STRICTLY SINGULAR OPERATORS ON L_p SPACES AND INTERPOLATION

FRANCISCO L. HERNÁNDEZ, EVGENY M. SEMENOV, AND PEDRO TRADACETE

ABSTRACT. We study the class V_p of strictly singular non-compact operators on L_p spaces. This allows us to obtain interpolation results for strictly singular operators on L_p spaces. Given $1 \leq p < q \leq \infty$, it is shown that an operator T bounded on L_p and L_q which is strictly singular on L_r for some $p \leq r \leq q$, then it is compact on L_s for every p < s < q.

1. INTRODUCTION

Given Banach spaces E and F, a bounded operator $T : E \to F$ is strictly singular (or Kato) if the restriction of T to any infinite-dimensional subspace of E is not an isomorphism. This class was introduced by T. Kato in [K] as an extension of compact operators and in connection with the perturbation theory of Fredholm operators. Strictly singular operators form a closed operator ideal which in certain aspects behaves in a different way to that of compact operators. Thus, in general, strictly singular operators are not stable under duality (cf. [P], [Whi]), they are not suitable for interpolation properties (cf. [B], [H]) and fail to have invariant subspaces ([R]).

However, in the setting of operators on L_p spaces $(1 \le p \le \infty)$ the behaviour of strictly singular operators is somehow closer to that of compact operators. For example, concerning endomorphisms on L_p spaces, it is known that an operator $T: L_p \to L_p$ is strictly singular if and only if $T^*: L_p^* \to L_p^*$ is strictly singular. One implication of this result was given by V. Milman in [M] and it was completely proved by L. Weis in [W1]. This same fact for L_1 and C(K) spaces was already known, since in these cases the class of strictly singular operators coincides with that of weakly compact (see [P]). Moreover, recall that the square of a strictly singular operator $T: L_p \to L_p$ is always a compact operator ([M]).

The aim of this paper is to study interpolation properties of strictly singular operators on L_p spaces $(1 \leq p \leq \infty)$. In particular, we present an extension of Krasnoselskii result [Kr] on interpolation of compact operators on L_p spaces. To this end, we first study the properties of the class V_p of strictly singular non-compact operators on an L_p space.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47B38. Secondary: 47B07, 46B70.

Key words and phrases. Strictly singular operator, L_p space, interpolation.

The first and third authors were partially supported by grants MICINN MTM2008-02652 and Santander/Complutense PR34/07-15837. The second author was partly supported by the Russian Fund. of Basic Research grants 08-01-00226-a and a Universidad Complutense grant. Third author was partially supported by grant MEC AP-2004-4841.

As a starting point, we will show that for p > 2 strictly singular non-compact operators behave "locally" as inclusions $i_{2,p} : \ell_2 \hookrightarrow \ell_p$, and from this fact some structural properties of the operator class V_p will follow. Thus, in Section 3 we give a version of Kato's result that $S(L_2) = K(L_2)$ for operators which are simultaneously bounded on different L_p spaces (see Corollary 3.4). This is deduced from an extrapolation type result for strict singularity (see Theorem 3.3). The connection of an operator $T \in V_p$ with boundedness in the scale of L_q spaces will also be explored (see Theorem 3.7).

In Section 4 we present an extension of Krasnoselskii's result on interpolation of compact operators on L_p spaces to strictly singular operators. Namely, we will show that if an operator is strictly singular in L_r and bounded in some L_s for $1 \leq r, s \leq \infty$, then the operator is compact in L_p for every p strictly between r and s (Theorem 4.2).

2. Preliminaries

In this Section we fix the terminology and include some results that will be needed later. A bounded operator $T : E \to F$ between Banach spaces is called *strictly singular* if the restriction of T to any (closed) infinite-dimensional subspace of E is not an isomorphism. Strictly singular operators form a closed operator ideal that contains the ideal of compact operators. It is well-known that an operator $T : E \to F$ is strictly singular if and only if for every infinite-dimensional subspace X of E, there exists another infinite-dimensional subspace Y of X such that the restriction $T|_Y$ is compact (cf. [LT, Prop. 2.c.4]).

We denote by $\mathcal{S}(E)$ and K(E) the sets of strictly singular and compact operators on a Banach space E. It holds that $K(E) \subset \mathcal{S}(E) \subset \mathcal{L}(E)$. In the case when E is a sequence space ℓ_p $(1 \leq p < \infty)$ or c_0 , it is well-known that the space of all bounded operators $\mathcal{L}(E)$ only contains a unique non-trivial closed two-side ideal ([C], [GMF]). From this it follows that $K(\ell_p) = \mathcal{S}(\ell_p)$ and $K(c_0) = \mathcal{S}(c_0)$. The simplest examples of strictly singular non-compact operators are the formal inclusion mappings $i_{p,q} : \ell_p \hookrightarrow \ell_q$, with p < q.

Given $1 \leq p \leq \infty$, let L_p denote the function space $L_p[0, 1]$ with the Lebesgue measure μ . In [K] Kato showed that for Hilbert spaces strictly singular and compact operators coincide, so $\mathcal{S}(L_2) = K(L_2)$ (this also follows from results about ideals in $\mathcal{L}(\ell_2)$ given in [C]). However, for every $p \neq 2$ it holds that $\mathcal{S}(L_p) \neq K(L_p)$ ([GMF]). We will denote by V_p the class $\mathcal{S}(L_p) \setminus K(L_p)$. Let us recall some well-known examples of operators in the class V_p for $1 \leq p \neq 2 \leq \infty$.

Let $1 \leq q < 2$. Consider a complemented subspace F_q of L_q isomorphic ℓ_q (generated by disjointly supported functions), and denote by P_q a projection from L_q on F_q . Let us take the inclusion $i_{q,2}$ and the operator Q defined by $Qx = \sum_{k=1}^{\infty} x_k r_k(t)$, for $x \in \ell_2$, where (r_k) are the Rademacher functions $(r_k(t) = \operatorname{sign} \sin 2^k \pi t)$. By Khintchine's inequality, the operator Q is an isomorphic embedding of ℓ_2 into L_p for every $1 \leq p < \infty$. Clearly, the operator $A_q: L_q \to L_q$ given by

(1)
$$A_a = Q i_{a,2} P_a$$

belongs to V_q .

Now, let 2 . It is well known that the orthogonal projection <math>R on the span $[r_k]$ acts from L_p (p > 1) into L_2 which is isomorphic to ℓ_2 . Consider the inclusion $i_{2,p}$ and denote by j_p an isometric embedding of ℓ_p into L_p . Then the operator $B_p : L_p \to L_p$

$$B_p = j_p \, i_{2,p} \, R$$

belongs to V_p . Note that the operator $A_q \in \mathcal{L}(L_r)$ for every $r \in [q, \infty)$ and the operator $B_p \in \mathcal{L}(L_r)$ for every $r \in (1, p]$.

There also exist strictly singular and non-compact operators in L_{∞} and C(0,1). For instance, consider the operator $T: L_{\infty} \to L_{\infty}$ given by T = JR, where $J: L_2 \to L_{\infty}$ is an isometric embedding, and $R: L_{\infty} \hookrightarrow L_2$ is the formal inclusion.

Given $1 \leq p < \infty$, for each $\varepsilon > 0$ we will consider the Kadeč-Pełczyński sets ([KP]):

$$M_p(\varepsilon) = \{ f \in L_p : \mu(\{t : |f(t)| \ge \varepsilon ||f||_p\}) \ge \varepsilon \}.$$

Theorem 2.1. Let X be a subspace of L_p (1 . The following alternative holds:

- (1) If $X \subset M_p(\varepsilon)$ for some $\varepsilon > 0$, then the inclusion $i|_X$ of L_p into L_1 restricted to X is an isomorphism (in this case we say that X is a strongly embedded subspace).
- (2) If X ⊈ M_p(ε) for any ε > 0, then X contains an almost disjoint normalized sequence, that is, there exists a normalized sequence (x_n) ⊂ X such that x_n = u_n + v_n, where (u_n) is a disjoint sequence, v_n → 0 in L_p, and |u_n| ∧ |v_n| = 0. In particular, (x_n) can be taken to be equivalent to the unit vector basis of l_p.

Next result, due to L. Dor [D] (cf. [AO, Theorem 44]), will be used in the proof of Theorem 3.3.

Theorem 2.2. Let $1 \leq p \neq 2 < \infty$, $0 < \theta \leq 1$, and $(f_i)_{i=1}^{\infty}$ in L_p . Assume that either:

- (1) $1 \leq p < 2$, $||f_i|| \leq 1$ for all *i*, and $||\sum_{i=1}^n a_i f_i||_p \geq \theta(\sum_{i=1}^n |a_i|^p)^{1/p}$ for scalars $(a_i)_{i=1}^n$, and every $n \in \mathbb{N}$, or
- (2) $2 , <math>||f_i|| \ge 1$ for all *i*, and $||\sum_{i=1}^n a_i f_i||_p \le \theta^{-1} (\sum_{i=1}^n |a_i|^p)^{1/p}$ for scalars $(a_i)_{i=1}^n$ and every $n \in \mathbb{N}$.

Then there exist disjoint measurable sets $(A_i)_{i=1}^{\infty}$ in [0, 1] such that

$$\|f_i \chi_{A_i}\|_p \ge \theta^{2/|p-2|}$$

A classical interpolation result for compact operators on L_p spaces proved by Krasnoselskii is the following [Kr] (see also [KZPS]).

Theorem 2.3. Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$. If $T : L_{p_0} \to L_{q_0}$ is a compact operator and $T : L_{p_1} \to L_{q_1}$ is bounded, then $T : L_{p_{\theta}} \to L_{q_{\theta}}$ is compact, where $\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\frac{1}{q_{\theta}} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$, for every $\theta \in (0, 1)$.

An analogous result for interpolating strictly singular operators does not hold in general. Indeed, consider the formal inclusion $i : L_{\infty} \to L_1$ which is strictly singular by a result of Grothendieck (cf. [Ru, Theorem 5.2]) and bounded as an operator $i : L_1 \to L_1$. However, for 1 is not strictly singular (since it is an isomorphism on the span of theRademacher functions). Apparently, positive results for one-sided interpolation of strictlysingular operators are only known in the degenerated case when the initial couple reducesto one single space (see [B, Prop.2.1], [CMMM], [H, Prop. 1.6]).

Recall that an operator T between Banach spaces is compact if and only if its adjoint T^* is compact (Schauder's theorem). This fact is not true in general for strictly singular operators (cf. [P], [Whi]). However, for endomorphisms on L_p spaces we have the following fact due to V. Milman [M] and L. Weis [W1]:

Theorem 2.4. Let $1 \leq p \leq \infty$. An operator $T : L_p \to L_p$ is strictly singular if and only if $T^* : L_p^* \to L_p^*$ is strictly singular.

We refer the reader to the monographs [AA], [G] and [LT] for unexplained terminology.

3. Strictly singular non compact operators

Let us start with some preliminary results about the operators sets $V_p = \mathcal{S}(L_p) \setminus K(L_p)$, for $1 \leq p \neq 2 < \infty$ (recall that $V_2 = \emptyset$). Notice that unlike $K(L_p)$, the space $\mathcal{S}(L_p)$ is not separable, thus neither is V_p .

Lemma 3.1. Let $2 . If an operator <math>T \in V_p$, then there exists a Hilbertian subspace H of L_p which is complemented, such that the restriction $T|_H$ behaves, up to equivalence, like the inclusion $j_p i_{2,p}$.

Proof. We proceed as in [LST, Lemma 2.10]. Since $T \notin K(L_p)$ then there exists a sequence (x_k) in L_p , such that $||x_k||_p = 1$, $x_k \xrightarrow{w} 0$ and $||Tx_k||_p \ge \varepsilon$ for some $\varepsilon > 0$. By Kadec–Pelczynski theorem [KP] every weakly null seminormalized sequence in L_p contains a subsequence equivalent to the unit vector basis of ℓ_2 or ℓ_p . Applying this theorem to the sequences (x_k) and (Tx_k) , we may suppose that (x_k) (resp. (Tx_k)) is equivalent to the unit vector basis of ℓ_q (resp. ℓ_r) where $q, r \in \{2, p\}$. The cases (i) q = r = 2, (ii) q = r = p, and (iii) q = p, r = 2 are impossible. Indeed, the restriction of T on the subspace $[x_k]$ is an isomorphism in the cases (i) or (ii). This contradicts the assumption that $T \in \mathcal{S}(L_p)$. While, if the case (iii) holds, then we clearly have

$$\left\|\sum_{k=1}^{n} x_{k}\right\|_{p} \approx n^{\frac{1}{p}} \quad \text{and} \quad \left\|\sum_{k=1}^{n} T x_{k}\right\|_{p} \approx n^{\frac{1}{2}},$$

where the sign \approx means two-side estimates with constants which do not depend on n. Then it follows that

$$\frac{\left\| T\left(\sum_{k=1}^{n} x_{k}\right) \right\|_{p}}{\left\| \sum_{k=1}^{n} x_{k} \right\|_{p}} \approx n^{\frac{1}{2} - \frac{1}{p}} \to \infty$$

as $n \to \infty$ which contradicts that T is bounded in L_p .

Hence, (x_k) is equivalent to the unit vector basis of ℓ_2 and (Tx_k) is equivalent to the unit vector basis of ℓ_p . And since any Hilbertian subspace in L_p is complemented if 2 $([KP]), we have that <math>[x_n]$ is complemented in L_p .

We need an improvement of Lemma 3.1. Recall that two measurable functions f and g are equi-measurable if for every $-\infty < s < \infty$ the distribution functions satisfy

$$\mu(\{t: f(t) > s\}) = \mu(\{t: g(t) > s\}).$$

Lemma 3.2. Let 2 . If an operator <math>T belongs to V_p , then there exists a sequence (y_k) in L_p with $||y_k||_p \leq 1$, such that (y_k) is equivalent to the unit vector basis of ℓ_2 , the sequence $(|y_k|)$ is equi-measurable, and (Ty_k) is equivalent to the unit vector basis of ℓ_p .

Proof. By Lemma 3.1 there exists a sequence (x_n) in L_p , $||x_n||_p = 1$, $x_n \xrightarrow{w} 0$ such that (x_n) is equivalent to the unit vector basis of ℓ_2 and (Tx_n) is equivalent to the unit vector basis of ℓ_p . Denote by K the basis constant of the sequence (Tx_n) . Using [SS, Theorem 3.2] we can choose a subsequence (x_{n_k}) such that $x_{n_k} = u_k + v_k + w_k$, where

- (1) $|u_k|$ are equi-measurable, i. e. there exists a function u equi-measurable with $|u_k|$ for any $k \in \mathbb{N}$ and $||u||_p \leq 1$. Moreover, $u_k \xrightarrow{w} 0$;
- (2) supp $v_i \cap \text{supp } v_j = \emptyset$ for any $i \neq j$ in \mathbb{N} , with $||v_k||_p \leq 2$, and $v_k \xrightarrow{w} 0$;
- (3) $\lim_{k \to \infty} ||w_k||_p = 0.$

It holds that $\lim_{k\to\infty} ||Tv_k||_p = 0$. Indeed, otherwise we can select a subsequence (v_{i_k}) such that $\inf_k ||Tv_{i_k}||_p > 0$. By Kadec-Pelczynski theorem [KP] some subsequence of (Tv_{i_k}) is equivalent to the unit vector basis of ℓ_2 or ℓ_p . Both cases are impossible because (v_{i_k}) is equivalent to the unit vector basis of ℓ_p (see Lemma 3.1).

Now, since $\lim_{k\to\infty} \|w_k\|_p = 0$ we have that $\lim_{k\to\infty} \|Tw_k\|_p = 0$, and so

$$\lim_{k \to \infty} \left(\|Tv_k\|_p + \|Tw_k\|_p \right) = 0.$$

Thus, we can find an increasing sequence of integers (j_k) such that $||Tv_{j_k}||_p + ||Tw_{j_k}||_p < \frac{1}{2^{k+1}K}$. Thus

$$\sum_{k=1}^{\infty} \|Tx_{n_{j_k}} - Tu_{j_k}\|_p \leqslant \sum_{k=1}^{\infty} \left(\|Tv_{j_k}\|_p + \|Tw_{j_k}\|_p\right) < \frac{1}{2K}.$$

Hence, by the stability basis result [LT, Thm. 1.a.9], it follows that (Tu_{j_k}) is also equivalent to the unit vector basis of ℓ_p . And, since $u_k \xrightarrow{w} 0$ and $T \in \mathcal{S}(L_p)$, we must have that (u_{j_k}) is equivalent to the unit vector basis of ℓ_2 .

We can present now an extrapolation type result for strict singularity:

Theorem 3.3. Let $1 < q < r < \infty$. If an operator T is bounded in L_q and L_r , and strictly singular in L_p for some $p \in (q, r)$, then T is compact in L_s for all $s \in (q, r)$.

Proof. Suppose the contrary. By Krasnoselskii's Theorem 2.3, we deduce that T is not compact in L_s for any $s \in (q, r)$. In particular, T is not compact in L_p , and so $T \in V_p$.

Without loss of generality we can assume that p > 2. Indeed, for p = 2 the result follows directly from the fact that $S(L_2) = K(L_2)$, while for p < 2 it follows from the dual counterpart for the adjoint operator T^* , since by Schauder's Theorem and [W1], compact and strictly singular operators on L_p spaces are stable under taking adjoints.

Now, by Lemma 3.2 there exists a sequence (y_k) in L_p such that $(|y_k|)$ is equi-measurable and (Ty_k) is equivalent to the unit vector basis of ℓ_p . By Dor's Theorem 2.2, there exist a constant c > 0 and a sequence of disjoint measurable sets $A_k \subset [0, 1]$ such that $||(Ty_k)\chi_{A_k}||_p \ge c$ for each $k \in \mathbb{N}$.

Since for every $x \in L_p$ we have

$$\lim_{\varepsilon \to 0} \sup_{\mu(A) \leqslant \varepsilon} \|x \chi_A\|_p = 0,$$

and using the fact that $(|y_k|)$ is equi-measurable, we can find $\varepsilon > 0$ such that

$$\|y_k\chi_A\|_p \leqslant \frac{c}{2\|T\|_p}$$

for every $A \subset [0,1]$ with $\mu(A) \leq \varepsilon$, and for every $k \in \mathbb{N}$. Moreover, the equi-measurability of $(|y_k|)$ also implies the existence of measurable subsets $B_k \subset [0,1]$ with $\mu(B_k) \geq 1 - \varepsilon$, such that $y_k \chi_{B_k} \in L_{\infty}$ and $\|y_k \chi_{B_k}\|_{\infty} \leq y_1^*(\varepsilon)$ for every $k \in \mathbb{N}$. Now, using Hölder's inequality and the fact that $\|y_k \chi_{B_k}\|_r \leq \|y_k \chi_{B_k}\|_{\infty} \leq y_1^*(\varepsilon)$ we have

$$\begin{aligned} \|T(y_k)\chi_{A_k}\|_p &\leqslant \|(T(y_k\chi_{B_k}))\chi_{A_k}\|_p + \|T(y_k\chi_{[0,1]\setminus B_k})\|_p \\ &\leqslant \|T(y_k\chi_{B_k})\|_r \|\chi_{A_k}\|_{\frac{pr}{r-p}} + \|T\|_p \|y_k\chi_{[0,1]\setminus B_k}\|_p \\ &\leqslant \|T\|_r y_1^*(\varepsilon) \,\mu(A_k)^{\left(\frac{1}{p} - \frac{1}{r}\right)} + \|T\|_p \frac{c}{2\|T\|_p}. \end{aligned}$$

And, since $c \leq ||Ty_k \chi_{A_k}||_p$ and $\mu(A_k) \to 0$ as $k \to \infty$, we obtain $2c \leq c$, which is a contradiction.

The following Corollary can be regarded as a version of Kato's result that $K(L_2) = \mathcal{S}(L_2)$, for operators that are simultaneously bounded on different L_p spaces.

Corollary 3.4. Let $1 < q < r < \infty$ and T be an operator bounded in L_q and L_r . The following statements are equivalent:

(i) $T \in K(L_p)$ for some $p \in (q, r)$; (iii) $T \in \mathcal{S}(L_p)$ for every $p \in (q, r)$; (ii) $T \in K(L_p)$ for every $p \in (q, r)$; (iv) $T \in \mathcal{S}(L_p)$ for some $p \in (q, r)$.

Proof. $(i) \Rightarrow (ii)$ follows from Krasnoselskii's theorem 2.3. $(ii) \Rightarrow (iii) \Rightarrow (iv)$ are trivial. $(iv) \Rightarrow (i)$ follows from Theorem 3.3.

Notice that these facts are no longer true for operators on L_p spaces of infinite measure:

Example 3.1. A strictly singular non-compact operator T on $L_p(0,\infty)$ for every $1 \le p < 2$. Similarly, a strictly singular non-compact operator S on $L_p(0,\infty)$ for every 2 .

Proof. For $1 \leq p < 2$, let $P: L_p(0, \infty) \to \ell_p$ be the operator given by $P(f) = (\int_{n-1}^n f d\mu)_{n=1}^\infty$, and let $Q: \ell_2 \to L_p(0, \infty)$ be the isomorphic embedding via the Rademacher functions in [0, 1]. Then, $T = Q i_{p,2} P$ is bounded on $L_p(0, \infty)$ for every $1 \leq p \leq 2$. Moreover, T is strictly singular for $1 \leq p < 2$ since it factors through the inclusion $i_{p,2}$, but it is not compact on any $L_p(0, \infty)$ since the sequence $(\chi_{[n-1,n]})$ has norm one in every $L_p(0, \infty)$ and $T(\chi_{[n-1,n]}) = r_n$ does not have a convergent subsequence.

Similarly, for $2 , we consider <math>R : L_p(0, \infty) \to \ell_2$ the projection onto the span of the Rademacher functions on [0, 1], and $J : \ell_p \to L_p(0, \infty)$ given by $J(a_n) = \sum_{n=1}^{\infty} a_n \chi_{[n-1,n]}$. Clearly, the operator $S = J i_{2,p} R$ is strictly singular and not compact on $L_p(0, \infty)$ for every 2 .

As a consequence of Theorem 3.3 we can obtain a result of V. Caselles and M. González [CG] for regular operators (i.e. those which can be written as a difference of positive operators):

Corollary 3.5. Let $1 , and <math>T : L_p \to L_p$ be a regular operator. Then $T \in \mathcal{S}(L_p)$ if and only if $T \in K(L_p)$.

Proof. Since T is regular, by a result of Weis [W2, Theorem 2.1], there exists a positive isometry $J : L_p \to L_p$, such that the operator $JTJ^{-1} : L_q \to L_q$ is bounded for every $1 \leq q \leq \infty$. Hence, since $JTJ^{-1} : L_p \to L_p$ is strictly singular, by Theorem 3.3, we have that JTJ^{-1} belongs to $K(L_p)$. Now, since J is an isometry we have that T belongs to $K(L_p)$.

Notice that this result is no longer true for p = 1. Indeed, let $T : L_1 \to L_1$ be given by $T = Q i_{1,2} P$, where P is a projection onto some subspace isomorphic to ℓ_1 and $Q : \ell_2 \to L_1$ the isomorphic embedding via the Rademacher functions. Clearly, T belongs to the set V_1 and is a regular operator like every operator in L_1 (cf. [AA, Theorem 3.9]).

It was proved by V. Milman in [M] that the composition of two strictly singular operators on L_p is compact. We present below a converse to this result.

Proposition 3.6. Let $1 . Given an operator <math>R \in \mathcal{L}(L_p)$, it holds that $R \in \mathcal{S}(L_p)$ if and only if RT and TR are compact for every $T \in \mathcal{S}(L_p)$.

Proof. The "if" part was proved in [M]. Suppose p > 2 and $R \notin S(L_p)$. Then there exists a subspace Q of L_p , such that the restriction $R|_Q$ is an isomorphism, and by Theorem 2.1, we can suppose that Q is isomorphic to ℓ_2 or ℓ_p and complemented in L_p .

(1) If $Q \approx \ell_2$, then we can consider an operator $T \in \mathcal{L}(L_p)$ defined as follows. Since R(Q) is isomorphic to ℓ_2 and complemented, there is a projection $P : L_p \to R(Q)$. Now, take an isomorphic embedding $J : \ell_p \to L_p$ and define $T = J i_{2,p} P$. Clearly, there exists a sequence (x_n) in Q, equivalent to the unit vector basis to ℓ_2 , such that $TR(x_n)$ does not have any convergent subsequence. Hence, TR is not compact, which is a contradiction.

(2) If $Q \approx \ell_p$, then we consider a projection $P: L_p \to H$ onto some Hilbert subspace of L_p , and the isomorphic embedding J of ℓ_p into $Q \subset L_p$. Hence, if we consider the operator $T = J i_{2,p} P$, then RT is not compact, which is again a contradiction.

This proves the statement for p > 2. By duality arguments (Theorem 2.4) the same fact is proved for p < 2.

Note that the assumption in Proposition 3.6 that RT and TR are compact cannot be relaxed to only one condition RT (or respectively TR) being compact for every $T \in \mathcal{S}(L_p)$.

Let $1 \leq p \neq q \leq \infty$, and $T: L_p \to L_p$ be a bounded operator. If q > p, then T is also defined acting from L_q . If q < p, then T is defined on a dense subset of L_q . Thus, in both cases we can consider the quantity $||T||_q$ taking values in $[0, +\infty]$, and we can analyze the boundedness or unboundedness of T from L_q to L_q . Let us denote

$$O(T) = \{q \in [1, +\infty] : T \text{ is bounded in } L_q\}.$$

It follows from M. Riesz interpolation result that O(T) is a convex subset of $[1, +\infty]$, which may or may not contain its endpoints.

Theorem 3.7. Let $1 . If an operator <math>T \in V_p$, then p is an endpoint of O(T). Moreover, p is the right (respectively left) endpoint of O(T) when p > 2 (resp. p < 2).

Proof. It follows from Theorem 3.3 that p is always an endpoint of O(T).

First consider the case p > 2. By Lemma 3.2, there exists a sequence (x_k) in L_p , which is equivalent to the unit vector basis of ℓ_2 and with $(|x_k|)$ equi-measurable, such that (Tx_k) is equivalent to the unit vector basis of ℓ_p . Actually, since $(|x_k|)$ is equi-measurable and $||Tx_k||_p \ge \alpha$ for some $\alpha > 0$, we can truncate (x_k) considering $y_k = x_k \chi_{\{|x_k| \le M\}}$. Since

$$\lim_{M \to \infty} \sup_{k} \|x_k \chi_{\{|x_k| > M\}}\|_p = 0,$$

then for large enough M, we have $||Ty_k||_p \ge \frac{\alpha}{2}$ for all $k \in \mathbb{N}$. Now, as in the proof of Lemma 3.1, by Theorem 2.1, we have that the sequence (y_k) is equivalent to the unit vector basis of ℓ_2 and (Ty_k) is equivalent to the unit vector basis of ℓ_p .

Now, suppose that p is not the right endpoint of O(T), that is $T : L_q \to L_q$ is also bounded for some q > p. Since (y_k) is also in L_q , and $||Ty_k||_q \ge ||Ty_k||_p \ge \frac{\alpha}{2}$, by Theorem 2.1, we have that (y_k) is equivalent in L_q to the unit vector basis of ℓ_2 and (Ty_k) is equivalent to the unit vector basis of ℓ_q . However, this yields

$$C_1 n^{\frac{1}{p}} \leqslant \left\| \sum_{k=1}^n T y_k \right\|_p \leqslant \left\| \sum_{k=1}^n T y_k \right\|_q \leqslant C_2 n^{\frac{1}{q}},$$

for certain constants $C_1, C_2 > 0$ and every $n \in \mathbb{N}$. This is a contradiction since q > p.

The case when p < 2 follows by duality. Indeed, if $T \in V_p$, then by Theorem 2.4, we have $T^* \in V_{p'}$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Since p' > 2, by the first part of the proof we have that p' is the right endpoint of $O(T^*)$, which means that p is the left endpoint of O(T). This finishes the proof.

The examples of operators in V_p presented above always depend on the scalar p. The following result explains this phenomenon.

Proposition 3.8. Let $1 < q < p < \infty$. The set $V_q \cap V_p$ is not empty if and only if q < 2 < p.

Proof. Let $1 < q < 2 < p < \infty$. Let us consider the operators A_q and B_p defined above in (1) and (2). Also, consider the following operators acting on functions on [0, 1]

$$\left\{ \begin{array}{ll} Ux(t)=x(2t), & 0\leqslant t\leqslant \frac{1}{2},\\ Wx(t)=x(2t-1), & \frac{1}{2}\leqslant t\leqslant 1. \end{array} \right.$$

Then the operators UA_qU^{-1} and WB_pW^{-1} act in the corresponding function spaces on $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$ respectively. Given a measurable function x on [0, 1], denote x = y + z, where y and z are the restriction of x on $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$, and define the operator

$$T_{p,q}(x) = UA_q U^{-1}(y) + WB_p W^{-1}(z).$$

Since $A_q \in \mathcal{L}(L_r)$ for any $r \in [q, \infty)$ and $B_p \in \mathcal{L}(L_r)$ for any $r \in (1, p]$ then $T_{p,q} \in \mathcal{L}(L_r)$ for any $r \in [q, p]$. Moreover, $A_q \in V_q$ and $B_p \in V_p$ clearly imply that $T_{p,q} \in V_q \cap V_p$.

Let us prove the converse. If $T \in V_p$ and 1 , then by Theorem 3.7, <math>T does not belong to $\mathcal{L}(L_q)$. Similarly, if $T \in V_q$ and q > 2, then, by Theorem 3.7, $T \notin \mathcal{L}(L_p)$.

4. INTERPOLATION OF STRICTLY SINGULAR OPERATORS

Let us denote by P_A the operator of multiplication by the characteristic function of a measurable set A, i.e. $P_A x(t) = x(t)\chi_A(t)$. Notice that $||P_A||_{L_p} = 1$ for every $A \subset [0, 1]$ with positive measure and every $1 \leq p \leq \infty$.

Proposition 4.1. Let $1 \leq p \leq \infty$ and $T : L_p \to L_p$ be an operator which is not an isomorphism when restricted to any subspace isomorphic to ℓ_p (c_0 when $p = \infty$). Then for every sequence of disjoint measurable sets (A_n) the following holds:

- (1) If $2 \leq p \leq \infty$, then $\lim_{n \to \infty} ||TP_{A_n}||_{L_p} = 0.$
- (2) If $1 \leq p \leq 2$, then $\lim_{n \to \infty} ||P_{A_n}T||_{L_p} = 0.$

Proof. Let us first prove the case (1). Suppose the contrary, then there exists $\alpha > 0$, $x_n \in L_p$, and pairwise disjoint sets $A_n \subset [0, 1]$ such that $||x_n||_{L_p} \leq 1$, $\operatorname{supp}(x_n) \subset A_n$, and $||Tx_n||_{L_p} \geq \alpha$ for every $n \in \mathbb{N}$.

Let $p = \infty$. As (x_n) is seminormalized and disjoint, then (x_n) is equivalent to the unit vector basis of c_0 . In particular, (Tx_n) is weakly null and semi-normalized, hence it has a basic subsequence (Tx_{n_k}) . This yields that there exist constants c, C such that for every scalar sequence $(a_k)_{k=1}^n$ it holds that

$$c \sup_{1 \leq k \leq n} |a_k| \leq \left\| \sum_{k=1}^n a_k T x_{n_k} \right\|_{L_{\infty}} \leq \left\| T \right\| \left\| \sum_{k=1}^n a_k x_{n_k} \right\|_{L_{\infty}} \leq C \sup_{1 \leq k \leq n} |a_k|,$$

which is a contradiction with the fact that T is not an isomorphism on any subspace isomorphic to c_0 .

Similarly, if p = 2, both (x_n) and (Tx_n) are weakly null semi-normalized sequences, hence extracting subsequences we can assume that both are equivalent to the unit vector basis of ℓ_2 . Again we obtain a contradiction.

Now, suppose $2 . In this case, <math>(x_n)$ is equivalent to the unit vector basis of ℓ_p . And, since $\alpha \leq ||Tx_n||_{L_p} \leq ||T||_{L_p}$ for every $n \in \mathbb{N}$ and $Tx_n \to 0$ weakly, we have, by [KP, Corollary 5], that there exists an increasing sequence $(n_k) \subset \mathbb{N}$ such that (Tx_{n_k}) is equivalent to the unit vector basis of ℓ_2 or ℓ_p . Both cases will lead to a contradiction. Indeed, in the first case we would have

$$n^{\frac{1}{2}} \approx \left\| \sum_{k=1}^{n} T x_{n_k} \right\|_{L_p} \leqslant \|T\|_{L_p} \left\| \sum_{k=1}^{n} x_{n_k} \right\|_{L_p} \approx \|T\|_{L_p} n^{\frac{1}{p}},$$

which is impossible for large $n \in \mathbb{N}$. In the second case, the sequences (Tx_{n_k}) and (x_{n_k}) are both equivalent to the unit vector basis of ℓ_p . Hence, the operator T is an isomorphism on the span $[x_{n_k}]$ in contradiction with the assumption on T. This finishes the proof of case (1).

To prove (2), we will proceed by duality. First, notice that for $1 \leq p \leq 2$, if an operator $T: L_p \to L_p$ is not an isomorphism on any subspace isomorphic to ℓ_p , then $T^*: L_p^* \to L_p^*$ is not an isomorphism on a subspace isomorphic to ℓ_p^* . Indeed, suppose that T^* is invertible in a subspace X of L_p^* isomorphic to ℓ_p^* , then as $p \leq 2$ it follows that X and $T^*(X)$ are complemented and isomorphic to ℓ_p^* [KP]. This implies that T^{**} is also invertible in a subspace isomorphic to ℓ_p . In the case 1 < p, since $T = T^{**}$, the claim is proved. Now, for p = 1 recall that if $T: L_1 \to L_1$ is not an isomorphism on a subspace isomorphic to ℓ_1 , then T is weakly compact and in particular $T^{**}(L_1) \subseteq L_1$. This proves the claim.

Therefore, by the case (1), we get that $\lim_{n\to\infty} ||T^*P_{A_n}||_{L_p^*} = 0$, for every disjoint sequence (A_n) in [0,1]. And, since $(P_A)^* = P_A$, we obtain

$$\lim_{n \to \infty} \|P_{A_n} T\|_{L_p} = \lim_{n \to \infty} \|T^* P_{A_n}^*\|_{L_p^*} = 0.$$

Theorem 4.2. Let $1 \leq r, s \leq \infty, r \neq s$ and T be an operator bounded on L_s . If $T \in \mathcal{S}(L_r)$, then $T \in K(L_p)$ for every p between r and s.

Proof. Let us prove first the case $r < \infty$. By Theorem 3.3, it is enough to show that $T \in \mathcal{S}(L_p)$ for some p strictly between r and s. So, let us suppose that $T \notin \mathcal{S}(L_p)$ for any $p \neq 2$. Thus, for every p between r and s, T is an isomorphism on a subspace X_p of L_p which, by [W1], can be taken to be isomorphic either to ℓ_2 or ℓ_p , with both subspaces X_p and $T(X_p)$ complemented in L_p . We distinguish two cases:

(A) Suppose that for some p the subspace X_p is isomorphic to ℓ_2 . Let us denote $X = X_p$. Then, by Theorem 2.1, both X and T(X) are strongly embedded subspaces of L_p . Thus, we can distinguish two subcases:

- (1) If r < p, then X and T(X) are also closed subspaces of L_r and isomorphic to ℓ_2 in the norm of L_r . This gives a contradiction with the fact that $T \in \mathcal{S}(L_r)$.
- (2) If r > p, then, since X and T(X) are complemented in L_p , it follows that $T^* : L_{p'} \to L_{p'} (\frac{1}{p} + \frac{1}{p'} = 1)$ is an isomorphism on a complemented subspace Z of $L_{p'}$ isomorphic to ℓ_2 . Using again Theorem 2.1, we have that Z and $T^*(Z)$ must be strongly embedded

in $L_{p'}$. Now since r' < p', as in case (a), this yields that $T^* : L_{r'} \to L_{r'} (\frac{1}{r} + \frac{1}{r'} = 1)$ is also an isomorphism on a subspace isomorphic to ℓ_2 . Now, by [PR, Thm. 3.1], every such subspace contains another complemented subspace, so we get that $T^{**} = T$: $L_r \to L_r$ is an isomorphism on a subspace isomorphic to ℓ_2 . This is a contradiction with the fact that $T \in \mathcal{S}(L_r)$.

(B) Otherwise, suppose that for every p between r and s the subspace X_p is isomorphic to ℓ_p . Then the subspaces X_p and $T(X_p)$ are not included in $M_p(\varepsilon)$ for any $\varepsilon > 0$. Now, assume first r > 2, hence we can fix some p > 2 between r and s. By Theorem 2.1, we can find a sequence $(x_n) \subset X_p$, such that $||x_n||_{L_p} = 1$, $x_n = u_n + v_n$ where (u_n) is a disjoint sequence in L_p and $\lim_{n\to\infty} ||v_n||_{L_p} = 0$. Hence, we can suppose that the operator T is an isomorphism on the subspace $[u_k]$. In particular there exists a constant c > 0 such that $||T(u_n)||_{L_p} \ge c||u_n||_{L_p}$ for every $n \in \mathbb{N}$. Now, let us denote $A_n = \operatorname{supp}(u_n)$ and let $\theta \in (0, 1)$ such that $\frac{1}{p} = \frac{1-\theta}{r} + \frac{\theta}{s}$. By Riesz interpolation theorem we have that

$$\|TP_{A_n}\|_{L_p} \leq \|TP_{A_n}\|_{L_r}^{1-\theta} \|TP_{A_n}\|_{L_s}^{\theta} \leq \|TP_{A_n}\|_{L_r}^{1-\theta} \|T\|_{L_s}^{\theta}$$

Since $\lim_{n\to\infty} \mu(A_n) = 0$, we have, by Proposition 4.1, $\lim_{n\to\infty} ||TP_{A_n}||_{L_r} = 0$. Therefore, $\lim_{n\to\infty} ||TP_{A_n}||_{L_p} = 0$. However, we have that

$$||TP_{A_n}||_{L_p} \ge \frac{||TP_{A_n}(u_n)||_{L_p}}{||u_n||_{L_p}} = \frac{||T(u_n)||_{L_p}}{||u_n||_{L_p}} \ge c > 0,$$

which is a contradiction.

The proof when r < 2 is analogous. Indeed, in this case we can fix some p < 2, and by Theorem 2.1, we can find an almost disjoint normalized sequence (y_n) in $T(X_p)$, that is $y_n = u_n + v_n$ where (u_n) is a disjoint sequence in L_p , $\lim_{n\to\infty} ||v_n||_{L_p} = 0$ and $|u_n| \wedge |v_n| = 0$ for every $n \in \mathbb{N}$. Moreover, $y_n = T(x_n)$ for some seminormalized sequence (x_n) in X_p . As in the previous case, if we denote $A_n = \operatorname{supp}(u_n)$, then we have

$$||P_{A_n}T||_{L_p} \ge \frac{||P_{A_n}T(x_n)||_{L_p}}{||x_n||_{L_p}} = \frac{||u_n||_{L_p}}{||x_n||_{L_p}} \ge \alpha$$

for some $\alpha > 0$ and *n* large enough, because $||v_n|| \to 0$. However, by Riesz interpolation Theorem, we have

$$\|P_{A_n}T\|_{L_p} \leqslant \|P_{A_n}T\|_{L_r}^{1-\theta}\|P_{A_n}T\|_{L_s}^{\theta} \leqslant \|P_{A_n}T\|_{L_r}^{1-\theta}\|T\|_{L_s}^{\theta},$$

for the corresponding $\theta \in (0, 1)$. And then apply Proposition 4.1 to conclude.

This finishes the proof for $r < \infty$. The case $r = \infty$ follows by duality. Indeed, if $T : L_{\infty} \to L_{\infty}$ is strictly singular and bounded on L_s for some $1 < s < \infty$, then $T^* : L_{\infty}^* \to L_{\infty}^*$ is strictly singular and bounded on $L_{s'}$ (with $\frac{1}{s} + \frac{1}{s'} = 1$). Therefore, we have

$$T^{*}(L_{1}) = T^{*}(\overline{L_{s'}}^{\| \|_{L_{1}^{**}}}) \subseteq \overline{T^{*}(L_{s'})}^{\| \|_{L_{1}^{**}}} \subseteq \overline{L_{s'}}^{\| \|_{L_{1}^{**}}} = L_{1}.$$

In particular, the operator $T^*|_{L_1} : L_1 \to L_1$ is also strictly singular. Now, by the previous part of the proof we conclude that $T^* \in K(L_q)$ for every q between 1 and s'. Hence, by Schauder's Theorem, the operator $T \in K(L_p)$ for every s .

References

- [AA] Y.A. Abramovich, C. D. Aliprantis. An invitation to operator theory. Graduate Studies in Mathematics, 50. American Mathematical Society, 2002.
- $[{\rm AO}]$ D. Alspach, E. Odell. L_p spaces. Handbook of the geometry of Banach spaces, Vol. I, 123–159, North-Holland, 2001.
- [B] O. J. Beucher. On interpolation of strictly (co-)singular linear operators. Proc. Roy. Soc. Edinb. A 112 (1989), 263–269.
- [C] J. W. Calkin. Two-sided ideals and congruences in the ring of bounded operator in Hilbert spaces. Annals of Math. 42, 4, (1941), 839–873.
- [CG] V. Caselles and M. González. Compactness properties of strictly singular operators in Banach lattices. Semesterbericht Funktionalanalysis. Tübingen, Sommersemester. (1987), 175–189.
- [CMMM] F. Cobos, A. Manzano, A. Martínez, P. Matos. On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proc. Roy. Soc. Edinb. A 130 (2000), 971–989.
- [D] L. Dor. On projections in L_1 . Annals of Math. 102 (1975). 463–474
- [GMF] I. T. Gohberg, A. S. Markus, I. A. Feldman. On normal solvable operators and related ideals. Amer. Math. Soc. Transl. (2), 61 (1967), 63–84.
- [G] S. Goldberg. Unbounded linear operators. Theory and applications. Dover Publications, 2006.
- [H] S. Heinrich. Closed operator ideals and interpolation. J. Funct. Analysis 35 (1980), 397–411.
- [KP] M. I. Kadec, A. Pelczynski. Bases, lacunary sequences and complemented subspaces in the spaces L_p . Studia Math. 21 (1962), 161–176.
- [K] T. Kato. Perturbation theory for nullity deficiency and order quantities of linear operators. J. Analyse. Math. 6 (1958), 273–322.
- [Kr] M. A. Krasnoselskii. On a theorem of M. Riesz. Dokl. Akad. Nauk SSSR 131 246–248 (in Russian); translated as Soviet Math. Dokl. 1 (1960), 229–231.
- [KZPS] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii. Integral operators in spaces of summable functions. Noordhoff International Publishing, 1976.
- [LT] J. Lindenstrauss, L. Tzafriri. Classical Banach Spaces. I. Springer Verlag, 1977.
- [LST] M. Lindström, E. Saksman, H.-O. Tylli. Strictly singular and cosingular multiplications. Canad. J. Math. 57 (2005), 1249–1278.
- [M] V. D. Milman. Operators of classes C_0 and C_0^* . Functions theory, functional analysis and appl. V. 10. (1970), 15–26 (in Russian).
- [P] A. Pełczyński. On strictly singular and strictly cosingular operators. I and II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31–41.
- [PR] A. Pełczyński, H. P. Rosenthal. Localization techniques in L^p spaces. Studia Math. 52 (1974/75), 263–289.
- [R] C. J. Read. Strictly singular operators and the invariant subspace problem. Studia Math. 132 (1999), 203–226.
- [Ru] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.
- [SS] E. M. Semenov, F. A. Sukochev. Banach–Saks index. Sbornik: Mathematics 195 (2004), 263–285.
- [W1] L. Weis. On perturbations of Fredholm operators in $L_p(\mu)$ -spaces. Proc. Amer. Math. Soc. 67 (1977), 287–292.
- [W2] L. Weis. Integral operators and changes of density. Indiana Univ. Math. J. 31 (1982), 83–96.
- [Whi] R. J. Whitley. Strictly singular operators and their conjugates. Trans. Amer. Math. Soc. 113 (1964), 252–261.

Departmento de Análisis Matemático, Universidad Complutense de Madrid, 28040, Madrid, Spain.

E-mail address: pacoh@mat.ucm.es

DEPARTMENT OF MATHEMATICS, VORONEZH STATE UNIVERSITY, VORONEZH 394006 (RUSSIA). *E-mail address*: semenov@func.vsu.ru

Departmento de Análisis Matemático, Universidad Complutense de Madrid, 28040, Madrid, Spain.

E-mail address: tradacete@mat.ucm.es