥∥∥∥∥ n∑
i=1

aifi(ω)

∥∥∥∥
X

∥∥∥∥
E

=

∥∥∥∥ n∑
j=1

χBj
(ω)

∥∥∥∥ n∑
i=1

aifi(ω)

∥∥∥∥
X

∥∥∥∥
E

=

∥∥∥∥ n∑
j=1

∥∥∥∥ n∑
i=1

aiχBj
(ω)fi(ω)

∥∥∥∥
X

∥∥∥∥
E

=

∥∥∥∥ n∑
j=1

|aj|‖fj(ω)‖X
∥∥∥∥
E

=

∥∥∥∥ n∑
j=1

ajϕj(ω)

∥∥∥∥
E

.

Since this holds for every n, and scalars (ai)
n
i=1, the proof is finished. �

The next ingredient for the proof of Theorem 1.3 is the following extension of
Theorem 1.1:
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Proposition 2.3. Given an operator T : X → Y , if T is c0-singular, then so is
TL1 : L1(X)→ L1(Y ).

The proof is based on the following version of J. Bourgain’s theorem on c0-
sequences obtained by averaging of seminorms [3]. Recall that c00 denotes the
space of sequences of real numbers which are eventually zero, equipped with the
supremum norm.

Lemma 2.4. Let (Ω,Σ, µ) be a probability measure space. For every ω ∈ Ω we
consider two seminorms in c00, ρω and σω, such that the functions ω 7→ ρω(x) and
ω 7→ σω(x) are integrable in (Ω,Σ, µ) for every x ∈ c00, and there exists a finite
constant C > 0 such that

ρω(x) ≤ Cσω(x),

for all x ∈ c00.
Let us define two seminorms on c00 by

‖x‖1 =

∫
Ω

ρω(x)dµ(ω)

‖x‖2 =

∫
Ω

σω(x)dµ(ω)

for every x ∈ c00. If (xi)
∞
i=1 is a sequence in c00 which is equivalent to the c0-basis

for both ‖ · ‖1 and ‖ · ‖2, then there exists a set of positive measure A ∈ Σ such
that for every ω ∈ A there is a subsequence of (xi)

∞
i=1 which is equivalent to the

c0-basis for both ρω and σω.

Proof. First note that the set

A = {ω ∈ Ω : lim sup ρω(xi) > 0}

is clearly measurable and has positive measure [3, Lemma 2]. It also follows from
[3] (see also [5, p. 53] for a more detailed explanation) that

sup
n

∫ 1

0

σω

( n∑
i=1

ri(t)xi

)
dt = B <∞

for almost all ω ∈ Ω.
Thus, for every ω ∈ A we have

lim sup ρω(xi) > 0, and sup
n

∫ 1

0

ρω

( n∑
i=1

ri(t)xi

)
dt ≤ CB <∞.

Therefore, applying [3, Lemma 3] to the seminorm ρω, we obtain a subsequence
(xik)∞k=1 which is a c0 sequence for ρω, and satisfies ρω(xik) > α for some α > 0
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and every natural number k. It follows from the fact that ρω(x) ≤ Cσω(x) and [5,
Prop. 2.1.1. and Prop. 2.1.2.] that

σω(xik) > C−1α > 0, and sup
n

∫ 1

0

σω

( n∑
k=1

rk(t)xik

)
dt ≤ B <∞,

for every k. Hence, another application of [3, Lemma 3] gives a further subsequence
(still denoted (xik)∞k=1) which is a c0-sequence for σω. Thus, this sequence is a c0-
sequence for both ρω and σω, and the proof is finished. �

Now we can prove Proposition 2.3.

Proof of Proposition 2.3. Suppose that TL1 is not c0-singular. Let (fi)
∞
i=1 be a

sequence in L1(X) such that for some δ > 0 and M > 0, and for every (ai)
n
i=1 ∈ c00:

δmax
1≤i≤n

|ai| ≤
∥∥∥∥ n∑
i=1

aiTL1(fi)

∥∥∥∥
L1(Y )

=

∫
Ω

∥∥∥∥ n∑
i=1

aiT (fi(ω))

∥∥∥∥dµ(ω)

≤ ‖T‖
∫

Ω

∥∥∥∥ n∑
i=1

aifi(ω)

∥∥∥∥dµ(ω) = ‖T‖
∥∥∥∥ n∑
i=1

aifi

∥∥∥∥
L1(X)

≤ ‖T‖M max
1≤i≤n

|ai|.

Let us define for each ω ∈ Ω, and each x =
∑n

i=1 aiei ∈ c00

ρω(x) =

∥∥∥∥ n∑
i=1

aiT (fi(ω))

∥∥∥∥
Y

,

and

σω(x) =

∥∥∥∥ n∑
i=1

aifi(ω)

∥∥∥∥
X

.

Clearly, for every x ∈ c00, the functions ω 7→ ρω(x) and ω 7→ σω(x) are integrable
on (Ω,Σ, µ), and satisfy

ρω(x) ≤ ‖T‖σω(x).

Hence, we can consider the seminorms ‖ · ‖1 and ‖ · ‖2, as defined in Lemma 2.4.
It follows that the unit vector sequence (ei) in c00 is a c0-sequence for both ‖ · ‖1

and ‖ · ‖2, because∥∥∥∥ n∑
i=1

aiei

∥∥∥∥
1

=

∫
Ω

ρω

( n∑
i=1

aiei

)
dµ(ω) =

∫
Ω

∥∥∥∥ n∑
i=1

aiT (fi(ω))

∥∥∥∥dµ(ω) =

∥∥∥∥ n∑
i=1

aiTL1(fi)

∥∥∥∥
L1(Y )∥∥∥∥ n∑

i=1

aiei

∥∥∥∥
2

=

∫
Ω

σω

( n∑
i=1

aiei

)
dµ(ω) =

∫
Ω

∥∥∥∥ n∑
i=1

aifi(ω)

∥∥∥∥dµ(ω) =

∥∥∥∥ n∑
i=1

aifi

∥∥∥∥
L1(X)

Now, Lemma 2.4 implies that the set of points ω ∈ Ω such that (ei)
∞
i=1 has a

subsequence which is a c0-basis for both ρω and σω is a non null set. Thus, for every
ω in this set, there exists an increasing sequence (ik)

∞
k=1 such that (fik(ω))∞k=1 and
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(T (fik(ω)))∞k=1 are (non null) c0-sequences. This implies that T is an isomorphism
when restricted to the span of (fik(ω))∞k=1 in X. �

Note that in fact, we proved more than it was claimed. It was shown that if TL1 :
L1(X) → L1(Y ) is an isomorphism on the span of a sequence [fn]∞n=1 ⊂ L1(X),
which is isomorphic to c0, then the set of all ω ∈ Ω such that T : X → Y is an
isomorphism on the span of a subsequence of (fn(ω))∞n=1 (which is isomorphic to
c0) is a set of positive measure.

3. Main results

Now, we can give the proofs of our main results.

Theorem 3.1. Let E be a Banach lattice not containing a subspace isomorphic
to c0. Let T : X → Y be an operator between Banach spaces. If the operator T is
c0-singular, then the same holds for TE : E(X)→ E(Y ).

Proof. Let T : X → Y be a bounded operator. And let TE : E(X) → E(Y ) be
such that there exists a subspace M of E(X), which is isomorphic to c0, and the
restriction TE|M : M → E(Y ) is an isomorphic embedding.

Since c0 is not contained in E, in particular E is order continuous [14, 1.a].
Hence, by Proposition 2.1 applied to M ⊂ E(X), it follows that either i : E(X) ↪→
L1(X) is an isomorphism when restricted to M or M contains a normalized se-
quence (fn)∞n=1, such that there exists a disjoint sequence (gn)∞n=1 in E(X) with
‖fn − gn‖E(X) → 0 when n→∞.

Suppose that i : E(X) ↪→ L1(X) is not an isomorphism when restricted to
M . Therefore, passing to a further subsequence we can assume that the basic
sequences (fn)∞n=1 and (gn)∞n=1 are equivalent. Since M is isomorphic to c0, this
means that E(X) contains a disjoint sequence equivalent to the unit vector basis
of c0. Hence, by Lemma 2.2, E would also contain a disjoint sequence equivalent
to the unit vector basis of c0, which is a contradiction with the hypothesis on E.

Thus, we can assume that i : E(X) ↪→ L1(X) is an isomorphism when restricted
to M . The same argument shows that i : E(Y ) ↪→ L1(Y ) is an isomorphism when
restricted to TE(M) (which is also isomorphic to c0).

Therefore, the operator TL1 : L1(X)→ L1(Y ) is an isomorphism when restricted
to M , which is isomorphic to c0. Hence, by Proposition 2.3, we can conclude that
T : X → Y is an isomorphism on a subspace isomorphic to c0. �

Remark 3.2. Notice that if the Banach lattice E contains a subspace isomorphic
to c0, then the statement of Theorem 3.1 may fail to be true. Indeed, the identity
I : c0 → c0 can be seen as the extension Tc0 of the identity map on the scalar field
T : R → R, which clearly is not an isomorphism on a subspace isomorphic to c0

(c0 is just too big!).

This theorem has a natural analogue for `1-singular operators.
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Theorem 3.3. Let E be an order continuous Banach lattice, such that E∗ is also
order continuous. Let T : X → Y be an operator between Banach spaces. If T is
`1-singular, then so is TE : E(X)→ E(Y ).

Proof. Let M be a subspace of E(X) isomorphic to `1, such that TE : E(X) →
E(Y ) is an isomorphism when restricted to M . Both M and TE(M) satisfy one
of the alternatives of Proposition 2.1. Since E∗ is order continuous, it follows
that E cannot contain a sequence of disjoint elements whose closed linear span is
isomorphic to `1 (cf. [2, Thm. 14.21]). Therefore, by Lemma 2.2, M cannot contain
a normalized sequence equivalent to a disjoint sequence. Hence, the inclusion
iX : E(X) ↪→ L1(X) is an isomorphism when restricted to M , and similarly
iY : E(Y ) ↪→ L1(Y ) is an isomorphism when restricted to TE(M).

Let (fn)∞n=1 in M be equivalent to the unit vector basis of `1. Since E and
E∗ are order continuous (‖fn(·)‖X)∞n=1 and (‖T (fn(·))‖Y )∞n=1 are uniformly inte-
grable sequences in L1 (cf. [2, Thm. 4.25] and [1, Thm. 5.2.9]). Hence, by [5,
Thm. 2.2.1(a)], the set A of all ω ∈ Ω such that (T (fn(ω)))∞n=1 has a subsequence
equivalent to the unit vector basis of `1 is a measurable set with positive measure.

Hence, T (X) contains a subspace isomorphic to `1; thus, using [18, Prop. 1] we
get that T : X → Y preserves a copy of `1.

Let B ⊂ A be a set of positive measure, such that for some constant C < ∞,
and for every n ∈ N, ‖fn(ω)‖X ≤ C for ω ∈ B. Therefore, for each ω ∈ B, passing
to a further subsequence, that may depend on ω, and for scalars (ak)

n
k=1, we have:

α(ω)
n∑
k=1

|ak| ≤
∥∥∥∥ n∑
k=1

akT (fnk
(ω))

∥∥∥∥
Y

≤ ‖T‖
∥∥∥∥ n∑
k=1

ak(fnk
(ω))

∥∥∥∥
Y

≤ C‖T‖
n∑
k=1

|ak|,

where α(ω) > 0 for ω ∈ B. Hence, T : X → Y is an isomorphism when restricted
to a subspace isomorphic to `1. �

Remark 3.4. As for Theorem 3.1, the identity on `1, seen as the extension T`1 of
the identity map T : R→ R on the scalar field, shows that the hypothesis of order
continuity on E∗ cannot be removed from Theorem 3.3.

In connection with Theorem 3.1, we have a version for operators of Hoffmann-
Jorgensen’s result (see [10]).

Theorem 3.5. Let T : X → Y be an operator between Banach spaces, and let
(Ω,Σ, µ) be a probability space. The following are equivalent:

(1) T is c0-singular.
(2) For every sequence (Xn)∞n=1 of independent, symmetric, X-valued random

variables on (Ω,Σ, µ), if the partial sums

Sm =
m∑
n=1

Xn
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are bounded almost everywhere, then (T (Sm))∞m=1 converges almost every-
where.

Proof. (2) ⇒ (1) is easy to see. For the implication (1) ⇒ (2), let (εj)
∞
j=1 be a

Bernoulli sequence on (Ω,Σ, µ), that is, a sequence of independent random vari-
ables so that µ(εj = 1) = µ(εj = −1) = 1

2
for all j ≥ 1. By [10, Prop. 2.8] it

suffices to prove that the sets

A =

{
(xj)

∞
j=1 ⊂ X :

( n∑
j=1

εjxj

)∞
n=1

is bounded in Lp(X)

}
,

and

B =

{
(xj)

∞
j=1 ⊂ X :

∞∑
j=1

εjTxj is convergent in Lp(Y )

}
,

coincide (notice that by [10, Thm 3.1], there is no difference in the choice of
0 ≤ p <∞).

So, suppose that there exists (xj)
∞
j=1 in A and not in B. Since in particular,∑∞

j=1 εjTxj is not convergent in L1(Y ), there exist δ > 0 and a subsequence such
that ∫

Ω

∥∥∥∥ ∑
nk≤j<nk+1

εjTxj

∥∥∥∥
Y

dµ ≥ δ,

for k ∈ N. Now, let

Xk =
∑

nk≤j<nk+1

εjxj, and Yk =
∑

nk≤j<nk+1

εjTxj,

for k ∈ N. Clearly (Xk(ω))∞k=1 belongs to A µ-a.e. However, [10, Thm. 3.1] yields
that µ(Yk 9 0) > 0.

Therefore, by scaling, we can consider (zj)
∞
j=1 in A such that ‖Tzj‖ = 1, for

j ∈ N. Now, by [10, Thm. 2.6], we have

|aj| =
(∫

Ω

‖ajεj(ω)Tzj‖pY dµ
) 1

p

≤
(∫

Ω

∥∥∥∥ n∑
j=1

ajεj(ω)Tzj

∥∥∥∥p
Y

dµ

) 1
p

,

for 1 ≤ j ≤ n and scalars (aj)
n
j=1. While [10, Lemma 4.1] yields(∫

Ω

∥∥∥∥ n∑
j=1

ajεj(ω)zj

∥∥∥∥p
Y

dµ

) 1
p

≤ max
1≤j≤n

|aj|
(∫

Ω

∥∥∥∥ n∑
j=1

εj(ω)zj

∥∥∥∥p
Y

dµ

) 1
p

≤ max
1≤j≤n

|aj|K,

where

K = sup
n

((∫
Ω

∥∥∥∥ n∑
j=1

εj(ω)zj

∥∥∥∥p
Y

dµ

) 1
p
)
<∞,

since (zj)
∞
j=1 ∈ A.
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Hence, if we consider TLp : Lp(X)→ Lp(Y ) defined as usual, then we have

max
1≤j≤n

|aj| ≤
∥∥∥∥TLp

( n∑
j=1

ajεjzj

)∥∥∥∥
Lp(Y )

≤ ‖T‖
∥∥∥∥ n∑
j=1

ajεjzj

∥∥∥∥
Lp(X)

≤ ‖T‖K max
1≤j≤n

|aj|.

This shows that the operator TLp is an isomorphism on the subspace generated
by (εjzj)

∞
j=1 which is isomorphic to c0. Therefore, by Theorem 3.1, T : X → Y is

also an isomorphism on a subspace isomorphic to c0. This finishes the proof. �
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