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Abstract. New characterizations of strictly singular operators between Banach
lattices are given. It is proved that for Banach lattices X and Y , such that X has
finite cotype and Y satisfies a lower 2-estimate, an operator T : X → Y is strictly
singular if and only if it is disjointly strictly singular and `2-singular. Moreover,
if T is regular the same equivalence holds provided Y is just order continuous.
Furthermore, it is shown that these results fail if the conditions on the lattices are
relaxed.

Introduction

Strictly singular operators were introduced by T. Kato [18] in connection with
the perturbation theory of Fredholm operators. Recall that an operator T : X → Y
between Banach spaces is strictly singular if it is not an isomorphism when restricted
to any infinite dimensional (closed) subspace of X. Strictly singular operators consti-
tute a closed two-sided operator ideal which contains the ideal of compact operators.
Moreover, an operator T : X → Y is strictly singular if and only if for every infinite
dimensional subspace M of X, there exists an infinite dimensional subspace N of M
such that the restriction T |N is compact.

In the context of Banach lattices a weaker notion is the following: given a Banach
lattice X, a Banach space Y and an operator T : X → Y , we say that T is disjointly
strictly singular if it is not an isomorphism when restricted to the closed linear span
of any disjoint sequence in X. This notion is a quite useful tool in the study of
strictly singular operators on Banach lattices, for example, in the context of dom-
ination problems for positive operators (cf. [10]), and for comparing structures of
rearrangement invariant spaces (cf. [13],[14]). Several properties of disjointly strictly
singular operators have been studied in [8], [9] and [11].
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In this paper we are interested in giving characterizations of the strict singularity
of operators acting between Banach lattices. Since strictly singular operators are
disjointly strictly singular, we are mainly interested in converse statements.

Our motivation stems from the following facts. First, it is well known that an
endomorphism of Lp = Lp[0, 1] , with 1 ≤ p < ∞ , is strictly singular if and only
if it is `p-singular and `2-singular ([22], [25]). In other words, an endomorphism
T on Lp is strictly singular if and only if it is disjointly strictly singular and `2-
singular. Recall that an operator between Banach spaces is called `p-singular, for
some 1 ≤ p ≤ ∞ , if it is not an isomorphism when restricted to any subspace
isomorphic to `p. For recent results on `p-singular operators we refer to [16].

Given an order continuous Banach lattice X, if an operator T : X → Y is disjointly
strictly singular and `p-singular, for every 1 ≤ p ≤ 2, then T is strictly singular. This
can be seen using the Kadeč-Pe lczynski disjointification method and Aldous’ theorem
on subspaces of L1 ([2]). Furthermore, in the special case of X (or Y ) being a Banach
lattice with type 2, if T : X → Y is disjointly strictly singular and `2-singular, then
T is strictly singular. A similar statement also holds for inclusion operators between
rearrangement invariant spaces ([12]).

One of our main results in this direction is the following.

Theorem A. Let X and Y be Banach lattices such that X has finite cotype and Y
satisfies a lower 2-estimate. Then an operator T : X → Y is strictly singular if and
only if it is both disjointly strictly singular and `2-singular.

Then, we consider the class of regular operators, i.e. those which are a difference of
positive operators, proving that for this class the equivalence given above in Theorem
A is also true under much weaker conditions on the lattices.

Theorem B. Let X and Y be Banach lattices such that X has finite cotype and Y
is order continuous. Then a regular operator T : X → Y is strictly singular if and
only if it is both disjointly strictly singular and `2-singular.

Both Theorem A and B are obtained by means of the following general result: If
X is a Banach lattice with finite cotype, Y a Banach space, and T : X → Y is
disjointly strictly singular and AM-compact, then T is strictly singular (see Theorem
2.4). Recall that, for a Banach lattice X , an operator T : X → Y is called
AM-compact if the image of every order interval is a relatively compact set. The
connection between AM-compact operators and `2-singular operators is studied in
Section 2 (see Propositions 2.5 and 2.6). Let us remark that the motivation of this
kind of result dates from Rosenthal [24], where it was proved that for endomorphisms
on L1 spaces, being AM-compact and `2-singular are equivalent notions.

As an application of these characterizations a domination result for positive strictly
singular operators is easily obtained, improving a result of [10]. Precisely, given two
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operators 0 ≤ R ≤ T : X → Y , with T strictly singular, then we have that R is
also strictly singular provided that X has finite cotype and Y is order continuous
(Corollary 2.8).

In Section 3 we prove that the hypothesis in Theorem A on the range lattice Y
cannot be weakened, in the sense that the result is no longer true for Banach lattices
Y with a lower q-estimate for some q > 2. To this end we consider the Banach
lattice Lr(`q) , which consists of sequences x = (x1, x2, . . .) of elements in Lr such
that

‖x‖Lr(`q) =

∥∥∥∥( ∞∑
i=1

|xi|q
)1/q∥∥∥∥

Lr

<∞.

Theorem C. Consider the Banach lattices Lp and Lr(`q), where 1 < r < p < 2 <
q <∞. For each p < s < 2, there exists an operator T : Lp → Lr(`q) such that it is
`p-singular and `2-singular, but not `s-singular.

In particular, the operator T is disjointly strictly singular and `2-singular, but not
strictly singular.

The proof of this fact requires some preliminary results. First, we present some
technical Lemmas which make use of known estimates for independent and identically
distributed (i.i.d.) s-stable random variables, for 1 < s < 2, given in [15] (see
Proposition 3.1 below). We consider the atomic lattice representation Hr of the space
Lr, associated to the unconditional Haar basis (hi), in order to define a suitable
operator R from Hr to Lr(`q) which restricted to Lp satisfies the required
conditions. More precisely, let (wn) denote a block basis of the Haar basis (hi) of
the form

wn =

qn∑
i=qn−1+1

aihi,

which is equivalent to a sequence of i.i.d. s-stable random variables in both Lp and
in Lr (for 1 < r < p < s < 2). We can consider the operator R : Hr → Lr(`q),
defined by

R

(
(ci)

∞
i=1

)
=

( qn∑
i=qn−1+1

ci hi

)∞
n=1

The operator Ts : Lp → Lr(`q) is now defined as the composition RLJ , where J
is the canonical inclusion Lp ↪→ Lr and L is the isomorphism between Hr and Lr
mapping each sequence in Hr to the corresponding expansion as a series with respect
to the Haar system.

We also show that the characterization for regular operators given in Theorem B
fails if the order continuity of the range lattice is missing.
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1. Preliminaries

Let us start with some notation and definitions. We refer the reader to the mono-
graphs [4], [20], [21] and [28] for unexplained terminology from Banach lattices and
positive operator theory.

Throughout, we will write SS (resp. DSS) for strictly singular (resp. disjointly
strictly singular) operators. Let us recall that a Banach space X has cotype q, for
some 2 ≤ q < ∞, if there exists a constant C < ∞ so that, for every finite set of
vectors (xj)

n
j=1 in X, we have( n∑

j=1

‖xj‖q
)1/q

≤ C

∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥dt,
where rj denotes the jth Rademacher function.

A Banach lattice Y is q-concave, for some 1 ≤ q < ∞, if there exists a constant
C <∞, so that, for every choice of vectors (yj)

n
j=1 in Y , we have( n∑

j=1

‖yj‖q
)1/q

≤ C

∥∥∥∥( n∑
j=1

|yj|q
)1/q∥∥∥∥.

Every q-concave Banach lattice with q ≥ 2 is of cotype q.
A Banach lattice Y satisfies a lower q-estimate for some 1 < q <∞ if there exists

a constant C <∞ such that for every choice of pairwise disjoint elements (yj)
n
j=1 in

Y , we have ( n∑
j=1

‖yj‖q
)1/q

≤ C

∥∥∥∥ n∑
j=1

yj

∥∥∥∥.
Banach lattices with finite cotype are q-concave for some q < ∞ and have order

continuous norm. In the sequel, any separable (or with a weak unit) order contin-
uous Banach lattice will be represented as a Köthe function space, i.e. it is lattice
isomorphic to a (in general not closed) ideal of L1(µ), for some probability space
(Ω,Σ, µ) (cf. [20, Theorem 1.b.14]). Let us recall the Kadec̆-Pe lczyński disjointifica-
tion method for order continuous Banach lattices [7, Theorem 4.1]:

Proposition 1.1. Let X be an order continuous Banach lattice with a weak unit,
and j : X ↪→ L1(µ) the formal inclusion. For any (closed) subspace Y ⊂ X one of
the following holds:

(1) There exists a normalized almost disjoint sequence (xn) ⊂ Y , (i.e. there exists
a disjoint sequence (zn) ⊂ X such that ‖zn − xn‖ −→ 0 when n→∞).

(2) Y is isomorphic to a closed subspace of L1(µ) (in fact, j : X ↪→ L1 is an
isomorphism when restricted to Y ), in this case we say that Y is a strongly
embedded subspace.
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Note that more can be said if instead of a subspace we consider a normalized
sequence (xn) ⊂ X; now the alternatives are

(1) either (‖xn‖L1) is bounded away from zero,
(2) or there exist a subsequence (xnk

) and a disjoint sequence (zk) ⊂ X such that
‖zk − xnk

‖ −→ 0 when k →∞.

Recall that a subset M of an order continuous Banach lattice X is equi-integrable
if supf∈M ‖fχA‖ → 0 when µ(A) → 0. This concept has an analogue for general
Banach lattices: a bounded subset M of a Banach lattice X is L-weakly compact if for
every ε > 0 there exists x ∈ Xa

+ such that M ⊂ [−x, x]+εBX (where Xa denotes the
maximal order ideal in X on which the induced norm is order continuous, and BX

the closed unit ball of X). Note that a bounded sequence (gk) in an order continuous
Köthe function space (over a probability space) is L-weakly compact if and only if it
is equi-integrable.

We will make use of the following standard facts (cf. e. g. [10, Lemmas 3.2 and
3.3]):

Lemma 1.2. Let T : X → Y be a regular operator from a Banach lattice X into a
Banach lattice Y with order continuous norm. If A ⊂ X is L-weakly compact, then
T (A) is L-weakly compact.

Lemma 1.3. Let X be an order continuous Banach lattice with a weak unit, hence
representable as an order ideal in L1(µ) for some probability space. A norm bounded
sequence (gn) in X is convergent to zero if and only if (gn) is equi-integrable and
‖ ‖L1-convergent to zero.

A Banach lattice X with an order continuous norm satisfies the subsequence split-
ting property ([15, Chapter 6] and [26]) if for every bounded sequence (fn) in X there
exist a subsequence (fnk

) and sequences (gk) , (hk) in X with |gk| ∧ |hk| = 0 and
fnk

= gk + hk for all k, such that (gk) is equi-integrable in X, and (hk) is disjoint.
It is known that every Banach lattice with finite cotype has the subsequence splitting
property (see [26, Theorem 2.5]).

We will make use of the following fact.

Lemma 1.4. Let (fn) be a weakly null normalized sequence in Lp(µ), for some finite
measure µ and 1 < p <∞. Suppose that (fn) is uniformly bounded (i.e. there exists
M < ∞ such that |fn| ≤ M). Then, there is a subsequence (fnk

) equivalent to the
unit vector basis of `2.

Proof. Since the sequence (fn) is uniformly bounded, it is in particular equi-integrable.
Thus, since it is a normalized sequence in Lp(µ), by Lemma 1.3 it follows that
inf ‖fn‖L1 > 0. Hence, (fn) is a seminormalized sequence in every Lq(µ), 1 ≤ q ≤ ∞.
Moreover, as the sequence (fn) is weakly null in Lp(µ), it has to be weakly null
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in every Lq(µ) with 1 ≤ q < ∞. Therefore, for every 1 < q < ∞, passing to a
subsequence, (fn) will be equivalent to a block basis of the Haar system in Lq(µ)
(cf. [19, Proposition 1.a.12]). Hence, since the Haar system forms an unconditional
basis of Lq(µ) [20, Theorem 2.c.5], and the blocks of an unconditional basis are also
unconditional, then, passing to a further subsequence, (fnk

) can be assumed to be
an unconditional basic sequence in Lq(µ).

Let 1 < q ≤ p with 1 < q ≤ 2, and consider a subsequence (fnk
) which is

seminormalized and unconditional in both Lq(µ) and Lp(µ). Thus, for every finite
sequence of scalars (ai)

n
i=1, we have

K1

∥∥∥∥ n∑
i=1

aifni

∥∥∥∥
Lq

≥
∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)aifni

∥∥∥∥
Lq

dt

≥ C1

( n∑
i=1

‖aifni
‖2
Lq

) 1
2

≥ C1 (inf ‖fj‖Lq)

( n∑
i=1

|ai|2
) 1

2

,

where C1 is the cotype 2 constant of Lq and K1 is the unconditional constant of (fni
)

in Lq(µ).
On the other hand, we have∥∥∥∥ n∑

i=1

aifni

∥∥∥∥
Lp

≤ K2

∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)aifni

∥∥∥∥
Lp

dt

≤ K2C2

∥∥∥∥( n∑
i=1

|aifni
|2
) 1

2
∥∥∥∥
Lp

≤ 2K2C2M

( n∑
i=1

|ai|2
) 1

2

,

where C2 is the constant appearing in [20, Theorem 1.d.6], and K2 is the uncondi-
tional constant of (fni

) in Lp(µ). This finishes the proof. �

2. Proofs of Theorems A and B

In the proofs of Theorems A and B we will make use of the following:

Proposition 2.1. If E is a Banach lattice with a lower 2-estimate, then every
strictly singular operator T from `2 to E is compact.
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Proof. Since E satisfies a lower 2 estimate, in particular it is order continuous and, by
[20, Proposition 1.a.9], we can consider an ideal with a weak unit containing T (`2).
By [20, Theorem 1.b.14], this ideal can be represented as an order dense ideal in
L1(µ), for some probability measure µ. Thus, let us consider the operator T as an
operator into L1(µ).

Let us see that T : `2 → E is compact. It clearly suffices to prove that ‖Ten‖E → 0,
where (en) is any weakly null normalized sequence in `2. Suppose not, by Proposi-
tion 1.1, either (‖Ten‖L1) is bounded away from zero or (Ten) has a subsequence
equivalent to a disjoint sequence.

Assume first that the sequence (‖Ten‖L1) is bounded away from zero, then by [3,
§6.Theorem], there exists a constant δ > 0, and a subsequence (Tenk

) such that for
scalars (ak)

m
k=1 we have

C ‖T‖
( m∑

k=1

|ak|2
) 1

2

≥
∥∥∥∥ m∑
k=1

akTenk

∥∥∥∥
E

≥
∥∥∥∥ m∑
k=1

akTenk

∥∥∥∥
L1

≥ δ

( m∑
k=1

|ak|2
) 1

2

,

where C > 0 is the equivalence constant between the sequence (en) and the unit
vector basis of `2.

On the other hand, if (Tenj
) were equivalent to a disjoint sequence, then we would

have

C ‖T‖
( k∑

j=1

|aj|2
) 1

2

≥
∥∥∥∥ k∑
j=1

ajT (enj
)

∥∥∥∥
E

≥M−1(inf ‖Ten‖E)

( k∑
j=1

|aj|2
) 1

2

,

where M is the constant appearing in the lower 2-estimate of E. Thus, in both cases
we see that T is not strictly singular, and we reach a contradiction. �

The following fact is well known.

Lemma 2.2. Let X be a Banach lattice, Y a Banach space, and T : X → Y an
AM-compact operator. For every L-weakly compact set A in X, it holds that T (A)
is relatively compact.

We will make use of the following fact that relates `1-singular operators with
operators not preserving a disjoint copy of `1 (compare with [5] and [23]).

Lemma 2.3. Let X be a Banach lattice with the subsequence splitting property, Y
a Banach space, and T : X → Y an operator. If T is an isomorphism on a subspace
of X isomorphic to `1, then there exists a disjoint sequence (hj) in X equivalent to
the unit vector basis of `1, such that T restricted to the span [hn] is an isomorphism.

Proof. Let (xn) be a normalized sequence in X which is equivalent to the unit vector
basis of `1, and such that T restricted to [xn] is an isomorphism. By the subsequence



8 J. FLORES, F. L. HERNÁNDEZ, N. J. KALTON, AND P. TRADACETE

splitting property, there exist a subsequence (xnk
), and sequences (gk), (hk), with

(gk) equi-integrable, (hk) disjoint, |gk| ∧ |hk| = 0 and xnk
= gk + hk for every k ∈ N.

Now, by Rosenthal’s Lemma, the sequence (Thk) either has a weakly Cauchy
subsequence, or a subsequence equivalent to the unit vector basis of `1. Suppose
that (Thk) is weakly Cauchy. Then, since (gk) is equi-integrable, it has a weakly
convergent subsequence, say (gkj

). This would imply that Txnkj
= Tgkj

+ Thkj
is a

weakly Cauchy sequence, in contradiction with the fact that T is an isomorphism on
the span [xn].

Therefore, passing to a subsequence we can assume that (Thk) is equivalent to the
unit vector basis of `1. Thus, for scalars (ak)

n
k=1 and some constant C > 0 we have

C
n∑
k=1

|ak| ≤
∥∥∥ n∑
k=1

akThk

∥∥∥ ≤ ‖T‖∥∥∥ n∑
k=1

akhk

∥∥∥ ≤ ‖T‖ n∑
k=1

|ak|.

This finishes the proof. �

Theorem 2.4. Let X be a Banach lattice with finite cotype and Y a Banach space.
If an operator T : X → Y is disjointly strictly singular and AM-compact, then it is
strictly singular.

Proof. Suppose T : X → Y is DSS, AM-compact and not SS. Then, using ([20,
Theorem 1.c.9]), we have that T is an isomorphism when restricted to the span of
some unconditional basic sequence (un) in X. Now, by Rosenthal’s Lemma, we can
assume that some subsequence (unk

) is weakly Cauchy, otherwise T would be an
isomorphism on a subspace isomorphic to `1 and, by Lemma 2.3, T would preserve
a disjoint copy of `1, in contradiction with the fact that T is DSS. Hence, taking
differences, the sequence (unk

− unk+1
) is weakly null and seminormalized. Thus,

there is a subsequence equivalent to a block basis of (un), which is an unconditional
basic sequence (see [19, Proposition 1.a.12 and page 19]). Let us denote by (fn) this
weakly null, unconditional sequence in [un].

Let α > 0 be such that for every sequence of scalars (an) we have∥∥∥∥T( ∞∑
n=1

anfn

)∥∥∥∥ ≥ α

∥∥∥∥ ∞∑
n=1

anfn

∥∥∥∥.
Since X has the subsequence splitting property, we can extract a subsequence (still
denoted (fn)) and sequences (gn) and (hn) such that |gn|, |hn| ≤ |fn|, fn = gn + hn,
and |gn| ∧ |hn| = 0, where (gn) is equi-integrable in X and (hn) is disjoint.

Suppose first the case ‖hn‖ → 0; then, passing to a subsequence if needed, the
sequence (fn) would inherit the equi-integrability from the sequence (gn). Therefore,
since the operator T is AM-compact, by Lemma 2.2, the sequence (Tfn) would have
a convergent subsequence, but since T is invertible on [fn], this would imply that
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(fn) also has a convergent subsequence. This is a contradiction with the fact that
(fn) is weakly null and normalized.

Alternatively, let us suppose ‖hn‖ ≥ ρ > 0. We consider the operator V : [fn]→ X
defined by

V

( ∞∑
n=1

anfn

)
=
∞∑
n=1

anhn,

which is bounded. Indeed, since |hn| ≤ |fn|, and X has finite cotype, for some
constant C > 0 we have (cf. [20, Theorem 1.d.6])

∥∥∥∥V( n∑
i=1

aifi

)∥∥∥∥ =

∥∥∥∥ n∑
i=1

aihi

∥∥∥∥
=

∥∥∥∥( n∑
i=1

∣∣ai∣∣2∣∣hi∣∣2)1
2
∥∥∥∥

≤
∥∥∥∥( n∑

i=1

∣∣aifi∣∣2)1
2
∥∥∥∥

≤ C

∥∥∥∥∫ 1

0

∣∣∣∣ n∑
i=1

aifiri(t)

∣∣∣∣dt∥∥∥∥
≤ C

∫ 1

0

∥∥∥∥ n∑
i=1

aifiri(t)

∥∥∥∥dt.
But now, if K denotes the unconditional constant of (fn), we have∫ 1

0

∥∥∥∥ n∑
i=1

aifiri(t)

∥∥∥∥dt = 2−n
∑
εi=±1

∥∥∥∥ n∑
i=1

εiaifi

∥∥∥∥ ≤ K

∥∥∥∥ n∑
i=1

aifi

∥∥∥∥.
Hence, the operator V is bounded with ‖V ‖ ≤ KC.

Therefore, the restriction operator T |[fn] : [fn]→ Y can be decomposed as

T |[fn] = TV + T (I[fn] − V ) ,

where I[fn] : [fn] ↪→ X is the identity inclusion. It holds that the operator TV :
[fn] → Y is strictly singular. Indeed, if it were not the case, then TV would be
invertible on some subspace M ⊂ [fn]. Then, T would also be invertible in the
subspace V (M) ⊂ [hn]. Now, arguing as in the first paragraph of the proof we
can find a normalized weakly null sequence in V (M), which will be equivalent to
a block basis of [hn], which is disjoint. More precisely, by [19, Proposition 1.a.12],
there exists a normalized sequence (vn) in V (M) with ‖vn −

∑mn+1

i=mn+1 cihi‖X → 0
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for some increasing sequence (mn) and scalars (ci). If we denote v′n =
∑mn+1

i=mn+1 cihi,
then this sequence is clearly disjoint and also satisfies ‖Tvn − Tv′n‖Y → 0, so by
the perturbation argument, passing to a further subsequence, (Tv′n) is equivalent to
(Tvn), and by the invertibility of T on V (M), this sequence is equivalent to (vn),
and hence to (v′n). This is a contradiction with the fact that T is DSS.

Hence, the operator TV is strictly singular, and, since T |[fn] is an isomorphism we
have, by [19, Proposition 2.c.10], that the operator T (I[fn]−V ) has finite dimensional
kernel and closed range.

Now, by Lemma 2.2, the sequence T (I[fn] − V )(fn) = T (gn) has a convergent
subsequence. Consider the decomposition

[fn] = Ker(TI[fn] − V )⊕ Z.

Since T (I[fn] − V ) has closed range, the operator T (I[fn] − V ) is invertible on Z.
Hence the sequence (fn) would also have a convergent subsequence. Again, this is a
contradiction with the fact that (fn) is weakly null and normalized. �

Recall that an operator T : X → Y is `2-singular if it is not an isomorphism when
restricted to any subspace isomorphic to `2.

Proposition 2.5. Let X and Y be Banach lattices such that X has finite cotype. If
T : X → Y is an `2-singular operator, then T is also AM-compact under any of the
following conditions:

(1) Y satisfies a lower 2-estimate.
(2) Y is order continuous and T is regular.

Proof. Let x ∈ X+ be fixed and denote by Ex the closed ideal of X generated by
x. Since X is q-concave for some 1 < q < ∞, we have Lq(µ) ↪→ Ex ↪→ L1(µ) for a
certain probability measure µ (see [15, p. 14]). First let us prove that (in both cases)
for every positive constant M the set T [−M,M ] is relatively compact. To this end,
let (fn) be such that |fn| ≤ M . Since the order intervals in X are weakly compact,
without loss of generality we can assume that fn → 0 weakly.

Let us consider some p > max{q, 2}, clearly the sequence (fn) must be also weakly
null and seminormalized in Lp(µ), otherwise, the sequence (Tfn) would have a con-
vergent subsequence and that would finish the proof. Moreover, passing to a further
subsequence (still denoted (fn)) and using Lemma 1.4, the sequence (fn) spans in
Lp(µ) a subspace isomorphic to `2. Therefore, since a normalized disjoint sequence
in Lp(µ) spans a subspace isomorphic to `p, by Proposition 1.1 [fn] has to be strongly
embedded in Lp(µ), which means that on [fn] the topology of Lp(µ) and L1(µ) coin-
cide.
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Thus, for certain constants α, β > 0, and any scalars (ai)
n
i=1 we have

α

( n∑
i=1

|ai|2
) 1

2

≤
∥∥∥∥ n∑
i=1

aifi

∥∥∥∥
L1

≤
∥∥∥∥ n∑
i=1

aifi

∥∥∥∥
X

≤
∥∥∥∥ n∑
i=1

aifi

∥∥∥∥
Lp

≤ β

( n∑
i=1

|ai|2
) 1

2

Thus, (fn) has a subsequence whose span in X is isomorphic to `2.
On the one hand, suppose that Y satisfies a lower 2-estimate. Then (T (fn)) must

have a subsequence that tends to zero in norm. Otherwise, the operator T restricted
to the span [fnk

] which is isomorphic to `2, would not be a compact operator, and
by Proposition 2.1, T would not be `2-singular. This is a contradiction.

Consider now the case where Y is order continuous and the operator T is regular.
Then, the sequence (T (fn)) is equi-integrable by Lemma 1.2. Hence, if (Tfn) is not
convergent to zero in Y , then by Lemma 1.3, (‖T (fn)‖L1) is bounded away from zero.
This implies that the operator R : `2 → L1(ν), defined by the following diagram

`2
R //

i
��

L1(ν)

[fnk
]

T // Y
?�

j

OO

is not compact. Here i is just an isomorphism, and j the formal inclusion of Y in
some L1(ν) (or of an ideal with weak unit containing T (fn)) ([20, Theorem 1.b.14]).
By Proposition 2.1 we see that T is not `2-singular. This is a contradiction.

So far, we have shown that, in both cases, T [−M,M ] is a relatively compact set
for every positive constant M . Now, we use the density of L∞(µ) in X, which follows
from the representability of Ex as a function space between Lq(µ) and L1(µ). Hence,
given ε > 0 we can consider Mε <∞ such that x ∈ [0,Mε] + ε‖T‖−1BX . Therefore,
T [−x, x] ⊂ T [−Mε,Mε] + εBY and since T [−Mε,Mε] is relatively compact, so is
T [−x, x]. This finishes the proof. �

Proposition 2.5 has a partial converse:

Proposition 2.6. Let X be a Banach lattice and Y a Banach space. Suppose X
has finite cotype and does not contain any sequence of disjoint elements which span
a subspace isomorphic to `2. If an operator T : X → Y is AM-compact, then T is
also `2-singular.

Proof. Suppose T : X → Y is AM-compact, but not `2-singular. Therefore, there
exists a sequence (fn) in X which spans a subspace isomorphic to `2 and such that
T is an isomorphism when restricted to [fn].

Since X has the subsequence splitting property, passing to a subsequence we have
fn = hn + gn with |hn| ∧ |gn| = 0, (gn) equi-integrable, (hn) disjoint, and |hn|, |gn| ≤
|fn| for all n. Again, arguing as in the proof of Theorem 2.4, the operator V : [fn]→
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X defined by V (fn) = hn is bounded. Hence, since [fn] is isomorphic to `2, all three
sequences (fn), (gn), and (hn) must be weakly null.

Thus, by Lemma 2.2, the sequence (T (gn)) must have a subsequence that goes
to zero in norm. Therefore, (T (hn)) has a subsequence, say (T (hnk

)), equivalent
to (T (fnk

)), which is equivalent to the unit vector basis of `2. Then, there exist
constants α and β, such that for any n and (ak)

n
k=1 we have

α

( n∑
k=1

|ak|2
) 1

2

≤
∥∥∥∥T( n∑

k=1

akhnk

)∥∥∥∥ ≤ ‖T‖∥∥∥∥ n∑
k=1

akhnk

∥∥∥∥
≤ ‖T‖‖V ‖

∥∥∥∥ n∑
k=1

akfnk

∥∥∥∥ ≤ β‖T‖‖V ‖
( n∑

k=1

|ak|2
) 1

2

.

This means that [hnk
] is isomorphic to `2, and this is impossible according to the

hypothesis on X. �

of Theorems A and B. Clearly, strictly singular operators are disjointly strictly sin-
gular and `2-singular. Conversely, if the operator T : X → Y is `2-singular, then,
by Proposition 2.5, T must also be AM-compact. The conclusion now follows from
Theorem 2.4. �

Remark 2.7. Note that Theorem B is still true if X is just an order continuous
Banach lattice with the subsequence splitting property.

As a consequence we obtain a domination result for positive strictly singular op-
erators, which improves [10, Theorem 3.1].

Corollary 2.8. Let X be a Banach lattice with finite cotype and Y an order contin-
uous Banach lattice. Suppose that R ≤ T : X → Y are positive operators; if T is
strictly singular, then R is also strictly singular.

Proof. Since the operator T is strictly singular, it is obviously disjointly strictly
singular and `2-singular. Now, since Y is order continuous, [9, Theorem 1.1] yields
that R is disjointly strictly singular. Moreover, by Proposition 2.5 the operator T is
AM-compact, and by [21, Proposition 3.7.2], it follows that R is also AM-compact.
Hence, by Theorem 2.4, we conclude that the operator R is strictly singular. �

See [17] for related results concerning the domination of complementably `p-singular
operators.

3. Proof of Theorem C

In this section we will construct operators in order to show that the conditions on
Theorems A and B cannot be relaxed.
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First, we need some preliminary Lemmas. The first of them will be deduced from
the following result for independent identically distributed p-stable random variables
given in [15, Lemma 3.10].

Proposition 3.1. Let X be a finite dimensional Banach space with a 1-unconditional
basis (xi)

n
i=1 and let Y be a q-concave Banach lattice, for some 1 < q < ∞. Let

T be an isomorphism from X into Y and let (gi)
n
i=1 be a sequence of independent

and identically distributed (i.i.d.) p-stable random variables over a probability space
(Ω,Σ, µ), for some 1 < p < 2. Then, for every scalar sequence (ai)

n
i=1 for which

∫
Ω

∥∥∥∥ n∑
i=1

aigi(ω)xi

∥∥∥∥
X

dµ(ω) ≤
∥∥∥∥ n∑
i=1

aixi

∥∥∥∥
X

,

the following inequalities hold

K

∥∥∥∥ n∑
i=1

aixi

∥∥∥∥
X

≤
∥∥∥∥ max

1≤i≤n
|aiTxi|

∥∥∥∥
Y

≤
∥∥∥∥( n∑

i=1

|aiTxi|p
)1/p∥∥∥∥

Y

≤ ‖T‖‖g1‖−1
L1

∥∥∥∥ n∑
i=1

aixi

∥∥∥∥
X

,

for certain constant K (depending only on the q-concavity constant of Y ).

In what follows, the expression ‖
∑k

n=1 anfn‖ ∼ ‖
∑k

n=1 angn‖ will mean as usual
that there exist constants c, C > 0 such that for any k ∈ N and any (an)kn=1 we have

c
∥∥∥ k∑
n=1

anfn

∥∥∥ ≤ ∥∥∥ k∑
n=1

angn

∥∥∥ ≤ C
∥∥∥ k∑
n=1

anfn

∥∥∥.
Lemma 3.2. Let 1 < q < s < 2, and let T : `s → Lq(µ) be an isomorphic embedding.
If fn = T (en) denotes the image under T of (en), the canonical basis of `s, then for
every 2 ≤ r <∞ we have

∥∥∥∥ k∑
n=1

anfn

∥∥∥∥
Lq

∼
∥∥∥∥( k∑

n=1

|anfn|r
)1/r∥∥∥∥

Lq

∼
∥∥∥∥ max

1≤n≤k
|anfn|

∥∥∥∥
Lq

,

for any scalar sequence (an)kn=1.
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Proof. Take n ∈ N and let X = `ns , Y = Lq(µ), and T = T |X in Proposition 3.1. If
(gi)

n
i=1 is a sequence of i.i.d. p-stable random variables with s < p < 2, then∫

Ω

∥∥∥∥ n∑
i=1

aigi(ω)ei

∥∥∥∥
`s

dµ(ω) =

∫
Ω

( n∑
i=1

|aigi(ω)|s
)1/s

dµ(ω)

≤
(∫

Ω

n∑
i=1

|aigi(ω)|sdµ(ω)

)1/s

=

( n∑
i=1

|ai|s
∫

Ω

|gi(ω)|sdµ(ω)

)1/s

= ‖g1‖Ls

∥∥∥∥ n∑
i=1

aiei

∥∥∥∥
`s

.

Since ‖g1‖Ls <∞, using Proposition 3.1 we get

K ‖g1‖1/2
Ls

∥∥∥∥ n∑
i=1

aiei

∥∥∥∥
`s

≤
∥∥∥∥ max

1≤i≤n
|aifi|

∥∥∥∥
Lq

≤
∥∥∥∥( n∑

i=1

|aifi|p
)1/p∥∥∥∥

Lq

≤ ‖T‖ ‖g1‖−1
L1
‖g1‖1/2

Ls

∥∥∥∥ n∑
i=1

aiei

∥∥∥∥
`s

for certain constant K independent of n.
Since

‖ max
1≤i≤n

|aifi|‖Lq ≤
∥∥∥(

n∑
i=1

|aifi|2)1/2
∥∥∥
Lq

≤
∥∥∥(

n∑
i=1

|aifi|p)1/p
∥∥∥
Lq

,

by the previous inequality, we immediately get∥∥∥∥ max
1≤i≤n

|aifi|
∥∥∥∥
Lq

∼
∥∥∥∥( n∑

i=1

|aifi|2
)1/2∥∥∥∥

Lq

∼
∥∥∥∥( n∑

i=1

|aifi|p
)1/p∥∥∥∥

Lq

.

On the other hand, since (fn) is an unconditional basic sequence we have

∥∥∥ k∑
n=1

anfn

∥∥∥
Lq

∼
∫ 1

0

∥∥∥ k∑
n=1

rn(t)anfn

∥∥∥
Lq

dt.
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Thus, [20, Theorem 1.d.6(i)] yields∥∥∥ k∑
n=1

anfn

∥∥∥
Lq

∼
∥∥∥(

k∑
n=1

|anfn|2)1/2
∥∥∥
Lq

.

Therefore, for every 2 ≤ r ≤ ∞, we have∥∥∥∥ k∑
n=1

anfn

∥∥∥∥
Lq

∼
∥∥∥∥( k∑

n=1

|anfn|r
)1/r∥∥∥∥

Lq

.

�

The next result shows why Lemma 3.2 cannot be extended to the case s = 2.

Given functions f, g : N → R, by f = o(g) we mean, as usual, that f(m)
g(m)
→ 0 when

m→∞.

Lemma 3.3. Let 1 < p < 2. If T : `2 → Lp(µ) is a bounded operator, and fn = T (en)
where (en) denotes the canonical basis of `2, then for each natural number m, we have

inf
|A|=m

∥∥∥∥max
j∈A
|fj|
∥∥∥∥
Lp

= o(
√
m).

Moreover, for any 2 < q <∞,

inf
|A|=m

∥∥∥∥(∑
j∈A

|fj|q
)1/q∥∥∥∥

Lp

= o(
√
m).

Proof. By Krivine’s theorem (cf. [20, Theorem 1.f.14]), given any finite family (xi)
n
i=1

of vectors in `2 we have∥∥∥∥( n∑
i=1

|Txi|2
)1/2∥∥∥∥

Lp

≤ KG‖T‖
∥∥∥∥( n∑

i=1

|xi|2
)1/2∥∥∥∥

`2

= KG‖T‖
( n∑

i=1

‖xi‖2
`2

)1/2

where KG is Grothendieck’s constant. Now, by Maurey’s factorization theorem (cf.
[1, Theorem 7.1.2]), there exists a density function h on Ω (i.e. h > 0 and

∫
hdµ = 1)

such that

`2
T //

T̃
��

Lp(µ)

L2(hdµ) � � i // Lp(hdµ)

J

OO

where T̃ (x) = h−1/pT (x) for every x ∈ `2, i denotes the canonical inclusion, and J is
the isometry mapping each f ∈ Lp(hdµ) to J(f) = fh1/p.
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Let us denote f̃n = T̃ (en) ∈ L2(hdµ). Since L2(hdµ) satisfies the subsequence

splitting property, there exist a subsequence (f̃nk
) and sequences (gk), (hk), with (hk)

disjoint and (gk) equi-integrable in L2(hdµ) such that f̃nk
= gk+hk and |gk|∧|hk| = 0.

Therefore, the sequence (J(hk)) is disjoint in Lp(µ), and for scalars (ak)
n
k=1 we have∥∥∥∥ n∑

k=1

akJ(hk)

∥∥∥∥
Lp

≤
∥∥∥∥ n∑
k=1

akhk

∥∥∥∥
L2(h)

=

∥∥∥∥( n∑
k=1

|akhk|2
)1/2∥∥∥∥

L2(h)

≤
∥∥∥∥( n∑

k=1

|akf̃nk
|2
)1/2∥∥∥∥

L2(h)

≤ KG‖T̃‖
∥∥∥∥( n∑

k=1

|akenk
|2
)1/2∥∥∥∥

`2

= C

( n∑
k=1

|ak|2
)1/2

,

with a constant C independent of n (cf. [20, Theorem 1.f.14]). Now, if infk ‖J(hk)‖Lp >
0, then for some constant c and for all (ak)

n
k=1 we have

c

( n∑
k=1

|ak|p
)1/p

≤
∥∥∥∥ n∑
k=1

akJ(hk)

∥∥∥∥
Lp

≤ C

( n∑
k=1

|ak|2
)1/2

,

which is impossible (since 1 < p < 2).
Thus, passing to a subsequence we can assume that ‖J(hk)‖Lp −→ 0 as k → ∞.

Now, for each m ∈ N, let us denote

φ(m) =

∥∥∥∥ max
1≤k≤m

|gk|
∥∥∥∥
L2(h)

,

and let us take disjoint measurable sets Am1 , A
m
2 , . . . , A

m
m in Ω such that

max
k≤m
|gk| =

m∑
k=1

|gk|χAm
k
.

Claim: We have φ(m)√
m
→ 0 when m→∞.
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Assume the contrary; then, there exist ε > 0 and an increasing sequence mn →∞
such that

φ(mn)
√
mn

≥ ε.

That is, for all n ∈ N we can choose an integermn, and disjoint setsAmn
1 , Amn

2 , . . . , Amn
mn

such that

(1)
1

mn

mn∑
k=1

∫
Amn

k

|gk|2hdµ =
1

mn

∥∥∥∥ mn∑
k=1

|gk|χAmn
k

∥∥∥∥2

L2(h)

=

(
φ(mn)
√
mn

)2

≥ ε2

for every natural n. From this fact we conclude that for every N ∈ N we can find
B1, . . . , BN disjoint sets in Ω such that

sup
k

{∫
Bn

|gk|2hdµ
}
≥ ε2

2
,

for all n = 1, . . . , N .
Otherwise, suppose that there exists N such that for n large enough the set

Sn = {k ≤ mn :

∫
Amn

k

|gk|2hdµ ≥ ε2/2}

always has cardinality less than N . Then for n large enough so that mn−N
mn

< 1 and
N supk ‖gk‖L2

mn
< ε2

2
, we have

1

mn

mn∑
k=1

∫
Amn

k

|gk|2hdµ <
1

mn

[(mn −N)
ε2

2
+N sup

k
‖gk‖L2 ] < ε2

which is a contradiction with (1).
Hence, by [27, III.C.12 Theorem], we reach a contradiction with the fact that (gk)

is equi-integrable in L2(hdµ). Therefore, φ(m)√
m
→ 0 when m → ∞, and the claim is

proved.

Now, since ‖J(hk)‖Lp −→k→∞ 0, for every m ∈ N we have that, for every ε > 0
there exists a set Aε = {k1, k2 . . . , km} of natural numbers, such that ‖J(hk)‖Lp <
ε/m for all k ∈ Aε. Therefore,

inf
|A|=m

‖max
j∈A
|fj|‖Lp ≤ inf

|A|=m
‖max
j∈A

J(|gj|+ |hj|)‖Lp

≤ φ(m) + ‖max
j∈Aε

J(|hj|)‖Lp

≤ φ(m) + ε,
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and since this inequality holds for all ε > 0 we get that inf |A|=m ‖maxj∈A |fj|‖Lp ≤
φ(m), which implies

inf
|A|=m

∥∥∥∥max
j∈A
|fj|
∥∥∥∥
Lp

= o(
√
m).

Now, the second assertion of the Lemma is obtained by a Hölder type inequality
([20, Proposition 1.d.2]). Indeed, given m ∈ N, for any A ⊂ N with |A| = m,

∥∥∥∥(∑
j∈A

|fj|q
)1/q∥∥∥∥

Lp

≤
∥∥∥∥((∑

j∈A

|fj|2
)1/2)θ(

max
j∈A
|fj|
)1−θ∥∥∥∥

Lp

≤
∥∥∥∥(∑

j∈A

|fj|2
)1/2∥∥∥∥θ

Lp

∥∥∥∥max
j∈A
|fj|
∥∥∥∥1−θ

Lp

,

for θ = 2
q
∈ (0, 1). Now, by the first part of the Lemma, the function

ϕ(m) = inf
|A|=m

∥∥∥∥max
j∈A
|fj|
∥∥∥∥
Lp

,

satisfies ϕ(m)√
m
→ 0 as m→∞. Moreover, by passing to a subsequence, (fj) can be

assumed to be unconditional, so we have∥∥∥∥(∑
j∈A

|fj|2
)1/2∥∥∥∥

Lp

∼
∥∥∥∥∑
j∈A

fj

∥∥∥∥
Lp

≤ ‖T‖
√
m.

Thus, for some constant C <∞, and for any q > 2

inf
|A|=m

∥∥∥∥(∑
j∈A

|fj|q
)1/q∥∥∥∥

Lp

≤ (C ‖T‖
√
m)θ(ϕ(m))1−θ,

and clearly

(C ‖T‖
√
m)θϕ(m)1−θ
√
m

→ 0,

as m→∞. �

Lemma 3.4. Let 1 < p < 2. If a sequence (fn) ⊂ Lp satisfies∥∥∥∥( ∞∑
n=1

|an|2|fn|2
)1/2∥∥∥∥

Lp

≤ C

( ∞∑
n=1

|an|2
)1/2

,
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for some constant C > 0 and every finitely non zero scalar sequence (an), then for
2 < q <∞,

inf
|A|=m

∥∥∥∥(∑
j∈A

|fj|q
)1/q∥∥∥∥

Lp

= o(
√
m).

Proof. Let us consider the operator T : `2 → Lp([0, 1]×[0, 1]) defined by T (en) = fn⊗
rn, where (en) denotes the canonical basis of `2, (rn) are the Rademacher functions
on [0, 1], and fn ⊗ rn(s, t) = fn(s)rn(t). By Khintchine’s inequality, for scalars (an)
we have ∥∥∥∥ k∑

n=1

anfn ⊗ rn
∥∥∥∥
Lp

=

(∫ 1

0

∫ 1

0

∣∣∣∣ k∑
n=1

anfn(s)rn(t)

∣∣∣∣pdt) 1
p

≤ Cp

∥∥∥∥( ∞∑
n=1

|an|2|fn|2
)1/2∥∥∥∥

Lp

,

for certain constant Cp. Therefore, by the hypothesis of the Lemma, this operator is
bounded, and hence by Lemma 3.3, we have

inf
|A|=m

∥∥∥∥(∑
j∈A

|fj ⊗ rj|q
)1/q∥∥∥∥

Lp

= o(
√
m).

But, since |fj| = |fj ⊗ rj| we are done. �

We are now in position to state and prove the main result of this Section. We
shall consider the Banach lattice Lr(`q), for 1 ≤ r, q < ∞, defined as the set of all
sequences x = (x1, x2, . . .) of elements of Lr such that

‖x‖Lr(`q) = sup
n

∥∥∥∥( n∑
i=1

|xi|q
)1/q∥∥∥∥

Lr

<∞,

(cf. [20, pp. 46-47]).
Theorem C. Let us consider the Banach lattices Lp and Lr(`q), where 1 < r <

p < 2 < q < ∞. For each p < s < 2, there exists an operator T : Lp → Lr(`q) such
that it is `p-singular and `2-singular, but not `s-singular. In particular, the operator
T is disjointly strictly singular and `2-singular, but not strictly singular.

Proof. Since 1 < r < p < 2, we can consider the formal inclusion J : Lp[0, 1] ↪→
Lr[0, 1]. Let us denote by Hr the atomic Banach lattice whose lattice structure
comes from the unconditional Haar basis (hn) in Lr[0, 1], and which is isomorphic to
Lr[0, 1]. Let L : Lr[0, 1]→ Hr be this isomorphism.

Now, given p < s < 2, consider a sequence (fn) of i.i.d. s-stable random variables
in Lp[0, 1], hence the span [fn] is isometrically isomorphic to `s both in Lp[0, 1] and
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Lr[0, 1]. Now, since fn → 0 weakly in Lp[0, 1] there exists a block basis (wn) of (hn),
of the form

wn =

qn∑
i=qn−1+1

aihi ,

with (qn) an increasing sequence of natural numbers, such that (wn) is equivalent to
a subsequence of (fn) (still denoted (fn)), in fact we have that ‖fn−wn‖Lp → 0, and
since r < p we also have ‖fn −wn‖Lr → 0. Hence, passing to a further subsequence,
we have that (fn) and (wn) are equivalent both in Lp[0, 1] and Lr[0, 1].

Let us consider now the operator R defined by

R : Hr −→ Lr(`q)

(ci)
∞
i=1 7−→

(∑qn
i=qn−1+1 cihi

)∞
n=1

which is clearly bounded. Indeed, since q > 2 and the Haar basis (hn) is unconditional
in Lr[0, 1], we have∥∥∥∥R(ci)

∥∥∥∥
Lr(`q)

= sup
k

∥∥∥∥( k∑
n=1

∣∣∣∣ qn∑
i=qn−1+1

cihi

∣∣∣∣q)1/q∥∥∥∥
Lr

≤ sup
k

∥∥∥∥( k∑
n=1

∣∣∣∣ qn∑
i=qn−1+1

cihi

∣∣∣∣2)1/2∥∥∥∥
Lr

≤ C

∥∥∥∥ ∞∑
i=1

cihi

∥∥∥∥
Lr

= C‖(ci)‖Hr ,

for certain constant C > 0.
Let us consider now the operator T : Lp[0, 1]→ Lr(`q) defined by

Lp
T //

J
��

Lr(`q)

Lr
L // Hr

R

OO
.

The operator T = RLJ is not `s-singular. Indeed, T is an isomorphism when
restricted to the subspace [wn] in Lp, which is isomorphic to `s, since, by Lemma 3.2,
we have
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∥∥∥∥T( ∞∑
n=1

bnwn

)∥∥∥∥
Lr(`q)

= sup
k

∥∥∥∥( k∑
n=1

∣∣∣∣bn qn∑
i=qn−1+1

aihi

∣∣∣∣q)1/q∥∥∥∥
Lr

∼
∥∥∥∥ ∞∑
n=1

bnwn

∥∥∥∥
Lr

∼
∥∥∥∥ ∞∑
n=1

bnwn

∥∥∥∥
Lp

∼
( ∞∑

n=1

|bn|s
)1/s

.

In particular T is not strictly singular. On the other hand, the operator T is
`p-singular because so is the inclusion J : Lp ↪→ Lr.

Let us prove now that T does not preserve an isomorphic copy of `2. To see this it
suffices to show that RL preserves no isomorphic copy of `2. Indeed, if this were not
the case, let (gn) be a sequence equivalent to the unit vector basis of `2 in Lr, so that
(RL(gn)) is also equivalent to it. Since gn → 0 weakly, without loss of generality we
can suppose that (gn) is a block basis of the Haar system. In fact, we can extract a
subsequence (still denoted (gn)) such that

gn =

pn∑
k=pn−1+1

ψnk ,

where each ψnk ∈ [hqjk−1+1, . . . , hqjk
] for certain increasing sequence (jk) in N (notice

that the sequence (qn) has already been fixed in the definition of the operator R).

Now, the sequence (ψnk )∞n=1, k=pn−1+1...pn
forms an unconditional basic sequence since

it is a sequence of blocks of the Haar basis, which is unconditional in Lr(0, 1). There-
fore, for every finitely non zero sequence of scalars (an) we have∥∥∥∥( ∞∑

n=1

pn∑
k=pn−1+1

|anψnk |2
)1/2∥∥∥∥

Lr

∼
∥∥∥∥ ∞∑
n=1

pn∑
k=pn−1+1

anψ
n
k

∥∥∥∥
Lr

=

∥∥∥∥ ∞∑
n=1

angn

∥∥∥∥
Lr

∼
( ∞∑

n=1

a2
n

)1/2

(see [20, Theorem 1.d.6]). Let us consider

fn =

( pn∑
k=pn−1+1

|ψnk |q
)1/q

.
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Since q > 2 we have∥∥∥∥( ∞∑
n=1

a2
nf

2
n

)1/2∥∥∥∥
Lr

=

∥∥∥∥( ∞∑
n=1

a2
n

( pn∑
k=pn−1+1

|ψnk |q
)2/q)1/2∥∥∥∥

Lr

≤
∥∥∥∥( ∞∑

n=1

a2
n

pn∑
k=pn−1+1

|ψnk |2
)1/2∥∥∥∥

Lr

∼
( ∞∑

n=1

a2
n

)1/2

.

Now, by Lemma 3.4, we get

inf
|A|=m

∥∥∥∥(∑
n∈A

|fn|q
)1/q∥∥∥∥

Lr

= o(
√
m).

However, by hypothesis, there exist some constant C > 0 such that

C
√
m ≤ inf

|A|=m

∥∥∥∥∑
n∈A

RLgn

∥∥∥∥
Lr(`q)

= inf
|A|=m

∥∥∥∥(∑
n∈A

pn∑
k=pn−1+1

|ψnk |q
)1/q∥∥∥∥

Lr

= inf
|A|=m

∥∥∥∥(∑
n∈A

|fn|q
)1/q∥∥∥∥

Lr

= o(
√
m).

This is a contradiction; thus, the operator RL is `2-singular, and so is T = RLJ . �

Remark 3.5. Note that if the sequence (qn), appearing in the definition of the op-
erator T : Lp → Lr(`q) given above, increases fast enough, then it can be seen that
the operator T is not `sn-singular, where (sn) is a countable dense set in the in-
terval (p, 2). From this fact, using an approximation argument for s-stable random
variables we can conclude that T is not `s-singular for any s ∈ (p, 2).

Remark 3.6. The hypothesis of order continuity of the range Banach lattice Y in
Theorem B cannot be removed.

Indeed, consider the operator T : Lp → Lr(`q) constructed in Theorem C and the
canonical isomorphic embedding j : Lr(`q) → `∞. Now, the composition jT : Lp →
`∞ is a regular operator (cf. [21, Theorem 1.5.11]), which is disjointly strictly singular
and `2-singular, but it is not strictly singular (because T is not strictly singular and
j is an isomorphic embedding).
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