
INTERPOLATION OF BANACH LATTICES AND FACTORIZATION OF
p-CONVEX AND q-CONCAVE OPERATORS

YVES RAYNAUD AND PEDRO TRADACETE

Abstract. We extend a result of Šestakov to compare the complex interpolation method
[X0, X1]θ with Calderón-Lozanovskii’s construction X1−θ

0 Xθ
1 , in the context of abstract Banach

lattices. This allows us to prove that an operator between Banach lattices T : E → F which is
p-convex and q-concave, factors, for any θ ∈ (0, 1), as T = T2T1, where T2 is ( p

θ+(1−θ)p )-convex
and T1 is ( q

1−θ )-concave.

1. Introduction

In [10], J. L. Krivine showed that the composition T2T1 of a p-convex operator T1 : X → E
and a p-concave operator T2 : E → Y , where X, Y are Banach spaces and E is a Banach
lattice, factors always through a space Lp(µ). Motivated by this fact, in this note we study
factorization properties of p-convex and q-concave operators. More precisely, we consider the
following question: if an operator between Banach lattices T : E → F is both p-convex and
q-concave, does it necessarily factor as T = T2T1 where T2 is p-convex and T1 q-concave? Note
that such a product is always p-convex and q-concave, hence we are interested in a converse
statement.

In general, the answer to this question is negative (see Examples 4 and 5). However, we show
that for every θ ∈ (0, 1), the operator T can be written as T = T2T1 where T2 is ( p

θ+(1−θ)p)-

convex and T1 is ( q
1−θ )-concave (see Theorem 15). To prove this fact, we exhibit first a canonical

way in which a p-convex (respectively q-concave) operator factors through a p-convex (resp.
q-concave) Banach lattice. Afterwards, we present some interpolation results regarding the
complex interpolation method and the Calderón-Lozanovskii construction for Banach lattices.
In particular, we prove a comparison theorem between these two constructions that had been
apparently known in the literature only in the case of Banach lattices of measurable functions.
Thus, we extend this comparison theorem due to Šestakov (see [19]) to the more general setting
of compatible pairs of Banach lattices which need not be function spaces (that is, ideals in the
space of measurable functions on some measure space). This will constitute a key ingredient in
our proof of the main factorization result.

The problem of factoring an operator through p-convex and q-concave operators had also been
considered, although in a quite different manner, by S. Reisner in [17]; in particular, Theorem
1 was essentially proved in [17, Sec. 2, Lemma 6]. Moreover, this author showed that for fixed
p, q, the class of operators between Banach spaces T : E → F such that the composition with
the canonical inclusion jF : F → F ∗∗ factors as jFT = UV with V p-convex and U q-concave,
forms an operator ideal. However, his approach to an analogous statement of Theorem 1 for
p-convex operators is not satisfactory for our interests, because in [17] this is only considered
as a dual fact to that of factoring q-concave operators, and, as we will show in Section 3, these
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factorizations do not behave in an entirely dual way. Moreover, from Theorem 1 we can only
get that for a p-convex operator T : E → F , the bi-adjoint T ∗∗ : E∗∗ → F ∗∗ factors through
a p-convex Banach lattice, which suffices for the purposes in [17], but are not enough to prove
our main result on factorization (Theorem 15). We mention that our proofs of Theorems 1 and
3 have been inspired in fact by the work of P. Meyer-Nieberg in [14] on factorization of cone
p-summing and p-majorizing operators (see also [15, 2.8]). Then we realized that some of the
main ideas of our work were already present in the paper [17].

The organization of the paper goes as follows. Section 2 contains the proofs of the basic
factorizations for p-convex (resp. q-concave) operators. It is also shown that these constructions
can be equivalently obtained by means of maximality properties of factorization diagrams. The
next section, Section 3, is devoted to the study of the duality relation between the factorization
spaces for p-convex and q-concave operators. Next, Section 4 is mainly devoted to the proof
of the extension of Šestakov’s result to compatible pairs of Banach lattices. Then, in Section
5 we prove the main theorem on factorization of operators which are both p-convex and q-
concave. Here the extension of Šestakov’s result is used for interpolating operators which are
not necessarily positive (at the difference of the situation in [17]) between Banach lattices which
are perhaps not representable as ideal function spaces. In this section we show also how some
examples can be used to see that in general the factorization cannot be improved much further.
Finally, in Section 6 we show the connection between the constructions of the first section and
the factorization theorem of Krivine.

We refer the reader to [11], [15] and [18] for any unexplained terminology on Banach lattice
theory, and to [4] and [9] for those of interpolation theory.

Aknowledgement: We thank Prof. F. L. Hernández for bringing the reference [17] to our
attention after that a first draft of the present paper was completed.

2. Two basic constructions

Let E be a Banach lattice and X a Banach space. Recall that an operator T : E → X is
q-concave for 1 ≤ q ≤ ∞, if there exists a constant M <∞ so that( n∑

i=1

‖Txi‖q
) 1

q

≤M

∥∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥∥, if 1 ≤ q <∞,

or

max
1≤i≤n

‖Txi‖ ≤M

∥∥∥∥ n∨
i=1

|xi|
∥∥∥∥, if q =∞,

for every choice of vectors (xi)
n
i=1 in E (cf. [11, 1.d]). The smallest possible value of M is

denoted by M(q)(T ).
Similarly, an operator T : X → E is p-convex for 1 ≤ p ≤ ∞, if there exists a constant

M <∞ such that∥∥∥∥( n∑
i=1

|Txi|p
) 1

p
∥∥∥∥ ≤M

( n∑
i=1

‖xi‖p
) 1

p

, if 1 ≤ p <∞,

or ∥∥∥∥ n∨
i=1

|Txi|
∥∥∥∥ ≤M max

1≤i≤n
‖xi‖, if p =∞,

for every choice of vectors (xi)
n
i=1 in X. The smallest possible value of M is denoted by M (p)(T ).

Recall that a Banach lattice is q-concave (resp. p-convex) whenever the identity operator is
q-concave (resp. p-convex).

The following result was essentially proved in [17, Sec. 2, Lemma 6]. However, we include a
similar proof for completeness, since we will be using the explicit construction throughout.
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Theorem 1. Let E be a Banach lattice, X a Banach space and 1 ≤ q ≤ ∞. An operator
T : E → X is q-concave if and only if there exist a q-concave Banach lattice V , a positive
operator φ : E → V (in fact, a lattice homomorphism with dense image), and another operator
S : V → X such that T = Sφ.

E

φ ��@@@@@@@
T // X

V
S

>>~~~~~~~~

Proof. Let us suppose q < ∞. The proof for the case q = ∞ is trivial because every Banach
lattice is ∞-concave. However, the precise construction carried out here for q < ∞ has its
analogue for q =∞.

For the “if” part, let (xi)
n
i=1 in E. Since V is q-concave and φ is positive, by [11, Prop. 1.d.9]

we have (
n∑
i=1

‖Txi‖q
) 1

q

≤ ‖S‖M(q)(IV )‖φ‖
∥∥∥∥( n∑

i=1

|xi|q
) 1

q
∥∥∥∥,

which yields that T is q-concave.
Now, for the other implication, given x ∈ E, let us consider

ρ(x) = sup

{( n∑
i=1

‖Txi‖q
) 1

q

:

( n∑
i=1

|xi|q
) 1

q

≤ |x|
}
.

If M(q)(T ) denotes the q-concavity constant of T , then for (xi)
n
i=1 in E, we have( n∑

i=1

‖Txi‖q
) 1

q

≤M(q)(T )

∥∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥∥.

In particular, for all x ∈ E
‖Tx‖ ≤ ρ(x) ≤M(q)(T )‖x‖.

Moreover, ρ is a lattice semi-norm on E. Indeed, for any x ∈ E and λ ≥ 0 it is clear that
ρ(λx) = λρ(x). In order to prove the triangle inequality, let x, y ∈ E and z = |x| + |y|, and
denote Iz ⊂ E the ideal generated by z in E, which is identified with a space C(K) in which z
corresponds to the function identically one [18, II.7]. Now, for every ε > 0 let z1, . . . , zn ∈ E
such that

( n∑
i=1

|zi|q
) 1
q ≤ |z| and

ρ(z) ≤
( n∑
i=1

‖Tzi‖q
) 1
q + ε.

Since x, y ∈ Iz, they correspond to functions f, g ∈ C(K) such that |f(t)|+ |g(t)| = 1 for every

t ∈ K. Similarly, zi corresponds to hi ∈ C(K) with
(∑n

i=1 |hi(t)|q
) 1
q ≤ 1 for every t ∈ K.

Hence we can consider {
fi(t) = hi(t)f(t),
gi(t) = hi(t)g(t),

which belong to C(K) and satisfy
(∑n

i=1 |fi(t)|q
) 1
q ≤ |f(t)| and

(∑n
i=1 |gi(t)|q

) 1
q ≤ |g(t)|. This

means that we can consider (xi)
n
i=1 and (yi)

n
i=1 such that

(∑n
i=1 |xi|q

) 1
q ≤ |x| and

(∑n
i=1 |yi|q

) 1
q ≤

|y| in E, with xi + yi = zi. Thus, it follows that

ρ(x+ y) ≤ ρ(x) + ρ(y) + ε,

and since this holds for every ε > 0, the triangle inequality is proved.
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Now, if |y| ≤ |x|, then for any (xi)
n
i=1 such that

(
n∑
i=1

|xi|q
) 1

q

≤ |y|, it holds that

(
n∑
i=1

|xi|q
) 1

q

≤

|x|, hence for any such {xi}ni=1,

(
n∑
i=1

‖Txi‖q
) 1

q

≤ ρ(x). This implies that ρ(y) ≤ ρ(x).

Let V denote the Banach lattice obtained by completing E/ρ−1(0) with the norm induced
by ρ. Let φ denote the quotient map from E to E/ρ−1(0), seen as a map to V . Now, for x ∈ E
let us define S(φ(x)) = T (x). Since ‖Tx‖ ≤ ρ(x), S is well defined and extends to a bounded
operator S : V → X, such that T = Sφ.

Now, let (xi)
n
i=1 in E. For every ε > 0 and for every i = 1, . . . , n there exist {yij}

ki
j=1 in E

such that
(∑ki

j=1 |yij|q
) 1
q ≤ |xi| and

ρ(xi)
q = sup

{ k∑
j=1

‖Tyj‖q :

( k∑
j=1

|yj|q
) 1

q

≤ |xi|
}
≤

ki∑
j=1

‖Tyij‖q +
εq

n
,

for every i = 1, . . . , n. Therefore, we have

(
n∑
i=1

ρ(xi)
q

) 1
q

≤ ρ

((
n∑
i=1

|xi|q
) 1

q
)

+ ε,

and since this holds for every ε > 0, the normed lattice E/ρ−1(0) is q-concave; hence, the same
holds for its completion V . �

Since the lattice V constructed in the proof depends on the operator T : E → X and q, we
will denote it by VT,q whenever needed. Similarly we will denote ρT for the expression defining
the norm of VT,q.

Remark 1. Note that VT,q has q-concavity constant one. In particular if E is q-concave and
T = idE is the identity, then VT,q is the usual lattice renorming of E with q-concavity constant
one.

Remark 2. In [8], it was proved that an order weakly compact operator T : E → Y (i.e.
T [−x, x] is relatively weakly compact for every x ∈ E+) always factors through an order
continuous Banach lattice F . The Banach lattice F is constructed by means of the expression
‖x‖F = sup{‖Ty‖ : |y| ≤ |x|}, for x ∈ E, which yields a Banach lattice in the usual way. Notice
that if T : E → Y is q-concave, which implies being order weakly compact, then ‖x‖F ≤ ρT (x),

hence we can consider a natural map VT,q
i→ F such that we can factor T as follows:

E

φ
��

T // Y

VT,q
� � i // F

T̃

OO

Moreover, F coincides with VT,∞, so in a sense the previous Theorem is an extension of [8,
Thm. I.2].

The factorization given in Theorem 1 is in a certain sense maximal, as the following Propo-
sition shows.

Proposition 2. Let T : E → X be a q-concave operator. Suppose that T factors through

a q-concave Banach lattice Ṽ with factors A : E → Ṽ and B : Ṽ → X, such that A is a

lattice homomorphism whose image is dense in Ṽ , and T = B ◦ A. Then there is a lattice
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homomorphism u : Ṽ → VT,q such that φ = u ◦ A and S ◦ u = B.

E
A

&&NNNNNNNNNNNNNN

φ

��<<<<<<<<<<<<<<<<<<<
T // X

Ṽ

u

���
�
�

B

88pppppppppppppp

VT,q

S

@@�������������������

Proof. Let us define for x ∈ E, u(A(x)) = φ(x). Notice that, since A is a lattice homomorphism,

for {xi}ni=1 in E, such that

(
n∑
i=1

|xi|q
) 1

q

≤ |x|, we have

(
n∑
i=1

‖Txi‖q
) 1

q

=

(
n∑
i=1

‖BAxi‖q
) 1

q

≤ ‖B‖
(

n∑
i=1

‖Axi‖q
) 1

q

≤ ‖B‖M(q)(IṼ )

∥∥∥∥( n∑
i=1

|A(xi)|q
) 1

q
∥∥∥∥

= ‖B‖M(q)(IṼ )

∥∥∥∥A(( n∑
i=1

|xi|q
) 1

q
)∥∥∥∥ ≤ ‖B‖M(q)(IṼ )‖A(x)‖.

Therefore,

‖u(A(x))‖ = ‖φ(x)‖ = ρT (x) ≤ ‖B‖M(q)(IṼ )‖A(x)‖.
Since A has dense image, the preceding inequality implies that u can be extended to a bounded

operator u : Ṽ → V(T,q), which is clearly a lattice homomorphism and satisfies the required
properties. �

There is an analogous version of Theorem 1 for p-convex operators, which could be considered,
in a sense, as a predual construction to that given in Theorem 1 (see Section 3).

Theorem 3. Let E be a Banach lattice, X a Banach space and 1 ≤ p ≤ ∞. An operator
T : X → E is p-convex if and only if there exist a p-convex Banach lattice W , a positive
operator (an injective interval preserving lattice homomorphism) ϕ : W → E and another
operator R : X → W such that T = ϕR.

X

R   BBBBBBBB
T // E

W

ϕ

>>}}}}}}}}

Proof. Let us suppose p < ∞. The proof for the case p = ∞ is analogous, with the usual
changes.

As in the proof of Theorem 1, [11, 1.d.9] yields one implication. For the non-trivial one, let
T : X → E be p-convex. Let us consider the following set

S = {y ∈ E : |y| ≤
( k∑

i=1

|Txi|p
) 1

p

, where
k∑
i=1

‖xi‖p ≤ 1 and k ∈ N}.

We can consider the Minkowski functional defined by its closure S in E

‖z‖W = inf{λ > 0 : z ∈ λS}.

Clearly S is solid, and since T is p-convex, it is also a bounded set of E. Let us consider
the space W = {z ∈ E : ‖z‖W < ∞}. We claim that for any z1, . . . , zn in W , it holds that



6 Y. RAYNAUD AND P. TRADACETE

( k∑
i=1

|zi|p
)1/p

belongs to W and

∥∥∥∥( k∑
i=1

|zi|p
) 1

p
∥∥∥∥
W

≤
( n∑
i=1

‖zi‖pW
) 1

p

.

Indeed, given z1, . . . , zn in W , for every ε > 0 and for every i = 1, . . . , n there exist λi with
zi ∈ λiS, such that

λpi ≤ inf

{
µp : zi ∈ µS

}
+
εp

n
,

for each i = 1, . . . , n.
This means that for every i = 1, . . . , n, and for every δ > 0 there exists yδi in E with
‖zi − yδi ‖E ≤ δ, and

|yδi | ≤
( mi,δ∑

j=1

|Txi,δj |p
) 1

p

,

where {xi,δj }
mi,δ
j=1 satisfy ( mi,δ∑

j=1

‖xi,δj ‖p
) 1

p

≤ λi,

for each i = 1, . . . , n, and each δ > 0.
Now, for each δ > 0 let

wδ =

( n∑
i=1

|yδi |p
) 1

p

.

Notice that ∥∥∥∥( n∑
i=1

|zi|p
) 1

p

− wδ
∥∥∥∥
E

≤
∥∥∥∥( n∑

i=1

|zi − yδi |p
) 1

p
∥∥∥∥
E

≤
n∑
i=1

‖zi − yδi ‖E ≤ nδ.

Moreover, note that for every δ > 0, wδ belongs to

(
n∑
i=1

λpi

) 1
p

S. Indeed,

|wδ| =
( n∑
i=1

|yδi |p
) 1

p

≤
( n∑
i=1

mi,δ∑
j=1

|Txi,δj |p
) 1

p

,

and ( n∑
i=1

mi,δ∑
j=1

‖xi,δj ‖p
) 1

p

≤
( n∑
i=1

λpi

) 1
p

.

Hence,

(
n∑
i=1

|zi|p
) 1

p

∈
(

n∑
i=1

λpi

) 1
p

S. Therefore, it follows that∥∥∥( n∑
i=1

|zi|p
) 1
p
∥∥∥
W

= inf{µ > 0 :
( n∑
i=1

|zi|p
) 1
p ∈ µS} ≤

( n∑
i=1

λpi

) 1
p

≤
( n∑
i=1

(
inf
{
µp : zi ∈ µS

}
+ εp

n

)) 1
p ≤

( n∑
i=1

‖zi‖pW
) 1
p

+ ε.

Since this holds for every ε > 0, we finally have∥∥∥∥( n∑
i=1

|zi|p
) 1

p
∥∥∥∥
W

≤
( n∑
i=1

‖zi‖pW
) 1

p

.
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It follows that the Minkowski functional ‖.‖W is a norm on W . Indeed since S is bounded,

‖x‖W = 0 implies x = 0. Moreover if x, y ∈ W are non zero, set u = |x|
‖x‖W

, v = |y|
‖y‖W

,

α = ‖x‖W
‖x‖W+‖y‖W

, β = ‖y‖W
‖x‖W+‖y‖W

. Since ‖u‖W = ‖v‖W = 1, α, β ≥ 0 and α + β = 1 we have

‖x+ y‖W ≤ ‖ |x|+ |y| ‖W = (‖x‖W + ‖y‖W )‖αu+ βv‖W ≤ (‖x‖W + ‖y‖W )‖(αup + βvp)1/p‖W
≤ (‖x‖W + ‖y‖W )(α‖u‖pW + β‖v‖p)1/p

W = ‖x‖W + ‖y‖W
Therefore, (W, ‖ · ‖W ) is a p-convex normed lattice. We claim that W is complete, and hence

a p-convex Banach lattice. Indeed, let (wi)
∞
i=1 be a Cauchy sequence in W . Since for every

z ∈ E it holds that
‖z‖E ≤M (p)(T )‖z‖W ,

it follows that (wi)
∞
i=1 is also a Cauchy sequence in E. Let w ∈ E be its limit. Notice that since

wi are bounded in W , there exists some λ < ∞ such that wi ∈ λS for every i = 1, 2, . . . and
since S is closed in E, we must have w ∈ λS. Thus, w belongs to W , and we will show that
(wi)

∞
i=1 converges to w also in W . To this end, let ε > 0. Since (wi)

∞
i=1 is a Cauchy sequence,

there exists N such that wi − wj ∈ εS when i, j ≥ N . Thus, if i ≥ N we can write

w − wi = (w − wj) + (wj − wi)

for every j ∈ N, and letting j → ∞ we obtain that w − wi ∈ εS. This shows that wi → w in
W , and hence W is complete, as claimed.

Clearly, by the definition of W we have

‖Tx‖W ≤ ‖x‖X
for every x ∈ X. Moreover, as noticed above it also holds that ‖z‖E ≤ M (p)(T )‖z‖W for each
z ∈ E, therefore the formal inclusion ϕ : W ↪→ E is clearly an injective interval preserving
lattice homomorphism, and we have the following diagram

X

R   BBBBBBBB
T // E

W
. �

ϕ

>>}}}}}}}}

where R is defined by Rx = Tx for x ∈ X. This finishes the proof. �

As with the Banach lattice constructed in Theorem 1, we will denote by WT,p the Banach
lattice obtained in the proof of Theorem 3.

Remark 3. The operator ϕ : WT,p → E constructed in the proof is an injective, interval
preserving lattice homomorphism. Moreover, it satisfies that the image of the closed unit ball
ϕ(BWT,p

) is a closed set in E. This let us introduce the class C consisting of operators T : E → F
between Banach lattices which are injective, interval preserving lattice homomorphisms, such
that the image of the closed unit ball T (BE) is closed in F . The importance of this class will
become clear next.

Remark 4. Note that if T : X → E is p-convex, then it is also p′-convex for every 1 ≤ p′ ≤ p.
Hence, if we consider the factorization spaces WT,p and WT,p′ it always holds that

WT,p′ ↪→ WT,p,

with norm smaller than or equal to one.
Indeed, this follows from the following two facts. First, the set

S = {y ∈ E : |y| ≤
( k∑

i=1

|Txi|p
) 1

p

, with
k∑
i=1

‖xi‖p ≤ 1}
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can be equivalently described by

S = {y ∈ E : |y| ≤
( k∑

i=1

ai|Twi|p
) 1

p

, with ‖wi‖ ≤ 1, ai ≥ 0,
k∑
i=1

ai = 1}.

Furthermore, for 1 ≤ p′ ≤ p, and ai ≥ 0 with
k∑
i=1

ai = 1 it always holds that( k∑
i=1

ai|Twi|p
′
) 1

p′

≤
( k∑

i=1

ai|Twi|p
) 1

p

.

Hence the unit ball of WT,p′ is contained in that of WT,p.

Remark 5. WT,p has p-convexity constant equal to one. If E is already p-convex and T : E → E
is the identity then WT,p is a renorming of E with p-convexity constant one.

As for Proposition 2, the construction of Theorem 3 is in a sense minimal.

Proposition 4. Let T : X → E be a p-convex operator, such that there exist a p-convex Banach

lattice W̃ and operators A : X → W̃ and B : W̃ → E with T = BA and B belonging to the

class C. Then there exists an operator v : WT,p → W̃ such that vR = A and Bv = ϕ.

X
A

''NNNNNNNNNNNNNN

R

��===================
T // E

W̃

B

77pppppppppppppp

WT,p

v

OO�
�
�

ϕ

@@�������������������

Proof. Let us define v. Let y ∈ WT,p with ‖y‖WT,p
≤ 1. By definition, there exists a sequence

(yn)∞n=1 in E such that yn → ϕ(y) in E, and for each n ∈ N,

|yn| ≤
( kn∑
i=1

|Txni |p
) 1
p

with
∑kn

i=1 ‖xni ‖
p
X ≤ 1. Notice that since B is a lattice homomorphism( kn∑

i=1

|Txni |p
) 1
p

=
( kn∑
i=1

|BAxni |p
) 1
p

= B
(( kn∑

i=1

|Axni |p
) 1
p
)
,

where
(∑kn

i=1 |Axni |p
) 1
p

belongs to W̃ . Hence, since B is interval preserving there exists wn ∈ W̃

with |wn| ≤
(∑kn

i=1 |Axni |p
) 1
p

such that B(wn) = yn. Notice that since W̃ is p-convex and∑kn
i=1 ‖xi‖

p
X ≤ 1, for every n we have

‖wn‖W̃ ≤
∥∥∥( kn∑

i=1

|Axni |p
) 1
p
∥∥∥
W̃
≤M (p)(IW̃ )

( kn∑
i=1

‖Axni ‖p
) 1
p ≤M (p)(IW̃ )‖A‖.

Now, since the image of the unit ball of W̃ under B is closed, and B(wn) = yn converge to

ϕ(y) ∈ E, there exists w ∈ W̃ with ‖w‖W̃ ≤ M (p)(IW̃ )‖A‖ such that B(w) = ϕ(y). Moreover,
this element is unique because B is injective. Let us define v(y) = w.

It is clear, because of the injectivity of B, that v : WT,p → W̃ is linear. Moreover, by the
previous argument v is a bounded operator of norm less than or equal to M (p)(IW̃ )‖A‖. It is
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clear by construction that B ◦ v = ϕ. Moreover, since B ◦A = T = ϕ ◦R = B ◦ v ◦R and B is
injective, we also get that A = v ◦R as desired. This finishes the proof. �

Remark 6. Notice that the factorizations given in Theorems 1 and 3 also make sense in the
more general context of quasi-Banach lattices and for p-convex or q-concave operators with
p, q ∈ (0,∞) (not necessarily p, q ≥ 1). It can be seen that in these cases, the factorization
spaces are quasi-Banach lattices which need not be locally convex, except in the case when
p ≥ 1.

3. Duality relations

In this section we show the precise relation between the Banach lattices constructed in the
proofs of Theorems 1 and 3. Namely we will prove the following

Theorem 5. Let T : X → E be p-convex. By Theorem 3, T can be factored through WT,p;
moreover, since T ∗ : E∗ → X∗ is q-concave for 1

p
+ 1

q
= 1 (see [11, Prop. 1.d.4]), T ∗ can also

be factored through VT ∗,q. It holds that:

(1) VT ∗,q is lattice isometric to a sublattice of (WT,p)
∗,

(2) WT,p is lattice isometric to a sublattice of (VT ∗,q)
∗.

Moreover, under this identifications VT ∗,q is always an ideal in (WT,p)
∗, and if E is order

continuous WT,p is an ideal of (VT ∗,q)
∗.

We need some preliminary lemmas first.

Lemma 6. Let E be a Banach lattice, x, y ∈ E+, x ∧ y = 0, and z∗ ∈ E∗+. There exist u∗, v∗

in E∗+ such that z∗ = u∗ + v∗, u∗ ∧ v∗ = 0 and{
〈z∗, x〉 = 〈u∗, x〉
〈z∗, y〉 = 〈v∗, y〉

Proof. By [15, Lemma 1.4.3], there exist z∗(x) and z∗(y) in E∗+ such that{
〈z∗(x), u〉 = 〈z∗, u〉 for all u ∈ Ex
〈z∗(x), u〉 = 0 for all u ∈ {x}⊥{
〈z∗(y), u〉 = 〈z∗, u〉 for all u ∈ Ey
〈z∗(y), u〉 = 0 for all u ∈ {y}⊥

where Ex denotes the principal ideal generated by x in E, and {x}⊥ denotes the orthogonal
complement of x (i.e. {x}⊥ = {u ∈ E : u ∧ x = 0}).

Moreover, without loss of generality we can assume that z∗(x), z∗(y) ≤ z∗ (simply consider
z∗(x) ∧ z∗ and z∗(y) ∧ z∗), and that z∗(x) ∧ z∗(y) = 0 (consider z∗(x) − z∗(x) ∧ z∗(y) and
z∗(y)− z∗(x)∧ z∗(y)). Let then P be the band projection onto the band generated by z∗(x) in
the Dedekind complete Banach lattice E∗ and Q be the complementary band projection. Then
set u∗ = Pz∗, v∗ = Qz∗. �

Lemma 7. Let E be a Banach lattice. For any z∗ ∈ E∗+, and x1, . . . , xn ∈ E+, there exist

x∗1, . . . , x
∗
n in E∗+, such that z∗ =

n∑
i=1

x∗i , x
∗
i ∧ x∗j = 0 for i 6= j, and

〈z∗,
n∨
i=1

xi〉 =
n∑
i=1

〈x∗i , xi〉.

Proof. Given x, y ∈ E+, Lemma 6 applied to x−x∧ y and y−x∧ y yields the result for n = 2.
An easy induction on n completes the proof. �
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Recall that given a set A in a Banach space X, the polar of A is the set A0 = {x∗ ∈ X∗ :
|〈x∗, x〉| ≤ 1, ∀x ∈ A}. Similarly, for a set B in X∗, the dual of a Banach space X, the prepolar
of B is the set B0 = {x ∈ X : |〈x∗, x〉| ≤ 1, ∀x∗ ∈ B}.

Lemma 8. Let T : X → E be p-convex, and let

S := {y ∈ E : |y| ≤
( k∑

i=1

|Txi|p
) 1

p

, with
k∑
i=1

‖xi‖p ≤ 1}.

Since T ∗ : E∗ → X∗ is q-concave (with 1
p

+ 1
q

= 1), we can consider ρT ∗, the seminorm

which induces the norm on VT ∗,q (see Theorem 1). Hence, we can also consider the convex set
U := {y∗ ∈ E∗ : ρT ∗(y

∗) ≤ 1}. Then

S
0

= U,

where S denotes the closure of S in E.

Proof. First of all, we claim that S ⊂ U0.

Indeed, let y ∈ E be such that |y| ≤
(

n∑
i=1

|Txi|p
) 1

p

with
n∑
i=1

‖xi‖p ≤ 1. For every y∗ ∈ E∗ such

that ρT ∗(y
∗) ≤ 1, we have:

|〈y∗, y〉| ≤ 〈|y∗|,
(

n∑
i=1

|Txi|p
) 1

p

〉

= 〈|y∗|, sup

{
n∑
i=1

aiTxi :
n∑
i=1

|ai|q ≤ 1

}
〉

= sup

{
〈|y∗|,

N∨
m=1

(
n∑
i=1

ami Txi

)
〉 :

n∑
i=1

|ami |q ≤ 1, m = 1, . . . , N, N ∈ N
}
.

Where we have made use of [15, Cor. 1.3.4.ii)] in the last step.
Now, by Lemma 7, there exist (y∗m)Nm=1 pairwise disjoint elements of E∗+ such that |y∗| =∑N
m=1 y

∗
m and

〈|y∗|,
N∨
m=1

( n∑
i=1

ami Txi

)
〉 =

N∑
m=1

〈y∗m,
n∑
i=1

ami Txi〉.

Therefore, setting z∗i =
N∑
m=1

ami y
∗
m, we have

〈|y∗|,
N∨
m=1

(
n∑
i=1

ami Txi

)
〉 ≤

(
n∑
i=1

‖T ∗z∗i ‖q
) 1

q
(

n∑
i=1

‖xi‖p
) 1

p

.

Note that, since (y∗m)Nm=1 are pairwise disjoint we have that
(∑n

i=1 |z∗i |q
) 1
q ≤

∑N
m=1 y

∗
m =

|y∗|. Since ρT ∗(y
∗) ≤ 1, this implies that

(∑n
i=1 ‖T ∗z∗i ‖q

) 1
q ≤ 1. Therefore, for any y∗ with

ρT ∗(y
∗) ≤ 1,

|〈y∗, y〉| ≤ sup

{(
n∑
i=1

∥∥∥∥T ∗( N∑
m=1

ami y
∗
m

)∥∥∥∥q) 1
q
(

n∑
i=1

‖xi‖p
) 1

p

:
n∑
i=1

|ami |q ≤ 1, m = 1, . . . , N, N ∈ N
}

≤ 1.

This means that y ∈ U0. Since U0 is closed, this proves that S ⊆ U0 as claimed.

Therefore, it follows that (U0)
0 ⊆ S

0
. So in particular, U ⊆ S

0
.
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Let us prove now the converse inclusion (S
0 ⊆ U). Given y∗ ∈ S 0

, we want to show that
ρT ∗(y

∗) ≤ 1. To this end, let y∗1, . . . , y
∗
k be elements in E∗, such that( k∑
i=1

|y∗i |q
) 1

q

≤ |y∗|.

Notice that since S is solid, then so is S
0
. In particular, |y∗| ∈ S 0

whenever y∗ ∈ S 0
.

Now, for every ε > 0 there exist x1, . . . , xk in X, such that
k∑
i=1

‖xi‖p ≤ 1, and( k∑
i=1

‖T ∗y∗i ‖q
) 1

q

≤ |
k∑
i=1

〈T ∗y∗i , xi〉|+ ε.

Moreover, by [11, Prop. 1.d.2] we have

|
k∑
i=1

〈T ∗y∗i , xi〉| = |
k∑
i=1

〈y∗i , Txi〉| ≤ 〈
( k∑
i=1

|y∗i |q
) 1

q

,

( k∑
i=1

|Txi|p
) 1

p

〉 ≤ 1

because |y∗| ∈ S 0
. Therefore, ρT ∗(y

∗) ≤ 1 for every y∗ ∈ S 0
. This finishes the proof.

�

Remark 7. Note that the equality S
0

= U proved above, yields in particular that U is weak*-
closed. Hence, by the bipolar theorem it also holds that S = U0.

Now we can give the proof of Theorem 5.

Proof of Theorem 5. We stick to the notation of Theorems 1 and 3. Let us consider the inclusion
ϕ : WT,p ↪→ E. Hence, we also have ϕ∗ : E∗ → (WT,p)

∗. Notice that for every y∗ ∈ E∗ we have

‖ϕ∗(y∗)‖(WT,p)∗ = sup{〈ϕ∗(y∗), y〉 : ‖y‖WT,p
≤ 1}

= sup{〈y∗, ϕ(y)〉 : y ∈ S}
= inf{λ > 0 : y∗ ∈ λS 0}
= ρT ∗(y

∗),

by Lemma 8. Thus kerϕ∗ ⊃ ρ−1
T (0), which allows us to define

A : E∗/ρ−1
T ∗ (0) −→ (WT,p)

∗

y∗ + ρ−1
T ∗ (0) 7−→ ϕ∗(y∗)

Moreover, A can be extended to an isometry from VT ∗,q into (WT,p)
∗.

Furthermore, since the unit ball of WT,p is a solid subset of E, then ϕ is interval preserving
(i.e. ϕ([0, x]) = [0, ϕ(x)] for x ∈ W+

T,p). Thus, ϕ∗ is a lattice homomorphism (cf. [1, Theorem

1.35]). Now, for v ∈ VT ∗,q, we can consider a sequence (y∗n) in E∗ such that lim
n
y∗n + ρ−1

T ∗ (0) = v

in VT ∗,q. Hence, we have

A(|v|) = lim
n
A(|y∗n|+ ρ−1

T ∗ (0)) = lim
n
ϕ∗(|y∗n|) = lim

n
|ϕ∗(y∗n)| = lim

n
|A(y∗n + ρ−1

T ∗ (0))| = |A(v)|.

Therefore, A is a lattice homomorphism, which implies that VT ∗,q is lattice isometric to a
sublattice of (WT,p)

∗.
In order to see that VT ∗,q is in fact an ideal of (WT,p)

∗, let y ∈ (WT,p)
∗ with 0 ≤ y ≤ A(x) for

some x ∈ VT ∗,q. Notice that x = limφ(x∗n) in VT ∗,q, where (x∗n) belong to E∗. Thus,

A(x) = limA(φ(x∗n)) = limϕ∗(xn).

If we denote yn = y∧ϕ∗(xn), then we clearly have that yn tends to y in (WT,p)
∗. Moreover, since

ϕ is a lattice homomorphism, by [1, Thm. 1.35], it follows that ϕ∗ is interval preserving. Hence,
since 0 ≤ yn ≤ ϕ∗(x∗n), for every n ∈ N, there exists u∗n ∈ [0, x∗n], such that yn = ϕ∗(u∗n). Notice
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that ϕ∗(u∗n) tends to y in (WT,p)
∗. In particular, we have ρT ∗(u

∗
n − u∗m) = ‖ϕ∗(u∗n − u∗m)‖ → 0

when n,m→∞, which yields that φ(u∗n) tends to some u∗ in VT ∗,q. By construction, we obtain
that A(u∗) = y, which implies that A is interval preserving. This shows that VT ∗,q is an ideal
of (WT,p)

∗, as claimed.
On the other hand, we can also define a mapping B : WT,p → (VT ∗,q)

∗. Indeed, given y ∈ S
and y∗ ∈ E∗, since S = U0, we have 〈y∗, ϕ(y)〉 ≤ ρT ∗(y

∗). Therefore, for every y ∈ WT,p and
y∗ ∈ E∗ we get 〈y∗, ϕ(y)〉 ≤ ρT ∗(y

∗)‖y‖WT,p
. Hence, there exists a unique element B(y) ∈

(E∗/ρ−1
T ∗ (0))∗ such that

〈y∗ + ρ−1
T ∗ (0), B(y)〉 = 〈y∗, ϕ(y)〉

for every y∗ ∈ E∗. Clearly, B(y) is a linear functional which is continuous for the norm in
VT ∗,q, thus, it can be extended to an element of (VT ∗,q)

∗, with ‖B(y)‖(VT∗,q)∗ ≤ ‖y‖WT,p
. Hence,

B : WT,p → (VT ∗,q)
∗ is a linear mapping which is bounded of norm ≤ 1. Moreover, for y ∈ WT,p

we have

‖B(y)‖(VT∗,q)∗ = sup{〈v,B(y)〉 : ‖v‖VT∗,q ≤ 1} = sup{〈y∗, ϕ(y)〉 : ρT ∗(y
∗) ≤ 1}

which is the value of the Minkowski functional of U0 = S at ϕ(y). Hence,

‖B(y)‖(VT∗,q)∗ = inf{λ ≥ 0 : ϕ(y) ∈ λS} = ‖y‖WT,p
.

This means that B is an isometry.
Moreover, for y∗ ∈ E∗+ and every y ∈ WT,p we have

〈y∗ + ρ−1
T ∗ (0), |B(y)|〉 = sup{|〈x∗ + ρ−1

T ∗ (0), B(y)〉| : |x∗| ≤ y∗}
= sup{|〈x∗, ϕ(y)〉| : |x∗| ≤ y∗}
= 〈y∗, |ϕ(y)|〉,

and since ϕ is a lattice homomorphism we have

〈y∗ + ρ−1
T ∗ (0), |B(y)|〉 = 〈y∗, ϕ(|y|)〉 = 〈y∗ + ρ−1

T ∗ (0), B(|y|)〉.
Since this holds for every y∗ ∈ E∗+, we have that |B(y)| = B(|y|). Therefore, B is a lattice
homomorphism and the claimed result follows.

To prove the last statement, let u ∈ (VT ∗,q)
∗ such that 0 ≤ u ≤ B(y) for some y ∈ WT,p. We

consider φ : E∗ → VT ∗,q the operator induced by the quotient map. Since φ is positive, so is
φ∗ : (VT ∗,q)

∗ → E∗∗. It holds that

φ∗(u) ≤ φ∗(B(y)) = ϕ(y).

Indeed, for every y∗ ∈ E∗ we have

〈φ∗(B(y)), y∗〉 = 〈B(y), φ(y∗)〉 = 〈ϕ(y), y∗〉.
Hence, φ∗(u) ∈ [0, ϕ(y)] in E∗∗. However, if E is order continuous and ϕ(y) belongs to E, then
we have [0, ϕ(y)] ⊂ E. Moreover, since ϕ is interval preserving, there exists x ∈ [0, y] in WT,p,
such that φ∗(u) = ϕ(x). This implies that u = B(x), which means that WT,p is an ideal in
(VT ∗,q)

∗. �

Notice that the isometries A and B given in the proof of Theorem 5 may not be surjective,
as the following examples show. Moreover, if E is not order continuous, WT,p may not be an
ideal in (VT ∗,q)

∗.

Example 1. Let T : L∞(0, 1) ↪→ L1(0, 1) denote the formal inclusion. Clearly, for every 1 ≤
p ≤ ∞, T is p-convex. First, notice that the set

S = {f ∈ L1(0, 1) : |f | ≤
( n∑
i=1

|Tfi|p
) 1
p
,

n∑
i=1

‖fi‖pL∞ ≤ 1},
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satisfies that S = {f ∈ L1(0, 1) : ‖f‖L∞ ≤ 1}. This implies that

WT,p = L∞(0, 1).

On the other hand, if we consider the adjoint operator T ∗ : L1(0, 1)∗ → L∞(0, 1)∗, which is
p′-concave (for 1

p
+ 1

p′
= 1), then for f ∈ L∞(0, 1) = L1(0, 1)∗ we clearly have ‖T ∗f‖L∗∞ = ‖f‖L1 .

From here, it follows that the expression

ρT ∗,p′(f) = sup

{( n∑
i=1

‖T ∗fi‖p
′

L∗∞

) 1
p′

:
( n∑
i=1

|fi|p
′
) 1
p′ ≤ |f |

}
,

trivially satisfies ‖f‖L1 ≤ ρT ∗,p′ .
While on the other hand, for f ∈ L∞(0, 1) and (fi)

n
i=1 with (

∑n
i=1 |fi|p

′
)1/p′ ≤ |f | we have( n∑

i=1

‖T ∗fi‖p
′

L∗∞

) 1
p′

=
( n∑
i=1

‖fi‖p
′

L1

) 1
p′ ≤

∥∥∥( n∑
i=1

|fi|p
′
) 1
p′
∥∥∥
L1

≤ ‖f‖L1 .

Thus, ρT ∗,p′(f) = ‖f‖L1 , which implies that VT ∗,p′ = L1(0, 1). Hence, the isometry A : VT ∗,p′ →
(WT,p)

∗ given in Theorem 5 is not surjective.

Example 2. Let T : `1 ↪→ `∞ denote the formal inclusion. Clearly, T is ∞-convex. Moreover,
it is easy to see that the set

S = {y ∈ `∞ : |y| ≤
n∨
i=1

|yi|,
n∨
i=1

‖yi‖`1 ≤ 1},

satisfies S = Bc0 . Hence,

WT,∞ = c0.

On the other hand, let T ∗ : `∗∞ → `∗1 be the adjoint operator, which is 1-convex. It is well
known that `∗∞ = `∗∗1 can be decomposed as

`∗∗1 = J(`1)⊕ J(`1)
⊥,

where J(`1) denotes the canonical image of `1 in its bidual, and J(`1)
⊥ its disjoint complement.

Notice that every y ∈ J(`1)
⊥, viewed as an element of `∗∞, satisfies y|c0 = 0. Indeed, for every

n ∈ N, let en denote the sequence formed by zeros except 1 in the nth entry. For y ∈ J(`1)
⊥,

by disjointness we have

0 = 〈|y| ∧ J(en), en〉 = inf{〈|y|, x〉+ 〈en, z〉 : x, z ∈ `+∞, x+ z = en}
= inf{λ〈|y|, en〉+ 1− λ : λ ∈ [0, 1]}
= 〈|y|, en〉,

for every n ∈ N, which clearly implies y|c0 = 0. In particular, for y ∈ J(`1)
⊥ we have

‖T ∗(y)‖ = sup{〈T ∗(y), x〉 : x ∈ `1, ‖x‖`1 ≤ 1}
= sup{〈y, Tx〉 : x ∈ `1, ‖x‖`1 ≤ 1}
= 0,

since Tx ∈ c0 ⊂ `∞ for every x ∈ `1. Therefore, for y ∈ J(`1)
⊥, since J(`1)

⊥ is solid, we have

ρT ∗,1(y) = sup

{ n∑
i=1

‖T ∗yi‖`∞ :
n∑
i=1

|yi| ≤ |y|
}

= 0.

While for y ∈ J(`1) we have

ρT ∗(y) = sup

{ n∑
i=1

‖T ∗yi‖`∞ :
n∑
i=1

|yi| ≤ |y|
}

= ‖y‖`1 .
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Hence, VT ∗,1 = `1, which implies that the isometry B : WT,∞ → (VT ∗,1)
∗ of Theorem 5 is not

surjective.

Example 3. Let T : `1 → c be defined by T (x1, x2, . . . , xn, . . .) = (x1, x1 + x2, . . . ,
∑n

k=1 xk, . . .),
where c denotes the space of convergent sequences of real numbers with the supremum norm.
Clearly, T is positive and p-convex for every 1 ≤ p ≤ ∞. Notice that the set

S = {y ∈ c : |y| ≤
( n∑
i=1

|Tyi|p
) 1
p ,

n∑
i=1

‖yi‖p`1 ≤ 1},

contains the constant sequence equal to one, so since S is solid, S coincides with the closed
unit ball of c. Hence, WT,p = c.

Now, we can consider the adjoint operator T ∗ : c∗ → `∗1, which is clearly q-concave for every
1 ≤ q ≤ ∞. Recall that c∗ can be identified with the space `1(N) in the following way: for an
element x = (x0, x1, . . .) in `1(N) and another element y = (y1, y2, . . .) in c, we set

〈x, y〉 = x0 lim yn +
∞∑
n=1

xnyn.

Therefore, for a positive element x ∈ c∗ we have

‖T ∗x‖`∗1 = sup{〈T ∗x, y〉 : ‖y‖`1 ≤ 1}
= sup{〈x, Ty〉 : ‖y‖`1 ≤ 1}
≥ 〈x, Te1〉 =

∑∞
n=0 xn = ‖x‖c∗ .

Since ‖T‖ ≤ 1, it holds that ‖T ∗x‖`∗1 = ‖x‖c∗ for every positive x ∈ c∗. This implies that

ρT ∗,q(x) = sup

{( n∑
i=1

‖T ∗xi‖q`∗1
) 1
q

:
( n∑
i=1

|xi|q
) 1
q ≤ |x|

}
= ‖x‖c∗ ,

which yields that VT ∗,q = c∗.
Notice that, in particular, the operator ϕ : c ↪→ c defined in Theorem 3 coincides with the

identity on c, and the operator φ : c∗ → c∗ defined in Theorem 1 coincides as well with the
identity on c∗. Now, by the definition of the operator B : WT,p → (VT ∗,q)

∗ in Theorem 5, it
follows that for every y ∈ c and y∗ ∈ c∗ we have

〈B(y), y∗〉 = 〈B(y), φ(y∗)〉 = 〈ϕ(y), φ(y∗)〉 = 〈y, y∗〉.

Hence, B = J , where J : c→ c∗∗ denotes the canonical inclusion of c into its bidual. Now since
c is not order continuous, it follows that B(c) is not an ideal in (VT ∗,q)

∗, and this shows that
the last statement of Theorem 5 does not hold without the assumption of order continuity on
E.

4. Interpolation of Banach lattices

Throughout this section we will be using the complex interpolation method for Banach
lattices, hence we need to consider complex Banach lattices. However, our final results, which
are given in the next section, remain true for real Banach lattices by means of “complexifying”
and considering the real part after the interpolation constructions. Notice that the results
presented in the previous section work equally for both real or complex Banach lattices. We
refer to [15, Section 2.2] for the notion of complex Banach lattice.

Recall that a compatible pair of Banach spaces (X0, X1) is a pair of Banach spaces X0, X1

which are continuously included in a topological vector space X. In the context of Banach
lattices, we will say that two Banach lattices X0, X1 form a compatible pair of Banach lattices
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(X0, X1) if there exists a complete Riesz space X, and inclusions ij : Xj ↪→ X which are
continuous interval preserving lattice homomorphisms, for j = 0, 1. In this way, the space

X0 +X1 = {x ∈ X : x = x0 + x1, with x0 ∈ X0, x1 ∈ X1},
equipped with the norm ‖x‖ = inf{‖x0‖X0 + ‖x1‖X1 : x = x0 + x1} is a Banach lattice which
contains X0 and X1 as (non-closed) ideals.

Given a compatible pair of Banach lattices, (X0, X1), for each θ ∈ [0, 1] we will consider three
different constructions:

(1) X1−θ
0 Xθ

1 denotes the space of elements x ∈ X0 +X1 such that

|x| ≤ λ|x0|1−θ|x1|θ,
for some λ > 0, x0 ∈ X0 and x1 ∈ X1, with ‖x0‖X0 ≤ 1, ‖x1‖X1 ≤ 1. Notice that the
expressions of the form |f |1−θ|g|θ can be defined in any Banach lattice by means of the
functional calculus due to Krivine (see [11, pp. 40-43]). The norm in this space is given
by

‖x‖X1−θ
0 Xθ

1
= inf{λ > 0 : |x| ≤ λ|x0|1−θ|x1|θ for some ‖x0‖X0 ≤ 1, ‖x1‖X1 ≤ 1}.

(2) [X0, X1]θ denotes the space of elements x ∈ X0 + X1 which can be represented as
x = f(θ) for some f ∈ F(X0, X1). Here F(X0, X1) denotes the linear space of functions
f(z) defined in the strip Π = {z ∈ C : z = x+ iy, 0 ≤ x ≤ 1}, with values in the space
X0 +X1, such that
• f(z) is continuous and bounded for the norm of X0 +X1 in Π,
• f(z) is analytic for the norm of X0 +X1 in the interior of Π,
• f(it) assumes values in X0 and is continuous and bounded for the norm of X0,

while f(1 + it) assumes values in X1 and is continuous and bounded for the norm
of X1.

In F(X0, X1) we can consider the norm ‖f‖F(X0,X1) = max{supt ‖f(it)‖X0 , supt ‖f(1 +
it)‖X1}. The norm in [X0, X1]θ is given by

‖x‖[X0,X1]θ = inf{‖f‖F(X0,X1) : f(θ) = x}.
(3) [X0, X1]

θ denotes the space of elements x ∈ X0 + X1 which can be represented as
x = f ′(θ) for some f ∈ F(X0, X1). Now F(X0, X1) denotes the linear space of functions
f(z) defined in the strip Π = {z ∈ C : z = x+ iy, 0 ≤ x ≤ 1}, with values in the space
X0 +X1, such that
• ‖f(z)‖X0+X1 ≤ c(1 + |z|) for some constant c > 0 and for every z ∈ Π,
• f(z) is continuous in Π and analytic in the interior of Π for the norm of X0 +X1,
• f(it1) − f(it2) has values in X0 and f(1 + it1) − f(1 + it2) in X1 for any −∞ <
t1 < t2 <∞ and

‖f‖F(X0,X1) = max

{
sup
t1,t2

∥∥∥∥f(it2)− f(it1)

t2 − t1

∥∥∥∥
X0

, sup
t1,t2

∥∥∥∥f(1 + it2)− f(1 + it1)

t2 − t1

∥∥∥∥
X1

}
<∞.

The norm in [X0, X1]
θ is given by

‖x‖[X0,X1]θ = inf{‖f‖F(X0,X1) : f ′(θ) = x}.

These spaces are Banach lattices provided that (X0, X1) is a compatible pair of Banach
lattices. Moreover, [X0, X1]θ and [X0, X1]

θ are always interpolation spaces, while X1−θ
0 Xθ

1 is
an intermediate space between X0 and X1 which is an interpolation space under certain extra
assumptions. We refer to [6], [9], [12], and [13] for more information on these spaces.

Next theorem extends a result of Šestakov [19], which was originally proved only for the case
of Banach lattices of measurable functions, showing how these constructions are related to each
other.
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Theorem 9. Let X0, X1 be a compatible pair of Banach lattices. For every θ ∈ (0, 1) it holds
that

[X0, X1]θ = X0 ∩X1
[X0,X1]θ

= X0 ∩X1
X1−θ

0 Xθ
1 ,

with equality of norms.

Before the proof of Theorem 9 we need the following.

Lemma 10. Let F : Π→ X0 +X1 be a function in F(X0, X1) of the form

F (z) = eδz
2

N∑
j=1

xje
λjz,

where δ > 0, the λj are real, and xj ∈ X0 ∩X1. It holds that

‖F (θ)‖X1−θ
0 Xθ

1
≤ ‖F‖F(X0,X1).

Proof. Let F : Π→ X0 ∩X1 be a function in F(X0, X1) of the form

F (z) = eδz
2

N∑
j=1

xje
λjz,

where δ > 0, the λj are real, and xj ∈ X0 ∩ X1. Let x =
∑N

j=1 |xj|. We can consider the

principal (non closed) ideal in X0 ∩X1 generated by x, equipped with the norm that makes it
isomorphic to a C(K) space for some compact K (i.e. ‖y‖ = inf{λ > 0 : |y| ≤ λx}, cf. [18,
Chapter II. §7]). We clearly have inclusions

C(K) ↪→ X0 ∩X1 ↪→ X0 +X1,

which are bounded lattice homomorphisms. Moreover, since |xj| ≤ x, we have xj ∈ C(K), so
we can consider

F (ω, z) = eδz
2

N∑
j=1

xj(ω)eλjz,

as a function of ω ∈ K, and z ∈ Π. For each z ∈ Π, F (·, z) belongs to C(K). Hence, applying
[6, §9.4, ii)], for any ω ∈ K we have

|F (ω, θ)| ≤
[

1

1− θ

+∞∫
−∞

|F (ω, it)|µ0(θ, t)dt

]1−θ[
1

θ

+∞∫
−∞

|F (ω, 1 + it)|µ1(θ, t)dt

]θ
,

where µ0 and µ1 are the Poisson kernels for the strip Π, given by (see [6, §9.4]):

µ0(θ, t) =
e−πt sin πθ

sin2 πθ + [cos πθ − e−πt]2
µ1(θ, t) =

e−πt sin πθ

sin2 πθ + [cos πθ + e−πt]2
.

Hence setting

g(ω) =
1

1− θ

+∞∫
−∞

|F (ω, it)|µ0(θ, t)dt, and h(ω) =
1

θ

+∞∫
−∞

|F (ω, 1 + it)|µ1(θ, t)dt,
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we find that g and h belong to C(K). Indeed, for any ω1, ω2 in K, we have

|g(ω1)− g(ω2)| ≤ 1
1−θ

+∞∫
−∞
|F (ω1, it)− F (ω2, it)|µ0(θ, t)dt

≤ 1
1−θ

+∞∫
−∞

∣∣∣∣ N∑
j=1

(xj(ω1)− xj(ω2))e
iλjt

∣∣∣∣e−δt2µ0(θ, t)dt

≤ 1
1−θ

+∞∫
−∞

N∑
j=1

|xj(ω1)− xj(ω2)|e−δt
2
µ0(θ, t)dt

≤
N∑
j=1

|xj(ω1)− xj(ω2)|,

since
+∞∫
−∞
µ0(θ, t)dt = 1−θ (see [6, §29.4]). This inequality together with the fact that xj belongs

to C(K) for j = 1, . . . , N , proves that g ∈ C(K). The proof for h is identical. Moreover,

‖g‖X0 =

∥∥∥∥ 1
1−θ

+∞∫
−∞
|F (ω, it)|µ0(θ, t)dt

∥∥∥∥
X0

≤ 1
1−θ

+∞∫
−∞
‖F (ω, it)‖X0µ0(θ, t)dt

≤ ‖F‖F(X0,X1)
1

1−θ

+∞∫
−∞
µ0(θ, t)dt

= ‖F‖F(X0,X1),

and similarly

‖h‖X1 ≤ ‖F‖F(X0,X1).

Since |F (θ)| ≤ g1−θhθ (in C(K), and thus in X0 + X1 since Krivine’s calculous is preserved
under lattice homomorphisms), we have therefore

‖F (θ)‖X1−θ
0 Xθ

1
≤ ‖F‖F(X0,X1).

And the proof is finished. �

Proof of Theorem 9. If x is an element in X0 ∩X1
[X0,X1]θ

, by the definition of the norm in
[X0, X1]θ, for every ε > 0, we can take F in F(X0, X1), such that F (θ) = x and

‖F‖F(X0,X1) ≤ ‖x‖[X0,X1]θ + ε.

By [9, Chapter IV, Thm. 1.1], we can consider a sequence (Fn)∞n=1 in F(X0, X1), of elements
of the form

eδz
2

N∑
j=1

xje
λjz,

where xj ∈ X0 ∩X1 and λj ∈ R, such that ‖F − Fn‖F(X0,X1) → 0. Then we have

‖Fn(θ)− x‖[X0,X1]θ = ‖Fn(θ)− F (θ)‖[X0,X1]θ ≤ ‖Fn − F‖F(X0,X1) → 0.

By Lemma 10, for n,m ∈ N we have

‖Fn(θ)− Fm(θ)‖X1−θ
0 Xθ

1
≤ ‖Fn − Fm‖F(X0,X1) → 0,

when n,m→∞, and

‖Fn(θ)‖X1−θ
0 Xθ

1
≤ ‖Fn‖F(X0,X1) → ‖F‖F(X0,X1) ≤ ‖x‖[X0,X1]θ + ε.

Therefore, Fn(θ) also converges to a limit in X1−θ
0 Xθ

1 of norm not exceeding ‖x‖[X0,X1]θ + ε.

However, since X1−θ
0 Xθ

1 and [X0, X1]θ are both continuously embedded in X0 + X1, it follows
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that x is also the limit of Fn(θ) for the norm of X1−θ
0 Xθ

1 . Hence, x ∈ X1−θ
0 Xθ

1 and ‖x‖X1−θ
0 Xθ

1
≤

‖x‖[X0,X1]θ + ε. Since this is true for all ε > 0, we have

‖x‖X1−θ
0 Xθ

1
≤ ‖x‖[X0,X1]θ .

We will show now that X1−θ
0 Xθ

1 ⊂ [X0, X1]
θ and the inclusion mapping

X1−θ
0 Xθ

1 ↪→ [X0, X1]
θ

is bounded with norm smaller than or equal to one. Indeed, let x ∈ X1−θ
0 Xθ

1 be such that
‖x‖X1−θ

0 Xθ
1
≤ 1. Then for every ε > 0 we have g ∈ X+

0 , and h ∈ X+
1 such that ‖g‖X0 ≤ 1,

‖h‖X1 ≤ 1, and |x| ≤ (1 + ε)g1−θhθ in X0 +X1.
Now, if I denotes the (non closed) order ideal generated by g ∨ h in X0 +X1, then I can be

viewed as a space C(K) over some compact Hausdorff space K. Since |x| ≤ (1 + ε)g1−θhθ in
X0 +X1, we can consider

f(t) =
x(t)

g1−θ(t)hθ(t)
,

which is well defined for all t ∈ K such that g(t)h(t) 6= 0. This allows us to define

F (t, z) =

{
f(t)g(t)1−zh(t)z if g(t)h(t) 6= 0,
0 in any other case.

Note that, since g, h ≤ g ∨ h, we have ‖g‖C(K), ‖h‖C(K) ≤ 1; hence, for every z ∈ Π,

sup
t∈K
|F (t, z)| ≤ 1 + ε.

Clearly, for z ∈
◦
Π we can consider φ(z) ∈ C(K) defined by φ(z)(t) = F (t, z). It is routine to

verify that the map

φ :
◦
Π→ C(K)

is continuous. We claim that it is analytic. Indeed, note that for every t ∈ K fixed, F (t, ·) is

analytic on
◦
Π. Hence,

φ(z)(t) = F (t, z) =
1

2πi

∫
γ

F (t, ξ)

ξ − z
dξ

for every t ∈ K, and for any circumference γ of center z contained in
◦
Π. Since this identity is

valid for every t ∈ K, we get

φ(z) =
1

2πi

∫
γ

φ(ξ)

ξ − z
dξ.

This means that φ :
◦
Π→ C(K) is analytic.

Now, let us define

F1(t, z) =

∫
γz

F (t, ξ)dξ,

for t ∈ K and z ∈ Π, where γz is any path joining 1
2

and z, with all its points except possibly

z inside
◦
Π. Note that since F is analytic in

◦
Π and sup

t∈K
|F (t, z)| ≤ 1 + ε, for all z ∈ Π, F1 is

independent of the path γz, so it is well defined. Therefore, we can define φ1 : Π → B(K),
where B(K) denotes the bounded measurable functions on K, by

φ1(z) = F1(·, z) =

∫
γz

φ(ξ)dξ,



INTERPOLATION AND FACTORIZATION OF OPERATORS 19

for z ∈ Π. Since φ :
◦
Π→ C(K) is analytic, so is φ1 on

◦
Π, and clearly φ1(

◦
Π) ⊆ C(K). Moreover,

‖φ1(z)− φ1(z
′)‖C(K) ≤ (1 + ε)|z − z′|

for z, z′ ∈
◦
Π. Now, for any z in the border of Π, let zn ∈

◦
Π be such that zn → z. Since

‖φ1(zn) − φ1(zm)‖C(K) ≤ (1 + ε)|zn − zm|, we get that φ1(zn) is a Cauchy sequence in C(K),
hence convergent to some ψ ∈ C(K). In particular, for every t ∈ K, φ1(zn)(t)→ ψ(t) and since
φ1(zn)(t) =

∫
γzn

F (t, ξ)dξ we get that ψ(t) =
∫
γz
F (t, ξ)dξ. This implies that φ1(Π) ⊆ C(K),

and

‖φ1(z)− φ1(z
′)‖C(K) ≤ (1 + ε)|z − z′|

for z, z′ ∈ Π. Thus φ1 : Π→ C(K) is continuous.
Now, for u, v ∈ R, and for every α ∈ (0, 1) let γα be the path formed by the rectilinear

segments [iu, α + iu], [α + iu, α + iv] and [α + iv, iv]. Hence, for every α ∈ (0, 1) and t ∈ K
such that g(t)h(t) 6= 0

|F1(t, iu)− F1(t, iv)| ≤
∫
γα
|F (t, ξ)|dξ

=
∫

[iu,α+iu]
|F (t, ξ)|dξ +

∫
[α+iu,α+iv]

|F (t, ξ)|dξ +
∫

[α+iv,iv]
|F (t, ξ)|dξ

≤ α(1 + ε) + (1 + ε)g(t)1−αh(t)α|u− v|+ α(1 + ε)
≤ (g(t)1−αh(t)α|u− v|+ 2α)(1 + ε).

Thus, letting α→ 0+, we get

|F1(t, iu)− F1(t, iv)|
|u− v|

≤ (1 + ε)g(t)

for t ∈ K with g(t)h(t) 6= 0. Since the same inequality holds trivially if g(t) = 0, we have that

|φ1(iu)− φ1(iv)|
|u− v|

≤ (1 + ε)g

in X0. Analogously we have

|φ1(1 + iu)− φ1(1 + iv)|
|u− v|

≤ (1 + ε)h

in X1. Since X0 and X1 are order ideals, it clearly follows that |φ1(iu)−φ1(iv)|
|u−v| ∈ X0 and

|φ1(1+iu)−φ1(1+iv)|
|u−v| ∈ X1.

Therefore, since dφ1

dz

∣∣
z=θ

= φ(θ) = x, we get that x ∈ [X0, X1]
θ and

‖x‖[X0,X1]θ ≤ max

[
sup
u,v

∥∥∥∥ |φ1(iu)− φ1(iv)|
|u− v|

∥∥∥∥
X0

, sup
u,v

∥∥∥∥ |φ1(1 + iu)− φ1(1 + iv)|
|u− v|

∥∥∥∥
X1

]
≤ 1 + ε.

Since this holds for every ε > 0, we have proved that X1−θ
0 Xθ

1 ↪→ [X0, X1]
θ is continuous with

norm smaller than or equal to one. In particular, we have an inclusion

X0 ∩X1
X1−θ

0 Xθ
1 ↪→ X0 ∩X1

[X0,X1]θ

with norm smaller than one. Now, by [3], we have

X0 ∩X1
[X0,X1]θ

= X0 ∩X1
[X0,X1]θ

,

with equality of norms. This proves the theorem. �
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5. Factorization for operators which are both p-convex and q-concave

In section 2, it was proved that every p-convex (resp. q-concave) operator factors in a nice
way through a p-convex (resp. q-concave) Banach lattice. However, if the operator is both
p-convex and q-concave, can this factorization be improved? It is well-known that if E is a
q-concave Banach lattice and F a p-convex Banach lattice, then every operator T : E → F is
both p-convex and q-concave. Moreover, if an operator T : E → F between Banach lattices,
has a factorization of the following form

E
T //

φ
��

F

E1
R // F1

ψ

OO

where φ and ψ are positive, E1 q-concave, and F1 p-convex, then T is both p-convex and
q-concave [10]. Hence, the following question is natural:

Can a p-convex and q-concave operator T : E → F factor always in this way? According
to Theorems 1 and 3, this is true if the operator T : E → F can be written as T = T1 ◦ T2,
where T1 is p-convex, and T2 is q-concave. In fact, it turns out that the previous question is
equivalent to the following one.

If T : E → F is p-convex and q-concave, do there exist operators T1 and T2, such that
T = T1 ◦ T2, where T1 is p-convex, and T2 is q-concave?

In general, the answer to this question is negative, as the following examples show.

Proposition 11. Let T : E → F be an operator from an ∞-convex Banach lattice (an AM-
space) E to a q-concave Banach lattice F (q < ∞). If T can be factored as T = SR, with R
q-concave and S ∞-convex, then T is compact.

Proof. If T : E → F has such a factorization, then by Theorems 1 and 3 we must have

E
T //

φ

��

F

V
T1 // W

ϕ

OO

where V is q-concave, W an AM -space, and φ, ϕ lattice homomorphisms.
Since φ and ϕ are positive and take values in q-concave Banach lattices, by [11, Prop. 1.d.9],

they are q-concave operators. Moreover, since both operators are defined on AM -spaces, by
[11, Theorem 1.d.10], φ and ϕ are q-absolutely summing.

Therefore, T = ϕ ◦ (T1 ◦ φ) is a product of two q-absolutely summing operators, hence it is
compact, because every q-absolutely summing operator is weakly compact and Dunford-Pettis
(cf. [2, Cor. 8.2.15]). �

Example 4. The formal inclusion T : C(0, 1) ↪→ Lq(0, 1) is q-concave and∞-convex, but it does
not factor as T = T1 ◦ T2, with T1 ∞-convex, and T2 q-concave.

Proof. Since T is positive, it is q-concave and ∞-convex by [11, Prop. 1.d.9]. However T is
not compact since the closure in Lq(0, 1) of the unit ball of C(0, 1) contains the Rademacher
functions. �

By duality, Proposition 11 immediately yields the following.

Corollary 12. Let T : E → F be an operator from a p-convex Banach lattice E to a 1-concave
Banach lattice (an AL-space) F . If T can be factored as T = SR, with R 1-concave and S
p-convex, then T is compact.
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A different argument can be used to see that the formal inclusion i : Lp(0, 1) ↪→ Lq(0, 1) with
1 < q < p < ∞ (which is clearly p-convex and q-concave) does not factor as i = T2T1 with T1

q-concave and T2 p-convex. First we need the following lemma:

Lemma 13. Let 1 < q < p < ∞. There is no disjointness preserving nonzero operator
T : Lq(0, 1)→ Lp(0, 1).

Proof. Assume f := Th 6= 0 for some h ∈ Lq(0, 1) with ‖h‖q = 1. If U : Lq(0, 1) → Lq(0, 1) is
a linear isometry such that Uχ[0,1] = h, then S := TU is also disjointness preserving. For each
n ∈ N, let us consider the partition {0, 1

n
, 2
n
, . . . , 1}. Notice that for each n ∈ N there must

exist kn ≤ n such that

‖S(χ[ kn−1
n

, kn
n

]‖p ≥
‖f‖p
n1/p

.

Otherwise, by the fact that S is disjointness preserving, we would have

‖f‖ = ‖
n∑
k=1

S(χ[ k−1
n
, k
n

])‖ =
( n∑
k=1

‖S(χ[ k−1
n
, k
n

])‖
p
) 1
p
<
( n∑
k=1

‖f‖p

n

) 1
p

= ‖f‖,

which is clearly a contradiction.
Hence, since ‖χ[ k−1

n
, k
n

]‖q = 1
n1/q for every k = 1, . . . , n, we have

‖S(χ[ kn−1
n

, kn
n

])‖p ≥
‖f‖p
n1/p

=
‖f‖p

n1/p−1/q
‖χ[ kn−1

n
, kn
n

]‖q.

Therefore, since q < p, for n large enough we get a contradiction with the fact that S is
bounded. �

Recall that given a Banach lattice E and a Banach space X, an operator T : E → X is called
AM-compact if T [−x, x] is relatively compact for every positive x ∈ E.

Theorem 14. If a lattice homomorphism T : Lp(0, 1) → Lq(0, 1) (q < p) can be factored as
T = T2T1 with T1 q-concave and T2 p-convex, then T is AM-compact.

Proof. Suppose that we have

Lp(0, 1)
T //

T1 ##GGGGGGGGG
Lq(0, 1)

X

T2

;;wwwwwwwww

with T1 q-concave and T2 p-convex. Hence, by Theorems 1 and 3 we have

Lp(0, 1)
T //

φ

��

Lq(0, 1)

V
S // W

ϕ

OO

where V is q-concave, W p-convex, and φ, ϕ are lattice homomorphisms. Now, by Krivine’s
Theorem ([11, Theorem 1.d.11]) we can factor

Lp(0, 1)

φ1 $$JJJJJJJJJ

φ // V W

ϕ1 ""DDDDDDDDD
ϕ // Lq(0, 1)

Lq(µ)

φ2

=={{{{{{{{{
Lp(ν)

ϕ2

::ttttttttt

where φi and ϕi are still lattice homomorphisms. Therefore, we can consider the closure of
φ1(Lp(0, 1)) in Lq(µ), which is lattice isomorphic to some Lq(µ̃), and the quotient Lp(ν)/ ker(ϕ2)
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which is lattice isomorphic to Lp(ν̃) for certain measures µ̃ and ν̃. Thus, we can consider the
following diagrams:

Lp(0, 1)

φ̃1 $$JJJJJJJJJ

φ1 // Lq(µ) Lp(ν)

π ##HHHHHHHHH

ϕ2 // Lq(0, 1)

Lq(µ̃)
, � i

;;vvvvvvvvv
Lp(ν̃)

ϕ̃2

::ttttttttt

Now, let R : Lq(µ̃) → Lp(ν̃) be defined by R = πϕ1Sφ2i. It follows that R is a lattice

homomorphism. Indeed, given x ∈ Lq(µ̃), we can consider (xn) in Lp(0, 1) such that φ̃1(xn)→ x
in Lq(µ̃). Since T is a lattice homomorphism T (|xn|) = |Txn| for every n, and since ϕ̃2 is an

injective lattice homomorphism we get that Rφ̃1(|xn|) = |Rφ̃1(xn)|, and by continuity and the

fact that φ̃1 is also a lattice homomorphism, we achieve R(|x|) = |R(x)|.
Hence, considering the quotient by ker(R) we can factor R through an injective lattice homo-

morphism from some Lq space to an Lp space. By considering the diffuse and atomic parts of
these spaces we can decompose them as Lq(0, 1)⊕ `q and Lp(0, 1)⊕ `p (lattice isomorphically).
Accordingly, every operator between them can be decomposed into four parts acting between

each of the summands, that is R =

(
R11 R12

R21 R22

)
with

R11 : Lq(0, 1)→ Lp(0, 1) R12 : `q → Lp(0, 1)
R21 : Lq(0, 1)→ `p R22 : `q → `p.

Clearly if R is a lattice homomorphism, so are Rij, and since the intervals in `p and `q are
compact, we have that R12, R21 and R22 are AM-compact. Finally, by Lemma 13 we see that
R11 has to be the zero operator. This finishes the proof. �

Example 5. For 1 < q < p <∞, the formal inclusion i : Lp(0, 1) ↪→ Lq(0, 1) cannot be factored
as i = T2T1 with T1 q-concave and T2 p-convex.

Proof. Since i is positive, by [11, Prop. 1.d.9], i is q-concave and p-convex. Moreover, since
i : Lp(0, 1) ↪→ Lq(0, 1) is a lattice homomorphism and it is not AM-compact (consider for
instance the Rademacher functions), by Theorem 14, we conclude that it cannot be factored
as i = T2T1 with T1 q-concave and T2 p-convex. �

Despite these facts, as an application of the results of section 4, we have the following
factorization for operators which are both p-convex and q-concave.

Theorem 15. Let E and F be Banach lattices, and let T : E → F be both p-convex and
q-concave. For every θ ∈ (0, 1) we can factor T in the following way

E
T //

φθ
��

F

Eθ
Rθ // Fθ

ϕθ

OO

where φθ and ϕθ are interval preserving lattice homomorphisms, Eθ is ( q
1−θ )-concave, and Fθ is

( p
θ+(1−θ)p)-convex.

Before the proof, we need the some lemmas first. Recall, that given a Banach space X, and
1 ≤ p < ∞, `p(X) denotes the space of sequences (xn) of X such that (‖xn‖X) belongs to `p.
This is a Banach space with the norm

‖(xn)‖`p(X) =
( ∞∑
n=1

‖xn‖pX
) 1
p
.
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In order to keep a unified notation, for p =∞, `∞(X) will denote the space of sequences (xn)
of X such that (‖xn‖X) belongs to c0, equipped with the norm

‖(xn)‖`∞(X) = sup ‖xn‖X .

Notice that this space is usually denoted c0(X) in the literature.
Analogously, given a Banach lattice E, and 1 ≤ p ≤ ∞, E(`p) denotes the completion of the

space of eventually null sequences (xn) of E under the norm

‖(xn)‖E(`p) =


sup
n

∥∥∥( n∑
i=1

|xi|p
) 1
p∥∥

E
if 1 ≤ p <∞,

sup
n

∥∥∥ n∨
i=1

|xi|
∥∥∥
E

if p =∞.

The following lemma consists of standard results. In the case of Banach lattices of measurable
functions, this can be obtained from [5, Theorem 3], however, in general we cannot use the
measurability tools and thus some functional calculus needs to be carried out.

Lemma 16. Let (F,G) be a compatible pair of Banach lattices, let r, s ∈ [1,+∞] and θ ∈ (0, 1).
For 1

t
= 1−θ

r
+ θ

s
, we have:

(1) `r(F )1−θ`s(G)θ = `t(F
1−θGθ), with equality of norms.

(2) `r(F ) ∩ `s(G)
`r(F )1−θ`s(G)θ

= `t(F ∩G
F 1−θGθ

).
(3) the inclusion F (`nr )1−θG(`ns )θ ↪→ F 1−θGθ(`nt ) is bounded of norm ≤ 1.
(4) E(`r)

1−θE(`s)
θ = E(`t), with equality of norms.

We skip the proof of the lemma and proceed with the proof of the main result.

Proof of Theorem 15. Since T is p-convex, it can be factored through a p-convex Banach lattice
Z as in Theorem 3:

E
T //

R ��@@@@@@@ F

Z

ϕ

??~~~~~~~

where ϕ : Z → F is an injective interval preserving lattice homomorphism, and Rx = Tx for
all x ∈ E. Therefore, (Z, F ) can be considered as a compatible interpolation pair of Banach
lattices, and we can interpolate T : E → F and R : E → Z by the complex method of
interpolation (see [6]) with parameter θ, (thus, we complexify E and Z if they are not complex
Banach lattices) and we get a Banach lattice Fθ = [(Z, F )]θ, and an operator Tθ : E → Fθ.
Moreover, since ϕ is an inclusion, Fθ is also continuously included in F . Let us denote this
inclusion by ϕθ : Fθ ↪→ F .

We claim that Fθ is pθ convex, with 1
pθ

= θ
p

+ 1−θ
1

, that is pθ = p
θ+(1−θ)p . Indeed, first notice

that if Z is p-convex then F 1−θZθ is pθ-convex. This is because for any positive operator S it
holds that

S(|x0|1−θ|x1|θ) ≤ (S|x0|)1−θ(S|x1|)θ.

This implies that for any positive operator S acting simultaneously from X0 into Y0 and from
X1 into Y1 the interpolated operator S : X1−θ

0 Xθ
1 → Y 1−θ

0 Y θ
1 is bounded. In our particular case,

(see the discussion following [11, 1.d.3]) for every n ∈ N, we have operators

În : `n1 (F ) −→ F (`n1 ) În : `np (Z) −→ Z(`np )
(x1, . . . , xn) 7−→ (x1, . . . , xn) (x1, . . . , xn) 7−→ (x1, . . . , xn)
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which are bounded uniformly on n ∈ N. Since they are clearly positive, by the previous remark
the following operators are also uniformly bounded

In : `n1 (F )1−θ`np (Z)θ −→ F (`n1 )1−θZ(`np )θ

(x1, . . . , xn) 7−→ (x1, . . . , xn)

Using (1) and (3) of Lemma 16 we get that the operators

`pnθ (F 1−θGθ) −→ `n1 (F )1−θ`np (Z)θ −→ F (`n1 )1−θZ(`np )θ −→ F 1−θGθ(`npθ)
(x1, . . . , xn) 7−→ (x1, . . . , xn) 7−→ (x1, . . . , xn) 7−→ (x1, . . . , xn)

are also uniformly bounded on n. This means that F 1−θGθ is pθ-convex. Now, by Theorem 9,

Fθ = F ∩ ZF 1−θZθ

, and since F ∩ Z is a sublattice of F 1−θZθ, Fθ is also pθ-convex.
Now we claim that Tθ is ( q

1−θ )-concave. Indeed, since T : E → F is q-concave and R : E → Z
is ∞-concave, the following maps are bounded:

Ť : E(`q) −→ `q(F ) Ř : E(`∞) −→ `∞(Z)
(x1, x2, . . .) 7−→ (Tx1, Tx2, . . .) (x1, x2, . . .) 7−→ (Rx1, Rx2, . . .)

Therefore, the interpolated map

Ťθ : [(E(`q), E(`∞))]θ → [(`q(F ), `∞(Z))]θ

is also bounded (cf. [4] or [6, §4]). Note that by Theorem 9 and (4) of Lemma 16, we have

[(E(`q), E(`∞))]θ = E(`q) ∩ E(`∞)
E(`q)1−θE(`∞)θ

= E(`q)
E(`q)1−θE(`∞)θ

= E(`qθ),

where 1
qθ

= θ
∞ + 1−θ

q
. And by Lemma 16, we have the identity

[(`q(F ), `∞(Z))]θ = `q(F ) ∩ `∞(Z)
`q(F )1−θ`∞(Z)θ

= `qθ(F ∩ Z
F 1−θZθ

) = `qθ(Fθ),

with equality of norms. Therefore, the map Ťθ : E(`qθ) → `qθ(Fθ) is bounded, which means
that Tθ is qθ-concave (qθ = q

1−θ ).
Hence, we can now apply Theorem 1 to Tθ : E → Fθ, and we get the factorization

E
Tθ //

φθ   @@@@@@@@ Fθ

Eθ

Rθ

>>}}}}}}}}

through the qθ-concave Banach lattice Eθ. Therefore, T can be factorized as claimed. �

Remark 8. It is easy to see that in the case when the spaces E and F are real Banach lattices,
after complexifying and making the previous argument, the obtained operators are all “com-
plexified” operators, i.e. TC(x + iy) = T (x) + iT (y). Hence, by considering the restriction to
the real part in each space, we obtain the same factorization result for real Banach lattices.

6. Connections with Krivine’s theorem

Recall the classical result proved in [10]: Given Banach spaces X, Y and a Banach lattice
E, if T1 : X → E is p-convex and T2 : E → Y is p-concave, then T2T1 factors through Lp(µ)
for certain measure µ. We remark that the factorization Theorems 1 and 3 allow us to reduce
Krivine’s theorem to the following purely lattice theoretical version:

Lemma 17. If W , V are quasi-Banach lattices with W p-convex and V p-concave, then every
lattice homomorphism h : W → V factors through some space Lp(µ), and the factors are lattice
homomorphisms.
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Proof. We may assume by renorming that the p-convexity constant of W , resp. the q-concavity
constant of V , are equal to one (see Rem. 1 and 5). Notice that by an elementary p-concavification/
convexification argument (see [11, pp. 53-54]), the proof of the Lemma reduces itself to the
case p = 1 (this is because a lattice homomorphism h : W → V is bounded if and only if it
is bounded between the p-convexifications h : W (p) → V (p)). In this case, Krivine’s argument
becomes transparent: indeed, let us consider

F1 = {x ∈ W : ‖x‖W < 1} and F2 = h−1({y ∈ V : y ≥ 0 and ‖y‖V ≥ ‖h‖}).
Clearly, both sets are convex and satisfy F1 ∩ F2 = ∅. Hence, by Hahn-Banach’s Theorem we
can find a functional f ∈ W ∗ such that f(x) ≤ 1 for each x ∈ F1 and f(x) ≥ 1 for each x ∈ F2.
Thus, f is positive and for x ∈ W we have 1

‖h‖‖h(x)‖V ≤ f(|x|) ≤ ‖x‖W .
This allows us to define a seminorm on W by x 7→ f(|x|) which induces a lattice norm norm

on the vector lattice W/{x ∈ W : f(|x|) = 0}, the completion of which (for this new norm) is,
by Kakutani’s theorem [11, Theorem 1.b.2], isomorphic as normed lattice to a space L1(µ) for
a certain measure µ. Moreover, if π denotes the map W → L1(µ) induced by the quotient map
W → W/{x ∈ W : f(|x|) = 0}, we have

1

‖h‖
‖h(x)‖V ≤ ‖π(x)‖ ≤ ‖x‖W .

This means that we can factor

W
h //

π ""FFFFFFFF V

L1(µ)
h̃

<<yyyyyyyy

where π and h̃ are lattice homomorphisms and h̃ is defined so that h̃(π(x)) = h(x). �

Now, let T1 : X → E be a p-convex operator and T2 : E → Y be p-concave. Using Theorems
1 and 3 we have

X
T1 //

R1   BBBBBBBB E
T2 //

φ ��@@@@@@@ Y

W

ϕ

>>}}}}}}}}
V

S2

??~~~~~~~

where W is p-convex, V p-concave, and ϕ, φ are lattice homomorphisms. This diagram shows
clearly how Krivine’s theorem can be obtained from the previous Lemma.

Remark 9. The same argument plus a standard application of Maurey’s Theorem [2, Theorem
7.1.2] yields that if T1 : X → E is p-convex and T2 : E → Y is q-concave, with p > q, then
T2T1 can be factored through the canonical inclusion i : Lp(µ) → Lq(µ) for a certain measure
µ (this was essentially proved in [17, Sec. 2, Corollary 7] when Y is reflexive).

In a similar direction, as another application of Theorem 9, we have the following result
(compare with [17, Sec. 3, Proposition 2]).

Proposition 18. Let T : X → E be p-convex and S : E → Y q-concave. For every θ ∈ (0, 1)
we can factor ST through a Banach lattice Uθ which is pθ-convex and qθ-concave (with as usual
pθ = p

p(1−θ)+θ and qθ = q
1−θ).

Proof. By Theorem 3, we can factor T in the following way, where W is a p-convex Banach
lattice and i a positive operator:

X

T̃   BBBBBBBB
T // E

W
. � i

>>}}}}}}}}
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Moreover, since S ◦ i : W → Y is q-concave, by Theorem 1 we have the lattice seminorm
ρS◦i which is continuous with respect to the norm in W (ρS◦i(x) ≤ Mq(S ◦ i)‖x‖W ), and such
that W/ρ−1

S◦i(0) with the norm that ρS◦i induces becomes a q-concave Banach lattice, such that
S ◦ i factors through it. But, since W is p-convex and ρ−1

S◦i(0) is a closed ideal, it follows that
W/ρ−1

S◦i(0) with its quotient norm is also p-convex.

We can consider X0 = W/ρ−1
S◦i(0) with its quotient norm, and X1 = ̂W/ρ−1

S◦i(0) (the comple-
tion under ρS◦i) with the norm induced by ρS◦i. Note that, for all y with ρS◦i(y) = 0, we have
that

ρS◦i(x) = ρS◦i(x+ y) ≤M(q)(S ◦ i)‖x+ y‖.
Thus,

‖x‖X1 = ρS◦i(x) ≤M(q)(S ◦ i) inf{‖x+ y‖ : ρS◦i(y) = 0} = M(q)(S ◦ i)‖x‖X0 ,

which means that the inclusion X0 ↪→ X1 is bounded of norm less than or equal to ≤ M(q).
Therefore, we can interpolate X0 and X1. Since X0 is p-convex and X1 is q-concave, by [16]
we get that Uθ = X1−θ

0 Xθ
1 is pθ-convex and qθ-concave. The following diagram illustrates the

situation:

X

T̃   BBBBBBBB
T // E

S // Y

W

��

, �
i

::uuuuuuuuuu φ // X1

S1

>>}}}}}}}}

X0
� � // X1−θ

0 Xθ
1

� � // X1

?�

OO

�

Remark 10. A similar result to Proposition 18 was also given in [17, Sec. 3, Proposition 2] for
interval preserving lattice homomorphisms from a p-convex to a q-concave Banach lattice with
essentially the same proof. The idea of using interpolation to produce this kind of factorization
has been initiated both by S. Reisner in [17] and, in parallel, by T. Figiel in [7] using the real
method of interpolation.

Corollary 19. If T : E → E is p-convex and q-concave, then T 2 factors through a pθ-convex
and qθ-concave Banach lattice. In particular, it factors through a super reflexive Banach lattice.
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