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Abstract. We study subspaces of Lorentz Lp,q spaces and provide an easy-to-check characteri-

zation of strictly singular operators defined on these spaces. As an application we obtain stability

under duality for the class of strictly singular operators on Lp,q spaces, extending a theorem of

L. Weis for operators on Lp spaces.

1. Introduction

This note is devoted to the geometric properties of Lorentz spaces, mainly to the isomorphic
structure of their subspaces and strictly singular operators defined between them. The Lorentz
spaces Lp,q were introduced in [16] and [17], and its importance is present in several areas of
analysis such as harmonic analysis, interpolation theory... (see the surveys [4], [9]). The family of
Lorentz Lp,q spaces is a generalization of the class of classical Lp spaces, which are not fine enough
to differentiate certain properties.

For instance, recall the classical Hausdorff-Young inequality which asserts that the Fourier trans-
form f 7→ f̂ is bounded as an operator from Lp(Rn) to Lp′(Rn), for 1 < p < 2 and 1

p + 1
p′ = 1.

Real interpolation methods show that for 1 < p < 2, the Fourier transform is in fact bounded from
Lp(R) to Lp′,p(R), which is a considerable refinement since ‖f‖Lp′ ≤ ‖f‖Lp′,p (see next section).

In order to study the subspaces of Lorentz spaces, we will make use of several techniques available
from Banach lattice theory. A key result here is Kadec̆-Pe lczyński’s dichotomy, which was originally
proved for Lp spaces in [12], and generalized to more general Banach lattices in [7]. This result
characterizes subspaces of Banach lattices that strongly embed in L1 in terms of disjoint sequences.
Our main result in Section 3, can be considered as a strengthened version of Kadec̆-Pe lczyński’s
Theorem for Lp,q spaces with p ≤ q < 2 (see Theorem 3.4).

The isomorphic structure of infinite-dimensional subspaces of a Banach space is intimately related
to the class of strictly singular operators on the space. Recall that an operator is strictly singular
if and only if it is never an isomorphism when restricted to any infinite dimensional subspace. This
class forms a closed two-sided operator ideal that contains the ideal of compact operators, and
was first introduced by T. Kato in connection with the perturbation theory of Fredholm operators
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[13]. Properties of strictly singular operators on Lp spaces have been studied in [18], [22] and more
recently in [8] and [11].

In this paper we study some characterizations of strictly singular operators on Lp,q spaces in
terms of invertibility on subspaces isomorphic to `q and `2. This extends the main theorem from
[22] for operators on Lp spaces, and provides a useful tool for studying duality within the class
of strictly singular operators (see Theorems 4.1 and 4.3). A similar characterization for strictly
singular operators on general Banach lattices has been recently obtained in [6].

The paper is organized as follows. In the second section, we introduce notation and recall the
main definitions and properties of Lorentz spaces. Afterwards, Section 3 is devoted to the study
of subspaces of Lorentz spaces. Here, we recall the known facts on subspaces of Lorentz spaces
isomorphic to `s, and provide some facts concerning isomorphic embeddings of `q in subspaces of
Lp,q in terms of local properties of these subspaces. Namely, we will see that a subspace X ⊂ Lp,q
which contains uniformly isomorphic copies of `np or `np,q must also contain an almost disjoint
sequence spanning `q.

In Section 4 we center our study on strictly singular operators on Lorentz spaces. Here, we
provide a characterization of strictly singular operators on Lp,q spaces in terms of `2-singular and
`q-singular operators. In addition, using this characterization we study duality properties of strictly
singular operators on Lp,q. In particular, we show that if p and q satisfy certain relation, an operator
T : Lp,q → Lp,q is strictly singular if and only if so is T ∗. An example is provided to show that
these conditions on p and q are necessary (Example 4.5).

Acknowledgements. The author would like to thank professors E. M. Semenov and F. L.
Hernández for many fruitful and motivating conversations concerning this work. Research par-
tially supported by grants MICINN MTM2008-02652, Santander/Complutense PR34/07-15837 and
Grupo UCM 910346.

2. Preliminaries

First of all, let us recall that for 0 < p < ∞ and 1 ≤ q <∞ the Lorentz space Lp,q(I), where I
is an interval of the form (0, a) with 0 < a ≤ ∞ endowed with the Lebesgue measure λ, is the set
of measurable functions on I such that

‖f‖p,q =
(∫ ∞

0

f∗(t)qd(t
q
p )
) 1
q

=
(q
p

∫ ∞
0

f∗(t)qt
q
p−1dt

) 1
q

<∞

where here f∗ denotes the decreasing rearrangement of a function f , that is

f∗(s) = inf{t ≥ 0 : λ({x ∈ I : |f(x)| > t}) ≤ s}.
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By Minkowski’s inequality, for 1 ≤ q < p the expression defined by ‖f‖p,q is a norm, while for
1 < p < q, ‖f‖p,q is only a quasi-norm which turns out to be equivalent to the following expression

‖f‖(p,q) =
(∫ ∞

0

f∗∗(t)qd(t
q
p )
) 1
q

,

where f∗∗(t) = 1
t

∫ t
0
f∗(s)ds. By Hardy’s inequality this expression is in fact a norm (cf. [4]). Hence,

for 1 < p < ∞ and 1 ≤ q < ∞, after identifying functions which are equal almost everywhere, the
space Lp,q becomes a Banach space. However, for 0 < p ≤ 1, except the case L1,1 which is isometric
with L1, the spaces Lp,q are only (non-locally convex) quasi-Banach spaces.

For 1 < p < ∞, the space Lp,∞(I) is analogously defined as the set of measurable functions on
I such that

‖f‖p,∞ = sup
t>0

t
1
p f∗(t) <∞.

The spaces Lp,∞ are also called weak Lp spaces. Finally, notice that for p =∞ and any 1 ≤ q ≤ ∞
the space L∞,q coincides with L∞.

There is also a sequence space version of Lorentz spaces. Namely, for 1 < p <∞ and 1 ≤ q <∞,
the space `p,q consists of all sequences (xn) of scalars endowed with the norm

‖(xn)‖p,q =
( ∞∑
k=1

(x∗k)q(k
q
p − (k − 1)

q
p

) 1
q

,

where (x∗k) denotes the decreasing rearrangement of the sequence (|xn|). Similarly, the space `p,∞
is the space of scalar sequences equipped with the norm

‖(xn)‖p,∞ = sup
n
n

1
px∗n.

Clearly, `p,q coincides with Lp,q(N) where N is endowed with the counting measure.
Notice that the spaces Lp,q(I) with the point-wise ordering (defined almost everywhere) are

Banach lattices. In fact, they are rearrangement invariant spaces since given any two functions
f, g with the same distribution, their decreasing rearrangements satisfy f∗ = g∗, hence their norms
coincide.

Unlike the case of Lp spaces, which coincide isometrically with Lp,p, in Lorentz spaces the measure
space determines in a sense the structure of the space. For example, in Lp,q(0,∞), the characteristic
functions χ[n,n+1] for n ∈ N span a subspace isomorphic to `p,q. However, for 1 < p, q < ∞ and
p 6= q, the space Lp,q(0, 1) does not contain a subspace isomorphic `p,q, so in particular Lp,q(0, 1)
and Lp,q(0,∞) are not isomorphic. However, in [14] it was proved that for 1 < p < ∞, the spaces
`p,∞, Lp,∞(0, 1) and Lp,∞(0,∞) are isomorphic Banach spaces.

The inclusion relations between the spaces Lp,q are well-known (cf. [15, pp. 142-143]). For
1 ≤ p < ∞ and 1 ≤ q1 < q2 ≤ ∞, we have Lp,q1(I) ↪→ Lp,q2(I), with ‖f‖p,q2 ≤ ‖f‖p,q1 . Moreover,
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for r < p < s and every q we have

Ls,∞(I) ∩ Lr,∞(I) ↪→ Lp,q(I) ↪→ Ls,1(I) + Lr,1(I),

which in the case of finite measure reduces to Ls,∞(0, 1) ↪→ Lp,q(0, 1) ↪→ Lr,1(0, 1).
One of the main reasons that make Lorentz Lp,q spaces so important is the fact that they appear

as real interpolates of Lp spaces. Namely, for 0 < p1 < p2 ≤ ∞, 0 < θ < 1, and 1 < q ≤ ∞, the
space Lp,q(I) coincides with [Lp1(I), Lp2(I)]θ,q up to equivalence of norms, where 1

p = (1−θ)
p1

+ θ
p2

(cf. [9]).
Recall that a Banach space X has type p (respectively, cotype q) provided there exists a constant

C so that for every sequence x1, . . . , xn in X,(∫ 1

0

∥∥∥ n∑
i=1

ri(t)xi
∥∥∥pdt) 1

p ≤ C
( n∑
i=1

‖xi‖p
) 1
p

,

(
resp.

( n∑
i=1

‖xi‖q
) 1
q ≤ C

(∫ 1

0

∥∥∥ n∑
i=1

ri(t)xi
∥∥∥qdt) 1

q

)
,

where (ri) denote the Rademacher functions on [0, 1]. Also recall that a Banach lattice X is said
to be p-convex (respectively, q-concave) if there is a constant M such that for every finite sequence
x1, . . . , xn in X,∥∥∥( n∑

i=1

|xi|p
) 1
p
∥∥∥ ≤M( n∑

i=1

‖xi‖p
) 1
p

(
resp.

( n∑
i=1

‖xi‖q
) 1
q ≤M

∥∥∥( n∑
i=1

|xi|q
) 1
q
∥∥∥).

Similarly, we say that X satisfies an upper p-estimate (respectively, lower q-estimate) for disjoint
vectors if there is a constant M < ∞ such that for every choice of pairwise disjoint elements
x1, . . . , xn in X, we have∥∥∥ n∑

i=1

xi

∥∥∥ ≤M( n∑
i=1

‖xi‖p
) 1
p

(
resp.

∥∥∥ n∑
i=1

xi

∥∥∥ ≥M−1
( n∑
i=1

‖xi‖q
) 1
q

)
.

We refer to [15] for a deep study of these notions and their relations.
In [3], type and convexity of Lorentz spaces were studied. Precisely, it was proved that for

1 ≤ q ≤ p <∞ the space Lp,q is q-convex, satisfies a lower p-estimate, has type min(2, q), if p 6= 2
has cotype max(2, p) and L2,q has cotype 2 + ε for every ε > 0. Meanwhile, for 1 < p < q < ∞,
Lp,q is q-concave, satisfies an upper p-estimate, has cotype max(2, q), if p 6= 2 has type min(2, p)
and L2,q has type 2 − ε for every ε > 0. Moreover, an example of G. Pisier [15, Example 1.f.19]
shows that Lp,q for 1 ≤ q < p is not p-concave, so in particular L2,q is not of cotype 2.

Recall that a Banach lattice X is order continuous whenever every order bounded increasing
sequence is convergent. Every order continuous Banach lattice X with a weak unit (i.e. with an
element e ≥ 0 for which e∧x = 0 implies x = 0) can be represented as a Banach lattice of functions
on some probability space [15, Theorem 1.b.14]. Also recall that Kadec̆-Pe lczyński’s dichotomy
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states that a subspace of an order continuous Banach lattice is either isomorphic to a subspace of
some L1 space or it contains a normalized sequence equivalent to a pairwise disjoint sequence (cf.
[7], [12]).

We refer the reader to [15] for any unexplained terminology regarding Banach lattices.

3. Subspaces of Lp,q spaces

The results presented in this section will be proved for the spaces Lp,q(0,∞) which will be simply
denoted by Lp,q and are the most general case, since these include the properties of Lp,q(0, 1) and
`p,q. Recall the following criterium for a sequence in Lp,q to have a subsequence equivalent to `q
(cf. [1], [4]).

Theorem 3.1. Let (fn) be a normalized sequence in Lp,q (1 < p < ∞, 1 ≤ q < ∞) such that
f∗n → 0 pointwise. Then there exists a subsequence (fnk) equivalent to the unit vector basis of `q.

With this at hand and some more work the following property of disjoint sequences can be
obtained (cf. [1], [4]).

Theorem 3.2. Let 1 < p <∞, 1 ≤ q <∞. If (fn) is a normalized disjoint sequence in Lp,q, then
its span [fn] contains a subspace isomorphic to `q. Moreover, if the sequence (fn) is supported on
a set of finite measure, then some subsequence (fnk) is already equivalent to the unit vector basis of
`q.

Next result is a stronger version of Kadec-Pelczynski’s dichotomy for subspaces of Lp,q proved
in [1]. Recall that a subspace X of Lp,q(0, 1) is called strongly embedded if the norms of L1(0, 1)
and Lp,q(0, 1) are equivalent on X.

Theorem 3.3. Let 1 < p < ∞, 1 ≤ q < ∞, and let X be a subspace of Lp,q. Then either X is
isomorphic to a strongly embedded subspace of Lp,q(0, 1) or X contains a complemented copy of `q.

Recall also that for 1 < p < ∞, 1 ≤ q < ∞, if p 6= 2 and p 6= q, then `p is not isomorphic
to a subspace of Lp,q (cf. [4, Theorem 7]). However, `np embed uniformly in Lp,q (even in finite
measure). Recall that `np are said to embed uniformly in a Banach space X if for every n ∈ N there
exists an operator Tn : `np → X such that supn ‖Tn‖‖T−1

n ‖ <∞. The following result shows which
kind of subspaces of Lp,q contain `np uniformly.

Theorem 3.4. Let X be a subspace of Lp,q(0, 1) (1 < p ≤ q < 2) which contains `np ’s uniformly.
Then the norm of Lp,q and that of L1 are not equivalent on X.

This result is inspired by [5, Section 2] where it was proved that in every subspace of Lp isomor-
phic to `p, the norm of Lp and that of L1 are not equivalent (see also [21, Thm. 13]). We need a
lemma first.
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Lemma 3.5. Let E be a Banach lattice of measurable functions over a probability space (Ω,Σ, µ),
with type p, 1 ≤ p ≤ 2, and cotype q, 2 ≤ q < ∞. Let (fij)∞j=1, 1≤i≤j in E be a double indexed
sequence of normalized elements, such that for all j = 1, 2, . . . and scalars c1, . . . , cj,( j∑

i=1

|ci|p
) 1
p

≤ C
∥∥∥∥ j∑
i=1

cifij

∥∥∥∥.
If Mp denotes the type p constant of E, then for all δ with 0 < δ < 1

CMp
, and for all K > 0, the

cardinal of the set
Aj = {i ≤ j : ‖fijχ{ω∈Ω:|fij(ω)|>K}‖ > δ}

is not uniformly bounded as j →∞.

Proof. Suppose the contrary. We can assume that there exist N ∈ N, K > 0 and δ < 1
CMp

such
that the cardinal of Aj is smaller than N for all j. Let Bj = {1, . . . , j}\Aj . Hence, for every i ∈ Bj
we have

‖fijχ{ω∈Ω:|fij(ω)|>K}‖ ≤ δ.

Now, let j be fixed, and let S(i, j,K) = {ω ∈ Ω : |fij(ω)| > K}. Since E has type p with
constant Mp, it follows that∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fijχS(i,j,K)

∥∥∥∥dt ≤ Mp

(∑
i∈Bj

‖fijχS(i,j,K)‖p
) 1
p

(1)

≤ MpδN
1
p

j ,

where Nj denotes the cardinal of Bj , which by hypothesis satisfies Nj ≥ j −N .

Moreover, for every t ∈ [0, 1], we have N
1
p

j ≤ C‖
∑
i∈Bj

ri(t)fij‖. Hence, integrating we obtain

(2)
∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fij

∥∥∥∥dt ≥ N
1
p

j

C
.

By the triangle inequality, putting together (1) and (2), we have∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fijχΩ\S(i,j,K)

∥∥∥∥dt ≥ ∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fij

∥∥∥∥dt− ∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fijχS(i,j,K)

∥∥∥∥dt(3)

≥ N
1
p

j

( 1
C
− δMp

)
.
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While on the other side, we have∫ 1

0

∥∥∥∥∑
i∈Bj

ri(t)fijχΩ\S(i,j,K)

∥∥∥∥dt ≤ M

∥∥∥∥(∑
i∈Bj

|fijχΩ\S(i,j,K)|2
) 1

2
∥∥∥∥

≤ M

∥∥∥∥(∑
i∈Bj

K2

) 1
2
∥∥∥∥(4)

= MKN
1
2
j ,

where M is a constant given by [15, Thm. 1.d.6.(i)]. Now, putting together (3) and (4) we obtain
that

N
1
p−

1
2

j ≤ MK

( 1
C − δMp)

,

and since j −N ≤ Nj , this is obviously false for j large enough. �

Now we can give the proof of Theorem 3.4.

of Theorem 3.4. Let X be a subspace of Lp,q which contains `np ’s uniformly, and let ε > 0. By [5,
Lemma 2.2], we may chose (xij) in X with ‖xij‖Lp,q = 1 for i = 1, . . . , j and all j, such that( j∑

i=1

|ci|p
) 1
p

≤ (1 + ε)
∥∥∥∥ j∑
i=1

cixij

∥∥∥∥
Lp,q

,

for any scalars c1, . . . , cj . By Lemma 3.5, given K > 0, there exists j such that

‖xijχ{t:|xij(t)|>K}‖Lp,q ≥ 1− ε,

for some i ≤ j.
Then, for r fixed with 1 < r < p, we have∫

{t:|xij(t)|>K}
|xij |ds ≤ 1

Kr−1

∫
{t:|xij(t)|>K}

|xij |rds

≤ 1
Kr−1

‖xij‖rLr(5)

≤ 1
Kr−1

‖xij‖rLp,q

=
1

Kr−1
.
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On the other hand, let us denote f = xijχ{t:|xij(t)|>K} and g = xijχ{t:|xij(t)|≤K}. For K large
enough, it follows that

‖xij‖Lp,q =
∫ 1

0

((f + g)∗(s))qs
q
p−1ds

=
∫ µ({|xi(t)|>K})

0

f∗(s)qs
q
p−1ds+

∫ 1

µ({|xi(t)|>K})
g∗(s− µ({|xi(t)| > K}))qs

q
p−1ds

= ‖f‖qLp,q +
∫ µ({|xi(t)|≤K})

0

g∗(u)q(u+ µ({|xi(t)| > K})
q
p−1du

≥ ‖f‖qLp,q + ‖g‖qLp,q .

Therefore, we have

‖xijχ{t:|xij(t)|≤K}‖Lp,q ≤
(
‖xij‖qLp,q − ‖xijχ{t:|xij(t)|>K}‖

q
Lp,q

) 1
q

≤
(
1− (1− ε)q

) 1
q .

Thus, it follows that ∫
{t:|xij(t)|≤K}

|xij |ds =
∥∥xijχ{t:|xij(t)|≤K}∥∥L1

≤
∥∥xijχ{t:|xij(t)|≤K}∥∥Lp,q(6)

≤
(
1− (1− ε)q

) 1
q .

Considering (5) and (6), we obtain

‖xij‖L1 ≤
1

Kr−1
+
(
1− (1− ε)q

) 1
q .

Since K is arbitrarily large and ε arbitrarily small, and ‖xij‖Lp,q = 1, the norms of Lp,q and L1

cannot be equivalent on X. �

Notice that as a direct consequence of Kadec-Pelczynski’s dichotomy, and the previous theorem,
it holds that every subspace X ⊂ Lp,q which contains `np uniformly, must also contain a disjoint
normalized sequence. In particular, X must also contain a subspace isomorphic to `q. Moreover,
recall that `np,q are also uniformly embedded in Lp,q: consider the span of characteristic functions of
n disjoint sets with the same measure. Hence, since `np,q contain uniformly complemented isomorphic
copies of `kp for k ∼ nα (for each 0 < α < 1) [2], we also get that every subspace X ⊂ Lp,q which
contains `np,q uniformly, must contain a subspace isomorphic to `q spanned by a disjoint sequence.

To finish this section, recall that apart from `q, the space `2 can be isomorphically embedded
into Lp,q via the Rademacher functions (cf. [15, Theorem 2.b.4]). Similarly, for 1 < p < 2
and every s ∈ (p, 2], we can consider a subspace of Lp,q isomorphic to `s which is spanned by
independent s-stable random variables. In fact, these are the only cases in which a subspace of Lp,q



SUBSPACE STRUCTURE OF LORENTZ Lp,q SPACES AND STRICTLY SINGULAR OPERATORS 9

can be isomorphic to some `s, and what is more interesting, according to the following result, every
subspace of Lp,q contains one of these spaces (cf. [4, Theorem 11]).

Theorem 3.6. Suppose 1 < p < ∞, 1 ≤ q < ∞, with p 6= q, and let X be a closed subspace of
Lp,q.

a) If p ≥ 2, then X contains an isomorphic copy of `s for some s ∈ {2, q}.
b) If p < 2, then X contains an isomorphic copy of `s for some s ∈ {q} ∪ (p, 2].

4. Strictly singular operators on Lorentz spaces

In this section we study some properties of strictly singular operators on a Lorentz space. Re-
call that an operator between Banach spaces T : X → Y is strictly singular if for every infinite
dimensional subspace Z ⊆ X and every ε > 0 there exists z ∈ Z such that

‖Tz‖Y ≤ ε‖z‖X .

Our aim here is to provide some characterizations of strictly singular operators in terms of
invertibility in certain distinguished subspaces. To this end, given an infinite-dimensional Banach
space M , we will say that an operator T : X → Y is M -singular if T is never an isomorphism
when restricted to any subspace of X isomorphic to M . Clearly, an operator T is strictly singular
if and only if it is M -singular for every Banach space M . However, we intend to give small families
of spaces (in fact finite families) M1, . . . ,Mn such that an operator on a Lorentz space is strictly
singular if and only if it is Mi-singular for i = 1, . . . , n. Of course, the smaller this family is, the
easier it should be to check whether an operator is strictly singular.

Recall that for operators on Lp spaces, this was accomplished by L. Weis in [22] where it was
proved that an operator T : Lp → Lp is strictly singular if and only if it is `p-singular and `2-
singular. This characterization has been generalized recently to more general Banach lattices in [6].
Also notice that `p-singular operators have proved to be useful for studying several properties of
operators on Lp spaces (see [11]). Let us see now what the situation is for operators on Lp,q spaces.

Theorem 4.1. Let T : Lp,q → Lp,q, with 1 < p < ∞, 1 ≤ q < ∞. The following statements are
equivalent:

(1) T is strictly singular.
(2) T is `q-singular and `2-singular.

Moreover, if 1 < p < 2 and q /∈ (p, 2), or 2 ≤ p <∞, then these are also equivalent to

(3) There is no subspace M ⊂ Lp,q, isomorphic to `q or `2, with T (M) complemented in Lp,q,
such that T |M is an isomorphism.

Before the proof, we need a well-known Lemma, whose proof is implicit in [22], but we include
it here for completeness.
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Lemma 4.2. Let 1 ≤ r ≤ 2 and (fn) be a seminormalized basic sequence in Lr(µ), whose closed
linear span is a strongly embedded subspace of Lr(µ). Then for every ε > 0, there exists δ(ε) > 0
such that

µ(A) < δ(ε) ⇒ sup
n

(∫
A

|fn|rdµ
) 1
r

< ε.

Proof. Assume the contrary. Then there exist a subsequence (fnk), a sequence of measurable sets
(Ak) with µ(Ak) < 1

2k
, and some α > 0 such that∫

Ak

|fnk |rdµ > α,

for all k ∈ N.
Let us consider the sets Bk =

⋃∞
j=k Aj . Since∫

Bk−Bl
|fnk |rdµ −→

l→∞

∫
Bk

|fnk |rdµ > α,

then there is a further subsequence (ki) satisfying∫
Bki−Bki+1

|fnki |
rdµ >

α

2
.

Since (Bki −Bki+1) are pairwise disjoint, it follows from [10, Lemma 2], that (fnki ) is equivalent
to the unit vector basis of `r. By [5, Theorem 2.2], `r is not strongly embedded in Lr(µ). Hence,
we have reached a contradiction and the proof is finished. �

of Theorem 4.1. It is clear that (1)⇒ (2)⇒ (3). Let us see first that (3)⇒ (1) whenever 1 < p < 2
and q /∈ (p, 2), or 2 ≤ p < ∞. To this end, suppose that T is not SS, then there exists an infinite-
dimensional subspace X ⊂ Lp,q such that T |X invertible.

First, in the case 2 < p < ∞, by Theorem 3.2 and the fact that Lp,q(0, 1) ⊂ L2(0, 1), it follows
that T (X) contains a subspace isomorphic to `q or `2 which is complemented in Lp,q, and we are
done.

Now, for the case 1 < p ≤ 2, by Theorem 3.3 it follows that T (X) either contains a subspace
isomorphic to `q and complemented in Lp,q or T (X) is strongly embedded in Lp,q(0, 1). If T (X)
contains `q complemented we are done, so suppose that T (X) is strongly embedded in Lp,q(0, 1).

We claim that this forces X not to contain a subspace isomorphic to `q. Indeed, depending on
q, we distinguish four cases:(i) q = 2; (ii) q = p; (iii) 1 ≤ q < p; and (iv) q > 2.

In case (i), since Lp,2 is 2-concave and has an unconditional basis, every subspace of Lp,2 iso-
morphic to `2 has a subspace complemented in Lp,2 (see [19, Theorem 3.1 and Remark 4]). Hence,
in this case, if X contained a subspace isomorphic to `2, then T (X) would contain a subspace
isomorphic to `2 and complemented, which contradicts statement (3).

Case (ii) follows from the fact that `p is not strongly embedded in Lp(0, 1) (see [5, Theorem
2.2]), which is isometric to Lp,p(0, 1).
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In case (iii), consider r with q < r < p. Notice that Lr(0, 1) does not contain a subspace
isomorphic to `q. Hence, if X contained a subspace isomorphic to `q, then the same would hold
for T (X), which is strongly embedded in Lp,q(0, 1), and in particular also strongly embedded in
Lr(0, 1). This is clearly impossible.

Finally, in case (iv) consider r with 1 < r < p. Now `q does not embed in Lr(0, 1), hence
if X contained a subspace isomorphic to `q, then so would T (X) which is strongly embedded in
Lp,q(0, 1) ⊂ Lr(0, 1). Again a contradiction.

Therefore, in any of these cases, X does not contain a subspace isomorphic to `q, and by Theorem
3.3, we can assume that X is strongly embedded in Lp,q(0, 1), as it holds for T (X).

Now, let (fn) be a normalized weakly null unconditional basic sequence in X with ‖T (fn)‖Lp,q >
C, for some C > 0. Given 1 < r < p, we have Lp,q(0, 1) ⊂ Lr(0, 1), so [fn] is also strongly embedded
in Lr(0, 1). By Lemma 4.2, given ε > 0, there exists δ(ε) > 0 such that

µ(A) < δ(ε)⇒ sup
n

(∫
A

|fn|rdµ
) 1
r

< ε.

Since (fn) is bounded in Lr, for every ε > 0, there exists Mε > 0 such that µ({|fn| > Mε}) < δ(ε).
For each n ∈ N, let us consider gn = fnχ{|fn|>Mε}. Clearly, ‖gn‖Lr ≤ ε. Thus, extracting a

subsequence we can assume that gn converges weakly to some g ∈ Lr(0, 1), with ‖g‖Lr ≤ ε. Choose
a measurable set B and N <∞, such that µ(Bc) < δ(ε) and |g(t)| ≤ N for t ∈ B, and define

hn = (fn − gn − g)χB .

If we fix ε small enough, the sequence (hn) satisfies the following properties:

(1) hn is seminormalized and weakly null in Lr.
(2) |hn(t)| ≤M almost everywhere for some M <∞.
(3) ‖T (hn)‖Lr > C ′ for some constant C ′ > 0.

These imply that (hn) has a subsequence (hnk) which is an unconditional basic sequence in
L2(0, 1). Therefore, for every m ∈ N and scalars a1, . . . , am, we have:∥∥∥∥ m∑

i=1

aiT (hni)
∥∥∥∥
Lp,q

≤ ‖T‖
∥∥∥∥ m∑
i=1

aihni

∥∥∥∥
Lp,q

≤ ‖T‖
∥∥∥∥ m∑
i=1

aihni

∥∥∥∥
L2

≤ ‖T‖C1

( m∑
i=1

|ai|2
) 1

2

,

for a certain constant C1.
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On the other hand, extracting a further subsequence we can assume that (T (hnk)) is also an
unconditional basic sequence in Lr(0, 1). Hence, it follows that∥∥∥∥ r∑

i=1

aiT (hni)
∥∥∥∥
Lp,q

≥
∥∥∥∥ r∑
i=1

aiT (hni)
∥∥∥∥
Lr

≥ K
∫ 1

0

∥∥∥∥ r∑
i=1

airi(u)T (hni)
∥∥∥∥
Lr

du

≥ KD
∥∥∥∥( r∑

i=1

|aiT (hni)|2
) 1

2
∥∥∥∥
Lr

≥ KDL
( r∑
i=1

‖aiT (hni)‖2Lr

) 1
2

≥ KDLC ′
( r∑
i=1

|ai|2
) 1

2

,

where K is the unconditional constant of (T (hnk)), D is the constant appearing in [15, Theorem
1.d.6], L is the 2-concavity constant of Lr and C ′ is the constant satisfying ‖T (hn)‖Lr > C ′.

Hence, let M be the closed linear span of (hnk) in Lp,q, which is isomorphic to `2, and where
T is invertible. Now in the case q = 2, [19, Thm. 3.1 and Remark 4] imply that T (M) contains
a subspace complemented in Lp,2 and isomorphic to `2, which contradicts statement (3). While in
the case q 6= 2, then both M and T (M) are strongly embedded in Lp,q. By [19, Thm. 3.1] T (M)
contains a subspace, still isomorphic to `2 which is complemented in Lr. Since T (M) is strongly
embedded in Lp,q and Lp,q ⊂ Lr, it follows that there is a subspace of T (M) complemented in Lp,q,
in contradiction with (3).

Thus, we have shown that (3) ⇒ (1) under the assumption that 1 < p < 2 and q /∈ (p, 2), or
2 ≤ p < ∞. Hence, to finish the proof, it is enough to so that (2) ⇒ (1) when 1 < p < 2 and
p < q < 2. In this case, [3] implies that Lp,q satisfies a lower 2-estimate, so we are in a position
to use [6, Theorem A]. Therefore, if T : Lp,q → Lp,q were not strictly singular, then we could find
a subspace X isomorphic to `2 or generated by a pairwise disjoint sequence, in which T would be
invertible. By Theorem 3.2, this would imply that T is not `2-singular or `q-singular, so the proof
is finished.

�

As an application of Theorem 4.1, we can prove a stability result for the adjoints of strictly
singular operators. Notice, that unlike compact operators, strictly singular are not stable under
duality in general (cf. [20], [23]): take for instance any quotient mapping T : `1 → `p for 1 < p <∞;
this operator is strictly singular but T ∗ is even an isomorphic embedding. However, for an operator
T : Lp → Lp it is true that T is strictly singular if and only if, its adjoint T ∗ is strictly singular. This
fact was first proved for p > 2 by V. Milman in [18], and sometime later the proof was completed
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for p < 2 by L. Weis in [22]. We present here the extension of this result for operators on Lp,q

spaces.

Theorem 4.3. Let 1 < p, q <∞ and T : Lp,q → Lp,q, and consider the following statements:

(1) T is strictly singular,
(2) T ∗ is strictly singular.

If 2 ≤ p < ∞, or 1 < p < 2 and q /∈ (p, 2), then the implication (2) ⇒ (1) holds. Similarly, if
1 < p ≤ 2, or 2 < p <∞ and q /∈ (2, p), then (1)⇒ (2) holds.

Proof. Since for 1 < p, q <∞ the spaces Lp,q are reflexive and T ∗∗ = T , by duality it is enough to
prove the first assertion. Hence, let p and q satisfy 2 ≤ p < ∞ or 1 < p < 2 and q /∈ (p, 2), and
suppose T : Lp,q → Lp,q is not strictly singular. By Theorem 4.1, there exists a subspace M ⊂ Lp,q
such that the restriction T |M is an isomorphism with M and T (M) both complemented in Lp,q and
isomorphic to `q or `2.

Let us see how this implies that T ∗ cannot be strictly singular (compare to [23, Theorem 2.2]).
First, recall that given a subspace M of a Banach space X, the polar M⊥ denotes the subspace of
X∗ consisting of all functionals that annihilate M . Since T |M is an isomorphism onto T (M), which
is complemented in Lp,q, let P : Lp,q → T (M) denote this projection and consider the operator
R : Lp,q → Lp,q given by

Lp,q
R //

P

��

Lp,q

T (M)
(T |M )−1

// M
?�

OO

Now, if Y denotes the orthogonal complement of T (M) in Lp,q so that Lp,q = T (M) ⊕ Y ,
then we clearly have that TR coincides with the identity on T (M) and is identically zero on Y .
Let us see that T ∗ must be invertible on Y ⊥ which is isomorphic to T (M)∗, and in particular
infinite-dimensional, so that T ∗ is not strictly singular.

Indeed, given f ∈ Lp,q, let us write f = f1 + f2 with f1 ∈ T (M) and f2 ∈ Y . Now, for ϕ ∈ Y ⊥

and every f ∈ Lp,q we have

〈R∗T ∗(ϕ), f〉 = 〈ϕ, TR(f)〉 = 〈ϕ, TR(f1 + f2)〉 = 〈ϕ, f1〉 = 〈ϕ, f〉.

Thus, R∗T ∗ coincides with the identity on Y ⊥, and so for any ϕ ∈ Y ⊥ we have

‖T ∗ϕ‖ =
‖R∗‖
‖R∗‖

‖T ∗ϕ‖ ≥ 1
‖R∗‖

‖R∗T ∗ϕ‖ =
1
‖R∗‖

‖ϕ‖.

Hence, T ∗ is not strictly singular as we wanted to prove. �

In particular, if 1 < p < 2 and q /∈ (p, 2), or 2 < p <∞ and q /∈ (2, p), or p = 2 and 1 < q <∞,
then an operator T : Lp,q → Lp,q is strictly singular if and only if so is T ∗.
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Recall that the order continuous part of Lp,∞(0, 1) is defined to be the closure of the simple
functions in Lp,∞(0, 1) and is denoted by Lop,∞. This is a separable Banach lattice whose dual
(Lop,∞)∗ can be identified in a canonical way with Lp′,1(0, 1) (where 1

p + 1
p′ = 1). It can be shown

that the implication (1)⇒ (2) of the previous theorem also holds in this case.

Proposition 4.4. Let 1 < p < ∞. If T : Lop,∞(0, 1) → Lop,∞(0, 1) is strictly singular, then so is
T ∗ : Lp′,1(0, 1)→ Lp′,1(0, 1).

Proof. Indeed, if T ∗ is not strictly singular, then, by Theorem 4.1, there exists a subspace M ⊂ Lp′,1
isomorphic to `2 or `1 such that the restriction T ∗|X is an isomorphism and T ∗(M) is complemented.
In fact, we have that T ∗ is invertible on a subspace M such that either

(i) M ' T ∗(M) ' `2 with M and T ∗(M) strongly embedded, or
(ii) M ' T ∗(M) ' `1 with M = [fn] and T ∗(fn) disjoint.

Any of these cases yields a contradiction with the fact that T is strictly singular. Indeed, if (i)
holds, then this implies that T ∗∗ is an isomorphism on a complemented subspace Z isomorphic to
`2 which is identified with the dual of the subspace T (M) ⊂ Lp′,1, and the projection is the adjoint
of the projection onto T (M), P : Lp′,1 → Lp′,1. However, since T (M) is strongly embedded we can
factor P through the formal inclusion Lp′,1 ↪→ Lr, for some 1 < r < p′. This implies that Z is in
fact complemented in Lop,∞, hence T is not strictly singular.

Now, if case (ii) holds, then as in the proof of [7, Thm. 5.1] we can find functionals Fn on Lp′,1

with 〈Fn, Tfn〉 = 1 and 〈Fn, Tfm〉 = 0 for n 6= m. These functionals are defined by

〈Fn, f〉 =

∫
f(τ(t))χ[εn,|An|]sgnT

∗fn(τ(t))t
1
p′−1

dt∫ |An|
εn
|T ∗fn(τ(t))|t

1
p′−1

dt
,

where for each n ∈ N the set An denotes the support of the function T ∗fn, τn : [0, |An|] → An

are measure preserving functions such that
∫ 1

0
|T ∗fn(τn(t))|t

1
p′−1

dt = ‖T ∗fn‖, and εn > 0 are
sufficiently small (see [7, Thm. 5.1]). It follows that the functionals Fn are in fact elements
of the order continuous part Lop,∞ and are equivalent to the unit vector basis of c0. Moreover,
‖TFn‖ ≥ 〈Fn, T ∗fn〉 1

‖fn‖ > α for every n ∈ N, and some α > 0. Hence, passing to a further
subsequence, for certain constants c, C > 0 and all scalars a1, . . . , an, we have

c max
1≤i≤n

|ai| ≤
∥∥∥ n∑
i=1

aiTFi

∥∥∥ ≤ ‖T‖∥∥∥ n∑
i=1

aiFi

∥∥∥ ≤ C max
1≤i≤n

|ai|.

This implies that T is an isomorphism on a subspace isomorphic to c0, in contradiction with the
fact that T is strictly singular. �

Notice that the Lp-space version of Theorems 4.1 and 4.3 appears in [22] as a joint result.
However, in the setting of Lp,q spaces we need to state them separately in order to distinguish
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which implications hold depending on the parameters p and q. In fact, notice that Theorem 4.3
does not hold if the conditions on p and q are not satisfied as the following shows.

Example 4.5. Let 1 < p < q < 2. There exists an operator T : Lp,q → Lp,q such that T ∗ is strictly
singular, but T is not.

Proof. Indeed, since 1 < p < q < 2 we can consider a sequence of independent q-stable random
variables (gn) in Lp,q. Moreover, let (fn) be a normalized sequence of disjoint elements in Lp,q whose
span is isomorphic to `q and complemented in Lp,q. Let P : Lp,q → [fn] denote this projection.

Notice, that the subspace [gn] of Lp,q is strongly embedded in Lp. In particular, [gn] is a closed
subspace of Lp,r isomorphic to `q, for any fixed r with p < r < q.

Let us consider the following operator

Lp,q
T //

P

��

Lp,q

[fn]
R // [gn]

S // Lp,r
?�

Ir

OO

where R is an isomorphism mapping each fn to gn, S is the isomorphic embedding of [gn] in Lp,r,
and Ir denotes the canonical inclusion from Lp,r to Lp,q.

Clearly, T is an isomorphism on a subspace isomorphic to `q, thus it is not strictly singular.
However, the adjoint operator T ∗ : Lp′,q′ → Lp′,q′ , where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1 is strictly

singular. Indeed, notice first that T ∗ factors through Lp′,r′ , hence T ∗ cannot be an isomorphism
on any subspace isomorphic to `q′ , because Lp′,r′ does not contain any subspace isomorphic to `q′ .
On the other hand, T ∗ factors through [gn]∗ ' `q′ , hence T ∗ cannot be an isomorphism on any
subspace isomorphic to `2. Therefore, by Theorem 4.1, T ∗ is strictly singular as claimed. �

Observe that the operator T given in the above example also shows that implication (3) ⇒ (1)
of Theorem 4.1 does not hold if the conditions on the parameters p and q are not satisfied.
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