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Abstract. It is proved that every positive operator R on a Banach lattice E
dominated by a strictly singular operator T : E → E satisfies that the fourth
power R4 is strictly singular. Moreover, if E is order continuous then the square
R2 is already strictly singular.

Introduction

A classical question in the setting of positive operators between Banach lattices
is the “domination problem”: if R and T are positive operators between Banach
lattices E and F , such that R ≤ T : E → F , what properties of T does the operator
R inherit?

Recall that for compact operators P. G. Dodds and D. H. Fremlin [5] proved that
if E and F are Banach lattices, such that E∗ and F are order continuous, then
0 ≤ R ≤ T : E → F with T compact implies that R is also compact. In the same
direction, A. W. Wickstead showed in [18] that if E∗ or F are order continuous and
T is weakly compact, then R is also weakly compact. In addition, N. Kalton and P.
Saab proved in [11] that if F is order continuous and T is Dunford-Pettis, then R is
also Dunford-Pettis.

In the particular case that E = F , hence R and T are endomorphisms on E,
it is interesting and useful to study whether some power of R inherits properties
of T , under no assumptions on the Banach lattice E. This is called the “power
problem” relative to a certain operator class. This approach was developed by C. D.
Aliprantis and O. Burkinshaw in [2] and [3], where the following results for compact
and weakly compact operators were obtained.

Theorem 1. ([2]) Let E be a Banach lattice. If 0 ≤ R ≤ T : E → E and T is
compact, then R3 is also compact.

Theorem 2. ([3]) Let E be a Banach lattice. If 0 ≤ R ≤ T : E → E and T is
weakly compact, then R2 is also weakly compact.

For the class of Dunford-Pettis operators, N. Kalton and P. Saab proved the
following.

Theorem 3. ([11]) Let E be a Banach lattice. If 0 ≤ R ≤ T : E → E and T is
Dunford-Pettis, then R2 is also Dunford-Pettis.

These results are optimal in the sense that it is possible to produce counterexam-
ples when the powers are lower.

Our aim here is to study the domination and power problems for strictly singular
operators. Recall that an operator T : X → Y between Banach spaces is said to

Key words and phrases. Banach lattices, strictly singular operators, positive operators.
1



2 J. FLORES, F.L. HERNÁNDEZ, AND P. TRADACETE

be strictly singular (or Kato) if for every infinite dimensional (closed) subspace M
of X, the restriction T |M is not an isomorphism into Y . This class of operators
forms a closed operator ideal (in the sense of Pietsch), which properly contains the
ideal of compact operators. Moreover, it is well known that an operator T : X → Y
between Banach spaces is strictly singular if and only if, for every infinite dimensional
subspace M of X there exists another infinite dimensional subspace N ⊂ M such
that the restriction T |N is compact.

The domination problem for strictly singular operators has been studied by the
first two authors in [8] and [9], where positive results were obtained for a large
class of Banach lattices. In this paper, using factorization techniques we are able
to improve some of the results given in [9] in two directions. Firstly, we give new
domination results for strictly singular operators between Banach lattices E and F .
Secondly, we obtain a power domination result for strictly singular endomorphisms
without any assumption on the Banach lattice involved. Precisely, our main results
are the following.

Theorem 4. Let E be a Banach lattice with the subsequence splitting property, and
F an order continuous Banach lattice. If 0 ≤ R ≤ T : E → F with T strictly
singular, then R is strictly singular.

Theorem 5. Let E be a Banach lattice and 0 ≤ R ≤ T : E → E two positive
operators. If T is strictly singular, then R4 is also strictly singular.

Moreover, if E is order continuous, then R2 is strictly singular.

The proof of this result will be obtained as a consequence of the following more
general result for composition of operators.

Theorem 6. Let

E1

T1 //

R1

//___ E2

T2 //

R2

//___ E3

T3 //

R3

//___ E4

T4 //

R4

//___ E5

be operators between Banach lattices, such that 0 ≤ Ri ≤ Ti for i = 1, 2, 3, 4.
If T1, T3 are strictly singular, and T2, T4 are order weakly compact, then R4R3R2R1

is also strictly singular.

The paper is organized as follows: in the first section we introduce the terminology
and tools needed for the proofs. The second section is mainly devoted to the proof of
two domination theorems for strictly singular operators that will be used afterwards.
In the third section we present the proof of Theorem 6 as well as some consequences
and remarks.

We refer to [4], [13] and [14] for unexplained terminology.

1. Tools

Given a Banach lattice E and a Banach space Y , an operator T : E → Y is order
weakly compact if T [−x, x] is relatively weakly compact for every x ∈ E+.

Order weakly compact operators can be characterized as those operators which
fail to be invertible on any sublattice isomorphic to c0 with an order bounded unit
ball (see [14, Cor. 3.4.5]). Also, if X is a Banach space and F a Banach lattice, an
operator T : X → F does not preserve an isomorphic copy of `1 complemented in
F if and only if its adjoint T ∗ is order weakly compact (see [14, Thm. 3.4.14].

We now recall two basic constructions of factorization for positive operators, which
are in a sense dual to each other (see [10] and [4]).
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Theorem 1.1. [10, Thm. I.2] Let E1, E2 be Banach lattices and operators 0 ≤
R ≤ T : E1 → E2. Then there exists a Banach lattice F , a lattice homomorphism
φ : E1 → F and operators 0 ≤ RF ≤ T F with T = T F φ and R = RF φ

E1

φ ÃÃA
AA

AA
AA

T //

R
//_______ E2

F

T F
>>}}}}}}} RF

>>}
}

}
}

such that F is order continuous if and only if T : E1 → E2 is order weakly compact.
Moreover, if E2 does not contain an isomorphic copy of c0 neither does F .

Theorem 1.2. [10, Thm. I.6] Let E1, E2 be Banach lattices and operators 0 ≤
R ≤ T : E1 → E2. Then there exist a Banach lattice G, a lattice homomorphism
ψ : G → E2 and operators 0 ≤ RG ≤ TG with T = ψTG and R = ψRG

E1

T //

R
//_______

T G

ÃÃA
AA

AA
AA

RG ÃÃA
A

A
A

E2

G

ψ

>>}}}}}}}

such that G∗ is order continuous if and only if T ∗ : E∗
2 → E∗

1 is order weakly compact.

Recall that the Banach lattice F is obtained by completing the normed lattice
E1/I where I = {x ∈ E1 : T |x| = 0}, under the norm qT (x + I) = ‖T |x|‖. On the
other hand, the Banach lattice G is obtained by interpolating E2 with its norm and
the Minkowski functional of the solid convex hull of T (BE1). See [10] for details.

We will also make use of the Kadec̆-PeÃlczyński disjointification method in the
setting of order continuous Banach lattices (see [7]).

Theorem 1.3. Let X be any subspace of an order continuous Banach lattice E.
Then, either

(1) X contains an almost disjoint normalized sequence, that is , there exist a
normalized sequence (xn)∞n=1 ⊂ X and a disjoint sequence (zn)∞n=1 ⊂ E such
that ‖zn − xn‖ → 0, or,

(2) X is isomorphic to a closed subspace of L1(Ω, Σ, µ).

Notice that if X is separable, then it can be included in some ideal I of E with a
weak order unit (see [13, 1.a.9]). Therefore, this ideal has a representation as a Köthe
function space over a finite measure space (Ω, Σ, µ) [13, Thm. 1.b.14], and in this
case the previous dichotomy says that either X contains an almost disjoint sequence
or the natural inclusion j : I ↪→ L1(Ω, Σ, µ) is an isomorphism when restricted to
X.

Recall that, given a Banach lattice E and a Banach space Y , an operator T :
E → Y is called disjointly strictly singular if it is not invertible on any subspace of
E generated by a disjoint sequence. Clearly, every strictly singular operator is also
disjointly strictly singular. Although this class is not an operator ideal, it only lacks
being closed by composition from the right.

The following domination result for disjointly strictly singular operators will be
used.



4 J. FLORES, F.L. HERNÁNDEZ, AND P. TRADACETE

Theorem 1.4. ([8]) Let E and F be Banach lattices such that F is order continuous.
If T is disjointly strictly singular and 0 ≤ R ≤ T : E → F , then R is also disjointly
strictly singular.

Freudenthal’s theorem states that, under certain conditions, an operator R, such
that |R| ≤ T , can be approximated in the sense of order by components of T (see
[14, Section 1.2]). This means that there exists a sequence (Sn)∞n=1 of components
of T such that 0 ≤ R− Sn ≤ 1

n
T for each natural number n.

Under some extra properties of the operator T , it is possible to replace the previous
order approximation with an approximation in norm. Recall that an operator T has
order continuous norm whenever every sequence of positive operators with |T | ≥
Tn ↓ 0 in L(E, F ) satisfies ‖Tn‖ ↓ 0 (here L(E, F ) denotes the space of bounded
linear operators between E and F endowed with the natural norm). Let

IT := {S ∈ L(E, F ) : there exists n ∈ N such that |S| ≤ n|T |},
and denote by Ring(T ) the closure of the set of operators in L(E, F ) of the form∑n

i=1 RiTSi with Si ∈ L(E), Ri ∈ L(F ).

Theorem 1.5. [4, Thm. 18.18] Let E be a Banach lattice which is either σ-Dedekind
complete or has a quasi-interior point, and let F be a Dedekind complete Banach
lattice. If T has order continuous norm, then

IT ⊆ Ring(T ).

2. Domination results

In this section we present new domination results for strictly singular operators
between Banach lattices improving some others obtained in [9]. In addition, they
will be used in next section for the power problem.

The following is a well-known fact, whose proof we include for the convenience of
the reader.

Lemma 2.1. Let (Ω, Σ, µ) be a finite measure space and (fn)∞n=1 be a weakly conver-
gent sequence in L1(µ). If (fn)∞n=1 converges to zero in measure, then it converges
to zero in norm.

Proof. Assume µ(Ω) = 1. The sequence (fn)∞n=1 is equi-integrable since it is weakly
convergent (cf. [6, Cor. IV.8.11]). Hence for every ε > 0 there exists δ > 0 such
that ‖χBfn‖1 < ε/2 for every integer n and every B ∈ Σ with µ(B) < δ. Consider
Bn = {t ∈ Ω : |fn(t)| > ε/2}. By assumption there exists an integer n0 such that
µ(Bn) < δ for n ≥ n0. Thus, for n ≥ n0 we have

‖fn‖1 =

∫

Bn

|fn|+
∫

Ω\Bn

|fn| ≤ ‖χBnfn‖1 +
ε

2
µ(Ω\Bn) < ε.

¤
Recall that an operator between Banach lattices T : E → F is M-weakly compact

if ‖Txn‖ → 0 for every norm bounded disjoint sequence (xn)∞n=1 in E.
A Banach lattice has the positive Schur property if every positive, weakly null

sequence is convergent. Some examples of Banach lattices with the positive Schur
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property (but not the Schur property) are the L1(µ) spaces, the Orlicz function
spaces Lx logp(1+x)[0, 1] for p > 0, and the Lorentz function spaces Lp,1[0, 1] for 1 <
p < ∞ (cf. [19]).

Proposition 2.1. Let E and F be Banach lattices such that F has the positive
Schur property. Given operators 0 ≤ R ≤ T : E → F with T strictly singular, then
R is strictly singular.

Proof. Note that F cannot contain an isomorphic copy of c0. Indeed, if this were not
the case F would contain a sequence of positive, pairwise disjoint elements (en)∞n=1

equivalent to the unit vector basis of c0 [13, pp. 34-35], hence weakly null and
yet not convergent in norm. Since F has the positive Schur property we obtain a
contradiction. In particular, F is order continuous [13, pp. 6-8].

Suppose that R is not strictly singular. Then there exists an infinite dimensional
(separable) subspace X in E such that R|X is an isomorphism. From the lines above
it follows that R(X) cannot contain an isomorphic copy of c0. Moreover, if R(X)
contained an isomorphic copy of `1, then R would be an isomorphism on the span of
a disjoint sequence equivalent to the canonical basis of `1 ([16]); but this would be a
contradiction to Theorem 1.4 and the fact that T is disjointly strictly singular and
F order continuous. Therefore, R(X), hence X, must be reflexive [13, Thm 1.c.5.].

Consider now the ideal EX generated by X in E. We claim that the restriction
T |EX

is M-weakly compact. Indeed, by Theorem 1.1 we have the factorization

E

φ ÃÃ@
@@

@@
@@

T // F

H
T H

>>~~~~~~~

where φ is a lattice homomorphism and the Banach lattice H does not contain an
isomorphic copy of c0. Let BX denote the closed unit ball of X, which is a weakly
compact set. Thus, φ(BX) is also weakly compact, and [4, Thm. 13.8] implies that
the solid hull so(φ(BX)) is also weakly compact. Since φ is a lattice homomorphism,
the inclusion φ(so(BX)) ⊂ so(φ(BX)) holds, and therefore φ(so(BX)) must be rela-
tively weakly compact. So, if (xn)∞n=1 is a normalized positive disjoint sequence in
EX , the sequence (φ(xn))∞n=1, which is pariwise disjoint as φ is a lattice homomor-
phism, must have a weakly convergent subsequence which in fact converges weakly
to zero by [13, Thm 1.b.14] and Lemma 2.1. Since T is positive and F has the
positive Schur property it follows that (Txn)∞n=1 converges in norm to zero. This
proves that T |EX

is M-weakly compact, as claimed.

Consider now X̂, the sublattice of E generated by X, which is also separable.
The restriction operator

T |X̂ : X̂ → F

is clearly M -weakly compact, hence has order continuous by [5, Thm. 5.1]. More-

over, since F is Dedekind complete and X̂ has a quasi-interior point being separable,
we get by Theorem 1.5 that R|X̂ ∈ Ring(T |X̂). Thus R|X̂ is strictly singular because
so is T |X̂ . But then R cannot be an isomorphism when restricted to X. This finishes
the proof. ¤

Before stating our main domination result we recall some facts. A bounded subset
A of a Banach lattice E is said to be L-weakly compact if ‖xn‖ → 0 for every disjoint
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sequence (xn)∞n=1 contained in the solid hull of A. The following holds ([9, Lemma
3.2]).

Lemma 2.2. Let T be a regular operator from a Banach lattice E into a Banach
lattice F with order continuous norm. If A ⊂ E is L-weakly compact, then T (A) is
L-weakly compact.

If E is a Banach function space with an order continuous norm defined on a finite
measure space (Ω, Σ, µ), a bounded subset A ⊂ E is equi-integrable if for every ε > 0
there is δ > 0 such that ‖fχB‖E < ε for every B ∈ Σ with µ(B) < δ and every
f ∈ A.

Lemma 2.3. Let E be a Banach lattice with order continuous norm and a weak
unit, and hence representable as an order ideal in L1(Ω, Σ, µ) for some probability
space (Ω, Σ, µ).

a) A bounded subset of E is equi-integrable if and only if it is L-weakly compact.
b) A norm bounded sequence (gn)∞n=1 in E is convergent to zero if and only if

(gn)∞n=1 is equi-integrable and ‖ ‖1-convergent to zero.

Proof. ([9, Lemma 3.3.]) ¤
A Banach lattice E with an order continuous norm satisfies the subsequence split-

ting property ([7], [17]) if for every bounded sequence (fn)∞n=1 included in E there is
a subsequence (nk)

∞
k=1 and sequences (gk)

∞
k=1 , (hk)

∞
k=1 in E with |gk| ∧ |hk| = 0 and

fnk
= gk + hk such that (gk)

∞
k=1 is equi-integrable and |hk| ∧ |hl| = 0 if k 6= l. It is

known that every p-concave Banach lattice (p < ∞) has the subsequence splitting
property ([7]).

Theorem 2.1. Let E be a Banach lattice with the subsequence splitting property,
and F an order continuous Banach lattice. If 0 ≤ R ≤ T : E → F with T strictly
singular, then R is strictly singular.

Proof. Since T is strictly singular, in particular, the adjoint T ∗ is order weakly
compact, so by Theorem 1.2 we obtain the factorization

E
T //

R
//_______

T G

ÂÂ@
@@

@@
@@

RG ÂÂ@
@

@
@

F

G
ψ

??~~~~~~~

where G∗ is order continuous. Moreover, since F is order continuous, by [10, Prop.
I.4.d] it follows that G is also order continuous.

We claim that the operator TG : E → G is strictly singular. Indeed, since T is
strictly singular, for every infinite dimensional subspace M of E there exists another
infinite dimensional subspace N of M such that T restricted to N is compact. This
means that the set T (BN) is precompact in F , and, by [4, Thm. 17.19], this implies
that TG(BN) is precompact in G (since T (BN) is contained in the solid convex hull
of T (BE)). Hence, TG is strictly singular.

Note that the operator RG : E → G is disjointly strictly singular; indeed, since
the operator TG is disjointly strictly singular and G is order continuous, Theorem
1.4 implies that RG is also disjointly strictly singular.

We claim that RG is strictly singular. Suppose the contrary, that is, RG is an

isomorphism when restricted to some separable subspace H of E. Consider Ĥ, the
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sublattice of E generated by H, which is also separable. By [13, Prop. 1.a.9.],

RG(Ĥ) is contained in some ideal A of G. Now, if j denotes the formal inclusion
j : A ↪→ L1, Proposition 2.1 together with the fact that TG is strictly singular yield
that the operator

jRG| bH : Ĥ → A ↪→ L1

is strictly singular. Thus, we can consider an infinite dimensional subspace H ′ of
H such that jRG|H′ is compact. Because of the order continuity of E there exists
an unconditional basic sequence contained in this subspace [13, Thm. 1.c.9]. Let us
denote by X the span of this sequence, where RG is invertible and jRG is compact.

Consider the subspace RG(X) of G, and let us apply Theorem 1.3. If the norms
of G and L1 were equivalent on RG(X), then the operator jRG : E → L1 would
be an isomorphism when restricted to X. However, this is impossible since jRG

is compact when restricted to X. Therefore, by Theorem 1.3, RG(X) contains an
almost disjoint sequence.

Let us denote this sequence by (RG(fn)) and suppose it normalized. Since G∗

is order continuous, RG(fn) → 0 weakly. Hence, as RG is an isomorphism on X,
(fn)∞n=1 is also a weakly null, unconditional basic sequence in X which is bounded
away from zero. Moreover, by the compactness of jRG|X it follows that

‖RG(fn)‖1 → 0.

Since E has the subsequence splitting property, we can extract a subsequence
(still denoted (fn)∞n=1) and sequences (gn)∞n=1 and (hn)∞n=1 such that

|gn|, |hn| ≤ |fn|, and fn = gn + hn,

with {gn}∞n=1 equi-integrable in X, and (hn)∞n=1 disjoint. There is no loss of generality
if we suppose that ‖gn‖ > δ for some δ > 0 and every n, because if ‖gn‖ → 0 then
the operator RG is easily seen to be invertible on the span [hn]; however, this is not
possible because RG is disjointly strictly singular.

Now, if the sequence of absolute values (|hn|)∞n=1 has no weak Cauchy subsequence,
then, by Rosenthal’s Theorem (cf. [4, Thm. 14.24]), it has a subsequence (|hnk

|)∞k=1

which is equivalent to the unit vector basis of `1. Hence, for scalars (ak)
∞
k=1 we have:

∥∥∥∥
( ∞∑

k=1

akfnk

)∥∥∥∥ ≥ A1K
−1

∥∥∥∥
( ∞∑

k=1

|ak|2|fnk
|2

) 1
2
∥∥∥∥

≥ A1K
−1

∥∥∥∥
( ∞∑

k=1

|ak|2|hnk
|2

) 1
2
∥∥∥∥

= A1K
−1

∥∥∥∥
∞∑

k=1

ak|hnk
|
∥∥∥∥

≥ A1K
−1C

∞∑
k=1

|ak|

where A1 is a universal constant (see [13, Thm. 1.d.6]), K is the unconditional
constant of (fn)∞n=1, and C is the equivalence constant between (|hnk

|)∞k=1 and the
unit vector basis of `1. Hence, (fnk

)∞k=1 is equivalent to the unit vector basis of
`1, and the operator RG preserves an isomorphic copy of `1. However, this implies
that RG preserves a lattice copy of `1 (see [14, Thm. 3.4.17.], [16]), but since RG

is disjointly strictly singular, this is a contradiction. Thus, (|hn|)∞n=1 has a weakly
Cauchy subsequence.
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Since L1 is weakly sequentially complete, the sequence (|hn|)∞n=1 has a weakly
convergent sequence in L1. Since it is disjoint this sequence converges to zero in
measure, so Lemma 2.1 yields that

‖hn‖1 → 0.

Similarly, one can prove that

‖RG(hn)‖1 → 0.

Note that (hn)∞n=1 does not converge to zero in E. Otherwise, the sequence (fn)∞n=1

would inherit the equi-integrability of the sequence (gn)∞n=1; since RG is positive, the
sequence (RG(fn))∞n=1 would also be equi-integrable by Lemma 2.2. But since this
sequence is also almost disjoint, this would imply that RG(fn) → 0 in the norm
of G, which is a contradiction. Therefore, we can assume that ‖hn‖ > ρ for some
ρ > 0.

We claim that (RG(fn))∞n=1 and (RG(hn))∞n=1 are equivalent basic sequences in G.
Indeed, the sequence (gn)∞n=1 is norm bounded since |gn| ≤ |fn| for all n. Moreover,
it is equi-integrable, and by Lemma 2.2, (RG(gn))∞n=1 is equi-integrable too. On the
other hand, we have that

‖RG(gn)‖1 = ‖RG(fn)−RG(hn)‖1 ≤ ‖RG(fn)‖1 + ‖RG(hn)‖1 → 0.

Hence, RG(gn) goes also to zero in the norm of G (cf. Lemma 2.3). Thus, by

passing to a subsequence, we may assume that
∞∑

n=1

‖RG(fn)−RG(hn)‖ is a convergent

series. The perturbation result (cf. [12, Prop.1.a.9]) gives a constant α > 0 such
that

α−1

∥∥∥∥
∞∑

n=1

anR
G(hn)

∥∥∥∥ ≤
∥∥∥∥
∞∑

n=1

anRG(fn)

∥∥∥∥ ≤ α

∥∥∥∥
∞∑

n=1

anRG(hn)

∥∥∥∥.

Hence, we have∥∥∥∥RG

( ∞∑
n=1

anhn

)∥∥∥∥ =

∥∥∥∥
∞∑

n=1

anRG(hn)

∥∥∥∥ ≥ α−1

∥∥∥∥
∞∑

n=1

anRG(fn)

∥∥∥∥

≥ βα−1

∥∥∥∥
∞∑

n=1

anfn

∥∥∥∥ ≥ βα−1A1K
−1

∥∥∥∥
( ∞∑

n=1

|an|2|fn|2
) 1

2
∥∥∥∥

≥ βα−1A1K
−1

∥∥∥∥
( ∞∑

n=1

|an|2|hn|2
) 1

2
∥∥∥∥ = βα−1A1K

−1

∥∥∥∥
∞∑

n=1

anhn

∥∥∥∥
where A1 is a universal constant (mentioned above), K is the unconditional constant
of (fn), and β is a lower bound for the operator RG restricted to X. Therefore, RG

is an isomorphism when restricted to the span of the disjoint sequence (hn)∞n=1. This
is a contradiction to the fact that RG is disjointly strictly singular.

Hence, RG cannot be an isomorphism when restricted to any subspace of E, that
is RG is strictly singular; thus, so is R and the proof is finished. ¤

Note that the above result improves [9, Thm 3.1], removing the order continuity
of E∗.

3. Powers of dominated operators

In this section we study the power problem for strictly singular endomorphisms.
The key result is the following.
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Theorem 3.1. Let

E1

T1 //

R1

//___ E2

T2 //

R2

//___ E3

T3 //

R3

//___ E4

T4 //

R4

//___ E5

be operators between Banach lattices such that 0 ≤ Ri ≤ Ti for i = 1, 2, 3, 4.
If T1, T3 are strictly singular, and T2, T4 are order weakly compact, then R4R3R2R1

is also strictly singular.

Proof. Suppose that R4R3R2R1 is not strictly singular. Then there exists an infinite
dimensional subspace M of E1 such that R4R3R2R1|M is an isomorphism. Clearly
we can suppose that M is separable.

Since T2 is an order weakly compact operator, by Theorem 1.1, we have the
factorizations

E1
// E2

φ ÃÃA
AA

AA
AA

T2 //

R2

//________ E3
// E4

// E5

F

P

²²

T F
2

<<yyyyyyyyy RF
2

<<y
y

y
y

y

A
Â Ä j // L1(µ)

where F is an order continuous Banach lattice, φ is a lattice homomorphism and
0 ≤ RF

2 ≤ T F
2 .

Consider the subspace X = φR1(M) ⊂ F , which is separable, hence is contained
in a closed ideal A ⊂ F with weak order unit which is complemented in F by a
positive projection, say P : F → A. Therefore A , as an order continuous Banach
lattice with weak unit, can be represented as a dense ideal of L1(Ω, Σ, µ) for some
probability measure µ so that the formal inclusion j : A ↪→ L1(Ω, Σ, µ) is continuous.

We now apply the Kadec̆-PeÃlczyński method (Theorem 1.3) to X ⊂ F . Then
either there exist a normalized sequence (xn)∞n=1 ⊂ X and a disjoint sequence
(wn)∞n=1 ⊂ F such that ‖wn − xn‖ → 0 or X is a closed subspace of L1(Ω, Σ, µ).

Suppose first that X is a closed subspace of L1(Ω, Σ, µ). Then we have the
operators

0 ≤ jPφR1 ≤ jPφT1 : E1 → L1(Ω, Σ, µ).

Since T1 is strictly singular, then so is jPφT1. Now, since L1(Ω, Σ, µ) has the positive
Schur property, by Proposition 2.1, we get that the operator jPφR1 is also strictly
singular. According to the remark following Theorem 1.3, jP is an isomorphism
restricted to X; therefore, φR1 cannot be an isomorphism when restricted to M .
This is a contradiction to the assumption that R4R3R2R1|M is an isomorphism. This
finishes the proof in this case.

Alternatively, assume that there exist a sequence (xn)∞n=1 in X, and a disjoint
sequence (wn)∞n=1 in F such that ‖wn − xn‖ → 0. Passing to a subsequence, if
needed, we can suppose that they are equivalent basic sequences.
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Since the operator T4 is order weakly compact, by Theorem 1.1 there exists an
order continuous Banach lattice H such that the following factorizations hold

E1
// E2

//

ÃÃA
AA

AA
AA

E3
// E4

ϕ
ÃÃA

AA
AA

AA
A

T4 //

R4

//_______ E5

F

>>}}}}}}}
H

T H
4

>>}}}}}}}} RH
4

>>}
}

}
}

where 0 ≤ RH
4 ≤ TH

4 .
Now, let us consider the operator

T̃ = ϕT3T
F
2 : F → H,

which is strictly singular because so is T3, in particular T̃ is disjointly strictly sin-

gular. But clearly T̃ dominates the operator

R̃ = ϕR3R
F
2 : F → H

and since H is order continuous, Theorem 1.4 implies that R̃ is disjointly strictly
singular.

However, we are assuming that the restriction of the operator R4R3R2R1|M is an

isomorphism, so R̃|φR1(M) is also an isomorphism (since it is a factor of the former
operator). Since ‖wn − xn‖ → 0, we can find a subsequence of natural numbers
(nj)

∞
j=1 such that

∞∑
j=1

‖wnj
− xnj

‖ <
1

2
C1,

and
∞∑

j=1

‖R̃wnj
− R̃xnj

‖ <
1

2
C2,

where C1 and C2 are respectively the basis constants of (xn)∞n=1 and (R̃xn)∞n=1.

This implies that the operator R̃ is invertible on the span of the disjoint sequence

(wnj
)∞j=1, in contradiction with the fact that R̃ is disjointly strictly singular. The

proof is finished. ¤

As a consequence we get the following.

Corollary 3.1. Let E be a Banach lattice, and consider operators 0 ≤ R ≤ T :
E → E. If T is strictly singular, then R4 is also strictly singular.

Proof. Since T is strictly singular, it cannot preserve an isomorphic copy of c0, so,
in particular, it is order weakly compact. Therefore, it suffices to apply Theorem
3.1 to Ei = E, Ri = R and Ti = T for all i. ¤

Corollary 3.2. Let 0 ≤ R ≤ T : E → F , and 0 ≤ S ≤ V : F → G. If F and G are
order continuous Banach lattices, and T and V are strictly singular operators, then
SR is strictly singular.

In particular, if 0 ≤ R ≤ T : E → E, with T strictly singular and E order
continuous, then R2 is strictly singular.



POWERS OF OPERATORS DOMINATED BY STRICTLY SINGULAR OPERATORS 11

Proof. Since F is order continuous, the identity IF : F → F is order weakly compact.
Consider the Banach lattices

E1 = E, E2 = F, E3 = F, E4 = G and E5 = G,

and the operators

T1 = T, T2 = IF , T3 = V and T4 = IG.

Then, by Theorem 3.1, we obtain that IGSIF R = SR is strictly singular. ¤
The last assertion of this corollary was proved under stronger assumptions in [9,

Thm. 3.17].
Notice that, in general, the domination problem for strictly singular endomor-

phisms is nontrivial ([9]).

Example. There exist operators 0 ≤ R ≤ T : L2[0, 1] ⊕ `∞ → L2[0, 1] ⊕ `∞ such
that T is strictly singular but R is not.

Indeed, consider the rank one operator Q : L1[0, 1] → `∞ defined by Q(f) =
(
∫

f,
∫

f, . . .). Take also an isometry S : L1[0, 1] → `∞ given by S(f) = (h′n(f))∞n=1,
where (hn)∞n=1 is a dense sequence in the unit ball of L1[0, 1], and (h′n)∞n=1 is a
sequence of norm one functionals such that h′n(hn) = ‖hn‖ for all n ∈ N. If J :
L2[0, 1] ↪→ L1[0, 1] denotes the canonical inclusion, then the operator SJ : L2[0, 1] →
`∞ is not strictly singular.

Since `∞ is Dedekind complete we have that |SJ |, (SJ)+ and (SJ)− are also
continuous operators between L2[0, 1] and `∞. It is easy to see that |SJ | ≤ QJ .
Since SJ is not strictly singular, we must have that either (SJ)+ or (SJ)− is not
strictly singular, so let us assume without loss of generality that (SJ)+ is not strictly
singular. Now consider the operator matrices

R =

(
0 0

(SJ)+ 0

)
, T =

(
0 0

QJ 0

)
,

which clearly define operators with the required properties.
Note that L2[0, 1]⊕ `∞ is not an order continuous Banach lattice. But the square

R2 is the zero operator, which is obviously strictly singular.
We now give some domination results under weaker conditions on the Banach

lattices by imposing extra conditions on the dominating operator.

Proposition 3.1. Let E and F be Banach lattices with F order continuous, and
operators 0 ≤ R ≤ T : E → F . If T is both weakly compact and Dunford-Pettis,
then R is strictly singular.

Proof. The domination theorems for weakly compact operators [18] and Dunford-
Pettis operators [11] give us that R : E → F is both weakly compact and Dunford-
Pettis (because of the order continuity of F ). And this implies that R is strictly
singular. Indeed, suppose that there exists a subspace X in E such that the restric-
tion R|X is an isomorphism. Since R is weakly compact, for every bounded sequence
(xn)∞n=1 in X we can find a subsequence (xnk

)∞k=1 such that (Rxnk
)∞k=1 is weakly con-

vergent. Since R|X is an isomorphism, this implies that (xnk
)∞k=1 is already weakly

convergent; but R is Dunford-Pettis, and therefore (Rxnk
)∞k=1 is norm convergent.

Thus, the sequence (xnk
)∞k=1 must be norm convergent since the restriction R|X is an

isomorphism. We have shown that every bounded sequence in X has a convergent
subsequence, so X must be finite dimensional. ¤
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Notice that the previous Proposition is not true without the order continuity (see
Example above).

Corollary 3.3. Let E be a Banach lattice, and 0 ≤ R ≤ T : E → E positive
operators. If T is weakly compact and Dunford-Pettis, then R2 is strictly singular.
In particular, if T is compact, then R2 is strictly singular.

Proof. Since T is weakly compact, in particular it is order weakly compact, so by
Theorem 1.1 we have the factorization

E
T //

R
//______ E

φ ÂÂ@
@@

@@
@@

T //

R
//_______ E

F

T F
??~~~~~~~ RF

??~
~

~
~

with F an order continuous Banach lattice, and 0 ≤ φR ≤ φT : E → F . Since T is
compact, φT is weakly compact and Dunford-Pettis. By the previous Proposition,
φR is strictly singular, and so is R2. ¤

Note that along similar lines, Theorems 1.1 and 1.2, together with the Dodds-
Fremlin domination theorem for compact operators [5], provide an alternative proof
for Theorem 1.

Two natural questions remain open: Do there exist an order continuous Banach
lattice E, and operators 0 ≤ R ≤ T : E → E such that T is strictly singular but
R is not? Do there exist a (non order continuous) Banach lattice E and operators
0 ≤ R ≤ T : E → E such that T is strictly singular but R3 is not?
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