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Abstract. The notion of disjointly homogeneous Banach lattice is introduced. In
these spaces every two disjoint sequences share equivalent subsequences. It is proved
that on this class of Banach lattices the product of a regular AM-compact and a
regular disjointly strictly singular operators is always a compact operator.

1. Introduction

This note is a continuation of a previous work by the authors [FTT08] where it

was proved that, on a wide class of Banach lattices (which includes those with finite

cotype), the product of a regular AM-compact operator and a regular disjointly strictly

singular operator is strictly singular and has invariant subspaces. In particular, if T

is regular, AM-compact, and disjointly strictly singular, then the square T 2 is strictly

singular. Here we show that in a certain class of Banach lattices better compactness

properties can be obtained.

To this end, the notion of disjointly homogeneous Banach lattice is introduced.

Namely, a Banach lattice E is called disjointly homogeneous if for two arbitrary disjoint

sequences in E there exist subsequences which are equivalent. This forms a class of

Banach lattices that includes for instance the spaces Lp(µ) (1 ≤ p ≤ ∞), Lorentz

spaces Lp,q(µ) and some others.

For this class of Banach lattices, the following holds.

Theorem. Let E be a disjointly homogeneous Banach lattice. If T : E → E is regular,

disjointly strictly singular, and AM-compact, then T 2 is compact.

In particular, as a consequence of Lomonosov’s Theorem we get that under these

hypotheses such operators have hyperinvariant subspaces.

We will routinely use the following well known facts. Suppose that E is an order

continuous Banach lattice with a weak order unit. Then E can be represented as a
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Köthe Function space over some probability measure space (Ω,Σ, µ) with continuous

inclusions:

L∞(µ) ↪→ E ↪→ L1(µ).

Moreover, the dual E∗ can be identified with the space of all µ-measurable functions

g such that sup
{∫

Ω
fgdµ : ‖f‖E 6 1

}
< ∞, and the value taken by the functional

corresponding to g at f ∈ E is
∫

Ω
fgdµ. See [LT79, Thm. 1.b.14] for details.

Recall that, given ε > 0, the Kadec-Pe lczyński set M(ε) is defined as follows:

M(ε) =
{
x ∈ E : µ

(
σ(x, ε)

)
> ε
}

where σ(x, ε) =
{
t ∈ Ω : |x(t)| > ε‖x‖E

}
. It is known ([LT79, Proposition 1.c.8])

that ‖x‖1 > ε2‖x‖E for all x ∈ M(ε); hence the norms ‖·‖E and ‖·‖1 are equivalent

on every subspace of E contained in M(ε) for some ε > 0. On the other hand, if a

normalized sequence (xn) in E is not contained in anyM(ε), then there is a subsequence

(xnk
) and a disjoint (unconditional basic) sequence (yk) in E equivalent to (xnk

) with

‖xnk
− yk‖E → 0.

Recall that an operator T : E → E is positive if it maps positive elements to positive

elements. Moreover, an operator is regular if it is a difference of two positive operators.

By [Wei82, Theorem 2.2], every regular operator T : E → E can be extended to a

bounded operator T̃ : L1(µ) → L1(µ). It was shown in [FTT08, Theorem 2.2] that

T : E → E is AM-compact if and only if T̃ : L1(µ)→ L1(µ) is Dunford-Pettis.

Recall that a Banach lattice is weakly sequentially complete if and only if it does

not contain a subspace which is isomorphic to c0, if and only if it does not contain

a sublattice which is lattice isomorphic to c0. Such a Banach lattice is called a KB-

space . Every KB-space is order continuous; a dual Banach lattice is a KB-space if

and only if it is order continuous. See [AB85] for more details.

2. Disjointly homogeneous Banach lattices

A Banach lattice E is said to be disjointly homogeneous if for every seminor-

malized sequences (xn) and (ym) with |xi| ∧ |xj| = 0 and |yi| ∧ |yj| = 0 for i 6= j, there

exist equivalent subsequences, that is, there exist a constant C > 0 and subsequences

(nk), (mk) such that

C−1
∥∥∥ N∑

k=1

akxnk

∥∥∥ ≤ ∥∥∥ N∑
k=1

akymk

∥∥∥ ≤ C
∥∥∥ N∑

k=1

akxnk

∥∥∥,
for every scalars (ak)N

k=1.
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Observe that a Banach lattice E is disjointly homogeneous if for any pair of dis-

joint positive normalized sequences (xn) and (yn), there exist subsequences which are

equivalent.

Also note that the definition of a disjointly homogeneous Banach lattice depends on

the lattice structure, that is, it is not preserved under isomorphisms in general. For

instance, for any 1 < p < ∞, p 6= 2, the function space Lp[0, 1] is isomorphic as a

Banach space to the atomic Banach lattice Hp given by the unconditional Haar basis

(see, e.g., [LT77, p. 19]), and this lattice has disjoint sequences equivalent to `2 and `p;

thus, with the atomic structure Hp is not disjointly homogeneous.

Examples of disjointly homogeneous spaces include the spaces Lp(µ) for 1 ≤ p ≤ ∞
and every measure µ, because every normalized disjoint sequence in Lp(µ) is equivalent

to the unit vector basis of `p. Moreover, in [FJT75] and [CD88] it was shown that every

disjoint normalized sequence in the Lorentz function spaces ΛW,q(µ), or Lp,q contains

a subsequence equivalent to the unit vector basis of `q (for q <∞).

Motivated by these examples, we say that a Banach lattice is p-disjointly homoge-

neous if every normalized disjoint sequence has a subsequence equivalent to the unit

vector basis of `p (c0 in the case p = ∞). Clearly, the spaces `p(Xn) where Xn is a

sequence of finite dimensional Banach lattices, are p-disjointly homogeneous. So are

the Baernstein spaces Bp introduced by C. Seifert (see [CS89, p. 7]).

One could ask whether every disjointly homogeneous Banach lattice has to be p-

disjointly homogeneous for some p ∈ [1,∞]. The following example shows that this is

not the case.

Example. Let T be Tsirelson’s space (see [Tsir74]). We claim that T with the lattice

structure given by its unconditional basis (tn) is disjointly homogeneous, and clearly

does not contain any disjoint sequence equivalent to the unit vector basis of `p or c0.

Proof. If x ∈ T with x =
∑∞

i=1 αiti, then we denote suppx = {i ∈ N : αi 6= 0}. For

x, y ∈ T we write suppx < supp y if i < j whenever i ∈ suppx and j ∈ supp y. Given

two normalized disjoint sequences in T , (xn) and (yn), we will show that they have

equivalent subsequences.

By truncating each xn, we may assume by Proposition 1.a.9 of [LT77] that each

xn has finite support. By passing to a subsequence, we may further assume that

suppxn < suppxn+1 for all n. Similarly, we may assume that supp yn < supp yn+1 for

all n. Now it is easy to construct subsequences (xnk
) and (ynk

) so that

suppxn1 < supp yn1 < suppxn2 < supp yn2 . . .
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It follows from [CS89, Proposition II.4] that (xnk
) and (ynk

) are equivalent. �

Proposition 2.1. Suppose that E is a disjointly homogeneous Banach lattice. Then

either E or E∗ (or both) is a KB-space. Precisely we have that

(i) E is not a KB-space if and only if E is ∞-disjointly homogeneous.

(ii) E∗ is not a KB-space if and only if E is 1-disjointly homogeneous.

Proof. The equivalence in (i) follows immediately from the definition of a KB-space.

[AB85, Theorem 14.21] asserts that E∗ is not a KB-space iff E contains a lattice copy

of `1, this yields the equivalence in (ii). Finally, since no subsequence of the unit

vector basis of c0 is equivalent to the unit vector basis of `1 and vice versa, the two

pairs of conditions are incompatible, hence at least one of the two spaces has to be a

KB-space. �

A natural question in this setting is wether disjointly homogeneous spaces are stable

under duality. In this direction we have the following result.

Theorem 2.2. If E is an ∞-disjointly homogeneous Banach lattice, then E∗ is a

1-disjointly homogeneous Banach lattice.

Proof. Every disjoint sequence in E has a subsequence equivalent to the unit vector

basis of c0. In particular, E∗ is order continuous. Let (x∗n) be a normalized disjoint

positive sequence in E∗. Consider a sequence (xn) of elements in E+ of norm one, such

that x∗n(xn) = 1. By [MN91, Proposition 2.3.1], for any ε > 0 there exist a subsequence

(kn) and a disjoint sequence (vn) ⊂ E+ such that vn 6 xkn and x∗kn
(vn) ≥ 1 − ε. By

hypothesis, there exist a constant C > 0 and a subsequence of (vn) which we still

denote (vn) such that

C−1 sup
n=1,...,m

|bn| 6
∥∥∥ m∑

n=1

bnvn

∥∥∥ 6 C sup
n=1,...,m

|bn|.

Therefore, for any sequence of scalars (an)m
n=1 we have:∥∥∥ m∑

n=1

anx
∗
kn

∥∥∥ =
∥∥∥ m∑

n=1

|an|x∗kn

∥∥∥ = sup
{( m∑

n=1

|an|x∗kn

)
(y) : y ∈ E, ‖y‖ 6 1

}
>

( m∑
n=1

|an|x∗kn

)(
C−1

m∑
n=1

vn

)
> C−1

m∑
n=1

|an|x∗kn
(vn)

> C−1(1− ε)
m∑

n=1

|an|.
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Hence, it follows that

C−1(1− ε)
m∑

n=1

|an| 6
∥∥∥ m∑

n=1

anx
∗
kn

∥∥∥ 6 m∑
n=1

|an|.

This yields that every disjoint sequence in E∗ has a subsequence equivalent to the unit

vector basis of `1. In particular E∗ is disjointly homogeneous. �

For general disjointly homogeneous spaces this duality is not true, as the following

example shows.

Example. Given 1 < q < ∞, the Lorentz function space Lq,1(0, 1) is disjointly homo-

geneous, but the dual Lp,∞(0, 1) is not (where 1
p

+ 1
q

= 1).

Proof. Indeed, every disjoint normalized sequence in Lq,1 has a subsequence equivalent

to the unit vector basis of `1 (see [CD88, Lemma 2.1]). In contrast, every disjoint

sequence in the order continuous part of Lp,∞ (the closed linear span of the character-

istic functions in Lp,∞) has a subsequence equivalent to the unit vector basis of c0 (see

[NST]);yet Lp,∞ contains disjoint sequences spanning `p.

Let us proof this last assertion. Consider the functions in [0, 1] defined by

fn(t) =
p− 1

p
(t− 2−n)−

1
pχ(2−(n+1),2−n)(t).

We claim that the closed linear span [fn] is isomorphic to `p.

Since ‖f‖Lp,∞ = sups>0 s(µf (s))
1
p , where µf (s) = µ{t ∈ (0, 1) : |f(t)| > s} is the

distribution function, for each n ∈ N, we have

µfn(s) = µ{t ∈ (2−(n+1), 2−n) :
p− 1

p
(t− 2−n)−

1
p > s}

= µ
{
t ∈ (2−(n+1), 2−n) : t < 2−n +

(p− 1

p

)p 1

sp

}
=


2−n − 2−(n+1) if s ≤ p−1

p(2−n−2−(n+1))
1
p
,(

p−1
p

)p
1
sp if s > p−1

p(2−n−2−(n+1))
1
p
.

This clearly implies that (fn) is a seminormalized sequence in Lp,∞. Now, given scalars

a, b let us see that ‖afi + bfj‖Lp,∞ ∼ (|a|p + |b|p)
1
p , for i 6= j. Indeed, since fi and fj
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are disjoint, we have

‖afi + bfj‖Lp,∞ = sup
s>0

s
(
µfi

(
s

|a|
) + µfj

(
s

|b|
)
) 1

p

≥ s0

(
µfi

(
s0

|a|
) + µfj

(
s0

|b|
)
) 1

p

= s0

[(p− 1

p

)p |a|p

sp
0

+
(p− 1

p

)p |b|p

sp
0

] 1
p

=
p− 1

p
(|a|p + |b|p)

1
p

where s0 is any number greater than max
{

|a|p−1

p(2−(i+1)−2−i)
1
p
, |b|p−1

p(2−(j+1)−2−j)
1
p

}
. Moreover,

since Lp,∞ satisfies an upper p-estimate [Cr81], we also get ‖afi + bfj‖Lp,∞ ≤ C(|a|p +

|b|p)
1
p for certain constant C > 0. The statement that [fn] is isomorphic to `p follows

by induction. �

It remains as an open question wether every reflexive Banach lattice E is disjointly

homogeneous if and only if E∗ is disjointly homogeneous.

3. Regular operators on disjointly homogeneous Banach lattices

Recall that an operator on a Banach lattice is called disjointly strictly singular

if its restriction to any subspace spanned by a disjoint sequence is not an isomorphism

[HS89]. This class contains the class of strictly singular operators but in general they

do not coincide.

Proposition 3.1. If an operator T : E → F from a Banach lattice E to a KB-space

F is not an isomorphism on any subspace isomorphic to `1, then it is weakly compact.

In particular, if T is disjointly strictly singular, then it is weakly compact as well.

Proof. Let (xn)n be a normalized sequence in E. If (Txn) has no weakly Cauchy subse-

quence, then by Rosenthal’s `1 theorem, there exists a subsequence (Txnk
)k equivalent

to the unit vector basis of `1. Therefore, T preserves an isomorphic copy of `1, which

contradicts the hypothesis.

Hence, there is a weakly Cauchy subsequence (Txnk
) of (Txn). Since F is weakly

sequentially complete, (Txnk
) is weakly convergent.

Since F is order continuous, it follows from [Chen99] (see, also, [FTT08, Theo-

rem 2.7]) that every operator preserving an isomorphic copy of `1, also preserves a

lattice copy of `1. Hence disjointly strictly singular operators into an order continuous

Banach lattice are never an isomorphism on a subspace isomorphic to `1.
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�

The following result improves the one obtained in [FTT08] in the setting of disjointly

homogeneous Banach lattices.

Theorem 3.2. Suppose that E is a disjointly homogeneous Banach lattice with order

continuous norm and a weak unit. Suppose that S and T are two regular operators on

E such that S is disjointly strictly singular and T is AM-compact.

(i) If E∗ is order continuous then ST is compact.

(ii) If E∗ is not order continuous then TS is compact.

In particular, if R is disjointly strictly singular and regular, then STR is compact.

Proof. Since E is order continuous and has a weak unit, we can consider E is as an ideal

in L1(µ) for some probability measure µ, and extend T to a Dunford-Pettis operator

T̃ : L1(µ)→ L1(µ).

(i) Suppose that E∗ is order continuous but ST is not compact. Then there exists a

normalized sequence (un) such that (STun) has no convergent subsequences. It follows

that (un) has no convergent subsequences. Since E∗ is order continuous, E doesn’t

contain a copy of `1, so by Rosenthal’s `1-theorem, we may assume that (un) is weakly

Cauchy. Since (STun) has no convergent subsequences, we can assume by passing to

a further subsequence that there exists an δ > 0 such that ‖STun − STum‖E > δ

whenever m 6= n. For every n ∈ N put xn = un+1 − un, yn = Txn, and zn = Syn =

STxn. Then (zn) is seminormalized, hence (xn) and (yn) are seminormalized as well.

Also, (xn) is weakly null, so that (yn) and (zn) are weakly null as well.

Since (xn) is also weakly null in L1(µ), and T̃ is Dunford-Pettis, it follows that

‖yn‖1 → 0. However, (yn) is seminormalized in E, hence the sequence (yn) is not

contained in any Kadec-Pe lczyński set M(ε) for any ε > 0. After passing to a subse-

quence of (xn) we may assume that (yn) is equivalent to a disjoint sequence (vn) and

‖yn − vn‖E → 0. By passing to subsequences we may assume that ‖yn − vn‖E < 2−n.

Since S is regular, S̃ is bounded, so that ‖zn‖1 → 0. Similarly, we may assume that

(zn) is equivalent to a disjoint sequence (wn) and ‖zn−wn‖E → 0. Since (vn) and (wn)

are disjoint seminormalized sequences and E is disjointly homogeneous, by passing to

further subsequences we may assume that they are equivalent.

Since S is disjointly strictly singular, we can find a normalized block sequence (hk)

of (vn) such that Shk → 0. Suppose that hk =
∑mk+1

n=mk+1 αnvn. Since (vn) is a basic

sequence, there exists a positive real C such that |αn| < C. Let gk =
∑mk+1

n=mk+1 αnyn
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for all k, then

‖hk − gk‖E 6
mk+1∑

n=mk+1

|αn|‖vn − yn‖ 6 C2−mk → 0,

so that ‖Sgk‖E 6 ‖Shk‖E + ‖S‖‖hk − gk‖E → 0. On the other hand, since (zn) and

(wn) are equivalent, we have

‖Sgk‖E =
∥∥ mk+1∑

n=mk+1

αnzn

∥∥
E
> C1

∥∥ mk+1∑
n=mk+1

αnvn

∥∥
E

= ‖hk‖E = 1;

a contradiction.

(ii) Suppose that E∗ is not order continuous, hence not a KB-space. Then Propo-

sition 2.1 yields that E is a KB-space and is 1-disjointly homogeneous. Hence, S is

weakly compact by Proposition 3.1. Since T̃ : L1 → L1 is Dunford-Pettis, the compo-

sition

E
S−→ E ↪→ L1(µ)

T̃−→ L1(µ)

is a compact operator. If TS is not compact, there exists a normalized sequence

(xn) in E such that the sequence (TS(xn)) is not contained in any M(ε). Therefore,

(T (xn)) has a subsequence which is equivalent to a disjoint sequence in E. Hence, this

sequence must have a subsequence equivalent to the unit vector basis of `1, because E is

1-disjointly homogeneous. However, this implies that TS must preserve an isomorphic

copy of `1, which is impossible since S is weakly compact.

�

Observe that Theorem 3.2(ii) remains valid in the case that S is not regular. Also,

it remains valid if, instead of being disjointly strictly singular, S is only assumed to be

weakly compact.

Corollary 3.3. Let E be a disjointly homogeneous Banach lattice. If T : E → E is

regular, disjointly strictly singular, and AM-compact, then T 2 is compact.

Corollary 3.3 together with Lomonosov’s Theorem [Lom73] immediately yield the

following result.

Corollary 3.4. Let E be a disjointly homogeneous Banach lattice. If T : E → E

is regular, disjointly strictly singular and AM-compact. Then T has a hyperinvariant

subspace.
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A subset S of an order continuous Banach lattice of functions over a measure space

(Ω,Σ, µ) is called equi-integrable if

sup
f∈S
‖fχA‖ → 0 when µ(A)→ 0.

We will make use of the following well-known fact (see [FH02, Lemma 3.3] for a

proof).

Lemma 3.5. Let E be an order continuous Banach lattice which is continuously in-

cluded, as a dense ideal, in L1(µ) for some probability measure µ. A norm bounded

sequence (gn) in E is convergent to zero if and only if (gn) is equi-integrable and con-

vergent to zero in the norm of L1.

Recall that an order continuous Banach lattice E has the subsequence splitting

property [Wei89] if for every bounded sequence (fn) there exist a disjoint sequence

(hk), an equi-integrable sequence (gk) and a subsequence (fnk
) such that fnk

= gk +hk

with gk and hk disjoint for all k. For positive operators on a disjointly homogeneous

Banach lattice with the subsequence splitting property, the conclusion of Corollary 3.3

can be improved as follows. Compare with the results in [CG87] for Lp spaces.

Theorem 3.6. Let E be a disjointly homogeneous Banach lattice with the subsequence

splitting property, such that E∗ is order continuous. If T : E → E is a regular operator

which is disjointly strictly singular and AM-compact, then T is compact.

Proof. Let (xn) be a norm bounded sequence in E. Since E has the subsequence split-

ting property, passing to a subsequence we have xnk
= gk +hk with (gk) equi-integrable

and (hk) a disjoint sequence. Since (gk) is equi-integrable, for some subsequence (still

denoted (gk)) we must have gk → g weakly for some g ∈ E [AB85].

Since E∗ is order continuous, |hk| tends weakly to zero. Thus, so does |T |(|hk|)
which is positive. Since E ↪→ L1, we have that |T |(|hk|) tends to zero weakly in L1,

hence ‖T (hk)‖L1 ≤ ‖|T |(|hk|)‖L1 → 0.

Let us apply now Kadec-Pe lczyński dichotomy to the sequence (Thk) in E [FJT75].

Suppose first that (Thk) is not contained in any M(ε), then there is a subsequence

(Thkj
) equivalent to a disjoint sequence. Hence, since the sequence (hk) is disjoint,

and E is disjointly homogeneous passing to a further subsequence we have that (Thkj
)

and (hki
) are equivalent basic sequences. This implies that T is an isomorphism when

restricted to the span of (hki
). However, this is a contradiction, because T is disjointly

strictly singular.



10 J. FLORES, P. TRADACETE, AND V. G. TROITSKY

Therefore, (Thk) is contained in some M(ε), but then ‖Thk‖E → 0 since ‖Thk‖1 →
0. Moreover, since T is AM-compact, Tgk → Tg in L1(µ) [FTT08, Theorem 2.2].

Now, since (Tgk) is equi-integrable in E, by Lemma 3.5, it follows that Tgk → Tg in

E; thus, Txk = Thk + Tgk → Tg, so T is compact. �

Notice that Theorem 3.6 need not be true if E∗ is not order continuous, even if the

operator is positive, as the following example shows.

Example. There exists a positive operator T : L1 → L1 which is disjointly strictly

singular and AM -compact, but not compact.

Proof. Let (fn) be a sequence of pairwise disjoint, positive, normalized functions in

L1(0, 1). Clearly, the sequence (fn) generates a complemented subspace isomorphic

to `1. Let P : L1(0, 1) → `1 denote this projection, which is clearly positive. Now

consider the operator R : `1 → L1 defined by R(e2n) = r+
n and R(e2n+1) = r−n , where

(en) denotes the canonical basis of `1 and (rn) denotes the Rademacher functions on

(0, 1).

Let us consider the operator T = RP , which is also positive. Since the order

intervals in `1 are compact, and P is positive, T is AM -compact. Moreover, T is

disjointly strictly singular, because every disjoint sequence in L1 is equivalent to `1 and

T factors through `2. However, T is not compact because the sequence (f2n − f2n+1)

is norm bounded, and its image T (f2n − f2n+1) = rn does not have any convergent

subsequence. �

References

[AA02] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate
Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002.
MR 2003h:47072

[AB85] Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Academic Press Inc.,
Orlando, Fla., 1985. MR 87h:47086

[AST] G. Androulakis, P. Dodos, G. Sirotkin, and V.G. Troitsky, Classes of strictly singular oper-
ators and their products, Israel J. Math., to appear.

[CS89] P.G. Casazza, and T.J. Shura, Tsirelson’s space Lecture Notes in Mathematics 1363 (1989).
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[HS89] F. L. Hernández, B. Rodŕıguez-Salinas, On lp complemented copies in Orlicz spaces II. Israel
J. Math. 68, 27-55 (1989).

[HSS01] F.L. Hernández, V.M. Sánchez, E.M. Semenov, Disjoint strict singularity of inclusions be-
tween rearrangement invariant spaces. Studia Math. 144 (2001), no. 3, 209–226.

[Lom73] V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a
completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55–56.
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