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Abstract. We study the class Vp of strictly singular non-compact operators on Lp spaces.
This allows us to obtain interpolation results for strictly singular operators on Lp spaces.
Given 1 6 p < q 6 ∞, it is shown that an operator T bounded on Lp and Lq which is
strictly singular on Lr for some p 6 r 6 q, then it is compact on Ls for every p < s < q.

1. Introduction

Given Banach spaces E and F , a bounded operator T : E → F is strictly singular (or

Kato) if the restriction of T to any infinite-dimensional subspace of E is not an isomorphism.

This class was introduced by T. Kato in [K] as an extension of compact operators and in

connection with the perturbation theory of Fredholm operators. Strictly singular operators

form a closed operator ideal which in certain aspects behaves in a different way to that of

compact operators. Thus, in general, strictly singular operators are not stable under duality

(cf. [P], [Whi]), they are not suitable for interpolation properties (cf. [B], [H]) and fail to

have invariant subspaces ([R]).

However, in the setting of operators on Lp spaces (1 6 p 6 ∞) the behaviour of strictly

singular operators is somehow closer to that of compact operators. For example, concerning

endomorphisms on Lp spaces, it is known that an operator T : Lp → Lp is strictly singular

if and only if T ∗ : L∗p → L∗p is strictly singular. One implication of this result was given

by V. Milman in [M] and it was completely proved by L. Weis in [W1]. This same fact for

L1 and C(K) spaces was already known, since in these cases the class of strictly singular

operators coincides with that of weakly compact (see [P]). Moreover, recall that the square

of a strictly singular operator T : Lp → Lp is always a compact operator ([M]).

The aim of this paper is to study interpolation properties of strictly singular operators on

Lp spaces (1 6 p 6∞). In particular, we present an extension of Krasnoselskii result [Kr] on

interpolation of compact operators on Lp spaces. To this end, we first study the properties

of the class Vp of strictly singular non-compact operators on an Lp space.
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As a starting point, we will show that for p > 2 strictly singular non-compact operators

behave “locally” as inclusions i2,p : `2 ↪→ `p, and from this fact some structural properties of

the operator class Vp will follow. Thus, in Section 3 we give a version of Kato’s result that

S(L2) = K(L2) for operators which are simultaneously bounded on different Lp spaces (see

Corollary 3.4). This is deduced from an extrapolation type result for strict singularity (see

Theorem 3.3). The connection of an operator T ∈ Vp with boundedness in the scale of Lq

spaces will also be explored (see Theorem 3.7).

In Section 4 we present an extension of Krasnoselskii’s result on interpolation of compact

operators on Lp spaces to strictly singular operators. Namely, we will show that if an operator

is strictly singular in Lr and bounded in some Ls for 1 6 r, s 6 ∞, then the operator is

compact in Lp for every p strictly between r and s (Theorem 4.2).

2. Preliminaries

In this Section we fix the terminology and include some results that will be needed later.

A bounded operator T : E → F between Banach spaces is called strictly singular if the

restriction of T to any (closed) infinite-dimensional subspace of E is not an isomorphism.

Strictly singular operators form a closed operator ideal that contains the ideal of compact

operators. It is well-known that an operator T : E → F is strictly singular if and only

if for every infinite-dimensional subspace X of E, there exists another infinite-dimensional

subspace Y of X such that the restriction T |Y is compact (cf. [LT, Prop. 2.c.4]).

We denote by S(E) and K(E) the sets of strictly singular and compact operators on a

Banach space E. It holds that K(E) ⊂ S(E) ⊂ L(E). In the case when E is a sequence space

`p (1 6 p < ∞) or c0, it is well-known that the space of all bounded operators L(E) only

contains a unique non-trivial closed two-side ideal ([C], [GMF]). From this it follows that

K(`p) = S(`p) and K(c0) = S(c0). The simplest examples of strictly singular non-compact

operators are the formal inclusion mappings ip,q : `p ↪→ `q, with p < q.

Given 1 6 p 6 ∞, let Lp denote the function space Lp[0, 1] with the Lebesgue measure

µ. In [K] Kato showed that for Hilbert spaces strictly singular and compact operators

coincide, so S(L2) = K(L2) (this also follows from results about ideals in L(`2) given in [C]).

However, for every p 6= 2 it holds that S(Lp) 6= K(Lp) ([GMF]). We will denote by Vp the

class S(Lp) \K(Lp). Let us recall some well-known examples of operators in the class Vp for

1 6 p 6= 2 6∞.

Let 1 6 q < 2. Consider a complemented subspace Fq of Lq isomorphic `q (generated

by disjointly supported functions), and denote by Pq a projection from Lq on Fq. Let us

take the inclusion iq,2 and the operator Q defined by Qx =
∑∞

k=1 xkrk(t), for x ∈ `2, where
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(rk) are the Rademacher functions (rk(t) = sign sin 2kπt). By Khintchine’s inequality, the

operator Q is an isomorphic embedding of `2 into Lp for every 1 6 p < ∞. Clearly, the

operator Aq : Lq → Lq given by

(1) Aq = Q iq,2 Pq

belongs to Vq.

Now, let 2 < p < ∞. It is well known that the orthogonal projection R on the span [rk]

acts from Lp (p > 1) into L2 which is isomorphic to `2. Consider the inclusion i2,p and denote

by jp an isometric embedding of `p into Lp. Then the operator Bp : Lp → Lp

(2) Bp = jp i2,pR

belongs to Vp. Note that the operator Aq ∈ L(Lr) for every r ∈ [q,∞) and the operator

Bp ∈ L(Lr) for every r ∈ (1, p].

There also exist strictly singular and non-compact operators in L∞ and C(0, 1). For

instance, consider the operator T : L∞ → L∞ given by T = JR, where J : L2 → L∞ is an

isometric embedding, and R : L∞ ↪→ L2 is the formal inclusion.

Given 1 6 p <∞, for each ε > 0 we will consider the Kadeč-Pe lczyński sets ([KP]):

Mp(ε) = {f ∈ Lp : µ({t : |f(t)| > ε‖f‖p}) > ε}.

Theorem 2.1. Let X be a subspace of Lp (1 < p <∞). The following alternative holds:

(1) If X ⊂Mp(ε) for some ε > 0, then the inclusion i|X of Lp into L1 restricted to X is

an isomorphism (in this case we say that X is a strongly embedded subspace).

(2) If X * Mp(ε) for any ε > 0, then X contains an almost disjoint normalized sequence,

that is, there exists a normalized sequence (xn) ⊂ X such that xn = un + vn, where

(un) is a disjoint sequence, vn → 0 in Lp, and |un| ∧ |vn| = 0. In particular, (xn) can

be taken to be equivalent to the unit vector basis of `p.

Next result, due to L. Dor [D] (cf. [AO, Theorem 44]), will be used in the proof of Theorem

3.3.

Theorem 2.2. Let 1 6 p 6= 2 <∞, 0 < θ 6 1, and (fi)
∞
i=1 in Lp. Assume that either:

(1) 1 6 p < 2, ‖fi‖ 6 1 for all i, and ‖
∑n

i=1 aifi‖p > θ(
∑n

i=1 |ai|p)1/p for scalars (ai)
n
i=1,

and every n ∈ N, or

(2) 2 < p < ∞, ‖fi‖ > 1 for all i, and ‖
∑n

i=1 aifi‖p 6 θ−1(
∑n

i=1 |ai|p)1/p for scalars

(ai)
n
i=1 and every n ∈ N.

Then there exist disjoint measurable sets (Ai)
∞
i=1 in [0, 1] such that

‖fi χAi‖p > θ2/|p−2|.
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A classical interpolation result for compact operators on Lp spaces proved by Krasnoselskii

is the following [Kr] (see also [KZPS]).

Theorem 2.3. Let 1 6 p0, p1, q0, q1 6 ∞. If T : Lp0 → Lq0 is a compact operator and

T : Lp1 → Lq1 is bounded, then T : Lpθ → Lqθ is compact, where 1
pθ

= 1−θ
p0

+ θ
p1

and

1
qθ

= 1−θ
q0

+ θ
q1

, for every θ ∈ (0, 1).

An analogous result for interpolating strictly singular operators does not hold in general.

Indeed, consider the formal inclusion i : L∞ → L1 which is strictly singular by a result of

Grothendieck (cf. [Ru, Theorem 5.2]) and bounded as an operator i : L1 → L1. However, for

1 < p <∞, i : Lp → L1 is not strictly singular (since it is an isomorphism on the span of the

Rademacher functions). Apparently, positive results for one-sided interpolation of strictly

singular operators are only known in the degenerated case when the initial couple reduces

to one single space (see [B, Prop.2.1], [CMMM], [H, Prop. 1.6]).

Recall that an operator T between Banach spaces is compact if and only if its adjoint

T ∗ is compact (Schauder’s theorem). This fact is not true in general for strictly singular

operators (cf. [P], [Whi]). However, for endomorphisms on Lp spaces we have the following

fact due to V. Milman [M] and L. Weis [W1]:

Theorem 2.4. Let 1 6 p 6 ∞. An operator T : Lp → Lp is strictly singular if and only if

T ∗ : L∗p → L∗p is strictly singular.

We refer the reader to the monographs [AA], [G] and [LT] for unexplained terminology.

3. Strictly singular non compact operators

Let us start with some preliminary results about the operators sets Vp = S(Lp) \K(Lp),

for 1 6 p 6= 2 < ∞ (recall that V2 = ∅). Notice that unlike K(Lp), the space S(Lp) is not

separable, thus neither is Vp.

Lemma 3.1. Let 2 < p <∞. If an operator T ∈ Vp, then there exists a Hilbertian subspace

H of Lp which is complemented, such that the restriction T |H behaves, up to equivalence,

like the inclusion jp i2,p.

Proof. We proceed as in [LST, Lemma 2.10]. Since T /∈ K(Lp) then there exists a se-

quence (xk) in Lp, such that ‖xk‖p = 1, xk
w→ 0 and ‖Txk‖p > ε for some ε > 0. By

Kadec–Pelczynski theorem [KP] every weakly null seminormalized sequence in Lp contains

a subsequence equivalent to the unit vector basis of `2 or `p. Applying this theorem to the

sequences (xk) and (Txk), we may suppose that (xk) (resp. (Txk)) is equivalent to the unit

vector basis of `q (resp. `r) where q, r ∈ {2, p}.
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The cases (i) q = r = 2, (ii) q = r = p, and (iii) q = p, r = 2 are impossible. Indeed,

the restriction of T on the subspace [xk] is an isomorphism in the cases (i) or (ii). This

contradicts the assumption that T ∈ S(Lp). While, if the case (iii) holds, then we clearly

have ∥∥∥∥∥
n∑
k=1

xk

∥∥∥∥∥
p

≈ n
1
p and

∥∥∥∥∥
n∑
k=1

Txk

∥∥∥∥∥
p

≈ n
1
2 ,

where the sign ≈ means two-side estimates with constants which do not depend on n. Then

it follows that ∥∥∥∥T ( n∑
k=1

xk

)∥∥∥∥
p∥∥∥∥ n∑

k=1

xk

∥∥∥∥
p

≈ n
1
2
− 1
p →∞

as n→∞ which contradicts that T is bounded in Lp.

Hence, (xk) is equivalent to the unit vector basis of `2 and (Txk) is equivalent to the unit

vector basis of `p. And since any Hilbertian subspace in Lp is complemented if 2 < p < ∞
([KP]), we have that [xn] is complemented in Lp. �

We need an improvement of Lemma 3.1. Recall that two measurable functions f and g

are equi-measurable if for every −∞ < s <∞ the distribution functions satisfy

µ({t : f(t) > s}) = µ({t : g(t) > s}).

Lemma 3.2. Let 2 < p < ∞. If an operator T belongs to Vp, then there exists a sequence

(yk) in Lp with ‖yk‖p 6 1, such that (yk) is equivalent to the unit vector basis of `2, the

sequence (|yk|) is equi-measurable, and (Tyk) is equivalent to the unit vector basis of `p.

Proof. By Lemma 3.1 there exists a sequence (xn) in Lp, ‖xn‖p = 1, xn
w→ 0 such that (xn)

is equivalent to the unit vector basis of `2 and (Txn) is equivalent to the unit vector basis

of `p. Denote by K the basis constant of the sequence (Txn). Using [SS, Theorem 3.2] we

can choose a subsequence (xnk) such that xnk = uk + vk + wk, where

(1) |uk| are equi-measurable, i. e. there exists a function u equi-measurable with |uk| for

any k ∈ N and ‖u‖p 6 1. Moreover, uk
w→ 0;

(2) supp vi ∩ supp vj = ∅ for any i 6= j in N, with ‖vk‖p 6 2, and vk
w→ 0;

(3) lim
k→∞
‖wk‖p = 0.

It holds that lim
k→∞
‖Tvk‖p = 0. Indeed, otherwise we can select a subsequence (vik) such

that inf
k
‖Tvik‖p > 0. By Kadec-Pelczynski theorem [KP] some subsequence of (Tvik) is

equivalent to the unit vector basis of `2 or `p. Both cases are impossible because (vik) is

equivalent to the unit vector basis of `p (see Lemma 3.1).
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Now, since lim
k→∞
‖wk‖p = 0 we have that lim

k→∞
‖Twk‖p = 0, and so

lim
k→∞

(‖Tvk‖p + ‖Twk‖p) = 0.

Thus, we can find an increasing sequence of integers (jk) such that ‖Tvjk‖p + ‖Twjk‖p <
1

2k+1K
. Thus

∞∑
k=1

‖Txnjk − Tujk‖p 6
∞∑
k=1

(‖Tvjk‖p + ‖Twjk‖p) <
1

2K
.

Hence, by the stability basis result [LT, Thm. 1.a.9], it follows that (Tujk) is also equivalent

to the unit vector basis of `p. And, since uk
w→ 0 and T ∈ S(Lp), we must have that (ujk) is

equivalent to the unit vector basis of `2. �

We can present now an extrapolation type result for strict singularity:

Theorem 3.3. Let 1 < q < r <∞. If an operator T is bounded in Lq and Lr, and strictly

singular in Lp for some p ∈ (q, r), then T is compact in Ls for all s ∈ (q, r).

Proof. Suppose the contrary. By Krasnoselskii’s Theorem 2.3, we deduce that T is not

compact in Ls for any s ∈ (q, r). In particular, T is not compact in Lp, and so T ∈ Vp.
Without loss of generality we can assume that p > 2. Indeed, for p = 2 the result

follows directly from the fact that S(L2) = K(L2), while for p < 2 it follows from the dual

counterpart for the adjoint operator T ∗, since by Schauder’s Theorem and [W1], compact

and strictly singular operators on Lp spaces are stable under taking adjoints.

Now, by Lemma 3.2 there exists a sequence (yk) in Lp such that (|yk|) is equi-measurable

and (Tyk) is equivalent to the unit vector basis of `p. By Dor’s Theorem 2.2, there exist a con-

stant c > 0 and a sequence of disjoint measurable sets Ak ⊂ [0, 1] such that ‖(Tyk)χAk‖p > c

for each k ∈ N.

Since for every x ∈ Lp we have

lim
ε→0

sup
µ(A)6ε

‖xχA‖p = 0,

and using the fact that (|yk|) is equi-measurable, we can find ε > 0 such that

‖ykχA‖p 6
c

2‖T‖p

for every A ⊂ [0, 1] with µ(A) 6 ε, and for every k ∈ N. Moreover, the equi-measurability of

(|yk|) also implies the existence of measurable subsets Bk ⊂ [0, 1] with µ(Bk) > 1− ε, such

that ykχBk ∈ L∞ and ‖ykχBk‖∞ 6 y∗1(ε) for every k ∈ N. Now, using Hölder’s inequality

and the fact that ‖ykχBk‖r 6 ‖ykχBk‖∞ 6 y∗1(ε) we have
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‖T (yk)χAk‖p 6 ‖(T (ykχBk))χAk‖p + ‖T (ykχ[0,1]\Bk)‖p

6 ‖T (ykχBk)‖r‖χAk‖ pr
r−p

+ ‖T‖p‖ykχ[0,1]\Bk‖p

6 ‖T‖r y∗1(ε)µ(Ak)
( 1
p
− 1
r ) + ‖T‖p

c

2‖T‖p
.

And, since c 6 ‖TykχAk‖p and µ(Ak) → 0 as k → ∞, we obtain 2c 6 c, which is a

contradiction. �

The following Corollary can be regarded as a version of Kato’s result that K(L2) = S(L2),

for operators that are simultaneously bounded on different Lp spaces.

Corollary 3.4. Let 1 < q < r < ∞ and T be an operator bounded in Lq and Lr. The

following statements are equivalent:

(i) T ∈ K(Lp) for some p ∈ (q, r); (iii) T ∈ S(Lp) for every p ∈ (q, r);
(ii) T ∈ K(Lp) for every p ∈ (q, r); (iv) T ∈ S(Lp) for some p ∈ (q, r).

Proof. (i) ⇒ (ii) follows from Krasnoselskii’s theorem 2.3. (ii) ⇒ (iii) ⇒ (iv) are trivial.

(iv)⇒ (i) follows from Theorem 3.3. �

Notice that these facts are no longer true for operators on Lp spaces of infinite measure:

Example 3.1. A strictly singular non-compact operator T on Lp(0,∞) for every 1 6 p < 2.

Similarly, a strictly singular non-compact operator S on Lp(0,∞) for every 2 < p <∞.

Proof. For 1 6 p < 2, let P : Lp(0,∞)→ `p be the operator given by P (f) = (
∫ n
n−1

fdµ)∞n=1,

and let Q : `2 → Lp(0,∞) be the isomorphic embedding via the Rademacher functions in

[0, 1]. Then, T = Q ip,2 P is bounded on Lp(0,∞) for every 1 6 p 6 2. Moreover, T is strictly

singular for 1 6 p < 2 since it factors through the inclusion ip,2, but it is not compact on any

Lp(0,∞) since the sequence (χ[n−1,n]) has norm one in every Lp(0,∞) and T (χ[n−1,n]) = rn

does not have a convergent subsequence.

Similarly, for 2 < p < ∞, we consider R : Lp(0,∞) → `2 the projection onto the span of

the Rademacher functions on [0, 1], and J : `p → Lp(0,∞) given by J(an) =
∑∞

n=1 anχ[n−1,n].

Clearly, the operator S = J i2,pR is strictly singular and not compact on Lp(0,∞) for every

2 < p <∞. �

As a consequence of Theorem 3.3 we can obtain a result of V. Caselles and M. González

[CG] for regular operators (i.e. those which can be written as a difference of positive opera-

tors):

Corollary 3.5. Let 1 < p <∞, and T : Lp → Lp be a regular operator. Then T ∈ S(Lp) if

and only if T ∈ K(Lp).
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Proof. Since T is regular, by a result of Weis [W2, Theorem 2.1], there exists a positive

isometry J : Lp → Lp, such that the operator JTJ−1 : Lq → Lq is bounded for every

1 6 q 6 ∞. Hence, since JTJ−1 : Lp → Lp is strictly singular, by Theorem 3.3, we have

that JTJ−1 belongs to K(Lp). Now, since J is an isometry we have that T belongs to

K(Lp). �

Notice that this result is no longer true for p = 1. Indeed, let T : L1 → L1 be given by

T = Q i1,2 P , where P is a projection onto some subspace isomorphic to `1 and Q : `2 → L1

the isomorphic embedding via the Rademacher functions. Clearly, T belongs to the set V1

and is a regular operator like every operator in L1 (cf. [AA, Theorem 3.9]).

It was proved by V. Milman in [M] that the composition of two strictly singular operators

on Lp is compact. We present below a converse to this result.

Proposition 3.6. Let 1 < p 6= 2 < ∞. Given an operator R ∈ L(Lp), it holds that

R ∈ S(Lp) if and only if RT and T R are compact for every T ∈ S(Lp).

Proof. The “if” part was proved in [M]. Suppose p > 2 and R /∈ S(Lp). Then there exists a

subspace Q of Lp, such that the restriction R|Q is an isomorphism, and by Theorem 2.1, we

can suppose that Q is isomorphic to `2 or `p and complemented in Lp.

(1) If Q ≈ `2, then we can consider an operator T ∈ L(Lp) defined as follows. Since R(Q)

is isomorphic to `2 and complemented, there is a projection P : Lp → R(Q). Now, take an

isomorphic embedding J : `p → Lp and define T = J i2,p P . Clearly, there exists a sequence

(xn) in Q, equivalent to the unit vector basis to `2, such that TR(xn) does not have any

convergent subsequence. Hence, TR is not compact, which is a contradiction.

(2) If Q ≈ `p, then we consider a projection P : Lp → H onto some Hilbert subspace of

Lp, and the isomorphic embedding J of `p into Q ⊂ Lp. Hence, if we consider the operator

T = J i2,p P , then RT is not compact, which is again a contradiction.

This proves the statement for p > 2. By duality arguments (Theorem 2.4) the same fact

is proved for p < 2. �

Note that the assumption in Proposition 3.6 that RT and T R are compact cannot be

relaxed to only one condition RT (or respectively T R) being compact for every T ∈ S(Lp).

Let 1 6 p 6= q 6 ∞, and T : Lp → Lp be a bounded operator. If q > p, then T is also

defined acting from Lq. If q < p, then T is defined on a dense subset of Lq. Thus, in both

cases we can consider the quantity ‖T‖q taking values in [0,+∞], and we can analyze the

boundedness or unboundedness of T from Lq to Lq. Let us denote

O(T ) = {q ∈ [1,+∞] : T is bounded in Lq}.
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It follows from M. Riesz interpolation result that O(T ) is a convex subset of [1,+∞], which

may or may not contain its endpoints.

Theorem 3.7. Let 1 < p < ∞. If an operator T ∈ Vp, then p is an endpoint of O(T ).

Moreover, p is the right (respectively left) endpoint of O(T ) when p > 2 (resp. p < 2).

Proof. It follows from Theorem 3.3 that p is always an endpoint of O(T ).

First consider the case p > 2. By Lemma 3.2, there exists a sequence (xk) in Lp, which

is equivalent to the unit vector basis of `2 and with (|xk|) equi-measurable, such that (Txk)

is equivalent to the unit vector basis of `p. Actually, since (|xk|) is equi-measurable and

‖Txk‖p > α for some α > 0, we can truncate (xk) considering yk = xkχ{|xk|6M}. Since

lim
M→∞

sup
k
‖xkχ{|xk|>M}‖p = 0,

then for large enough M , we have ‖Tyk‖p > α
2

for all k ∈ N. Now, as in the proof of Lemma

3.1, by Theorem 2.1, we have that the sequence (yk) is equivalent to the unit vector basis of

`2 and (Tyk) is equivalent to the unit vector basis of `p.

Now, suppose that p is not the right endpoint of O(T ), that is T : Lq → Lq is also bounded

for some q > p. Since (yk) is also in Lq, and ‖Tyk‖q > ‖Tyk‖p > α
2
, by Theorem 2.1, we

have that (yk) is equivalent in Lq to the unit vector basis of `2 and (Tyk) is equivalent to

the unit vector basis of `q. However, this yields

C1n
1
p 6

∥∥∥ n∑
k=1

Tyk

∥∥∥
p
6
∥∥∥ n∑
k=1

Tyk

∥∥∥
q
6 C2n

1
q ,

for certain constants C1, C2 > 0 and every n ∈ N. This is a contradiction since q > p.

The case when p < 2 follows by duality. Indeed, if T ∈ Vp, then by Theorem 2.4, we have

T ∗ ∈ Vp′ , where 1
p

+ 1
p′

= 1. Since p′ > 2, by the first part of the proof we have that p′ is the

right endpoint of O(T ∗), which means that p is the left endpoint of O(T ). This finishes the

proof. �

The examples of operators in Vp presented above always depend on the scalar p. The

following result explains this phenomenon.

Proposition 3.8. Let 1 < q < p <∞. The set Vq∩Vp is not empty if and only if q < 2 < p.

Proof. Let 1 < q < 2 < p < ∞. Let us consider the operators Aq and Bp defined above in

(1) and (2). Also, consider the following operators acting on functions on [0, 1]{
Ux(t) = x(2t), 0 6 t 6 1

2
,

Wx(t) = x(2t− 1), 1
2
6 t 6 1.

Then the operators UAqU
−1 and WBpW

−1 act in the corresponding function spaces on
[
0, 1

2

]
and

[
1
2
, 1
]

respectively. Given a measurable function x on [0, 1], denote x = y + z, where y
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and z are the restriction of x on
[
0, 1

2

]
and

[
1
2
, 1
]
, and define the operator

Tp,q(x) = UAqU
−1(y) +WBpW

−1(z).

Since Aq ∈ L(Lr) for any r ∈ [q,∞) and Bp ∈ L(Lr) for any r ∈ (1, p] then Tp,q ∈ L(Lr) for

any r ∈ [q, p]. Moreover, Aq ∈ Vq and Bp ∈ Vp clearly imply that Tp,q ∈ Vq ∩ Vp.
Let us prove the converse. If T ∈ Vp and 1 < p < 2, then by Theorem 3.7, T does not

belong to L(Lq). Similarly, if T ∈ Vq and q > 2, then, by Theorem 3.7, T /∈ L(Lp). �

4. Interpolation of strictly singular operators

Let us denote by PA the operator of multiplication by the characteristic function of a

measurable set A, i.e. PAx(t) = x(t)χA(t). Notice that ‖PA‖Lp = 1 for every A ⊂ [0, 1] with

positive measure and every 1 6 p 6∞.

Proposition 4.1. Let 1 6 p 6 ∞ and T : Lp → Lp be an operator which is not an

isomorphism when restricted to any subspace isomorphic to `p (c0 when p = ∞). Then for

every sequence of disjoint measurable sets (An) the following holds:

(1) If 2 6 p 6∞, then lim
n→∞
‖TPAn‖Lp = 0.

(2) If 1 6 p 6 2, then lim
n→∞
‖PAnT‖Lp = 0.

Proof. Let us first prove the case (1). Suppose the contrary, then there exists α > 0, xn ∈ Lp,
and pairwise disjoint sets An ⊂ [0, 1] such that ‖xn‖Lp 6 1, supp(xn) ⊂ An, and ‖Txn‖Lp > α

for every n ∈ N.

Let p = ∞. As (xn) is seminormalized and disjoint, then (xn) is equivalent to the unit

vector basis of c0. In particular, (Txn) is weakly null and semi-normalized, hence it has a

basic subsequence (Txnk). This yields that there exist constants c, C such that for every

scalar sequence (ak)
n
k=1 it holds that

c sup
16k6n

|ak| 6
∥∥∥ n∑
k=1

akTxnk

∥∥∥
L∞
6 ‖T‖

∥∥∥ n∑
k=1

akxnk

∥∥∥
L∞
6 C sup

16k6n
|ak|,

which is a contradiction with the fact that T is not an isomorphism on any subspace iso-

morphic to c0.

Similarly, if p = 2, both (xn) and (Txn) are weakly null semi-normalized sequences, hence

extracting subsequences we can assume that both are equivalent to the unit vector basis of

`2. Again we obtain a contradiction.

Now, suppose 2 < p < ∞. In this case, (xn) is equivalent to the unit vector basis of `p.

And, since α 6 ‖Txn‖Lp 6 ‖T‖Lp for every n ∈ N and Txn → 0 weakly, we have, by [KP,

Corollary 5], that there exists an increasing sequence (nk) ⊂ N such that (Txnk) is equivalent
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to the unit vector basis of `2 or `p. Both cases will lead to a contradiction. Indeed, in the

first case we would have

n
1
2 ≈

∥∥∥ n∑
k=1

Txnk

∥∥∥
Lp
6 ‖T‖Lp

∥∥∥ n∑
k=1

xnk

∥∥∥
Lp
≈ ‖T‖Lp n

1
p ,

which is impossible for large n ∈ N. In the second case, the sequences (Txnk) and (xnk) are

both equivalent to the unit vector basis of `p. Hence, the operator T is an isomorphism on

the span [xnk ] in contradiction with the assumption on T . This finishes the proof of case (1).

To prove (2), we will proceed by duality. First, notice that for 1 6 p 6 2, if an operator

T : Lp → Lp is not an isomorphism on any subspace isomorphic to `p, then T ∗ : L∗p → L∗p is

not an isomorphism on a subspace isomorphic to `∗p. Indeed, suppose that T ∗ is invertible

in a subspace X of L∗p isomorphic to `∗p, then as p 6 2 it follows that X and T ∗(X) are

complemented and isomorphic to `∗p [KP]. This implies that T ∗∗ is also invertible in a

subspace isomorphic to `p. In the case 1 < p, since T = T ∗∗, the claim is proved. Now, for

p = 1 recall that if T : L1 → L1 is not an isomorphism on a subspace isomorphic to `1, then

T is weakly compact and in particular T ∗∗(L1) ⊆ L1. This proves the claim.

Therefore, by the case (1), we get that lim
n→∞
‖T ∗PAn‖L∗p = 0, for every disjoint sequence

(An) in [0, 1]. And, since (PA)∗ = PA, we obtain

lim
n→∞
‖PAnT‖Lp = lim

n→∞
‖T ∗P ∗An‖L∗p = 0.

�

Theorem 4.2. Let 1 6 r, s 6∞, r 6= s and T be an operator bounded on Ls. If T ∈ S(Lr),

then T ∈ K(Lp) for every p between r and s.

Proof. Let us prove first the case r < ∞. By Theorem 3.3, it is enough to show that

T ∈ S(Lp) for some p strictly between r and s. So, let us suppose that T /∈ S(Lp) for any

p 6= 2. Thus, for every p between r and s, T is an isomorphism on a subspace Xp of Lp

which, by [W1], can be taken to be isomorphic either to `2 or `p, with both subspaces Xp

and T (Xp) complemented in Lp. We distinguish two cases:

(A) Suppose that for some p the subspace Xp is isomorphic to `2. Let us denote X = Xp.

Then, by Theorem 2.1, both X and T (X) are strongly embedded subspaces of Lp. Thus, we

can distinguish two subcases:

(1) If r < p , then X and T (X) are also closed subspaces of Lr and isomorphic to `2 in

the norm of Lr. This gives a contradiction with the fact that T ∈ S(Lr).

(2) If r > p , then, since X and T (X) are complemented in Lp, it follows that T ∗ : Lp′ →
Lp′ (1

p
+ 1
p′

= 1) is an isomorphism on a complemented subspace Z of Lp′ isomorphic to

`2. Using again Theorem 2.1, we have that Z and T ∗(Z) must be strongly embedded



12 F. L. HERNÁNDEZ, E. M. SEMENOV, AND P. TRADACETE

in Lp′ . Now since r′ < p′, as in case (a), this yields that T ∗ : Lr′ → Lr′ (1
r

+ 1
r′

= 1) is

also an isomorphism on a subspace isomorphic to `2. Now, by [PR, Thm. 3.1], every

such subspace contains another complemented subspace, so we get that T ∗∗ = T :

Lr → Lr is an isomorphism on a subspace isomorphic to `2. This is a contradiction

with the fact that T ∈ S(Lr).

(B) Otherwise, suppose that for every p between r and s the subspace Xp is isomorphic

to `p. Then the subspaces Xp and T (Xp) are not included in Mp(ε) for any ε > 0. Now,

assume first r > 2, hence we can fix some p > 2 between r and s. By Theorem 2.1, we can

find a sequence (xn) ⊂ Xp, such that ‖xn‖Lp = 1, xn = un + vn where (un) is a disjoint

sequence in Lp and limn→∞ ‖vn‖Lp = 0. Hence, we can suppose that the operator T is an

isomorphism on the subspace [uk]. In particular there exists a constant c > 0 such that

‖T (un)‖Lp > c‖un‖Lp for every n ∈ N. Now, let us denote An = supp(un) and let θ ∈ (0, 1)

such that 1
p

= 1−θ
r

+ θ
s
. By Riesz interpolation theorem we have that

‖TPAn‖Lp 6 ‖TPAn‖1−θLr
‖TPAn‖θLs 6 ‖TPAn‖

1−θ
Lr
‖T‖θLs .

Since limn→∞ µ(An) = 0, we have, by Proposition 4.1, lim
n→∞
‖TPAn‖Lr = 0. Therefore,

lim
n→∞
‖TPAn‖Lp = 0. However, we have that

‖TPAn‖Lp >
‖TPAn(un)‖Lp
‖un‖Lp

=
‖T (un)‖Lp
‖un‖Lp

> c > 0,

which is a contradiction.

The proof when r < 2 is analogous. Indeed, in this case we can fix some p < 2, and

by Theorem 2.1, we can find an almost disjoint normalized sequence (yn) in T (Xp), that is

yn = un + vn where (un) is a disjoint sequence in Lp, limn→∞ ‖vn‖Lp = 0 and |un| ∧ |vn| = 0

for every n ∈ N. Moreover, yn = T (xn) for some seminormalized sequence (xn) in Xp. As in

the previous case, if we denote An = supp(un), then we have

‖PAnT‖Lp >
‖PAnT (xn)‖Lp
‖xn‖Lp

=
‖un‖Lp
‖xn‖Lp

> α

for some α > 0 and n large enough, because ‖vn‖ → 0. However, by Riesz interpolation

Theorem, we have

‖PAnT‖Lp 6 ‖PAnT‖1−θLr
‖PAnT‖θLs 6 ‖PAnT‖

1−θ
Lr
‖T‖θLs ,

for the corresponding θ ∈ (0, 1). And then apply Proposition 4.1 to conclude.

This finishes the proof for r < ∞. The case r = ∞ follows by duality. Indeed, if T :

L∞ → L∞ is strictly singular and bounded on Ls for some 1 < s <∞, then T ∗ : L∗∞ → L∗∞

is strictly singular and bounded on Ls′ (with 1
s

+ 1
s′

= 1). Therefore, we have

T ∗(L1) = T ∗(Ls′
‖ ‖L∗∗1 ) ⊆ T ∗(Ls′)

‖ ‖L∗∗1 ⊆ Ls′
‖ ‖L∗∗1 = L1.
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In particular, the operator T ∗|L1 : L1 → L1 is also strictly singular. Now, by the previous

part of the proof we conclude that T ∗ ∈ K(Lq) for every q between 1 and s′. Hence, by

Schauder’s Theorem, the operator T ∈ K(Lp) for every s < p <∞. �
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