
DOMINATION PROBLEMS FOR STRICTLY SINGULAR
OPERATORS AND OTHER RELATED CLASSES

JULIO FLORES, FRANCISCO L. HERNÁNDEZ, AND PEDRO TRADACETE
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1. Introduction

A central question in the theory of Positive Operators between Banach lattices is
the domination problem: Let 0 ≤ R ≤ T : E → F be positive operators between
Banach lattices. Assume that T satisfies some property (∗).

(Q) Does the operator R inherit the property (∗) ?

It may be the case that for certain properties the answer is the best possible,
i.e. (Q) has a positive answer. For example this is the case for the class of integral
operators (those representable as Tf(x) =

∫
K(x, .)f(.)dµ). But in general, the

answer to (Q) can be negative and thus the problem turns into determining the
weakest conditions on the Banach lattices involved in order to have a positive answer.

The domination problem for the class of compact operators was solved by P. Dodds
and D. Fremlin in their seminal paper [14]: Let E and F be Banach lattices with
E∗ and F order continuous, and consider 0 ≤ R ≤ T : E → F . If T is compact,
then R is also compact. In the special setting of Lp(µ)-spaces this was also solved
independently by L. Pitt in [42].

These compactness domination results have been applied in several different areas
such as mathematical biology (see the survey [3]).

The domination for weakly compact operators was first considered by Y. Abramovich
in [1], showing that if F does not contain a subspace isomorphic to c0 then 0 ≤ R ≤
T : E → F implies that R is weakly compact whenever T is. This result was later
improved by A. Wickstead in [50], characterizing the domination property of weakly
compact operators by the fact that E∗ or F are order continuous.

For the class of Dunford-Pettis operators, the first domination results go back
to [6]. These were later improved by N. Kalton and P. Saab [32] showing that if F
is order continuous and T is Dunford-Pettis then R is also Dunford-Pettis (see [53]
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in this volume for more comments on the history of these results). Note also that
converse domination results have been given in [51], [52] and [8].

A related question is the so-called power problem for dominated endomorphisms:
Given 0 ≤ R ≤ T : E −→ E it is interesting to study whether some iteration
(power) of the operator R inherits the property (*) of the operator T , under no
assumptions on the Banach lattice E.

This approach was first developed by C. D. Aliprantis and O. Burkinshaw in [4]
and [5] for compact and weakly compact operators obtaining

• If T is compact then R3 is also compact.
• If T is weakly compact then R2 is also weakly compact.

These results are also shown to be optimal. Moreover, the power problem for
the class of Dunford-Pettis operators was also studied by N. Kalton and P. Saab in
([32]): If T is Dunford-Pettis, then R2 is also Dunford-Pettis.

The aim of this paper is to survey several recent results on domination for other
important operator classes. Thus Section 3 is devoted to strictly singular operators
with some remarks on the related classes of strictly co-singular and super-strictly
singular operators. In Section 4, the domination of Banach-Saks operators is con-
sidered. Section 5 deals with Narrow operators and Section 6 with the class of
p-summing operators. Last Section collects several open problems on this topic.
Finally, we would like to mention that there are other domination results for op-
erator classes which have not been considered here (for example, for Asplund and
Radon-Nikodym operators in [33]).

We refer the reader to the monographs [2], [7], [35], [37] and [54] for unexplained
terminology from Banach lattices and positive operators theory.

2. Preliminaries

In this section we recall some notions and tools required throughout this paper.
First, recall the Kadec̆-PeÃlczyński disjointification method for order continuous Ba-
nach lattices (cf. [35]): Let X be any subspace of an order continuous Banach lattice
E. Then, either

(1) X contains an almost disjoint normalized sequence, that is, there exist a
normalized sequence (xn)n ⊂ X and a disjoint sequence (zn)n ⊂ E such that
‖zn − xn‖ → 0, or,

(2) X is isomorphic to a closed subspace of L1(Ω, Σ, µ).

Notice that if X is separable, then it can be included in some ideal H of E with
a weak order unit. Therefore, this ideal has a representation as a Köthe function
space over a finite measure space (Ω, Σ, µ) ([35, Thm. 1.b.14]), and in this case the
previous dichotomy says that either X contains an almost disjoint sequence or the
natural inclusion J : H ↪→ L1(Ω, Σ, µ) is an isomorphism when restricted to X.

If E is an order continuous Banach function space on a finite measure space
(Ω, Σ, µ), a bounded subset A ⊂ E is equi-integrable if for every ε > 0 there is δ > 0
such that ‖fχB‖E < ε for every B ∈ Σ with µ(B) < δ and every f ∈ A.

An order continuous Banach lattice E satisfies the subsequence splitting property
(cf.[49]) if for every bounded sequence (fn)n in E there is a subsequence (nk)k and
sequences (gk)k , (hk)k in E with |gk| ∧ |hk| = 0 and

fnk
= gk + hk
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such that (gk)k is equi-integrable and |hk| ∧ |hl| = 0 if k 6= l.
Every p-concave Banach lattice (p < ∞) has the subsequence splitting property

(cf. [49]). Recall that E is p-concave if there exists a constant M < ∞ such that
for every choice of elements (xi)

n
i=1 we have

( n∑
i=1

‖xi‖p

)1/p

≤ M

∥∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥∥.

Given a Banach lattice E and a Banach space Y , an operator T : E → Y is order
weakly compact if T [−x, x] is relatively weakly compact for every x ∈ E+. Order
weakly compact operators can be characterized as those operators not preserving a
positive disjoint order-bounded isomorphic copy of c0 (cf. [37, Cor.3.4.5]). Also,
if X is a Banach space and F a Banach lattice, an operator T : X → F does not
preserve an isomorphic copy of `1 which is complemented in F if and only if its
adjoint T ∗ is order weakly compact (cf. [37, Thm.3.4.14]).

The following factorization results for positive order weakly compact operators
are useful tools ([24]):

Theorem 2.1. Let E1, E2 be Banach lattices and consider operators 0 ≤ R ≤ T :
E1 → E2. There exist a Banach lattice F , a lattice homomorphism φ : E1 → F and
operators 0 ≤ RF ≤ T F such that T = T F φ and R = RF φ:

E1

φ ÃÃA
AA

AA
AA

T //

R
//_______ E2

F

T F
>>}}}}}}} RF

>>}
}

}
}

Moreover, T : E1 → E2 is order weakly compact if and only if F is order continuous.

Theorem 2.2. Let E1, E2 be Banach lattices and consider operators 0 ≤ R ≤ T :
E1 → E2. There exist a Banach lattice G, a lattice homomorphism ψ : G → E2 and
operators 0 ≤ RG ≤ TG such that T = ψTG and R = ψRG:

E1

T //

R
//_______

T G

ÃÃA
AA

AA
AA

RG ÃÃA
A

A
A

E2

G

ψ

>>}}}}}}}

Moreover T ∗ : E∗
2 → E∗

1 is order weakly compact if and only if G∗ is order continu-
ous.

Considering the domination problem for an operator ideal (in the sense of Pietsch),
some comments are in order. Suppose we have two positive operators 0 ≤ R ≤ T :
E → F , when does R belong to the closed ideal generated by T? The investigation
of this question in the general framework of operator ideals is of importance in
studying specific domination problems.

Freudenthal’s theorem addresses this issue. Briefly recall that if T : G → F is a
positive operator between two vector lattices G and F with F Dedekind-complete,
then a positive operator S : G → F is said to be a component of T if S∧ (T −S) = 0
holds in Lr(G,F ). The operators of the form QTP , where Q is a band projection on
F and P is a band projection on G, are called elementary components of T . A simple
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component of T is a component of the form
n∨

i=1

QiTPi. The collection of all simple

components (resp. components) of T will be denoted by ST (resp. CT ). A regular
operator S from G to F is said to be a T -step operator if there exist pairwise disjoint
components T1, . . . , Tn of T with T1 + · · · + Tn = T , and real numbers α1, . . . , αn

satisfying

S =
n∑

i=1

αiTi.

With this notation Freudenthal’s result ([37, Section 1.2]) is recalled next

Theorem 2.3 (Freudenthal). Let R, T : G → F be positive operators between two
vector lattices, with F Dedekind-complete. If 0 ≤ R ≤ T holds, then there exists a
sequence (Sn)n of T -step operators satisfying

0 ≤ R− Sn ≤ n−1T for each n, and 0 ≤ Sn ↑ R.

Notice that condition 0 ≤ R− Sn ≤ n−1T implies that R− Sn tends to zero with
respect to the operator norm by the equality ‖R − Sn‖ = sup{‖(R − Sn)x‖ : x ∈
ball(G)+}. In particular this means that as long as the T -step operators belong to
the (norm-closed) class to which T belongs we can conclude that R itself belongs to
the same class. Therefore, we are interested in the case when order approximation
by operators in the algebraic ideal of T yields norm approximation, and we say
that an operator T has order continuous norm whenever every sequence of positive
operators with |T | ≥ Tn ↓ 0 in Lr(E, F ) satisfies ‖Tn‖ ↓ 0. Consider the set

IT = {S ∈ Lr(E, F ) : there exists n ∈ N such that |S| ≤ n|T |},
and denote by Ring(T ) the closure in L(E,F ) of the set of operators of the form∑n

i=1 RiTSi with Si ∈ L(E), Ri ∈ L(F ). The following theorem sumarizes the
previous lines (see [7, Thm. 5.70]).

Theorem 2.4. Let E be a Banach lattice which is either σ-Dedekind complete or
has a quasi-interior point, and let F be a Dedekind complete Banach lattice. If T
has order continuous norm, then

IT ⊆ Ring(T ).

P. Dodds and D. Fremlin [14, Thm. 5.1] provided a very useful characterization
of the order continuity of the norm of an operator. Recall that an operator between
Banach lattices T : E → F is M-weakly compact if ‖Txn‖ → 0 for every norm
bounded disjoint sequence (xn)n in E. An operator T : E → F is L-weakly compact
if every disjoint sequence in the solid hull of T (BE) tends to zero in F .

Theorem 2.5. Let E and F be Banach lattices with F Dedekind complete. An
operator T : E → F has order continuous norm if and only if it is both L-weakly
compact and M-weakly compact.

These techniques for approximation of bounded operators have been further gen-
eralized by N. Kalton and P. Saab. The main result in this direction is the following
(see [32]).

Theorem 2.6. Let E and F be Banach lattices with quasi-interior points. Let
T : E → F be a positive operator, and let A ⊂ E and B ⊂ F ∗ be solid bounded
sets such that for every positive disjoint sequences (an)n in A, and (bn)n in B the
following conditions hold:
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(1) Tan → 0 in the weak topology,
(2) T ∗bn → 0 in the weak∗-topology,
(3) 〈Tan, bn〉 → 0.

Suppose that S,R : E → F satisfy |S| ≤ |R| ≤ T in L(E, F ∗∗). Then, for every
ε > 0 there exist multipliers M1, . . . , Mn ∈ L(E), and L1, . . . , Ln ∈ L(F ) such that

S0 =
n∑

i=1

LiRMi

satisfies

|〈Sa− S0a, b〉| ≤ ε, for every a ∈ A, and b ∈ B.

This result was used in [32] to provide a domination theorem for Dunford-Pettis
operators.

3. Domination by strictly singular operators

In this section we consider the problem of domination by strictly singular operators
and some related classes.

Recall that an operator T : X → Y between Banach spaces is said to be strictly
singular (or Kato) if for every infinite dimensional (closed) subspace M of X, the
restriction T |M is not an isomorphism into Y , i.e. there is no infinite dimensional
subspace M of X with a constant c > 0 such that for every x ∈ M

c‖x‖ ≤ ‖Tx‖
This class forms a closed operator ideal, which properly contains the ideal of

compact operators. For example the inclusion operators L∞[0, 1] ↪→ ÃLp[0, 1] , 1 ≤
p < ∞ are strictly singular (but no compact) (cf. [47] Thm.5.2). Strictly singular
operators are very useful in Fredholm and perturbation theory (cf. [2], [34]). It
is well-known that an operator T : X → Y between Banach spaces is strictly
singular if and only if for every infinite dimensional subspace M of X there exists
another infinite dimensional subspace N ⊂ M such that the restriction T |N is
compact. In general the fact that T (resp. the adjoint T ∗) is strictly singular does
not imply that T ∗ (resp. T ) is strictly singular.

Let us give some examples of strictly singular inclusions between rearrangement
invariant (r.i) function spaces E (see [35] for definitions). In the finite measure
case the canonical inclusions L∞[0, 1] ↪→ E[0, 1] are always strictly singular for
any r.i. space E 6= L∞ ([38]). On the other side inclusion E[0, 1] ↪→ L1[0, 1] is
strictly singular if and only if E[0, 1] does not contain the order continuous Orlicz

space Lexp x2

0 [0, 1] ([26]).
In the infinite measure case the inclusions L1 ∩ L∞ ↪→ E ↪→ L1 + L∞ hold. The

strict singularity of the left inclusions L1∩L∞ ↪→ E is characterized in [28] in terms

of the associated fundamental function: lim
t→0

φE(t) = lim
t→∞

φE(t)
t

= 0. The behavior of

the right inclusions E ↪→ L1+L∞ is more complicated, since the corresponding cri-
teria involve other conditions than the mere behavior of the associated fundamental
functions (see [29]).

In the context of Banach lattices, a useful variant of strict singularity is the
following ([27]): given a Banach lattice E and a Banach space Y , an operator
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T : E → Y is called disjointly strictly singular if it is not invertible on any subspace
of E generated by a disjoint sequence.

Clearly, every strictly singular operator is also disjointly strictly singular, but
the converse is not true. For example the inclusions Lq[0, 1] ↪→ Lp[0, 1], 1 ≤ p <
q < ∞, are disjointly strictly singular but not strictly singular. This follows from
Khintchine’s inequality for the Rademacher functions (rn):

( ∫ 1

0

|
∞∑

n=1

anrn|p dµ

)1/p

∼ ( ∞∑
n=1

|an|2
)1/2

In some special cases, both concepts coincide: for instance for spaces with a
Schauder basis of disjoint vectors or for C(K)-spaces. The class of all disjointly
strictly singular operators is stable by addition and by composition on the right but
in general it is not an operator ideal.

We present now recent domination results for positive strictly singular operators
between Banach lattices. First let us show that this is not true in general:

Example 3.1. There exist operators 0 ≤ R ≤ T : `1 → L∞[0, 1] such that T is
strictly singular but R is not.

Indeed, take R̃ : `1 → L∞[0, 1] the isometry defined by R̃(en) = rn. Consider
also the positive operators R1, R2 : `1 → L∞[0, 1] defined by R1(en) = r+

n and
R2(en) = r−n respectively, where r+

n and r−n are the positive and negative part of rn.

Clearly R̃ = R1−R2. Moreover 0 ≤ R1, R2 ≤ T , where T is the rank-one operator:

T (x) =

( ∞∑
n=1

xn

)
χ[0,1].

The operator T is clearly strictly singular, but neither the operator R1 nor R2 are

strictly singular. Now the equalities T = R1 +R2 and R̃ = R1−R2 proof the claim.
Using the above, and the existence of lattices isomorphic copies of `∞ in non

order continuous Dedekind complete Banach lattices, a general negative result can
be given:

Proposition 3.2. Let E and F two Banach lattices with F Dedekind-complete;
assume that neither E∗ nor F are order continuous. Then there exist two positive
operators 0 ≤ R ≤ T : E → F such that T is strictly singular but R is not.

An important step in the obtention of our domination theorem is the following
domination result for the class of disjointly strictly singular operators ([16]):

Theorem 3.3. Let E and F be Banach lattices such that F is order continuous. If
T is disjointly strictly singular and 0 ≤ R ≤ T : E → F then R is also disjointly
strictly singular.

Another important step is to consider the case when the range space is an L1(µ)-
space, or more generally, a space with the positive Schur property. Recall that
a Banach lattice E has the positive Schur property if every positive weakly null
sequence is convergent. Other examples of Banach lattices with the positive Schur
property are the Orlicz spaces Lx logp(1+x)[0, 1] , p > 0, and the Lorentz spaces
Lp,1[0, 1] , 1 < p < ∞ . Observe that the positive Schur property implies that E
does not contain an isomorphic copy of c0 (in particular E is order continuous).
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In this context the following result was given in [18]; we include here an improved
version of the proof.

Proposition 3.4. Let E and F be Banach lattices such that F has the positive
Schur property. If 0 ≤ R ≤ T : E → F and T is strictly singular, then R is also
strictly singular.

Proof. Suppose that R is not strictly singular, then, there exists an infinite-dimensional
subspace X (which can be assumed separable) in E such that R|X is an isomorphism.
Since F does not contain an isomorphic copy of c0, neither does R(X). Moreover,
if R(X) contained an isomorphic copy of `1, then R would be an isomorphism on
the span of a disjoint sequence equivalent to the canonical basis of `1 (see [37,
Sect.3.4],also [12]); however T is disjointly strictly singular and F order continuous,
so by Theorem 3.3, this yields a contradiction. Therefore, by [35, Thm.1.c.5], R(X),
and hence X, must be reflexive.

Now, we consider the ideal EX generated by X in E, and FX the ideal generated
by T (X) in F . Let A denote the solid hull of BX the unit ball of X, and B the
unit ball of F ∗

X . We claim that T |EX
: EX → FX , A and B satisfy the conditions of

Theorem 2.6. Indeed, by [24, Thm I.2(c)] we have the following factorization

EX

φ !!B
BB

BB
BB

B
T // FX

H
T H

>>||||||||

where φ is a lattice homomorphism and H is a Banach lattice which does not contain
an isomorphic copy of c0. Since BX is a weakly compact set, φ(BX) is also weakly
compact, and since H does not contain c0, by [7, Thm 4.39], the solid hull so(φ(BX))
is also weakly compact. Since φ is a lattice homomorphism, φ(A) = φ(so(BX)) ⊂
so(φ(BX)), and therefore φ(A) is also weakly compact.

Now, let (an)n be a positive disjoint sequence in A. We claim that ‖T (an)‖ → 0
in F . Suppose, this is not the case, hence passing to a further subsequence we can
assume that ‖T (an)‖ ≥ α > 0. By the previous argument (φ(an))n must have a
weakly convergent subsequence. We will show that this sequence is in fact weakly
null. In order to see this, we make use of the representation [35, Thm 1.b.14],
and consider the closed ideal generated by e =

∑∞
n=1 2−nφ(an) in H as a space of

measurable functions included in L1(Ω, Σ, µ). Since (an)n are pairwise disjoint, and
φ is a lattice homomorphism, (φ(an))n are also pairwise disjoint, so in particular
the sequence (φ(an))n, which is weakly convergent in H, must satisfy ‖φ(an)‖1 → 0
when n →∞. This implies that the weak limit of (φ(an))n in H has to be zero, as
desired. In particular, T (an) → 0 weakly, and since T is positive, by the positive
Schur property of F , we get that T (an) → 0 in the norm of F . This is a contradiction
with the assumption that ‖T (an)‖ ≥ α > 0.

Therefore, we have proved that for every positive disjoint sequence in A, we have
‖T (an)‖ → 0. This proves the first and third conditions of Theorem 2.6. To prove
the second condition, notice that since F is order continuous, by [37, Cor. 2.4.3]
every disjoint sequence (bn)n in B (the unit ball of F ∗

X) is weak-∗ convergent to zero.
Hence, we also have that T ∗bn → 0 in the weak∗-topology, as desired.
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Thus , by Theorem 2.6, for every ε > 0 there exists operators M1, . . . , Mn ∈
L(EX), and L1, . . . , Ln ∈ L(FX) such that

Rε =
n∑

i=1

LiTMi

satisfies |〈Ra− Rεa, b〉| ≤ ε, for every a ∈ A, and b ∈ B. In particular, this implies
that ‖R|X − Rε|X‖ < ε. Since the class of strictly singular operators is a closed
operator ideal, and T is strictly singular we have that Rε is strictly singular for
every ε > 0, and so is R|X . This is a contradiction with the assumption that R|X
was invertible, and the proof is finished. ¤

A general domination result for strictly singular operators, given recently by the
authors in [18], is stated next; it improves a weaker version in [17] by removing the
extra hypothesis of order continuity on E∗ there imposed.

Theorem 3.5. Let E be a Banach lattice with the subsequence splitting property
and F an order continuous Banach lattice. If 0 ≤ R ≤ T : E → F with T strictly
singular, then R is also strictly singular.

Notice that if the Banach lattice E has finite cotype, then an alternative proof of
this result can be given using a recent characterization of strictly singular operators
on Banach lattices ([19]):

Theorem 3.6. Let E and F be Banach lattices such that E has finite cotype and F
be order continuous. A regular operator T : E → F is strictly singular if and only
if it is both disjointly strictly singular and AM-compact.

The statement follows now from a domination result for AM -compact operators
and from Theorem 3.3 .

We pass to study the power problem for strictly singular endomorphisms. That
this problem is not trivial is shown with the following

Example 3.7. There exist operators 0 ≤ R ≤ T : L2[0, 1]⊕ `∞ → L2[0, 1]⊕ `∞ such
that T is strictly singular but R is not.

Indeed, consider the rank-one operator Q : L1[0, 1] → `∞ defined by

Q(f) =
( ∫ 1

0

f,

∫ 1

0

f, . . .
)

Take also an isometry S : L1[0, 1] → `∞ given by S(f) = (h′n(f))n, where (hn)n is
a dense sequence in the unit ball of L1[0, 1], and (h′n)n is a sequence of norm one
functionals such that h′n(hn) = ‖hn‖ for all n. If J : L2[0, 1] ↪→ L1[0, 1] denotes the
canonical inclusion, then the operator SJ : L2[0, 1] → `∞ is not strictly singular.

Since `∞ is Dedekind complete we have that |SJ |, (SJ)+ and (SJ)− are also
continuous operators between L2[0, 1] and `∞. It is easy to see that |SJ | ≤ QJ .
Since SJ is not strictly singular, we must have that either (SJ)+ or (SJ)− is not
strictly singular, so let us assume, that (SJ)+ is not strictly singular. Now consider
the matrices of operators:

R =

(
0 0

(SJ)+ 0

)
, T =

(
0 0

QJ 0

)
,
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which clearly define operators on L2[0, 1]⊕ `∞ with the required properties.

We pass now on to the positive results for the power problem. For the class of
disjointly strictly singular operators we have the following ([16]):

Theorem 3.8. Let E be a Banach lattice and operators 0 ≤ R ≤ T : E → E. If T
is disjointly strictly singular then R2 is also disjointly strictly singular.

In general, for the class of strictly singular operators we have the following

Theorem 3.9. Let E be a Banach lattice and operators 0 ≤ R ≤ T : E → E. If
T is strictly singular, then R4 is also strictly singular.

This is deduced from a more general statement proved by the authors in [18] using
factorization methods:

Theorem 3.10. Let

E1

T1 //

R1

//___ E2

T2 //

R2

//___ E3

T3 //

R3

//___ E4

T4 //

R4

//___ E5

be operators between Banach lattices, such that 0 ≤ Ri ≤ Ti for i = 1, 2, 3, 4.
If T1, T3 are strictly singular, and T2, T4 are order weakly compact, then

R4R3R2R1 is also strictly singular.

As a direct consequence we have Theorem 3.9. Indeed, since T is strictly singular,
it cannot preserve an isomorphic copy of c0, so, in particular, it is order weakly
compact. Therefore, it suffices to apply Theorem 3.6 to Ei = E, Ri = R and Ti = T
for all i.

Corollary 3.11. Let 0 ≤ R ≤ T : E → F , and 0 ≤ S ≤ V : F → G. If F and G
are order continuous Banach lattices, and T and V are strictly singular operators,
then the composition SR is strictly singular.

In particular, if 0 ≤ R ≤ T : E → E with T strictly singular and E order
continuous, then R2 is strictly singular

Indeed, since F is order continuous, the identity IF : F → F is order weakly
compact. Consider E1 = E, E2 = F, E3 = F, E4 = G and E5 = G; and the
operators T1 = T, T2 = IF , T3 = V and T4 = IG. Then, by Theorem 3.10 we
obtain that IGSIF R = SR is strictly singular.

Note that in the above example the Banach lattice L2[0, 1] ⊕ `∞ is not order
continuous and the square R2 is the zero operator.

We provide now some applications to related operator ideals. Given two Banach
spaces X and Y , a bounded operator T : X → Y is super strictly singular (or finitely
strictly singular) if there does not exist a number c > 0 and a sequence of subspaces
(En)n of X, with dim En = n, such that

‖Tx‖ ≥ c ‖x‖ for all x ∈ ∪
n
En

In other words, T is super strictly singular if the Bernstein numbers bn(T ) ↘ 0,
as n →∞, where

bn(T ) = sup inf
x∈S(En)

‖Tx‖,
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with the supremum taken among all n-dimensional subspaces En of X and S(En)
denotes the unit sphere of En. Clearly super-strict singularity implies strict sin-
gularity, and compact operators are always super strictly singular. The inclusions
L∞[0, 1] ↪→ E[0, 1] for r.i. spaces E 6= L∞ are (non-compact) super strictly singular
operators. We refer to Plichko ([43]) for properties of this operator class.

There is also a characterization of super strict singularity in terms of ultraprod-
ucts. Namely, an operator T : E → F is super strictly singular if and only if its
ultrapower TU : EU 7→ FU is strictly singular for every (free) ultrafilter U . Using
this fact together with the previous results, a domination result for super strictly
singular operators can be deduced:

Proposition 3.12. Let 0 ≤ R ≤ T : E → F be two positive operators from a
Banach lattice E to a Banach lattice F . If E and F have finite cotype and T is
super strictly singular then R is also super strictly singular.

The conditions on non-trivial concavity play here an important role, as the fol-
lowing example shows ([20]):

Let 1 ≤ p < q < ∞ , E = (⊕∞n=1`
n
1 )p and F = (⊕∞n=1`

2n

∞)q . Consider for
every n the operator Tn : `n

1 → `2n

∞ which sends an arbitrary finite sequence (ak)
n
1

to the sequence (
∑

ak)(1, 1, . . . , 1) of `2n

∞ . Consider the isometry Rn : `n
1 → `2n

∞
represented by the (2n × n) matrix with {1,−1}-entries defined as

Rn ≡ (xk,l) =




1 1 . . . 1 1
1 1 . . . 1 −1
1 1 . . . −1 1

. . . . . . . . . . . . . . . . . . . . . .
−1 −1 . . . −1 −1




(we set xk,l = εk(l), where εk, for k = 1, ..., 2n is an enumeration of {−1, 1}n).

Consider now the operators T = ⊕Tn and R = ⊕Rn from E into F . The operator
T is positive and factorizes through the inclusion i : `p ↪→ `q. Indeed, the operator
ϕ : E → `p defined as ϕ(xn)n = (σ(xn))n, where σ(xn) =

∑n
i=1 xn,i , is well defined

and bounded. Consider next the bounded operator ψ : `q → F defined as ψ(an)n =
⊕an12n , where 12n is the unit of `2n

∞ . Notice that T = ψ i ϕ. Since i is super strictly
singular (cf. [43]), the operator T itself is super strictly singular. On the other hand
the operator R is not super strictly singular since Rn is an isometry for every n.
Standard facts show that R is regular and that the inequalities 0 ≤ R−, R+ ≤ |R| ≤
T hold true. From this we obtain that R+ and R− cannot be simultaneously super
strictly singular since R is not (Notice that F is reflexive and E has the subsequence
splitting property).

In the case of endomorphisms, using the fact that (RU)n = (Rn)U for every n ∈ N,
and Theorem 3.9 we have the following

Proposition 3.13. Let 0 ≤ R ≤ T : E → E be positive operators on a Banach
lattice. If T is super strictly singular then R4 is also super strictly singular.

Let us briefly mention some applications to the class of strictly co-singular op-
erator: Recall that an operator T : X → Y between two Banach spaces is said
to be strictly co-singular (or Pelczynski [41]) if for every (closed) subspace M of
Y of infinite codimension the composition operator πT is not surjective , where π
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denotes the quotient map from Y onto Y/M . For example the canonical inclusion
L2[0, 1] ↪→ L1[0, 1] is strictly co-singular .

Strictly co-singular operators are also a closed operator ideal which is partially
related by duality to the strictly singular operator class (recall that in general strict
singularity is not stable under duality): If the adjoint operator T ∗ : Y ∗ → X∗ is
strictly singular (resp. co-singular) then T : X → Y is strictly co-singular (resp.
singular). However the converse statements are not true in general. Using this fact
and above results we can deduce the following:

Proposition 3.14. Let E and F be two Banch lattices with E∗ order continuous
and F be reflexive with F ∗ satisfying the subsequence splitting property. If 0 ≤ R ≤
T : E 7→ F and T is strictly co-singular then R is also strictly co-singular.

Finally notice that a “super” version of strictly co-singular operators have been
also considered in [43], for which domination results can be also deduced (see [20].

4. Domination by Banach-Saks operators

We consider now the class of Banach-Saks operators in the present context of
domination. Recall that an operator T : X → Y , between two Banach spaces X
and Y , is Banach-Saks if every bounded sequence (xn)n in X has a subsequence
such that (Txnk

)k is Cesàro convergent, that is, the sequence of arithmetic means

( 1
N

∑N
k=1 T (xnk

))N is convergent in the norm of Y .
A Banach space is said to have the Banach-Saks property if the identity operator is

Banach-Saks. Banach-Saks spaces are known to be reflexive but not conversely ([9]).
Hence Banach-Saks operators are weakly compact; in fact they factorize through
Banach-Saks spaces as Beauzamy has shown ([10]).

We will exploit the fact that order continuous Banach lattices with a weak unit
are continuously included into L1-spaces over probability spaces which in turn enjoy
a weak version of the Banach-Saks property. More precisely, recall that a Banach
space X has the weak Banach-Saks property (or is weakly Banach-Saks ) if every
weakly null sequence in X has a Cesàro convergent subsequence. Szlenk ([48]) has
shown that L1(Ω, µ) is weakly Banach-Saks where (Ω, Σ, µ) is a probability space.

This result by Szlenk is used in the proof of the following factorization theorem
together with the simple observation that the sequence of Cesàro sums of an equi-
integrable sequence is also equi-integrable, and in combination with the Lions-Peetre
interpolation construction (see [23] for details).

Theorem 4.1. Let E and F be Banach lattices and T : E → F a positive Banach-
Saks operator. If F is order continuous, then there exist a Banach lattice H with
the Banach-Saks property, and operators T1 : E → H, T2 : H → F , such that the
following factorization diagram holds:

E
T //

T1 ÃÃ@
@@

@@
@@

F

H
T2

>>~~~~~~~

Observe that given 0 ≤ R1 ≤ T1 : E1 → E2 and 0 ≤ R2 ≤ T2 : E2 → E3, with T1

Banach-Saks and T2 order weakly compact, the proof of Theorem 4.1 can in fact be
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adapted to obtain the factorization

E1

T1 //
R1

//______

P1

''NNNNNNNNNNNNN

Q1 ''NNNNNNN
E2

T2 //
R2

//______ E3

H

P2

88ppppppppppppp Q2

88ppppppp

where H is a Banach lattice with the Banach-Saks property, 0 ≤ Q1 ≤ P1 and
0 ≤ Q2 ≤ P2. From here a domination result for Banach-Saks operators is easily
obtained. Notice, however, that it is possible to derive an alternative domination
result without making use of interpolation. This is the content of the following
theorem which improves previous results in [22]. Its proof is again based on previous
remarks together with Theorem 2.1

Theorem 4.2. Let E1, E2 and E3 be Banach lattices and 0 ≤ Ri ≤ Ti : Ei → Ei+1

be positive operators for i = 1, 2. If T1 is a Banach-Saks operator and T2 is order
weakly compact, then the composition R2R1 is a Banach-Saks operator.

Since Banach-Saks operators are weakly compact - hence order weakly compact -
we obtain that n = 2 is the optimal answer for the power problem in this class.

Corollary 4.3. Let E be a Banach lattice and 0 ≤ R ≤ T : E → E be positive
operators. If T is Banach-Saks, then R2 is also Banach-Saks.

Also from Theorem 4.2 and the fact that order intervals of order continuous Ba-
nach lattices are weakly compact [35, p. 28] follows

Corollary 4.4. Let E and F be Banach lattices, such that F is order continuous. If
0 ≤ R ≤ T : E → F , with T Banach-Saks, then R is also a Banach-Saks operator.

The operators in Example 3.1 show that the order continuity of F in Corollary 4.4
is not superfluous. In fact those operators can be used to show that Corollary 4.3 is

actually sharp; indeed consider as usual the operators 0 ≤ R̃ ≤ T̃ : `1⊕L∞ → `1⊕L∞

defined by

R̃ =

(
0 0
R 0

)
T̃ =

(
0 0
T 0

)
.

Clearly T̃ is Banach-Saks, but R̃ is not. Notice that R̃2 = 0.

5. Domination by narrow operators

In this section we consider the problem of domination by narrow operators. Given
a Köthe function space E(µ) on an atomless probability space (Ω, Σ, µ) and a Banach
space Y , we recall that a linear operator T : E(µ) → Y is narrow if for each
measurable set A ∈ Σ and every ε > 0 there is a partition {A1, A2} of the set A,
with µ(A1) = µ(A2) such that ‖T (χA1 − χA2)‖ < ε.

Plichko and Popov provided in [44] the first systematic study of this class of
operators which will be denoted by N (E(µ), Y ); there they prove that if E(µ) is
a rearrangement invariant function space different from L∞(µ) and Y is a Banach
space, then every compact operator T : E(µ) → Y is narrow.

Other references to narrow operators prior to the monographic treatment in [44]
can be found in ([25], [11], [45], [46]) in the context of “norm-sign-preserving opera-
tors”on L1[0, 1]. We refer also to ([15], [30]) for the relation between complementably
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singular operators and narrow operators ([15], [30]). For instance in [30] it is proved
that every operator T : Lp(µ) → Lp(ν), 1 ≤ p < 2 which is Lp-complementably
singular must be narrow.

In [44] the following questions were posed regarding strictly singular and nar-
row operators: Let 1 < p < ∞, p 6= 2 and Y a Banach space. Is every strictly
singular operator T : Lp(Ω, Σ, µ) → Y narrow? Is every l2-singular operator
T : Lp(Ω, Σ, µ) → Y narrow? In [21] a positive answer to these questions for
regular operators was given. In particular every bounded operator T : L1[0, 1] → F ,
where F is a Banach lattice containing no isomorphic copy of c0, that is l2-singular
was shown to be narrow.

Notice that, as in previous sections, we cannot expect a general domination result
without extra hypothesis on the lattices as shown in ([21, Ex. 3.3]) where a positive
rank one operator in N (L1[0, 1], l∞) dominates a non-narrow operator. In fact the
example can be easily adapted to show that there is no domination result in the
class N (E(µ), l∞).

Notice that the “ring approximation”in Theorem 2.4 initially fails when applied to
the class of narrow operators due to its surprising lack of structure. Most remarkably
narrow operators fail to have a vector space structure (cf. [44, §8 Ex.2])) and they are
not stable by composition with bounded operators. This evident drawback demands
some extra work.

First, based on standard results, the following remark is established

Proposition 5.1. Let Y and Z be two Banach spaces and T : E(µ) → Y a narrow
operator.

a) If S ∈ L(Y, Z), then ST ∈ N (E(µ), Z).
b) If P is a band projection on E(µ), then TP ∈ N (E(µ), Y ).

In other words, if F is a Dedekind-complete normed vector lattice and T : E(µ) →
F is a positive narrow operator, then every elementary component of T is narrow.

In order to extend this result to simple components we need to use a known
technical lemma (see [21] for a proof).

Lemma 5.2. Let G and F be vector lattices, F Dedekind-complete, and T a positive
operator from G to F . For every S ∈ ST there exists a finite set of mutually

disjoint elementary components of T , Q1TP1, · · · , QnTPn, such that S =
n∑

i=1

QiTPi.

Moreover the projections P1, . . . Pn can be taken pairwise disjoint.

A further step must be taken in order to extend this result to arbitrary components
of T . We do it first for the case that the operator T : E(µ) → F is M-weakly
compact. In this case the operator norm is order continuous on the order-interval
[0, T ] if F is order continuous (Thm. 2.5). Since components of T were shown by
De Pagter ([39]) to be approximated in order by simple components of T , we obtain
in this context that they can be approximated in norm by simple components of T ,
which were already shown to be narrow; thus the components of T turn out to be
narrow as narrow operators form a closed subset of the space of bounded operators.
Notice in addition that every operator T defined on a Banach lattice with order
continuous dual norm and taking values in L1(µ) must be M-weakly compact ([21,
Prop. 3.11]), hence from the above every component of T must be narrow when
considered as taking values in L1(µ). An appeal to ([21, Prop. 2.3.]) shows that
every component of T is narrow.
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Once we have proved that under order continuity in F and E(µ)∗ every component
of T is narrow we want to show that every T -step operator is narrow. Again the
proof cannot be obtained by simple addition in the absence of vector space structure.

Proposition 5.3. Let E(µ) and F (ν) be Köthe function spaces on the probability
spaces (Ω, Σ, µ) and (Ω′, Σ′, ν) respectively. If E(µ)∗ and F (ν) are order continuous
and T : E(µ) → F (ν) is a positive narrow operator, then every positive T -step
operator is narrow.

Once this result is established we have Freudenthal’s result at our disposal to
prove the following

Proposition 5.4. Let E(µ) be a Köthe function space over an atomless probability
space (Ω, Σ, µ) such that E(µ)∗ is order continuous, and let F be an order continuous
Banach lattice. For every positive narrow operator T : E(µ) → F the inclusion
[0, T ] ⊂ N (E(µ), F ) holds.

Notice that the restriction T |L∞(µ) : L∞(µ) → F is narrow if T is. Since L∞(µ)∗

is order continuous the operator S|L∞(µ) : L∞(µ) → F is narrow by the previous
proposition, but again this is tantamount to S : E → F being narrow.

Thus the following general domination result is obtained

Theorem 5.5. Let (Ω, Σ, µ) be an atomless probability space and E(µ) a Köthe
function space on (Ω, Σ, µ). Let F be an order continuous Banach lattice and 0 ≤
R ≤ T : E → F be two positive operators. If T is narrow then R is narrow.

We conclude this section with a word of caution regarding terminology as different
concepts have been depicted under the common name narrow (see f.i. [31]). Also
it was only recently that the notion of narrow operator was extended in [36] to the
abstract Banach lattice setting with a definition that clearly preserves the meaning
of the initial one. In that paper the authors improve the domination result in the
sense that under the same order continuity assumptions as those given here they
not only obtain domination but also the band structure of narrow operators in the
lattice of all regular operators between two Banach lattices.

6. Domination by p-summing operators

This section is devoted to presenting some recent results on domination of p-
summing operators based on [40]. Notice that the ideal of p-summing operators, as
many others, is not closed under the operator norm. This fact makes a difference
with the classes considered so far, where approximation arguments were available
(see Theorem 2.6). In a certain sense, this might suggest that no domination result
can be expected for non-closed operator ideals, however, this is far from true as we
shall see.

Recall that a sequence (xn)n in a Banach space X is weakly p-summable if

sup
x∗∈BX∗

( ∑
n

|〈x∗, xn〉|p
) 1

p

is bounded, or equivalently if xn = T (en) for some T : `p′ → X (where (en) is the unit
vector basis of `p′ with 1

p
+ 1

p′ = 1). Similarly, a sequence (xn)n is strongly summable
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when
( ∑

n ‖xn‖p
) 1

p converges. An operator T : X → Y , is called p-summing if
there is a constant C < ∞ such that for every (xn)n and every m ∈ N

( m∑
n=1

‖Txn‖p
) 1

p ≤ C sup
x∗∈BX∗

( m∑
n=1

|〈x∗, xn〉|p
) 1

p .

We set πp(T ) to be the smallest of these constants, and it follows that πp(·) defines
a norm for the ideal of p-summing operators. Clearly, an operator T : X → Y is
p-summing if it maps weakly p-summable sequences into strongly p-summable. We
refer to [13] for the theory of p-summing operators.

Note, that by the classical theorem of Dvoretzky-Rogers (cf. [13]) the identity
operator on any infinite dimensional Banach space is never a p-summing operator. In
particular, p-summing operators are always strictly singular; since in addition every
finite-rank operator is p-summing, we can use the operators given in Example 3.1 to
provide a counterexample for a general domination result of p-summing operators.

An important reason for the failure of a general domination result for p-summing
operators stems from the fact that weak summability is not a lattice property.
Namely, the sequence (|xn|)n need not be weakly p-summable although (xn)n was.
This is just because an operator T : `p′ → X need not have a bounded modulus (cf.
[7]).

Notice that since the ideal of p-summing operators is not closed for the operator
norm, but for the πp(·) norm, we will consider a “quantified” version of the domina-
tion problem. That is, given Banach lattices E and F , we look for a constant C > 0
such that if 0 ≤ R ≤ T : E → F , then πp(R) ≤ Cπp(T ).

In order to motivate the first positive results, we consider operators on a Hilbert
space. In finite dimension, an operator T : `n

2 → `n
2 can be considered as an n × n

matrix (aij)
n
i,j=1. Clearly, `n

2 with the coordinate-wise ordering becomes a Banach
lattice, where two operators T = (aij) and R = (bij) satisfy 0 ≤ R ≤ T whenever
0 ≤ bij ≤ aij for every i, j = 1, . . . , n. Notice that for operators on Hilbert space, the
classes of 2-summing operators and Hilbert-Schmidt operators coincide. Moreover

π2(T ) =
( n∑

i=1

n∑
j=1

a2
ij

) 1
2
,

Hence, it is clear that π2(R) ≤ π2(T ) whenever 0 ≤ R ≤ T : `n
2 → `n

2 . Note that the
same proof works for operators on the infinite dimensional `2 (see also Proposition
6.2).

Other simple cases in which a domination theorem holds are the following.

Proposition 6.1. Let F be a Banach lattice and 0 ≤ R ≤ T : C(K) → F be positive
operators. If T is p-summing for some 1 ≤ p < ∞, then R is p-summing.

Proof. By [35, Theorem 1.d.10], every positive operator from the space C(K) is
p-summing if and only if it is p-concave. The result follows from the fact that

( n∑

k=1

‖R(xk)‖p
) 1

p ≤
( n∑

k=1

‖T (|xk|)‖p
) 1

p ≤ M(p)(T )
∥∥∥
( n∑

k=1

|xk|p
) 1

p
∥∥∥.

¤
The following provides a domination result for absolutely summing operators into

Hilbert spaces, and also plays a key role in the proof of Theorem 6.3.
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Proposition 6.2. Let 0 ≤ R ≤ T : E → L2(µ). If T is absolutely summing, then
so is R. Moreover, there exists a constant C > 0 independent of R and T such that
π1(R) ≤ Cπ1(T ).

In [40] a domination theorem for p-summing operators (1 ≤ p < ∞) is obtained
as far as the Banach lattices involved have cotype 2. This is the content of the
following

Theorem 6.3. Let 1 ≤ p < ∞. Let E and F be Banach lattices with cotype 2 and
0 ≤ R ≤ T : E → F . There exists a universal constant Cp (depending only on p
and the cotype constants of E and F ) such that

πp(R) ≤ Cpπp(T ).

In particular, if T is p-summing, then R is also p-summing.

Notice that if the Banach lattice F has cotype greater than 2, then such a result
cannot hold as the following example shows

Example 6.4. Given 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, for any n ∈ N there exist positive
operators 0 ≤ Rn ≤ T : Lp(0, 1) → Lq(0, 1) such that

π2(T ) = 1 and π2(Rn) ≥ Cn
1
2
− 1

q ,

for certain constant C independent of n.
In particular, if q > 2 there is no domination theorem for 2-summing operators

between Lp and Lq.

Proof. Let T : Lp → Lq be given by T (f) =
∫

fdµχ(0,1), and for n ∈ N let Rn :
Lp → Lq be defined by

Rn(f) =
n∑

k=1

∫
fr+

k dµχAk
,

where r+
k denotes the positive part of the k-th Rademacher function, and Ak =

(k−1
n

, k
n
) for k = 1, . . . , n.

Clearly, T is a rank one operator, so we have π2(T ) = ‖T‖ = 1. Now, to compute
π2(Rn), notice that the sequence (rk)

n
k=1 is weakly 2-summable with

sup{
n∑

k=1

〈x∗, rk〉2 : x∗ ∈ BLp} ≤ Bp,

where Bp is the constant appearing in Khintchine’s inequality (hence independent
of n, cf. [13]). Therefore, we have

π2(Rn) ≥ 1
Bp

( ∑n
k=1 ‖Rn(rk)‖2

q

) 1
2

= 1
Bp

( ∑n
k=1 ‖

∑n
j=1

∫
rkr

+
j dµχAj

‖2
q

) 1
2

= 1
Bp

( ∑n
k=1 ‖1

2
χAk

‖2
q

) 1
2

= 1
2Bp

n
1
2
− 1

q .

In particular, when 2 < q there cannot be a constant K such that whenever
0 ≤ R ≤ T : Lp → Lq, we had π2(R) ≤ Kπ2(T ). ¤
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Using this kind of construction, a characterization of Banach lattices satisfying a
lower 2-estimate can be provided in terms of domination properties of 2-summing
operators (see [40]).

Theorem 6.5. A Banach lattice F satisfies a lower 2-estimate if and only if for
every 2-concave Banach lattice E, there exists a constant K < ∞ such that π2(R) ≤
Kπ2(T ) whenever 0 ≤ R ≤ T : E → F .

7. Final remarks

In this section we present some remarks and open problems related to the domi-
nation properties of positive operators.

Let us begin with the domination properties of strictly singular operators. The
following questions have been left unanswered:

Problem 1. Given an order continuous Banach lattice E, and 0 ≤ R ≤ T : E → E
with T strictly singular, must R be strictly singular too? Corollary 3.11 asserts that
R2 is strictly singular, but this might not be optimal.

Problem 2. Given a Banach lattice E and 0 ≤ R ≤ T : E → E, if T is strictly
singular, then R4 is strictly singular. Can we expect R3 or even R2 to be strictly
singular?

Notice that both problems are almost equivalent, since by Theorem 2.1 every
strictly singular operator factors through an order continuous Banach lattice. Con-
nected with this problems are those for the related classes of strictly co-singular and
super strictly singular operators:

Problem 3. Let E be a Banach lattice and consider operators 0 ≤ R ≤ T : E → E,
with T strictly co-singular. Which is the smallest n ∈ N such that Rn is also strictly
co-singular?

Problem 4. Given a Banach lattice E and operators 0 ≤ R ≤ T : E → E, with
T super strictly singular, Proposition 3.13 asserts that R4 is super strictly singular.
As in Problem 2, can R3 or even R2 be expected to be super strictly singular?

In the context of Banach-Saks operators, if F is an order continuous Banach
lattice and 0 ≤ R ≤ T : E → F with T Banach-Saks, then Corollary 4.4 asserts
that R is also Banach-Saks. We leave the following open:

Problem 5. Can we replace in Corollary 4.4 the hypothesis of order continuity on
F with order continuity on E∗ to reach the same conclusion?

Notice that taking duals will not do here because being Banach-Saks is not a
property stable under duality (think of the identity operator on the Baernstein
space which is known to have a Banach-Saks dual). We carry on with the power
problem for Narrow operators:

Problem 6. Is every narrow operator order weakly compact? A positive answer
would settle the power problem for n = 2 (by means of the usual factorization tech-
nique).

For p-summing operators in connection with Theorem 6.3, the following problem
was left open:
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Problem 7. Let E be a Banach lattice of cotype greater than 2 and F be a Banach
lattice with cotype 2. Let 0 ≤ R ≤ T : E → F . Is there a universal constant C > 0
such that π2(R) ≤ Cπ2(T )?

Notice that for p > 2, if 0 ≤ R ≤ T : Lp → L2, then by Proposition 6.2 there
is a domination result for absolutely summing operators, hence we cannot expect a
counterexample in the form of 6.4.

The following more general question is of interest:

Problem 8. Provide an operator ideal I and operators T ∈ I and 0 ≤ R ≤ T such
that Rn /∈ I for any n ∈ N.
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