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ABSTRACT. Given a discrete group G and an orthogonal action v : G — O(n)
we study L, convergence of Fourier integrals which are frequency supported on
the semidirect product R™ x4 G. Given a unit u € R™ and 1 < p # 2 < oo, our
main result shows that the twisted (directional) Hilbert transform H, X idg
is Lp-bounded iff the orbit O(u) is finite. This is in sharp contrast with
twisted Riesz transforms Ry X~ idg, which are always bounded. Our result
characterizes Fourier summability in L, for this class of groups. We also
extend de Leeuw’s compactification theorem to this setting and obtain stronger
estimates for functions with “lacunary” frequency support.

INTRODUCTION

Given a p-integrable function f : R® — C with p > 1 and a family of bounded
functions mp which converge pointwise to 1, the classical L, convergence problem
for Fourier integrals consists in determining for which families of mg’s do we find
a vanishing limit

~

f@) = [ mr(©)F(€) exp(rile.x)) de| d = 0.

R™

lim
R—o0 R

This problem is typically studied for dilations mg(§) = m(£/R) of a fixed function
m : R™ — C. In this case, the convergence problem reduces to deciding when the
Fourier multiplier map associated to m turns out to be L,-bounded. If m is smooth
enough, the Hormander-Mihlin criterium suffices to obtain the L, convergence. The
problem is more interesting when the multiplier is less smooth, like m = yxq for
some (convex) open set {2 containing the origin. The L,-boundedness of directional
Hilbert transforms shows immediately that 2 can always be taken to be a convex
polyhedron. On the other hand, a consequence of Fefferman’s multiplier theorem for
the ball [16] is that the boundary of 2 must be flat. These considerations also apply
to periodic functions f : T™ — C if we replace Fourier integrals by Fourier series,
with frequency group given by the integer lattice Z™. Moreover, according to de
Leeuw’s theorem [13], the same discussion is valid for the Bohr compactification of
R™, whose frequency group is R™ with the discrete topology R}, .. What happens for
other frequency groups? We will give necessary and sufficient conditions on convex
polyhedra so that there is Fourier summability in L,, for semidirect products of the
classical groups above with arbitrary discrete groups acting on them. Other classes
of groups will be also considered.
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The group von Neumann algebra associated to a locally compact group is a
noncommutative analog of the algebra of essentially bounded functions on the dual
group of a given abelian group. As basic models of quantum groups, they play a
prominent role in noncommutative geometry and operator algebra [8, 27]. Harmonic
analysis on these algebras puts the reference group on the frequency side, in contrast
with the vast literature generalizing classical groups on the spatial side, like in the
case of nilpotent Lie groups [33, 34, 35, 36, 37]. Our dual approach is inspired by
the ground-breaking results of Cowling/Haagerup [12, 19] on the approximation
property and Fourier multipliers on group von Neumann algebras. This paper is
part of an effort to extend Fourier analysis to discrete group von Neumann algebras
[6, 20, 21, 23, 25]. We will study directional Hilbert transforms (semispace Fourier
multipliers) and the L, convergence of Fourier series in this setting. This is a natural
continuation of [21, 23], where smooth multipliers were investigated. We will work
with semidirect products R"™ x G, R}},.. X G and Z™ x G with an arbitrary discrete
group G, which are basic models of nonabelian groups which contain a Euclidean
subgroup embedded in a nontrivial way. This class of groups is sufficiently rich to
exhibit barriers to Fourier summability not encountered in the classical case. It
includes well-known examples (via subgroups of the affine group) which have been
studied so far on the spatial side but not on the frequency side. Our methods
also establish sufficient conditions for L, convergence on more general nonabelian
discrete groups.

Let G be a discrete group with left regular representation Ag : G — B({2(Q))
given by Aq(g)dn = 04n, where the d,’s form the unit vector basis of £5(G). Write
L(G) for its group von Neumann algebra, the weak operator closure of the linear
span of Aq(G) in B(¢2(G)). Consider the standard trace 7q(Ac(g)) = dg—. where
e denotes the identity of G. Any f € L(G) has a Fourier series expansion of the

form 3, f( JAc(g) with 7¢(f) = f( ). Define
L,(G) = L,(£(G), 7¢) = Closure of £(G) wrt Hf”Lp(é) = (TG[|f|p])%

the natural L, space over the noncommutative measure space (£(G), 7¢). We invite
the reader to check that L,(L(Z"™),mzn) = L,(T™), after identifying Azn (k) with
e?™(k) - In general, the (unbounded) operator |f|P is obtained from functional
calculus on the Hilbert space ¢5(G). Assume now that G acts on R™ by orthogonal
transformations and let
v:G — O(n)

stand for the corresponding action. Let us write R}, . for the n-dimensional Eu-
clidean space equipped with the discrete topology. As a discrete abelian group we
find L(RY,.) ~ Loo(R},,,), the algebra of essentially bounded functions on the
Bohr compactification. The semidirect product I'gisc = R}, X4 G is still discrete
and elements of £(Tgisc) are formally given by

Freo D D FE DA (E209) ~ D fy 3y Aalg

EeERN.  geG geG

disc

disc

with fg ~> ¢ f (5 g)b-exp, and b-exp, the {-th character on R, . Its restriction
to R™ is the standard character exp,(z) = exp(27i({,x)). The formal equivalence
follows from the isometric isomorphism £(Lgisc) =~ L(RG,.) X G with the cross
product algebra, whose main operations are recalled below:
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hd (f Ny )‘G(g))* = ’Yg*l(f*) Ay )\G(gil)y
o (F 510 Ac(@) ([ 1y Ac(@) = Fre(f") 0y Aa(gd),
o 7o) %o 76 (f Xy Aa(9)) = Gy / f(@)du(z),

Rbohr

with 74 f(x) = f(74-12) and p the normalized Haar measure on R}, . Restoring
the usual topology on R, the algebra £(T") for I' = R™ x, G can still be represented
as L(R") x, G, where L(R™) ~ Lo (R") with the Lebesgue measure and formally

we have
f~ /fogkrfmg)f

geG

Given a convex polyhedron K containing the origin of R", the question is whether
we still have L, convergence of Fourier series/integrals along dilations of K. In
other words, under which conditions do we have

Qu i |- [ 3 feanien )
gganf— > Zf (& A (€ 2y g)’

£ERK geG

__ =0,
Ly (Taisc)

Q3) L, convergence of Fourier series for more general groups.

According to de Leeuw’s theorem [13], the L (Rgohr)—boundedness of
Hy,: Y f(€)b- - ,u) f(€) b- esr?
Y @b i Y semle w fle) bospe  (we s

is equivalent to the L,-boundedness of Huf(f) = —isgn(¢, u)f(ﬁ), the u-directional
Hilbert transform in R™ with the usual topology. The map exp,, — —isgn(k, u) exp
is also L, bounded for G = Z" by transference arguments. In the context of Lie
groups, we may consider similar operators by means of the exponential map with
the vector u living in the corresponding Lie algebra. Motivated by our questions
above, we are interested in directional Hilbert transforms for the class of groups I'
and I'gisc. We characterize the L,-boundedness of H, %, idg for 1 < p # 2 < oo
on both algebras.

Theorem A. Consider the operator densely defined by

H, % idg : ngm Aa(g ZHng/\G()
If1<p+#2< oo andu € S" L, the following properties are equivalent
i) Hy % idg is bounded on Lp(f‘),
H, % idg is bounded on Lp(l'/‘d-;),
The orbit O, (u) = {,(u) | g € G} is finite,

The following matriz inequality holds

/n (H’Yg—l(u)(fg,h)(l")) ZP(G) dr <¢, /n (fg,h(x))

We will also prove L1 — L o and Lo, — BMO type estimates for finite orbits.

)
if)
i)
iv)

dx.
Sp(G)
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Our arguments combine Kakeya type constructions, ergodic methods, geometric
group theory and noncommutative Littlewood-Paley decompositions. The main
application of Theorem A is that we find complete answers to Questions 1,2 and
partial answers to Question 3 in Corollary C below. Although we refer (for obvious
reasons) to these operators as ~y-twisted Hilbert transforms, we have not found a
close relation to other twisted convolution operators [18, 33, 50]. Of course, twisted
Hilbert transforms are always Lo bounded since they can be realized as Fourier
multipliers on L(I")/L(Tqisc) with an £, multiplier. As an extension of H, to a
larger space, is it conceivable that H, X, idg should remain bounded in L, for
1 < p < oco. In fact, as recently proven in [23] this is exactly what happens for
Riesz transforms

Rystyida: ) foxdalg) =D Rulfy) % Aclg)-

In contrast, Theorem A establishes a surprisingly rigid characterization in terms of
the y-orbit of w. This rigidity has led us to analyze the behavior of (H, % idg)f
when the Fourier spectrum of f is supported on a subset A of G leading to infinite
but lacunary ~y-suborbits of u, see Theorem B below. Our notion of lacunarity
partly relies on suitable length functions/cocycles on G, emphasizing after [23] the
role of cohomology theory in our approach.

We will prove Theorem A by showing i) = ii) = iii) = i). The additional
equivalence with iv) and the endpoint estimates will be proven later. The core of
the proof is ii) = iii). Roughly, when O, (u) is not finite, our strategy is to construct
a Littlewood-Paley type decomposition determined by a sequence g1, ¢o,... in a
group amplification of G so that 4, (©), 74, (v), ... admits Kakeya sets of directions
in some sense. The idea is then to show that L,-boundedness of H,, X i¢dg implies
a ‘twisted Meyer inequality’ in the compactified space L, (R} ,.,),

1

(S0 18, o)
j=1

’ )
P P

o0 1 oo 1
3 2
< ¢p max H( E |fgj‘2) (E |79J_—1fgj|2) »
j=1 Jj=1

whenever p > 2; a dual inequality arises for p < 2. The maximum on the right comes
from the row/column nature of noncommutative square functions, see 23, 32, 44, 46]
for more on Littlewood-Paley estimates in this context. See also Lemma 3.1 for
more on Meyer type inequalities and Remark 3.4 for twisted generalizations. A less
tractable square function estimate in L,(R™) is obtained by decompactification.
The goal is then to pick directions 7, (u) distributed in a way so that such an
inequality cannot occur for a suitable choice of the functions f,,. This is reminiscent
of Fefferman’s estimates in the solution of the ball multiplier problem [16]. The
additional term on the right-hand side is estimated by ergodic arguments. We will
finally disprove such an inequality for sets of directions that have a 2-dimensional
projection which admits Besicovitch’s sprout triangle construction. Let us say
that such a set admits Kakeya shadows. Using further group theoretical tools,
we will study the geometry of O,(u) and show that infinite orbits always admit
Kakeya shadows. Our choice of functions f;, adapts Fefferman’s construction to
higher dimensions in a way which is compatible with the second (new) term in the
maximum considered above. On the other hand, the boundedness of H, x idg in
L,, for finite orbits can be proved by standard methods.
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The equivalence i) < ii) may be regarded as a twisted form of K. de Leeuw’s
compactification theorem [13] for the multiplier H, %, idg. Some other results
along this line will appear in [26, 41] as a byproduct of noncommutative transference
methods. According to the sketched argument —a decompactification process and
a Kakeya type set construction— the implication ii) = i) in the twisted form of
de Leeuw’s theorem is now reduced to the straightforward one iii) = i). Our
interest in ii) < iv) was motivated by the Neuwirth/Ricard transference argument
[39] which provides a slightly weaker result for amenable G. Instead, we notice
the equivalence iii) < iv) for general G, which follows easily from our previous
approach. Although not closely related, it is somehow amusing to compare this
with the Bateman/Thiele results [2, 3] on Hilbert transforms along one-variable
vector fields, see also the work of Lacey/Li [28, 29]. They consider operators on R?
of the form T'f(x,y) = Hy(4) f(x,y) so that the directions change only with the first
variable. In our case, the operator lives in the algebra of matrix-valued functions
and the directions change only with the rows (ey, T f(z)en) = Hy,(u)fon(z). In
the case of finite orbits, we also provide the associated weak type L; inequality
for amenable groups and certain L., — BMO estimate for general discrete groups.
The weak type inequality arises from [39, 40]. The latter requires a suitable choice
of u-directional BMO space.

Our remaining results require some terminology. A set Q@ = {w;|j > 1} in the
unit sphere S*~! will be called radially lacunary if there exists a limit point w in
the sphere such that

wjt1 — |

sup < 1.

i1 |wj —wl

This ‘radial’ lacunarity is in some sense one-dimensional. In a recent paper [42] on
directional maximal operators, we introduced a higher dimensional notion. Given
Q) as above, set d = dim [span(Q?)] and X(d) = {(j,k)| 1 < j < k < d}. Divide Q
into lacunary segments with respect to an orthonormal basis eq,es, ..., €4

<wa ek>
<w7 €j>
with sup;cg 0oi41/05: < 1. Letting Qy00 = QN (ej- Uepr) and Z* = Z U {oo} we
obtain a partition {Q;}icz+ of Q for all o € X(d). A dissection will be such a
choice of (§) partitions. The set of directions € is called HD-lacunary of order 0 if
it consists of a single direction. Recursively, it is HD-lacunary of order L if there
is a dissection for which the €, ;’s are HD-lacunary of order < L — 1 for all i € Z*
and o € X(d) with uniformly bounded lacunary constants.

Qg7i:{we(2|0<0m+1<’

<0, } for o= (j,k) € 3(d)

Given A C G, we say that (A,~,u) is a lacunary triple when the ~y-suborbit
O,(A Y u) = {y4(u)|g~" € A} is radially lacunary and HD-lacunary of finite
order. Note that neither notion of lacunarity is stronger than the other. We also
introduce the space

Lao(Tawe) = {F ~ Y 1y 2 Aalg) € Ly(Tao) }.
gen

Theorem B. We have
H, Moy idG : LA,p(Fdisc) i LA,p(Fdisc)

for any A C G for which (A,~,u) is a lacunary triple and for any 1 < p < oo.
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In other words, this result gives a sufficient condition on A for L,-boundedness
of y-twisted Hilbert transforms acting on functions f = > gen fg Xy Ac(g) whose
Fourier spectrum lies in A. In particular, it provides infinite dimensional subspaces
on which H, X, idg is bounded when O (u) is not finite. It is quite simple to
construct specific examples. According to Lemma 3.1 and recent estimates for
the directional maximal function [42], HD-lacunarity is used to avoid the presence
of Kakeya shadows and radial lacunarity is used to apply Littlewood-Paley type
estimates. The analog of Theorem B with I' in place of I'gjsc only requires the
adaptation of the Littlewood-Paley estimates in [23] to the (non-discrete) group I'.
More general notions of lacunarity provide generalizations of Theorem B, see Re-
mark 3.3. A more in depth analysis would be related to some classical problems in
harmonic analysis.

We have shown how Lie groups or semidirect products R" x, G admit enough
geometric structure to define directional Hilbert transforms on them. Given a
general discrete group, there is no standard ‘space of directions’ to define Hilbert
transforms on its group algebra, as we could do with R™ or the corresponding Lie
algebra. According to [23], the key point is to use a broader interpretation of tangent
spaces in terms of length functions and cocycles. These tools provide natural forms
of directional Hilbert transforms. Moreover, the problem of L, convergence for
Fourier series can be reformulated for general group von Neumann algebras in
terms of cocycles. Given a conditionally negative length function ¢ : G — R, with
associated cocycle (H,b,~) —precise definitions can be found Section 1— consider
any open convex bounded polytope K in the Hilbert space H containing the origin.
Typically we may think of K as a cube centered at the origin. The problem is then
to determine conditions on K, for which truncation along dilations of K yields L,
convergence of the partial sums;

Jim |f = Trufll, g =0 whee Tryf= > fl9)Aaly).
o g: b(g)ERK

Of course, inner cocycles are less interesting in this regard since partial sums are not
finite truncations and the norm limit stabilizes in finite time. In the next result we
provide sufficient conditions for L, convergence on any pair (G, ). Moreover, we
give complete answers to Questions 1, 2 and partial answers to Question 3. Given
u € H, define the (1, u)-Hilbert transform as

Hy .y Ac(g) = —i(b(g), u)nAc(9).

~ ~ -~

Again, the space Ly ,(G) is the closure in L,,(G) of elements f ~ >\ f(9)Ac(9)-

Corollary C. Let G be a discrete group equipped with a length functiony : G — R
with associated (finite-dimensional) cocycle (H,b,v). If 1 < p < oo, then the
following results hold:

~

a) Hyu: Lp(CA-‘w) — L,(G) if O,(u) is a finite orbit.
b) Hy.,: LA@((A}) — LAJ,((A}) if (A,7v,u) is a lacunary triple.

~

c) Tryf — f in Ly(G) whenever |O(u;)| < oo for the normal directions
UL, U, - .., Uy to all the faces of K. Moreover, this condition is necessary
for L, convergence in I' = R™ x, G or I'gisc = Rl};,. ¥~ G.
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Note that, since K is a convex polyhedron, the directions wuy,us,. .., u,;, must
span R”. In particular, if the y-orbit of the u;’s is finite for all 1 < j < m, we must
have N = sup¢cgn |04 (§)| < oo. This might appear to be quite a rigid condition in
the line of Theorem A, but we recall that the classical theory has only studied Z™
and R”™ via the trivial cocycle, which is given by the identity inclusion map with
the trivial action, so that orbits in that case are always of cardinality 1. A simple
example for which we may find 1 < N < oo is given by the infinite dihedral group
Zo * Ly ~ 7 X Zs. On the other hand, this strong rigidity is surprisingly necessary
for both I'" and Igjsc. Additionally, for crossed products with the integer lattice
Z" x G all possible actions fixing Z" must satisfy N < co. The proof of Corollary
C follows from our previous results on I'gjs. together with an intertwining identity
from [23]. The condition in a) no longer characterizes L, boundedness of Hy , in
general. Indeed, take G = Z with (H,b,v) given by

H=C=R? bk)=exp,(k)—1, (z)=exp,(k)z

for some a € R;. When o € R\ Q, the orbit of any u € S! is not finite, but the
map Hy , : exp, — —isgn(exp, (k) — 1, u) exp, is L,-bounded. This easily follows
from de Leeuw’s periodization and restriction theorems [13].

Corollary C should be compared with the L, convergence problem of Fourier
series/integrals for vector-valued functions, where directional Hilbert transforms
are always L,-bounded as long as we take values in a UMD Banach space. If we
replace cross products by tensor products in our setting, we obtain

Ly(L(R") @ L(G)) = Lp(L(R" x G)) = Lp(R"; Lp(L(G)))

and L, convergence for the group R" x G follows from the vector-valued theory
since noncommutative L, spaces are UMD for any 1 < p < co. Our conditions in
Corollary C for R® x G are (necessarily) much more demanding.

1. A LITTLEWOOD-PALEY TYPE THEOREM

The first ingredient for the proof of Theorem A will be a Littlewood-Paley type
inequality for group von Neumann algebras. More concretely, let G be a discrete
group equipped with a given length function ¢ : G — R, and consider a lacunary
partition of Ry = U,,Zm. Then, any f € Lp(é) can essentially be written as
f ~ >, fm, where the Fourier spectrum of f,, lies in A,,, = {g € G‘ ¥(g) € T}
One of the main results from [23] provides a norm equivalence between f and certain
noncommutative square function associated to the f,,’s. In this section, we recall
this Littlewood-Paley estimate and consider some natural length functions in G
related to y. We also refer to Pisier’s papers [44, 45] for more on lacunary type sets
in discrete groups and noncommutative Littlewood-Paley inequalities.

1.1. Length functions and cocycles. An affine representation of G is a group
homomorphism G — H x O(H) into the affine group associated to a real Hilbert
space H. Affine representations are determined by a representation v : G — O(H)
together with a mapping b : G — H satisfying b(gh) = v4(b(h)) + b(g). The triple
(H,~,b) is usually referred to as a cocycle of G. It is clear that affine representations
and cocycles of G are in one-to-one correspondence. In this paper, we say that
¥ : G — Ry is a length function if it vanishes at the identity e, 1(g) = ¥(g~!) and
2gBg=0=3, Egﬁhz/)(g_lh) < 0. Those functions satisfying the last condition
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are called conditionally negative. It is straightforward to show that length functions
take values in Ry. Length functions are also in one-to-one correspondence with
affine representations and cocycles. Namely, any cocycle (H,~y,b) gives rise to the
length function ¥3(g) = (b(g), b(g))#, as it can be easily checked. Reciprocally, any
length function v gives rise to a cocycle (H,~,b). This is a standard application of
Schoenberg’s theorem [48], which claims that ¢ : G — Ry is a length function if
and only if the mappings Sy +(Aq(g)) = exp(—t(g))Ac(g) extend to a semigroup
of unital completely positive maps on L(G). Let us collect these results.

Lemma 1.1. If¢ : G — Ry is a length function:
e The form

Kol h) = w(g)+w(h;—¢(g‘ h.

defines a positive matriz on G X G and leads to

<Zg agdg, Zh bh5h>w = ngh agKy (g, h)bn

on the group algebra R[G] of finitely supported real functions on G.

o Let H be the Hilbert space completion of
(R[G]/Ny, (-, )p) with Ny = null space of (-, ).
If we consider the mapping b:g € G d;+ Ny € H

(P anb) = 3 an(blgh) - b(9))

heG heG

determines an isometric action v : G — O(H) of G on H.

e The resulting triple (H,~,b) determines a cocycle of the group G.

The previous lemma allows the reader to consider a pseudo-metric on the discrete
group G in terms of the length function ¢. Indeed, a short calculation leads to the
crucial identity (g~ 'h) = (b(g) —b(h),b(g) —b(h))y = ||b(g) —b(R)||3,. In particular
we find that dist(g,h) = \/¥(g=1h) = ||b(g) — b(h)]||» defines a pseudo-metric on
G, which becomes a metric when the b is injective.

1.2. Littlewood-Paley estimates for length functions. Consider a family of
operators ¥ = (0% )r>1 acting on some Hilbert space. Then, the row and column
square functions associated to X are respectively defined by

S-(X) = (Zk Ukor}:)% and S.(X) = (Zk O’;:O'k)%.

~

Given a discrete group G and a family ¥ = (o4)x>1 in Lp(G), consider the norms
”E”L,,(é;zg) = ||S;(2)|l, and ”E”L,,(é;zg) = ||Sc(X)||p. Both clearly coincide over
commutative algebras. In general, certain combination is needed to obtain the
noncommutative forms of classical results such as Khintchine, Burholder-Gundy or
Littlewood-Paley type inequalities. It is now well-known that the right combination
arises as follows

L((A}KQ)— Lp(é§€£)+Lp(é§€§) if1<p<2
PR T Ly(Gs 65) N Ly (G 45)
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In other words, we have
S {Zzigfw IS (@), + [8.(W)l, #1<p<2,
Lp(G.82.) — .
max {[|S:(2)[lp, ISc(2)p} i 2 < p < o0.
The following result can be found in [23].

Lemma 1.2. Let G be a discrete group equipped with a length function ¢ : G — R4
and assume that dimH = n < oo for the cocycle Hilbert space. Let k, =[] + 1
and consider a family h,, € C* (R4 \ {0}) satisfying

° > |hm(o|2 =1
o Sl QF < enld7 forj <[5]+1.

Then, the following holds for f € Lp(é) and 1 < p < oo
1y ~eu ||, fn @ em

with the 1-smooth Littlewood-Paley decomposition fn =3, hm(¥(9))f(9)Ac(9)-

Lp(Gse2,)’

1.3. Length functions on G adapted to . It may be illustrative for non-experts
to show how to construct natural length functions for those discrete groups which
admit finite-dimensional orthogonal representations. This will be used below in the
proof of Theorem B. Take

Yo (A) = [[A =13 = ij Ak — 0|

It is not difficult to check directly that 1o, is a length function in O(n), but it
is perhaps easier to note that 1o, (A) = [|b(A)||3, for the cocycle (H,~,b) which
is determined by the n x nm matrices with the Hilbert-Schmidt norm, the action
va(B) = AB and the cocycle map A — A —1I. Consider now a discrete group
equipped with a orthogonal representation v : G — O(n). Using that 1o, is a
length function, we may define 1., : G — R as follows

Uy (9) = Yom) (v9) = || _IH?{S'

It is now clear that 1), defines a length function on the group G for any orthogonal
representation 7. Alternatively, given any non-zero &y € R™ we may also construct
the length functions

Ureo(9) = (Y9(€0) = 0,79(E0) — €0)gn-

Both choices of length functions correspond to inner cocycles —b(g) = v4(n) — 7
for some 1 € H— which are quotiented out in the formation of the corresponding
cohomology group, so the reader could object that our length functions are singular
in the sense of cohomology theory. This was already justified in [23], where inner
cocycles turned out to be the most striking ones looking for pathological Fourier
multipliers, even in R™. On the other hand, discrete groups satisfying Kazhdan’s
property (T) only admit inner cocycles. Thus, the information encoded by our
length functions goes beyond the cohomology group, which is trivial for this class
of groups. Bounded, integer valued lengths also arise regarding O(n) as a Coxeter
group, counting the number of reflections in which v, decomposes.



10 PARCET AND ROGERS

2. TWISTED HILBERT TRANSFORMS VS KAKEYA SETS

In this section we prove Theorem A. Most of our efforts are devoted to proving the
hardest implication ii) = iii). First, we use Littlewood-Paley estimates in a group
amplification of G to obtain a square function inequality in L,(R}.,,.), provided
H,, %, idg is Ly-bounded. The group amplification is essential to provide enough
room to disprove such an inequality for infinite orbits. Second, we will decompactify
such an inequality adapting transference techniques in conjunction with ergodic
type arguments, which yields an inequality in L,(R™). Third, we show that infinite
orbits admit Kakeya shadows and disprove the latter Euclidean inequality. The
proof of i) = ii) uses a slight variation of de Leeuw’s compactification argument
which adapts to the cross product setting. Finally, the L,-boundedness for finite
orbits is clear and we shall prove stronger endpoint estimates.

2.1. Littlewood-Paley methods. The following result plays a role similar to
Meyer’s lemma in Fefferman’s solution of the disc conjecture [16]. By duality in
Theorem A, it suffices to consider the case 2 < p < co. However, the inequality in
the following lemma is not self-dual. One can formulate a (more intricate) version
for 1 < p < 2 which will be easily guessed by the reader after the proof.

Lemma 2.1. If2 < p < oo and H, %, idg : Lp(ﬂ;) — Lp(ﬂ;), then

(), < coms UG IS )

for any sequence g1, ga, . .. in G and any family of functions fg,, fg,, ... 1 Lp(RY,,)-

P

Proof. Let H= G x Z and set
p:(g,k) € Hi vy € O(n).
Clearly, p defines an orthogonal representation of H which yields

dlchl H ~ ( dl%CX] G)
L( disc ><]PI—I) = ‘C’( disc Xy G)®£( )

This group isomorphism & %, (g, k) — (€ X4 g, k) is additionally a homeomorphism
since both sides are equipped with the discrete topology. The map H, %, idg
factorizes as (H, X idg) ® idz, so that L,-boundedness means

Ll e i@l de < o, [ @1

for any f € L,(T; Lp(ﬂ;)), which clearly holds by hypothesis. Once we know
H, %, idg is Lp-bounded, consider the length function on Rf, . %, H given by
Y€ %, (g,k)) = |k|* for all (g,k,&) € G x Z x R"™. Recall that 1) gives rise to the
trivial cocycle b(¢ %, (g,k)) = k. Thus, we may apply Lemma 1.2 with n = 1. If
we pick a small § > 0 and any nonnegative radially decreasing Schwartz function
¢ : R — R, which takes the value 1 for || < 1$° and vanishes for [¢| > 1 — 4, the
family of functions

[N

Q) = (6(C52) —0270))" for mez
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trivially satisfy the hypotheses of the lemma. Now, given elements g1, gs,... in
G and functions fy,, fg,,... in Ly(Rf.), we set f = 3", ¢g. X, )\H(gj_l,Qj) with
bg; = Yyt fg; and recall the identities

J

D (90, 2% Malg5 1, 20) (60, 00 Auale; 1 2)" = (D 160,%) 5 Leq,
Z (¢, » p M (9; i 2])) (69, »p Aualg; L)) = (Z] |793¢9j|2> Xp Le(m)-
According to Lemma 1.2, we find
11|z, ey, ) ~ max {H( ;1a,] ) (Z g1 o] ) }
Using the same norm equivalence for (H X idy) f = H,[f], we also get
1
2\ 2
Mgy ~ mas {[[ (32, 0, )| (32, P )}
By de Leeuw’s theorem, H, is bounded on L,,(Rdisc). Thus, the first term on the
right hand side for H,[f] is dominated by the second term on the right hand side
for f. Therefore, since H,, X ,idy is Ly-bounded, the second term on the right hand

side for H,[f] must be dominated by the maximum associated to f. Now, using
the identity vy Hyu¢ = H., (u)Vg¢ We recover the desired inequalities. O

Remark 2.2. The full strength of Lemma 1.2 is not necessary to prove Lemma 2.1.
One can also combine Bourgain’s extension of Littlewood-Paley estimates for UMD
Banach spaces [5] together with Lust-Piquard/Pisier’s noncommutative Khintchine
inequalities [30, 31]. However, we will require Lemma 1.2 later to prove Theorem B,
and we find our approach more intrinsic, which could help for future generalizations.

2.2. A partial decompactification. The inequality arising from Lemma 2.1 is
stated for L,-functions on the Bohr compactification of R", with respect to the
corresponding normalized Haar measure. In this paragraph we are interested in the
form that such an inequality takes in L,(R™) with the Lebesgue measure. Given
M > 0 and f : R® — C supported by [0,M] x --- x [0, M], we shall write my f for
its M-periodization in the axes directions myif(z) = >, cpn f(z — ME). We also
consider M-periodizations along g-lattices

mf(@) = > fz — My (k).

kezn
Let us also recall the L, norm for almost periodic functions in R"

161, = (Jim gz [l i)’

Lemma 2.3. If2 <p < oo and H, %, idg : Lp(I‘/d;) — Lp(l'/‘d;), then

H (i |vaj (u)(fgj)|2>% »
j=1

¢p Max H(i|f§j|2)§ (ZMM'Yg o )%l
j=1

for any sequence g1, g2, ... in G and any family of functions fq,, fg,, ... in Ly(R™).

, lim M?»

p M—oo
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Proof. Our argument adapts de Leeuw’s decompactification argument in [13]. B

density, it suffices to prove such an inequality for a finite family fg,, fg,,. .., fgx Of
compactly supported Schwartz functions. If S, denotes the Schatten p-class, the
left hand side is the norm in L, (R";Sp) of 37, H, (u)(fg;) ®€j1. In particular, trace

duality provides us with a (matrix- Valued) compactly supported Schwartz function
h=73,;h; ®ej in the unit ball of Ly(R™;S,) for % + % =1, such that

N
H(Z| oy (g,)] ) ~ ZAnvaj(u)(fgj)(w)de

= Z / 0o, ) (€);(—6) de

1

- Z fim 5 3 —isen, (). K0y, ()hs(=)

M—oo Mn
kel L™

If suppf C [, M]" we recall the identity

2
F(k) = M 7ar f (),

with the first Fourier transform calculated in R™ and the second in MT"™. This gives

H(D o))

Let us write exp, : R™ — T for the usual characters of R" and b-exp, : Ry, — T
for the characters of the Bohr compactification. Both families are indexed by the
same set, but the latter are defined in a larger group. Define

M, = Z @(f)b—expg and o, = Z m(é)b-expg.

ez ceLzn

e —

T B}Eannzksgn<7gj (u), k)T fy, (k)maahy (—k).
I

This yields
—1 Zk Sgn<rygj (U), k>7ergj (k)ﬂ-Mh] (_k)

D Hoy (00 (P (—6)
= [ oy 0 (O30 @ ) ),

where now the Hilbert transforms must be understood as operators on the Bohr
compactification and p denotes the corresponding normalized Haar measure. On
the other hand, trace duality in Lo(RY,,; S2) gives

|3, [ o6 @ @) duta)|
HZ 0y () (D01,5) ® jl‘

According to Lemma 2.1, we know that

A<g max{H Zj oM, ® 6]‘1‘ y H Z 7g71¢M73 ®631‘
p

Let us now recall the identity for trigonometric polynomials

1> - | X e |

= AB.
3 ® leL SR, 550

Lp(RYpp,iS p>}'

boh’

Lip (R o35

Ly (Rfon:)
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which relates Haar integration and mean values. Approximating by trigonometric
polynomials and noticing again the identity between L,-norms of column matrices
and L,-norms of square functions, we find

|3, o5 @cal, = [(Zmanr)’],

- ()’
= ()

The second identity follows by M-periodicity and the third one is valid for M large
enough, since the f;.’s are compactly supported. The same argument and the fact

that >, h; ® e;1 is in the unit ball of Ly(R™;Sy) gives B = M~ 4. Finally, since

Lp(RY1,35p)

L, (MT")

Ly (&™)

ng*lQSM,j = Z 7&31-(5)%)—6)@%'_15 — Z fi\;[(f)be p’y y

Meezn j Meezn
Vg1 fgj (g)
= Z o b-exp, = Z 7TM")/g 1ng (§)b-expg,
Meey, 1 () Méey, 1 (27)
J

we obtain the followmg identity as before

sl ey~ (S )|
H Z] 'Yg], o, 51 Lo(RE, 35, Z | fgj ,

The assertion now follows by combining the estimates obtained so far. O

2.3. Distribution of points in lattice intersections. The decompactification
of the last term in Lemma 2.3 requires a more careful analysis. Let us consider the
two-dimensional lattice Mp, (Z?) given by an a-rotation of MZ2. We set gy for the
corresponding periodization operator and

(8) = 00 if 6 € R\Q,
VPP +q? if f=p/qeQ,

where p/q is written in reduced form, so that p, ¢ are relatively prime.

Lemma 2.4. Given zg € R? and 6 >0

2

M
Jim im0 [ A2 A ma(Bs(20)) N 78 (Baz0))| S

52
(tan )’

Proof. Classical ergodic theory [14] gives that

Orbui(a) = { (2,5) mod M x M | (,y) € mi({z0}) }

is injective, dense and uniformly distributed in the unit cell [0, M] x [0, M] when
tana € R\Q. In particular, the following estimate holds for irrational slopes and
sufficiently large M

2

M {67
Jim 2 =4 A2 1 i (Bs(20)) N i (Bs(20))|

64
M2
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Indeed, let Q4 be a covering of [—A, A]? by disjoint adjacent M x M cubes with sides
parallel to the axes. Note that |Qa| ~ 4A%2/M2. On the other hand, if we pick a
random point o in Mp, (Z?), the probability that Bs(29) N (Bs(z0) + o mod M x M)
is not empty is the same that zo+oc mod M x M belongs to the ball Bas(zg), which in
turn is comparable to ﬁ|B25(2’0)| since the m§-orbit of z is uniformly distributed
in the unit cell. In conclusion, we may rewrite the left-hand side as follows

1
Jim o Qgng @ 1t (Bs (20)) N 78 (B (20))|

Translating everything to the unit cell, we get

Jim o Q;QA ‘B(;(zo) N (78 (Bs(20)) N Q mod M x M)‘
54
< [Bs(z0)| Prob{Bg(zo) A (Bs(20) + o mod M x M) # @} ~ i

Taking limits in M, we conclude for tan o € R\Q. If tan o = p/q is rational, set

P €C'%') R R G 1Y )

Of course, we choose p, g relatively prime. Now we may write
Orby (o) = {(zo + jMe; + k:Meg) modM x M ’ i ke Z}.

Therefore, the suborbits generated by Me; and Mey span Orbyy(a). Note that the
suborbit generated by Me; lives inside a union of segments >, in the unit cell which
point in the direction of e; and such that

Zk |Xk] = M/ p? + ¢2.

When this square root is irrational, Orby; () is again injective, dense and uniformly
distributed, and the argument for irrational slopes still applies. When it is rational
the orbit Orby(«) is finite and its cardinality J, = |Orby ()| is independent of
M. In particular, we set

An(a) = inf {dist(A,B) | A,Be orbM(a)} > 0.
Note that Ap(a) ~ %AMO(a) for M > My large enough, so that

- [Bszo)l _

~ o Ja Ja

since we eventually find Ay(a) > 26. However, the suborbit generated by Me;

contains at least y/p? + ¢ nonequivalent points, more if \/p?+¢2 € Q\Z. In
particular, we always have J, > (tan«) and the proof is complete. (]

2

. .M o
Jim - gim [ AJ2 0 ma(Bs(20)) 0 78i(Bs(20)|

For the last term in Lemma 2.3, we will consider a finite family of pairwise
commuting g; € G, with 1 < j < N. In particular, the orthogonal maps ~,, will
admit a simultaneous diagonal form. This means that we may find a direct sum
decomposition

Rn:A+1EBA_1@@1@@2@"‘@@z,
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where A4 is the direct sum of the eigenspaces with eigenvalues +1 and the ©’s
are 2-dimensional eigenspaces where the v,,’s act by rotations. On the other hand,
our functions f,. will be characteristic functions of prisms

Aj = Rj X [_)\7>\]n72

with R; disjoint rectangles living in ©; and certain A > 0 so that >, [4;] > 1.
Let us write py; and p,, | for the restriction of v,, to ©1 and its orthocomplement
respectively. We write o, for the rotation angle of the map Py g

Lemma 2.5. Given py > 2, we have

N 1
Jim M7 (Z |7r§gwg]__1><Aj\2) ’
j=1
N
provided that <tan ozjk> > NPotIA"—2diam? ( U ) forany 1 <j#k<N.

Proof. If M is large enough Wﬁ/f’}/;jlej = XBu,;» Where By ; is the periodization
of 7,1 (A;) along My, '(Z"). If the periodized sets By ; were pairwise disjoint for
all M > My, the assertlon would trivially follow by direct computation. In the
presence of overlapping

for fixed M and py > 2. In particular, it suffices to prove the reverse inequality. The
idea is to show that the overlapping becomes small enough for large M. Consider
the partition [—A, A]™ = &pa U Uy a4 with

aa = (FAA N (0 (49) Nl (0 (40)),

1<j#k<N

N
M% (Z'WM’Y —1XA | )

j=1

the set where overlapping of the By ;’s occur in [—A, A]™. This yields

1

N
: n 9 2 2
Jim M | (2 i)
j=1

Po

Po

: M"
= Jim g | > et e o)

MA =1

n

M = £
2
T A Sege /@M?A(Z”MWXA 0) " do

N . .
Po 1 1
< ]Z:;|Aj| + Nz 72 M11{—>oo G [PM’A (ZWM’7971XA )) dr
y 3
Po _ 1 .

.
I
=
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where we have used the absence of overlapping in @y 4 to eliminate the power pg/2
and M-periodicity of the 737 *yg_jlx A,;’s (isolatedly) for the first term. We may also
use periodicity to estimate the last term on the right-hand side

1

(i:lﬂfhgjleﬁ)z N
< Z\A\ ¢ N% %(Zmn)%( i M 0l)

j=1

Po
lim M"

M—oo

Po 1 M™ :
< [LeNFE(lim lim s )

since ) [4;| > 1 and A; N Ay = 0 for j # k. We write mi and Wi/I,L for the
M-periodization operators in ©; and its orthocomplement respectively associated
to pg; (with rotation angle a;) and py; 1. According to the form of A; we get the
inequality

Wnal < D0 [Tl K X (R A (b

1<j#k<N
with the sets on the right given by
Uyal k) = A AP N (g (R) N7yt (o, (Ri)),
ViaGik) = A A0 (o) (FAND) Nt L (op,h L (FAA"2).

Pick zp € ©7 and ¢ > 0 minimal so that p;jl (R;) C Bs(#) for all j. By Lemma 2.4
and the hypothesis

fin lim 2wl )

M—oo A—oco
2

M ,
< 151100 A@;om\[fA,A]? N7 (Bs(20)) N 7% (Bs(20))

1
N NpU—i-l)\n 2°

Moreover, eliminating the dependence on k for \1112\/[ A4, k) gives the upper bound
. . Mn—2 -
i fim S (PR A G )]
Mn72 L ; B o .
< lim lim 7’[—A,A] N1 (pg, 1 ((FX ] ))‘ < A2,

M—o0 Aoo 2V—2ANn—2

Altogether, we have limy A W‘\PMAl < NP0 and the assertion follows. ]

2.4. Infinite orbits admit Kakeya shadows. We continue by introducing a class
of sets in the unit sphere S*~! for which the inequality in Lemma 2.3 fails and show
that infinite orbits of arbitrary discrete groups belong to this class. Our definition
is motivated by Fefferman’s construction [16]. Given a great circle ¢ and any set
of directions © in S"~!, we write ¢ for the orthogonal projection onto the plane
determined by (. Let

—{ W) Jweavet} c¢

|me (W)
denote the geodesic projection of € onto (. Let Rq, denote the collection of
rectangles R in the plane determined by ¢ with longest side pointing in a direction
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of Q¢. The expression 3R will refer to the rectangle with the same center and width
as R, but with 3 times the length. We will say that Q admits Kakeya shadows if
there exists an absolute constant ¢y such that for each m > 1 we may find a great
circle {(m), a measurable set E,, in the plane determined by ((m), and a finite
collection of pairwise disjoint rectangles Xq ., C Ra,, so that

Co
2) 1Bl <2 S IR,

REXa ()
b) [R| < co|(BR\ R) N Eyy,| for each R € Xq ;-

The existence of sets admitting Kakeya shadows is a consequence of Besicovitch
construction [4]. For instance, a set 2 admits Kakeya shadows whenever there
exists a shadow ¢ which is dense in the unit circle S'. Let us now go back to the
framework of our problem. Given a discrete group G, a unit vector ©v € R™ and an
orthogonal representation 7y : G — O(n), we are interested in knowing when the
~v-orbit of u admits Kakeya shadows.

Lemma 2.6. The orbit O (u) in S"~! is either finite or admits Kakeya shadows.

Proof. As described above, it suffices to prove the stronger statement that infinite
orbits always admit a dense shadow. The argument is simple when n = 2. Assume
the orbit O, (u) is not finite. By compactness, it must accumulate at some point
o € St and we may find for each ¢ > 0 group elements g.,h. € G such that
V9. (w) = Yh.(u)| < € and dety,, = detyp,. It follows that v, -1, is a rotation of
angle < €. Density of O,(u) follows iterating these maps for ¢ arbitrarily small.
A similar argument applies when G is abelian and n is arbitrary. In that case,
the 7,’s are pairwise commuting maps and we may consider again the direct sum
decomposition into common eigenspaces R" = AL ®O; PO B - - - P Oy, where the
Yg's act by rotations on two-dimensional ©;’s. Let us decompose u as vs +>_; v;
with (vs,vj) € Agy x ;. If O,(u) is not finite, there must exist 1 < jo < £ with
vj, # 0 and |O,(v;,)| = co. Taking ¢y to be the great circle in S"~! generating
©j,, it is clear that the shadow O (u)¢, contains O (vj,). Moreover, O, (vj,) is an
infinite orbit generated by rotations in ©;,, so that it is dense in (y as in the n = 2
case considered above.

Now that we know the statement holds for discrete abelian groups, it suffices to
show that infinite orbits of discrete groups always admit infinite suborbits generated
by an abelian subgroup. To see this, consider the linear subspace

Iy = {f € R”|fygk(§) = ¢ for all g € G and some k = k(g,&) > 1}.

If w ¢ J,, then we may find go € G such that vgo (u) # 750 (u) for any pair of
integers j # k. In that case, A = (g§¥ : k € Z) ~ Z is an abelian subgroup of
G giving rise to an infinite suborbit O~ (A, u), as desired. On the other hand, if
u € Jy we note that 7, is a G-module. Indeed, given a pair (go, &) € G x J, and
any g € G, define hg = gy 'ggo and ko = k(ho, &). Then we have by definition

Tko (€0) = €0 = Ygro (Vg0 (€0)) = Vg0 (€0)-

This shows that v,,(£) € J, and proves our assertion above. In particular, since
u € Jy the whole orbit O, (u) lies in Jy, which in turn is an invariant subspace
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of the representation . Restricting to that subspace if necessary, we may assume
that J, = R". Let ej,eg,...,e, denote an orthonormal basis of R™. Writing
m = m(g) for the least common multiple of k(g, e1), k(g,e2), ..., k(g,e,) it is easily
checked that vyym(§) = £ for all £ € R". Let us consider the normal subgroup
H={gec G| = ¢ forall £}. Again, since 7|, acts trivially on R", we may
restrict to the quotient group G/H or equivalently assume that H = {e}. This
means that ¢™ = e for all g € G and some exponent m = m(g) > 1, so that G is
a torsion group. According to the Jordan-Schur theorem, any torsion subgroup of
the group of n X n complex matrices is virtually abelian. In other words, G admits
an abelian normal subgroup A of finite order. If we now consider the suborbit
O, (A, u), it must be infinite since O, (u) is infinite and A is of finite order. O

Lemma 2.7. Let 2 < p < oo, then O, (u) is finite if and only if

H(Z\ )|
ey [ (3317,)" (it '],
j=1

for any sequence g1, g2, ... in G and any family of functions fq,, fg,, ... in Ly(R™).

, lim M?»

p M—oo

Proof. The validity of such an inequality for finite orbits and 1 < p < oo follows
from the Ly,-boundedness of directional Hilbert transforms. Assume now that O (u)
is not finite and the inequality in the statement holds for some py > 2. According
to the proof of Lemma 2.6, there exists an abelian subgroup A such that O (A, u)
is infinite. In other words, we may assume that G itself is abelian. Decomposing
~ into its irreducible parts as above, we get R" = A4 O O & --- @ Oy with
u=vs+>;vj. Pick 1 < jo < ¢ such that vj, # 0 and |O(vj,)| = 0o, and consider
the great circle ¢, = ©,, NS"~!. We claim that there exists

o A family {gpm|m >1, 1<k <22} inG,
e Rectangles Ry, and measurable sets I, in ©;,,

satisfying the following conditions

a) Rpm points in the direction of m¢; (g, (1)),

D) |Em| S 5 Xk | Bim| < 5 3o |3Rkm \ Ram) N B,

¢) Rjm N Ripy =0 = Vot (Rjm) N 7y=1 (Rim) for 1< j # k < 22"

d) The sets {(grm, Rim) & satisfy Lemma 2.5 with N = 22" for each m > 1.
We finish the argument before proving the claim. Fix m > 1 in what follows and

consider an orthonormal basis ei,es,...,e, so that span{ei,es} = 0;,. Let us
write vg,,. (1); for (vg,,.(u), e;) and set

)\zl—l—max{lengtthm\/ hq’”"gr)j OF ‘1<kz<22 3<]<n}
fygkm ,‘ngm

We consider the following prisms in R™

Apn = (kax[—5)\,5>\]”_2),
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Jz ((3ka \ Rim) % [~ 1A, %)\]"‘2).

Taking fg,,, = Xay,,, we have 4|H, (,)(fg.,.)| = XBy,.- Indeed, by translational
and rotational invariance we may assume that the prism Ay, is centered at 0 and
Ygrm (W)1 = 0. Now, given « € By, we have

XAkm (Z‘ — Wgim (u))

n

= X[-a,a](@1)X[-5,8 (T2 — tVgu. (U H =525 (T3 — PYgen (1))

for some 0 < o < 8 = length(Rgm). It is clear that |z1| < « for & € Byy,. On the
other hand, the right hand side vanishes unless |23 — t7,,,, (u)2| < 8. This implies
in turn that

[tYgrm (w)2] < B+ [22| < 43
(8

1 1
|25 = tYgp,, ()| < J5] + [tvgy,, ()] < At Eltvgm (u)2A < SA

N ©

Hence, x a,,, (T — t7g,,. (0)) = X[-p.8) (T2 — t7g,,, (u)2) for & € By, and we obtain

1
H,,,.. (w) (faum ) (@) = H(x[—g,g)(72) = = log ‘ iz i—g

The last logarithm is greater than 7 for 8 < |zs| < 33, which gives the desired
estimate 4|H,  (u)(fg.)l = XBy,,- Using this, property b) above, and Holder’s
inequality we obtam

for = € Bpm.

227” 22’!”.
N2 | Rim| S AT [(3Rkm \ Rim) N By
k=1
22™

= > [ Bim N (Em x [-3A, 30" 7))
k=1

s |/ / 3 0 0
m 7k A
2m 19
1-2 \(n—2)(1—--% 2
< BTN (S, 0 () P)
=1 Po
2"L 22’/”
2112
< (A“Zlem) (X1, 0 Ua)P) |
k=1

On the other hand, properties c¢) and d) give

2’!77, 2’"L
1 2 1
2\ 2 2 Ikm 2\ 2
H( \fg,m|) (D17t fown )
Po b1 m

m m
22 2?2

< (Z\kax[—w,w"—ﬂ)% = (10)"% (A" 2Z|Rm)”

k=1

. 2n
, lim Mo

M—oo

Po
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with constants independent of m. Combining the two estimates via the inequality in
the statement of the lemma, we get a contradiction for m large enough. Therefore
it suffices to prove our claim at the beginning of the proof. If s = s(m) = 2™,
let us write F,, and Sim, Som, - - -, S2sy, for the measurable set E and the pairwise
disjoint rectangles Rj, Ra,..., Res which appear in [17, Lemma 10.1.1]. Then we

find
1

Bl £ 257 1Skl € = 57 13k \ Sin) 1 Fil.

Of course, these properties remain stable under affine transformations and we may
assume that Si, points in the direction m¢, (u). Now, recall that the (j,-shadow
of O,(u) contains O (vj,), which in turn is dense in (;,. Therefore, we may pick
the group elements gi, so that m¢, (7g,,, (1)) points in the direction of Sk, or at
least as close to it as we want. Note that Fefferman’s construction admits small
perturbations, so that we can move the rectangles slightly to make them point in
the directions we pick. Our final choice of directions will be determined at the end
of the proof. If we choose R}, ~ Sim, it turns out that properties b) and c¢) hold
except possibly for the pairwise disjointness condition

Vot (Rjn) N7yt (Ri) = 0 for 1< j# k<2

Note however that the given construction is still invariant under translations. In
particular, we may take Rj,, = 7(Skn) for a suitable translation 7 in ©,,. Assume
for clarity that u = e; and take Sy, ~ [0,31log(s+2)] x [0,27%], so that we roughly
have Skm ~ Vgi,, (S1m ). This is essentially the worst possible configuration, since we
find a large overlapping for the family v, -1 (Skm). Taking however R}, = 7(Skm)
with 7(z,y) = (x + L,y) for L > 0 large enough it is easily checked that we get
the missing disjointness condition in ¢). In summary, the rectangles Ry, satisfy
conditions b) and ¢) which in turn are stable under small perturbations. It remains
to select the giy,’s and small perturbations Rk, so that conditions a) and d) also
hold. Since the gi,,’s are pairwise commuting because G can be taken abelian, it
suffices to check that

® Ry || Tjq (’ngm (u)),

° Zk |Agm| > 1 for all m > 1,
. <tana > > 28(Po+1) \n—=2(iam? ( U ngm (Rim ) = J(po, m, \).

Since A > 1 by construction and |Rgm,| ~ 27 % log s, we see that

2° 2%
> | Akm| = | Rim| 2 logs ~m >> 1.
k=1 k=1

Finally, we select the gg,,’s so that the first and third conditions above hold. Pick
gim = ¢, so that Ry, = R}, points in the direction of m¢; (u). Then we have to
pick ga;, so that (tanafs) > J(po,m,A) and ¢, (7g,,, (u)) is close enough to the
direction of Sa,,, so that Ra,, will be a small perturbation of 7(Ss,,) pointing in the
direction of ¢, (v2m(u)). This is possible since the (j,-shadow of O, (u) is dense
in j, and (tanafh) < J(po, m, ) holds for finitely many directions. Once gi,, and
gom are fixed, pick gzm with 7¢; (7, (u)) close enough to the direction of S, and
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such that (tanaj) > J(po,m,A) for j = 1,2. Since the latter inequality fails for
finitely many directions, again this is possible by density. Iterating the process we
obtain the desired construction and the proof is complete. O

Proof of ii) = iii) in Theorem A. Since twisted Hilbert transforms are Fourier
multipliers on the group von Neumann algebra associated to I'gjse, it is easily
checked that H, x., idg is self-adjoint (up to conjugation of the symbol) so that we
may assume 2 < p < oco. Then we combine Lemmas 2.3 and 2.7. ([

2.5. Twisted de Leeuw’s compactification. Let us now prove the implication
i) = ii) in Theorem A. We will write H,, and Hy, , in this paragraph to distinguish
between the u-directional Hilbert transform on R™ and its Bohr compactification
respectively. Assume H, x. idg is Ly-bounded for some 1 < p # 2 < co. By
density of trigonometric polynomials, it suffices to prove the L,-boundedness of
Hy, . ¥4 idg for finite sums of the form

fo =3, , T(& g)bexpe x5 Xa(9).
Once we have fixed fi,, we find (Hy o, X+ ida) fio = (Hp.u ¥ idc) fir, where

Hy(b-expe) = —i5g0(u, €)b-cxpy

and sgn is a smoothing of the sign function which coincides with it on the finitely
many values (u, &) with £ appearing in f,. We will write H, for the corresponding
smoothing operator in R”. Given & > 0, set hs(z) = (276)~"/? exp(—|z|?/26) and
we claim that

(| (o 20 idG)fbHLp(F/d;c) = ||(Hp,u x- idG)fbHLp(r/(;C)

= Jim || - ing Zg,g@ﬂ“’gﬂg’g)expfNMG(Q)‘LP(f)

- 6113;0 (H. NvidG)<h§ Zg,g f(&.9) “¥Pe X"’/\G(g)) Ly(T)
e < ) (1 2, /69 eXpémAG(g))‘Lp@)
< Jim hf Z&gf(f,g)expg NMG(Q)HL@) = ol oy

Since the inequality follows by hypothesis, the constants are independent of the
smoothing. It remains to justify the identities. If f = nyg f({,g) expg X4 AG(9)
stands for the trigonometric polynomial in £(T") with the same Fourier coefficients
as fp, the second and fifth identities follow from
lim ||
— 00

I folly, oy = I, @

The proof reduces to p = 1 since hs x 1 is in the center of £(Tgisc), so
1
. . Y P
[ e o P oy 137

Approximating |fp|? by a finite sum, it suffices to note that

J

b-exp () dpp = d¢=0 = 613210 hs(x) expg () du,

n n
bohr R
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since the cross product with Aq(g) only changes both sides by a factor of d4—.. On
the other hand, the third identity in our claim follows from the triangle inequality
together with the identity

i [|(F 0, i) 0] )+ ihE S 800,76 9) exp 09|

d—o0

Ly(F)

Since the sums are finite, we prove that this is true term by term, in which case
the cross products with Ag(g) are irrelevant. In other words, we just need to show
that we have

~ 1 1
51320 | Hu(hy expe) + ih] sgn(u, £) expg Hp = 0.

According to the L,-boundedness of H, in R", these expressions are uniformly
bounded in § for fixed 1 < p < co. By the three lines lemma, it then suffices to
prove this identity in Lo with exponents (1 —it)/2 + it/q = 1/2 + i with a € R.
By Plancherel theorem

~ 14 1
||Hu(h§ Ha expg) +ih} +w‘sgn(u, ) expy ||;

= | JsEtn) gl )| =€)

IN

/IE ) — 5@, )P (- )2 dn
—ni<e

_ . 2, 1 1ia 2
+ /l | |sgn(u,n) — sgn(u,&)|"|h2 " (n— &) dn = Ase + B
§—nlze

Since h(;%ﬂa(f) = 5% ¢(\/5€) for some Schwartz function ¢, we see that Bs. — 0
as § — oo for all € > 0. On the other hand, sgn is uniformly continuous and the
integral of hs is 1, so that sups.g A5 — 0 as € — 0. Combining both estimates we
obtain the desired 0 limit as § — co. To justify the fourth identity we argue as for
the third, so we may reduce it to show that

. — 2 m 2

Jim [ [sgnu,n) = sgn(u,n)["hi T (n = €)% dn = 0.

— 00 R
According to our smoothing, there exists 9 > 0 so that sgn{u,n) = sgn(u,n) if
|n — £] < €. In particular, the integral above is just defined on |n — £| > €p and
the limit again vanishes since sgn and sgn are uniformly bounded functions. O

2.6. L, estimates for finite orbits. We now prove the implication iii) = i) in
Theorem A. Let G, = {g e G | vg(u) = u} be the ~-stabilizer of u. Since the index
|G : Gy| coincides with |O,(u)|, we have finitely many right cosets G,g. Let us
label them as G,g; with 1 < j < |O4(u)|. Thus, we may write any element f in
L(T) as

r= 3 Fleaeleon, s
|0, (u [O ()]

)l
Jj=1

9€Gy j=1
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‘We define
By = [ 3 €0l 5, e
" geG

and w; = Apr(0 %, g;). If we set I'y = R™ %, Gy, let us also write E, for the
conditional expectation £(I') — L£(T',). Then, it is clear that we have f = Fjw;
and f; = E,(Fj)w; for all j, so that (H, xidc)(f;) = (Hu % ida, ) (Ew(F})) w;
and ||E,(Fj)|lp < I|Fjllp = || fllp since w; is a unitary. This yields

[O4 (u)]
(Hu sy ide) (Dl gy < D0 IHw 0 ida) ()] @
j=1
< 0y @) [[Hu yide |l 1112, @)

Thus, it suffices to prove L,-boundedness of H, X, idg,. In other words, we may
assume that w is a fixed point of 7. In that case, it is easy to show that H,
is y-equivariant and the proof follows easily. For instance, we may proceed by
interpolation and duality with our L., — BMO,, estimate below. (Il

2.7. Endpoint estimates for finite orbits. The directional Hilbert transform
H,, does not have a smooth Calderén-Zygmund kernel and fails to be Lo, — BMO
bounded on R"™ for n > 1, with the usual definition of BMO. Nevertheless, there
exists a directional BMO,, space on R" satisfying

a) Hy : Loo(R™) — BMO,,
b) [BMO,, L,(R™)] /g = La(R™).

Namely, the norm in BMO,, is given by

7m0, = sup | (Swel 1 = [Suef?) || - with 5.f(e) = -9 (o)
t>0 0o

Properties a) and b) arose naturally in a more general setting [22, 23] from geometric
group theory and Markov semigroups. In the Euclidean context they might be very
well-known. According to Schoenberg’s theorem and the fact that & — [(£, u)|? is
conditionally negative, the semigroup S, : is Markovian on R". It is however not
v-equivariant and Markovianity is lost in the cross product extension S, ; %~ idg,
we thank the referee pointing this out. Nevertheless, S, ¢ is y-equivariant when we
restrict the action 7 to the stabilizer G, and then the crossed products Sy ; X~ idg,
yield a Markovian semigroup. In the assumption that O, (u) is finite, we have seen
in the previous paragraph how to write a general element f in £(T") as a finite sum

|05 (w)]

f= > Eulfw))w,
j=1
for some unitaries w; = Ar(0 X g;). This leads to define

Hf||131\/10u(f") - 1§j1§n|%)j(u)| {HE“(fw;)HBMO;(f)’ HE“(fw;)||BMO§(f)}’

where the row and column BMO norms are given by

1
cEd = Surp9") = SuiSuie”)” :
||%0||BMou(r) iggH( u,t(PP") u,t POty L)
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)

L(Tw)

1
ral * o *N 2
lelmogm = sup|(Suse"e) = SureSue)

with §u,t = Syt Xy ida, and I'y = R™ %, G,. Since we know this semigroup is
Markovian, we may apply Junge/Mei’s interpolation theorem to it. We refer to [22]
and the references therein for more on noncommutative BMO spaces.

Theorem 2.8. If O, (u) is finite, then
Hy %1 idg : Loo (T) =2 BMO, (T).

The cb means that the map is completely bounded. The same result holds for T gisc-

Proof. According to our definition of BMO and since

IEulfirwiD o, < i)l ocm

it suffices to see that H, % idg, takes Lo (T'y) to the BMO space associated with
the Markov semigroup Sy ¢ X~ idg,. By the analog of de Leeuw’s compactification
theorem for Lo, — BMO boundedness [23, Proof of Theorem 2.4] it suffices to

prove the same result for the group I'gisc,u = RY;s. Xy Go. On the other hand, since

we know that H, : Lo (R™) — BMO,(R") the same holds for H, on R}, —use
once more the analogue of de Leeuw’s theorem— and the assertion follows from a
suitable application of the little Grothendieck inequality, see [23, Lemma 1.2]. O

Theorem 2.9. If O, (u) is finite and G amenable,
Hy %1 ide Ly (Taine) -2 Ly oo (Taiae)-

Proof. We may assume that f is a positive trigonometric polynomial. Arguing as
in the proof of Theorem 2.8, it suffices to consider the case where w is fixed by ~.
This means in particular that (H, %, idg)f is self-adjoint for f positive. Let us
consider the *-homomorphism

p: ‘C(Rgisc Xy G) — Lo (Rgohr)(g)B(gQ(G))
b-exp, ¥, Ag(g) + Zh b'evag’h,l(f) ® egh,h-
Since G is amenable, we may construct a Fglner averaging sequence:
e G= UjeJ Gy,
. |G]‘ < o0 and Gjl (- ng for j1 < jo,
o [gG; \ G;| = o(|Gj]) for all g € G.

If pj =3 4cc, 9.9 € B(l2(G)), we claim that following identities hold
[ (H s ide) ],y

= 300 Mfxoroo ([ ide) )

L1 (Taisc)

o1 j
= supA lim — ij(X(/\,OO) (|H" My ZdG)f|))pj’
a0 |Gy

L1 (RY,,,:51 (£2(G)))

= supA limL pj (X(A,oo)(’ﬂ[(Hu Ay idG)f”))pj

As0 |Gyl L1(RE 591 (£2(G)))

L1 .
= supAlimia Xonoo) ([P [(He Nwdc)ﬂpﬂ)]

L1 (RY,,, 51 (£2(G)))

bohr
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Let us first finish the argument assuming this claim. If f =3 f; %y Ac(9),
pip[(Hu x5 idc) f]p;
= 52, Hulfn ) ® g )y

pi(D2 By () @ eqn )y

= pj([Hu®id5(42(c))](Pf))Pj = [Hy ® idg, )] (0ip(f)p))-

The second identity uses that u is fixed by v. Writing Haar integration in R}, = as
a limit of averages on arbitrary large cubes as we did in Paragraph 2.2, a standard
Fubini argument shows that the Ly — Lj o, boundedness of H, ®idp,(q)) reduces
to that of H ®idps,(q)) where H stands for the one-dimensional Hilbert transform
in the Bohr compactification of R. Such a weak type boundedness was proven by
Randrianantoanina in his work [47] on Hilbert transforms associated to maximal
subdiagonal algebras. Thus, combining this with our claim we deduce that we have

. 1
(Ho >y ida) f|, oy < lim @Hpjp(f)pjHm(RgDhr;sl(ez(G))) = Ml

The last identity above follows as in the second identity of our claim, which we
now justify. The first identity is just the definition of the L; o quasi-norm. The
second follows from Neuwirth/Ricard’s matrix-valued form of Szegd’s theorem [39],
some details —also needed for the fourth identity— can be found below. The third
follows since p is a #-homomorphism. Indeed, f is a trigonometric polynomial
so that (H, % idg)f is a bounded operator. Therefore, we may replace x(x )
by x(x,m) for M large enough and argue by polynomial approximation. The last
identity can be proved by following [39, Proof of Theorem 2.1] again, where the
idea is to approximate X (xn| - | by polynomials and estimate

. 1 . .
lim mejP(p[(Hu Xy ch;)f])pj - P(pjp[(Hu Xy ZdG)f]l”j) H1
J
for each polynomial P. As we have
pia’p; — (pjap;)* = pra™ ey — pjapy) + (pa*p; — (pjap;)*ap;,
an induction argument yields the inequality
k k k—
|pia*p; — (pjapy)*||, < (k= V)|=5 ||l2p; — piaps]|,-
On the other hand, analyzing the trigonometric polynomial f term by term, we are

reduced to showing that |G;|~[[Ap; — p;Ap;li — 0 for A = p(b-exp, x4 Ac(g))
and this follows from the relation

[ Ap; — piAps||, = H Y. bexpig ®egnn
heGi\g~1G;
and the fact that |gG; \ G| = o(|G,|), which follows from the amenability of G. [

< 19G; \ Gy

End of the proof of Theorem A. We have proved i) < ii) < iii) and the endpoint
estimates. The remaining equivalence with iv) is now very simple. Indeed, the
boundedness for finite orbits follows from the triangle inequality since any block of
rows is contractively complemented in the Schatten p-class S,(G). When the orbit
is infinite, unboundedness follows by picking fqn = dn=cfq so that the resulting
square function inequality only holds for orbits with no Kakeya shadows. ([
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Remark 2.10. Given the unboundedness for infinite orbits and our L., — BMO
estimate for finite orbits —which hold in the category of operator spaces— we see
that L,y-boundedness is equivalent to complete L,-boundedness for twisted Hilbert
transforms and 1 < p < oo, which was not clear a priori.

Remark 2.11. Given a Fourier multiplier T;,, on R™ —for example, the directional
Hilbert transform in this paper— and a orthogonal representation v : G — O(n),
we may consider three noncommutative forms of such an operator

(A) The matrix operator fgn ® egn = Yg-1Tm(fg.n) @ €g.n,
(B) The cross product operator fg x4 Ac(g9) — Tm(fy) Xy Ac(9),
(C) The cocycle form of the multiplier in £(G): Aa(g) — myg)Aa(g)-

In terms of L,-boundedness, [39] gives (A) = (B) for G discrete amenable and
[23] gives (B) = (C) for arbitrary discrete G, see Paragraph 3.2 below. One could
wonder when the reverse implications hold. When dealing with directional Hilbert
transforms, Theorem A shows (A) < (B) for any discrete G, while the comment
after the statement of Corollary C proves that (C) = (B) fails in general.

2.8. Some examples. Let us illustrate our main result with a few constructions
of semidirect products for which either all, none or some of the directions u in the
unit sphere of R™ satisfy our finite-orbit condition. This will show how Theorem A
can provide positive and negative answers to the L, boundedness of twisted Hilbert
transforms for 1 < p # 2 < oo as a function of (G, vy, n,u).

According to Theorem A, all possible twisted Hilbert transforms in R™ x, G
are Ly-bounded for 1 < p < oo whenever the dimension n = 1, the group G is
finite or the action ~y is trivial. This is the case for instance of the infinite dihedral
group Zg * Zy = (o, B), which can be presented as Z X Zy with y+1 = +idz and
A 2 Zy x Zy — 7 X Zsy the group homomorphism

Al@) = (0,~1) and A(B) = (1,-1).

This shows Zg x Zsy as a subgroup of R” x, G with n = 1 and G = Z; finite. In this
case, the orbit of any u € R has at most two elements and Theorem A shows that
all twisted Hilbert transforms in Zsy * Zy are L,-bounded for 1 < p < oco. Other
examples of the same kind with n» > 1 and G not finite are easily found, take for
instance Z acting on R? by rotations Ry of angle 2% (k mod m). Note also that
for n = 2 the cardinality of the orbit |0, (u)| does not depend on u # 0, so that
either all or none of the twisted Hilbert transforms are Lp-bounded. If (say) Z
acts on R? with v; a rotation R; of angle § € R\ 27Q, then all orbits are infinite
(periodic) and no twisted Hilbert transform is L,-bounded for p # 2. This example
was already mentioned at the end of the Introduction. A similar situation appears
taking G = Z * Z the free group with two generators a1, as and n = 3. Namely, the
orthogonal action we use goes back to the proof of the Banach-Tarski paradox. If
6 € R\ 27Q, the subgroup of SO(3) generated by

cosf —sinf O 1 0 0
Al = sin 6 cosf 0 and A= | 0 cosf —sinf
0 0 1 0 sind cos 6
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is isomorphic to Fy under the mapping

Fy > alial ---afr v AJLAR - AT € SO(3)

w Y
with ki,ko,... k€ {1,2}, kj # kjq1 and nq,ng,...,n, € Z. It is very simple
to show that the action v : Fo ~ R? has no finite orbits. On the contrary, if
we impose that the 7,,’s (1 < j < m) belong to a finite subgroup G of O(n), it
determines an orthogonal action F,, ~ R™ with finite orbits everywhere. Note that
by freeness any choice of 7,; is admissible. In fact, imposing such a condition for
1 < j < d and setting 7,; to be irrational rotations on 2-dimensional subspaces of
R™ for d+1 < j < m, we find examples of the form R™ x, F,,, for which some (but
not all) directions u € S"~! lead to L,-bounded twisted Hilbert transforms. The
simplest such example arises with (m,n) = (1,4) and v, = RF @ Rg € O(4), with
rotation angles (a,3) = 2m(},e) say. Only the directions u = (z,,0,0) lead to
L,-bounded twisted Hilbert transforms.

Other classical groups arise as semidirect products of non-orthogonal actions. Let
us consider for instance the discrete Heisenberg group, which is usually described as
H,, = RxZ"XxZ" with group law (z,a,b)(z’,a’,b’") = (z+2'+B(a,b’),a+a’, b+b’)
for some bilinear form B on Z" x Z™. However, it can also be understood as the
semidirect product (R x Z™) x., Z™ with action va(z,b) = (z + B(a,b),b). This
gives

((z,b),a)((z',b),a’) = ((z,b) + 7a(z’,b),a+a’)
as expected, so that H,, arises as a subgroup of R"™! x. Z" since the action ~y
naturally extends to R x R™. Note however that v, € GL(n + 1)\ O(n + 1) in
general. Another example of this kind is the Poincaré group, which arises as a
cross product extension of the Lorentz group. Theorem A does not apply directly
to this case, but perhaps modifying our arguments could lead to generalize our
result to non-orthogonal actions. We believe this is an interesting problem.

2.9. On dimension free estimates. The directional Hilbert transforms act as
1-dimensional operators in the direction they point to. It is therefore clear that
their L, — L, norm do not depend on the dimension of ambient space where they
are defined. In analogy, it would be interesting to show dimension free estimates for
twisted Hilbert transforms. Such a result for twisted Riesz transforms R, X idg has
been recently proved in [24]. A revision of our argument shows a few points where
the constants depend on the dimension. Notably our use of (dimension-dependent)
Littlewood-Paley estimates is not one of them since we apply them in dimension
one. The statement of Lemma 2.3 evidences the constant M», but this is just a
middle point in our way to Lemma 2.5 which in turn can be made dimension free
by picking tan o, € R\ Q. Once this is noted, it follows from the proof of Lemma
2.7 and Paragraph 2.6 that

C1(p)1075 loglog (|0, (w))* ' < ||Hy 0, idg]|, ) < Co(p)|O, (w).

The constant 10~"/? arises from the inequality 41Hy, () (fgrm )| = XBy,, in the
proof of Lemma 2.7 and unfortunately we do not see how to make that estimate
dimension free replacing By, by something bigger. This discussion leaves the
problem open for the interested reader. Moreover, it is also relevant to study the



28 PARCET AND ROGERS

case n = oo by considering twisted Hilbert transforms H,, X, idg on the discretized
group R3.. %, G. Note that the corresponding group von Neumann algebra can
be described as Lo (Rp2, ) X G. Here it is crucial to work with the Haar measure
on the Bohr compactification of R*, the Lebesgue measure is meaningless. In
the context of cocycle forms of directional Hilbert transforms (considered in the
next section) any result for n = co would allow infinite-dimensional cocycles in our
results on Fourier L,-summability, see Remark 3.6 for more details. In addition to
the above-mentioned difficulty with the constant 10~"/?, the case n = oo would
demand a revision of Lemma 2.6.

3. LACUNARITY, COCYCLES, AND CONVERGENCE OF FOURIER SERIES

In this section we analyze the more general frameworks considered in Theorem B
and Corollary C. We will also establish some connections between these problems
and the L,-boundedness of directional maximal operators or idempotent Fourier
multipliers on R.

3.1. Lacunary vy-suborbits. Given n > 2 and a set of directions  C S*~! in the
unit sphere, the directional maximal operator Mg is defined on smooth functions
f:R® = C by

Maq f(z) = sup supi |f(z —tw)| dt.
wer>0 27 J_p

The sets € in the circle for which M, is bounded in R? can now be described with
remarkable accuracy. Bateman recently proved in [1] that Mq is L,-bounded for
some/any 1 < ¢ < oo iff Q is a finite union of lacunary sets of finite order in the
sense of Sjogren/Sjolin [49]. In higher dimensions, the only known results were
due to Carbery and Nagel /Stein/Wainger [7, 38]. In a recent paper [42], we obtain
more general results and characterize the L,-boundedness for arbitrary dimensions.
In particular, we prove that Mg is Ls,-bounded for any 1 < ¢ < oo provided that
Q) is HD-lacunary (see the introduction for the definition). This will be the key
ingredient in the following lemma.

Lemma 3.1. If1 < p < oo and  is HD-lacunary, then
1
> |waw|2) H( 17 )

weN P

Proof. Since H, is essentially self-dual and the case p = 2 is clear, we may clearly
assume that p > 2. Let 1 =1- 3 , then we select v in the positive part of the unit
ball of Ly(R™) such that

(% arr)’

| > 1Hp?

weN

= 3 [ AP @) via) da

weN

= X ([Pt ),

weN

p
2
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where f, ,(s) = fu(z+sw) and v, ,(s) = v(z + sw) for z L w and H stands for the
Hilbert transform on R. Now we pick some 0 < § < 1 and use the Hardy-Littlewood
maximal operator M on R to get

Vi) < M0E) (0 =sup (o [ V(e (0 1) ) < M)+ )

It is well-known [15] that ws = M (vi,/jf)é is an Ay Muckenhoupt weight with
Ay contants depending only on §. Since the Hilbert transform is bounded on
Ly (R, ws(s)ds) with norm depending —linearly, see [43]— on the As norm of wy
we conclude

| Sitsl], £ X [ 1f@PMad ) do < [Malls | 3 I1P
weN 2 wEeN R™ weN

This also follows from [9]. We now use HD-lacunarity and the result from [42]. O

» .
2

Remark 3.2. Given a discrete group G and a length function v : G — R4, a
countable subset A = {4; | j > 1} C G will be called ¢-lacunary when the following
condition holds
5.
sup ZZJ( j+1)

i1 ()
Arguing as in Lemma 2.1, we may construct a sequence of smooth functions h,,
on R, fulfilling the hypotheses of Lemma 1.2 for the group I'gjsc and the length
function & %, g — ¥(g), so that

HfHLp(ﬁ;:c) ~ H Z f5 Ny )\G(é) &® 66‘

SEA

S)\¢<1.

Ly(Taiceit3.)
for every f € LAW(I/‘d-;) (1 < p < o0) and constants depending only on p, Ay.

Proof of Theorem B. Enumerating A = {g; | j > 1}, we know by hypothesis that
there exists some w in the unit sphere so that v, Y(u) — w lacunarly as j — oco. In
particular, if 1 < j7 <M << N we see that

g2, () =g ()] < g (w) = w[ + |y, (u —wl
(14 N7z (u —w|+A|v —1(u) = 21 (u)]-

IN

In particular, if N = N(M) is large enough we find for 1 < j <M

‘/yngrlgﬁl(u) _u‘ = hg +1 )_'791;1(”)‘
< \/>"Yg;1(u) - 7g§1( ’ \/>|7ng - u‘
For sufficiently large M we approximate the p-norm of f € Ly p(FdiSC)
M
HfHL (Fame) ™ Hngj My /\G(gj)‘ (Fo Hngj Xy Ac(959x )‘ —
P se = disc) Ly (Taisc)

We may now apply Remark 3.2. Indeed, consider

e The set Ay = {gjon' |1 <j <M},
e The length function ¥, (g) = |74(u) — ul?.
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We refer to Paragraph 1.3 to justify that . , is a length. According to our estimates
above, we see that Ay is ¥, ,-lacunary and Remark 3.2 yields the following norm
equivalence with §; = g, glgl

~ H Z Jsgn Xy Ac(0) ®65‘

dEANM

£,

Fdisc) Lp(rdisc%ﬁc)

Using the same equivalence for (H, X idg)f, we are reduced to proving

H Z Hu(-f59N) Aoy Aa(6) ®€5‘

dEAM

S| 3 oo 0 Aa@) @ e

dEAM

p(Caiecit2,) Lp(Taiecif2,)
for 1 < p < oo and constants independent of M. As explained in Section 1, these
norms are sums/intersections of row and column spaces for p smaller /greater than
2. In particular, it suffices to show that this inequality holds for row and column
spaces independently. In the row case, the inequality reads as

H(Z|H )], H( 1)

which clearly holds from the L,-bdness of H,. In the column case we have

H(Z}H 1(u) 7gNg lf% )% H(ZlVgNg 1o )% »

for functions f, € L,(Rj,,,). Arguing as in Paragraph 2.5, we are reduced to
proving such an inequality in the Euclidean space L,(R"™). Now we use our second
assumption which gives HD-lacunarity for the suborbit O,Y(A’l, u) —and therefore
also for the set 4, Vg;l (u)— in conjunction with Lemma 3.1 to deduce the validity of
such a square function inequality in L,(R™) for 1 < p < oo with absolute constants
independent of M. This completes the proof. ([

Remark 3.3. Theorem B admits several generalizations. Namely, we could work
with other length functions v for which A were 1-lacunary as long as A is a finite
covering of the suborbit O (A, u): supyep [{h € A|v4(u) = 74(u)}| < co. On the
other hand, more general notions of i-lacunarity may be considered. It would be
interesting to obtain Littlewood-Paley estimates for i-lacunary sequence of higher
order in the sense of [49], with which one could relax the conditions in Theorem B.

Remark 3.4. We have found in Lemma 2.1 a twisted form on L,(R},, ) of Meyer’s
square function inequality. Now we may provide necessary and sufficient conditions
for this inequality to hold. Indeed, it follows from the proof of Theorem A that
not admitting Kakeya shadows is necessary for the orbits/suborbits considered. On
the other hand, being HD-lacunary is sufficient, as we see from Lemma 3.1 and de
Leeuw’s compactification like in Paragraph 2.5. Simpler arguments —ergodicity
and transference R" < Ry , =~ are not needed in the Euclidean-Lebesguean case—
yield the same conclusions for the twisted Meyer’s inequality on L,(R™). It is an
open problem to decide if there exist sets of directions which do not admit Kakeya
shadows and which fail to be HD-lacunary.
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3.2. Convergence of Fourier series in the -metric. Corollary C follows from
our results above on the discretized algebra £(Tqisc), an intertwining identity from
[23] and standard Fourier methods.

Proof of Corollary C. If dimH = n the mapping 7y : £L(G) — L(R},.) Xy G
determined by Aa(g) — b-expy,) X5 Ac(g) is a trace preserving *-homomorphism.

The key property is that
Ty © Hy oy = (Hy Xy idg) 0 my,

~

which can be easily checked. Note also that 7y (La ,(G)) = LA,,(I{d;) This allows
us to represent Hy . as the restriction of the y-twisted Hilbert transform to the
image of m,. In particular, the assertions in a) and b) on the boundedness of Hy, ,,
follow from the corresponding boundedness of H,, %, idg considered in Theorems
A and B. On the other hand, the L,-density of trigonometric polynomials —for
which the convergence results hold trivially— allows us to emulate the standard
argument in T" for L, convergence of Fourier series. In other words, we must show
that R
Fe) " xri(0(9)) F(9)Aa(9)
geG

defines an L,-bounded Fourier multiplier with constants independent of R. By the
intertwining identity above, it suffices to prove uniform L,-boundedness for the
family Tri % idg, where Tri is the Fourier multiplier in L,(R}, , ) with Fourier
symbol xrk. If we denote the faces of K by 9;K (1 < j < m), this in turn factorizes
as a finite product of semispace Fourier multipliers of the form Sy ,, X ida with
Uy 1 3jK, v; € RaJK and

Suj,vjf(f):XR+<£_Uj,Uj>f(£) = SUj,vjf:MijSujoM—vjf
where S, f = %(zd +iH,) and M, f = b-exp, f. Since the modulations M, x. idg
are L,-isometries, the convergence result in c) follows once again from Theorem
A applied to H,, %, idg. It remains to justify the necessity in c). Consider the
cocycle (H,b,~) in T'gisc defined as follows

H:Rgism b(évg) =¢, 7(579) =g
The associated (&, g) = [£]? yields Hy,, = Hy, X idg and finiteness of v(G) gives

Jim (7= 30 3T 6 A (€ 25 0)

£ERK geG

=0
Lp(Taise)

from the same argument above. Now we assume that the limit above vanishes.
By a standard application of the uniform boundedness principle, we deduce that
SUPR>o || TRK X~ tdg||p—p < 00. Since we have already seen how translations of the
Fourier symbol can be written in terms of conjugation against isometric modulation
maps, we also deduce that we must have

sup ||TTR1_7.RK Xy ’L‘dg||p_}p < 00,

R>0
where T, .rk is the Fourier multiplier associated to the symbol X, ;rk- If we pick
the translations 7g ; so that 9;KNd;mr ;RK # 0, we see that g j;RK approximates
the semispace determined by the face 0;K. Applying Fatou’s lemma, we conclude
that Huj X idg must be Ly-bounded for all 1 < j < m. The result finally follows
from another application of Theorem A. O
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Remark 3.5. As with Remark 3.3, we may also consider different lengths for ¢).

Remark 3.6. Our argument on the sufficiency of |0 (u)| < oo for L,-boundedness
of H, X, idg is easily modified to work in R3.. X~ G. In particular, statement a)
and the sufficiency part of ¢) in Corollary C remain valid in this case.

Remark 3.7. As it was justified in the Introduction, condition a) in Corollary C
no longer provides a characterization of the L,-boundedness of Hy , for arbitrary
discrete groups. Such a characterization appears to be harder and would yield
examples of idempotent Fourier multipliers on group von Neumann algebras for
arbitrary discrete groups. A characterization of the L, boundedness of Hy , for
G = R —i.e. idempotent Fourier multipliers determined by restriction from inner
cocycles— will appear in [41].

Remark 3.8. As we have observed in the Introduction, for crossed products of the
form Z" x., G all possible actions fixing Z" must satisfy N = supgcga [O4(§)] < o0
and Corollary C applies in full generality. This is however a restrictive scenario and
we might wonder about the L,-boundedness of twisted Hilbert transforms H, X~ idg
acting on crossed products of the form L (T™) %, G. This is a cross product von
Neumann algebra with a measure preserving action, which does not necessarily
come from an action G ~ Z". Compare for instance the algebras ¢ (Z,) X Zy
and L(Zy) X3 Zy,, with (k) = j + k and 3;(k) = jk. The first one is *-isomorphic
to M,, and the cross product does not come from a group action, while the second
one is a group von Neumann algebra coming from a group action. In particular
the von Neumann algebra L. (T") %, G is not necessarily a group von Neumann
algebra and relating L,-boundedness of H, xidg in this algebra with the direction
u seems more involved.
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