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Introduction

The notion of independent random variables is central in probability theory and
has many applications in analysis. Independence is also a fundamental concept in
quantum probability, where it can occur in many different forms. In terms of norm
estimates for sums of independent variables, free probability often plays the role
of the best of all worlds. This is particularly true for applications in the theory
of operator spaces. We refer to the so-called Grothendieck’s program for operator
spaces [7, 33, 44] and also to the noncommutative Lp embedding theory [11, 14, 15]
due to the authors. On the other hand, other notions of independence weaker
than freeness are often enough in the context of noncommutative Khintchine or
Rosenthal type inequalities [12, 21, 24]. A first motivation for this paper was to
remove a singularity at p = 1 for the classical Rosenthal’s inequality [39] and its
noncommutative form [20, 21], which is also related to the recent work by Haagerup
and Musat [6] on a direct proof of Khintchine inequalities for the generators of the
CAR algebras. This easily follows from our main result in this paper, a general
transference method which allows us to compare the norm of sums of independent
copies with the norm of sums of freely independent copies.

Let us illustrate our transference method. If M is a von Neumann algebra, let
M⊗n be the n-fold tensor product and πktens : M → M⊗n the canonical k-th
coordinate homomorphism. It is standard to extend πktens : Lp(M) → Lp(M⊗n)
for 1 ≤ p ≤ ∞, see e.g. [20]. Similarly, we have k-th coordinate homomorphisms
πkfree :M→ (M, φ)∗n for free products. Our first result implies that

(τp)
1
cp

∥∥∥ n∑
k=1

πktens(x)
∥∥∥
p
≤
∥∥∥ n∑
k=1

πkfree(x)
∥∥∥
p
≤ cp

∥∥∥ n∑
k=1

πktens(x)
∥∥∥
p

for x ∈ Lp(M) and n ≥ 1, with uniformly bounded constants when p is close to 1.
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2 JUNGE AND PARCET

In the following we will write a ∼c b when 1
c ≤ a/b ≤ c. We also need an

operator-valued version of (τp) for further applications to the theory of operator
spaces. This requires the notion of independence over a given subalgebra. Let us
formally introduce the notion of ‘independent copies’ that we will work with. Given
a noncommutative probability space (A, ϕ) equipped with a normal faithful state
ϕ, a von Neumann subalgebra of A is called conditioned if it is invariant under the
action of the modular group σϕt . By Takesaki [40], this holds if and only if there
is a ϕ-invariant normal faithful conditional expectation. Let N be conditioned in
A with faithful conditional expectation EN : A → N . Let us consider two von
Neumann subalgebrasM1,M2 of A satisfying N ⊂M1∩M2. Then,M1 andM2

are called independent over N if

EN (a1a2) = EN (a1)EN (a2)

holds for all a1 ∈M1 and a2 ∈M2. Now, if (Mk)k≥1 are conditioned subalgebras
of A with N ⊂ Mk ⊂ A, we shall say that the system (Mk)k≥1 is increasingly
independent if

a)
〈
M1,M2, . . . ,Mk−1

〉
and Mk are independent over N .

We also need a technical notion. Given a von Neumann algebra M containing N
and a family of ∗-isomorphisms πk : M → Mk with N ⊂ Mk ⊂ A, we say that
(Mk)k≥1 is a system of top-subsymmetric copies of M over N if

b) πk|N = id and

EN
(
πf(1)(x1) · · ·πf(m)(xm)

)
= EN

(
πg(1)(x1) · · ·πg(m)(xm)

)
holds for all f, g : {1, 2, . . . ,m} → N satisfying
• f|{1,2,...,m}\A = g|{1,2,...,m}\A ,
• |A| ≤ 2 and A =

{
k | f(k) = max f

}
=
{
k | g(k) = max g

}
.

Of course, when no subalgebra N is specified, we shall work with N = 〈1A〉 and
EN = ϕ. Using the assumptions of conditioned subalgebras allows us to provide Lp
generalizations of the conditional expectation EN and the isomorphisms πk, see [20]
for details. Intuitively speaking, condition b) means that we are allowed to exchange
the top element in the range of f by the top element in the range of g, but only if the
top element does not occur more than once or twice. Top-subsymmetry is exactly
the technical assumption which makes the argument in [12] work. Nevertheless, as
in [12], we can consider two alternative stronger conditions:

b2) Subsymmetry : g(k) = ϕ ◦ f(k) for any strictly increasing ϕ : N→ N.

b3) Symmetry : g(k) = σ ◦ f(k) for any permutation σ of the positive integers.

It is clear that the implications below hold

Symmetry⇒ Subsymmetry⇒ Top-subsymmetry.

Example 1. Tensor product copies. Let(
Atens,M,Mk

tens,N ; EN
)

=
(
N⊗̄R⊗n ,N⊗̄R, πktens(M),N ; id⊗ ϕ⊗nR

)
where n ∈ N ∪ {∞} and the homomorphisms πktens are given by

πktens : n⊗ x ∈M 7→ n⊗ 1R ⊗ . . .⊗ 1R ⊗ x︸︷︷︸
k−th

⊗1R ⊗ . . .⊗ 1R ∈Mk
tens.

The Mk
tens’s form an independent symmetric system of copies of M over N .
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Example 2. Freely independent copies. Consider(
Afree,M,Mk

free,N ; EN
)

=
(
∗N, k (M, EN ),M, πkfree(M),N ; EN

)
,

the reduced N -amalgamated free product of (M, EN ) with EN :M→N a normal
faithful conditional expectation, see e.g. [18] for details on the construction of
reduced amalgamated free product von Neumann algebras. The isomorphism πkfree
is the canonical embedding into the k-th component of the free product Afree. The
Mk

free’s form an independent symmetric system of copies of M over N .
Our notion of noncommutative independent copies is quite general. We refer to

[21] for more examples which arise naturally in quantum probability. The first form
of our transference principle is the following.

Theorem A. Let 1 ≤ p ≤ 2 and let (Mk)k≥1 be an increasingly independent family
of top-subsymmetric copies of M over N . Then, there exists a positive constant c
independent of p and n such that

E
∥∥∥ n∑
k=1

εkπk(x)
∥∥∥
Lp(A)

∼c E
∥∥∥ n∑
k=1

εkπ
k
free(x)

∥∥∥
Lp(Afree)

.

If in addition the Mk’s are symmetric, then∥∥∥ n∑
k=1

πk(x)
∥∥∥
Lp(A)

∼c
∥∥∥ n∑
k=1

πkfree(x)
∥∥∥
Lp(Afree)

.

The second form of transference is stated below.

Theorem B. Let 1 ≤ p ≤ q ≤ ∞ and let (Mk)k≥1 be an increasingly independent
family of top-subsymmetric copies of M over N . Then, there exists a positive
constant c independent of p, q and n such that∥∥∥ n∑

k=1

πk(x)⊗ δk
∥∥∥
Lp(A;`nq )

∼c
∥∥∥ n∑
k=1

πkfree(x)⊗ δk
∥∥∥
Lp(Afree;`nq )

.

We know from [12] that Theorem A holds for p = 1. The strategy consists
of applying our technique [15, 16] to provide a complete embedding Lp → L1

which preserves independence. This is done in Section 1 and the rest of the paper
will be essentially devoted to the proof of Theorem B, which is similar in nature
but requires to adapt all the methods in [12, 15, 16]. As for Theorem A, our
strategy is to prove the result in the extremal case (p, q) = (1,∞) and show that
the general statement reduces to it. The extremal case is a consequence of Theorem
3.7, where we characterize the norm in L1(A; `n∞(R)) of increasingly independent
top subsymmetric copies for any finite dimensional von Neumann algebra R. The
reduction argument is divided in two cb-embeddings

Lp(A; `nq )→ Lp(Â; `mn∞ )→
∏

s,U
L1

(
Ms(Â)⊗ks ; `ksmn∞

)
,

both preserving independence. Note that this map takes values in an ultraproduct
of spaces of the form L1(A′; `n∞(R)), so that we are in position to apply Theorem
3.7. The second embedding might be of independent interest and will be proved
in Theorem 4.4, while the first embedding is the content of Theorem 5.3. In both
Theorems A and B, the main new difficulty relies on keeping track of independence
in the construction of the embedding.
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The drawback is that Theorems A and B only hold for independent copies. This
restriction goes back to [12]. Any progress in the non identically distributed case
would be very desirable and thus we propose the following problem:

Problem 1. Do the scalar and mixed-norm transference hold for non i.d. variables?

Now we may revisit the singularity of certain constants mentioned above. Given
2 ≤ p <∞, a probability space (Ω, µ) and f1, f2, . . . ∈ Lp(Ω) a family of mean-zero
independent random variables, Rosenthal’s classical inequality gives

(Σp)
(∫

Ω

∣∣ n∑
k=1

fk
∣∣pdµ) 1

p ∼cp max

{( n∑
k=1

‖fk‖pp
) 1
p

,
( n∑
k=1

‖fk‖22
) 1

2

}
.

As a byproduct, we obtain for 1 ≤ q ≤ p <∞

(Σpq)
(∫

Ω

( n∑
k=1

|fk|q
) p
q dµ

) 1
p ∼cp,q max

{( n∑
k=1

‖fk‖pp
) 1
p

,
( n∑
k=1

‖fk‖qq
) 1
q

}
with the fk’s not necessarily mean-zero. Indeed, the case q = 2 easily follows
from Khintchine and Rosenthal inequalities, while the general case follows from
an immediate renormalization argument. Notice that in both cases we end up
with the norm of an intersection of Banach spaces, whose dual is the sum of the
corresponding dual spaces. This simple observation produces dual inequalities for
1 < p ≤ 2 and 1 < p ≤ q ≤ ∞ as follows(∫

Ω

∣∣ n∑
k=1

fk
∣∣pdµ) 1

p ∼cp inf
fk=φk+ψk

{( n∑
k=1

‖φk‖pp
) 1
p

,
( n∑
k=1

‖ψk‖22
) 1

2

}
,

(∫
Ω

( n∑
k=1

|fk|q
) p
q dµ

) 1
p ∼cp,q inf

fk=φk+ψk

{( n∑
k=1

‖φk‖pp
) 1
p

,
( n∑
k=1

‖ψk‖qq
) 1
q

}
.

It is worth mentioning that the martingale version of Rosenthal inequality [2] was
extended to 1 < p ≤ 2 from [20] and weak type estimates for p = 1 were unknown
until [25]. On the other hand, we know from [9] that the best constant cp in
Rosenthal’s inequality behaves like p/ log p. In particular, we find for (Σp) and
(Σpq) a non-removable singularity at ∞ which is carried over to 1 by our duality
argument. The problem is to decide whether this singularity is removable —as it
happens for the Khintchine inequality— or not, either in the classical or in the
quantum setting.

A direct argument to remove it not involving duality seems out of reach by
now. Note that precise decompositions fk = φk + ψk have only been studied in
[25, 34] for martingales. However, free random variables are fortunately at our
disposal and we know from [16, 18] that the free forms of (Σp) and (Σpq) do not
have a singularity at ∞ and duality solves in that case our problem. The validity
of Khintchine and Rosenthal type inequalities in the extremal case p = ∞ is a
stamp of free probability, see [26, 38] for related results. Our transference method
in Theorems A and B solves our problem for identically distributed variables. It
is also worth mentioning that the argument requires freeness even in the classical
case with commutative fk’s!

Problem 2. Are the dual forms of (Σp) and (Σpq) singular for non i.d. variables?
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Let us comment some further applications of transference. We recall Hiai’s
construction [8] of the q-deformed analogue of Shlyakhtenko’s generalized circular
variables. Consider a complex Hilbert space H equipped with a distinguished unit
vector Ω and denote by Fq(H) the associated q-Fock space. If q = ±1, we find the
well-known Bosonic and Fermionic Fock spaces equipped with the symmetric and
antisymmetric structures. When −1 < q < 1 we follow [1] and equip it with the
q-inner product induced by〈

f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm
〉
q

= δnm
∑
π∈Sn

qi(π)〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉.

Let `q(e) and `∗q(e) stand for the creation and annihilation operators associated to
a vector e ∈ H, see [1] for precise definitions. Assume H is infinite dimensional and
separable, so that we can fix an orthonormal basis (e±k)k≥1. Given two sequences
(λk)k≥1 and (µk)k≥1 of positive numbers, set

gqk = λk`q(ek) + µk`
∗
q(e−k) and gqk,p = d

1
2p
φq
gqkd

1
2p
φq
.

The von Neumann algebra generated by the gqk’s in the GNS-construction with
respect to the vacuum state φq(·) = 〈Ω, ·Ω〉q will be denoted by Γq and represent the
q-deformed analogue of the corresponding Araki-Woods factor in the antisymmetric
case. Here dφq denotes the density of φq.

Corollary A1. Let M be a von Neumann algebra and 1 ≤ p ≤ 2. Let us consider
a finite sequence x1, x2, . . . , xn in Lp(M). Then, the following equivalences hold
for any −1 ≤ q ≤ 1 up to a constant c independent of p, q and n∥∥∥ n∑

k=1

xk ⊗ gqk,p
∥∥∥
Lp(M⊗̄Γq)

∼c inf
xk=ak+bk

∥∥∥(∑
k
λ

2
p

k µ
2
p′

k aka
∗
k

) 1
2
∥∥∥
Lp(M)

+
∥∥∥(∑

k
λ

2
p′

k µ
2
p

k b
∗
kbk

) 1
2
∥∥∥
Lp(M)

.

The weighted Khintchine type inequalities considered above were already proved
in [12, 18, 43]. The novelty of our result relies on the nonsingularity of the constants
involved. To be more precise, we explain this point with a series of remarks:

a) In the Fermionic case, Corollary A1 solves a question by Xu in [43]. More
concretely, Xu proved the weighted Fermionic Khintchine inequality for
1 < p <∞ with singularities at 1 and ∞. The singularity at ∞ is already
predicted by the classical Khintchine inequality. However, the first-named
author proved in [12] the same inequality for p = 1 applying a central limit
procedure to a Rosenthal type inequality for independent copies in L1. This
motivated Xu to ask whether the singularity at 1 was removable.

b) On the other hand, Haagerup and Musat recently used in [6] another new
argument to prove the weighted Fermionic Khintchine inequality. Their
method is not only simpler than the one in [12], but they also managed to
improve the constant up to

√
2. Unfortunately, their concrete approach in

L1 seems not to work for p > 1 and our proof uses instead the scalar-valued
version of our transference method in Theorem A, together with a central
limit procedure as in [12].
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c) In [18] Corollary A1 was proved with

cp,q ≤
( 2√

1− |q|

)|1− 2
p |

for − 1 < q < 1.

Note that q here has nothing to do with the q in (Σpq)! It was also shown
that the same bound applies for the cb-complementation constant γ(p, q) of
the subspace of Lp(Γq) generated by the generalized q-gaussians. Corollary
A1 now provides a uniform bound for cp,q as far as 1 ≤ p ≤ 2. Moreover,
by Corollary A1 and the argument in [18], we have

cp,q ∼ γ(p, q) for p ≥ 2.

The following question looks like the next step.

Problem 3. Find accurate estimates for γ(p, q) near (p, q) = (∞,±1).

Our second application has to do with some recent results on operator space Lp
embedding theory. Given 1 ≤ p < q ≤ 2 and a von Neumann algebra M, the main
result in [15, 16] is the construction of a completely isomorphic embedding of Lq(M)
into Lp(A) for some sufficiently large von Neumann algebra A, where both spaces
are equipped with their natural operator space structure. We refer to [11, 32, 43]
for some prior results. The simplest construction uses free probability techniques
and does not produce any singularity in the embedding constants. However, these
techniques are not the right ones to show the stability of hyperfiniteness. In other
words, whenever M is hyperfinite we can also take A to be hyperfinite. Under
these conditions, all the known constructions produce a singularity in the constant
η(p, q) of the cb-embedding Lq → Lp as p→ 1. We solve this by transference.

Corollary A2. Let M be hyperfinite and 1 ≤ p ≤ q ≤ 2. Then, there exists
a completely isomorphic embedding of Lq(M) into Lp(A) where both spaces are
equipped with their natural operator space structures and satisfy:

i) A is hyperfinite.
ii) The constants are independent of p, q.

So far we have provided applications of Theorem A. Our third application now
follows from Theorem B. Pisier proved in [31] that there is no possible cb-embedding
of OH into the predual of a semifinite von Neumann algebra. This was generalized
by Xu, who proved in [43] that for 1 ≤ p < q ≤ 2 we can not cb-embed Cq or Rq
into a semifinite Lp space. In particular, the same applies for

Sq = Cq ⊗h Rq.

The following result completes the previous ones by Pisier and Xu.

Corollary B. If 1 ≤ p < q ≤ 2, there is no cb-embedding of `q into semifinite Lp.

In fact, as it was pointed out by Pisier our techniques go a bit further, but that
will be explained in the body of the paper. Corollary B, together with the results by
Pisier and Xu, justify the relevance of type III von Neumann algebras in operator
space Lp embedding theory. The main tools in our argument are:

• The noncommutative form of Rosenthal theorem from [14].
• Xu’s nonembedding techniques from [43] à la Grothendieck [7, 33, 44].
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• A local cb-embedding

x ∈ Snq 7→
1

n1/q

n2∑
k=1

πktens(x)⊗ δk ∈ Lp
(
Mnn2 ; `n

2

q

)
,

with constants independent of p, q and n. This result improves a previous
one from [13], where the most natural case p = 1 was not proved and the
constant presented a singularity at 1.

1. A transference method

Given a probability space (Ω, µ), we denote the expectation by E(f) =
∫
fdµ.

We reserve the symbols (εk)k≥1 for a sequence of independent Bernoulli random
variables, i.e. Prob(εk = ±1) = 1

2 . We shall write EN for EN ◦ πk. We begin by
stating the main result in [12]. The second part is a simple refinement from [16].

Theorem 1.1. The following inequalities hold for x ∈ L1(M) :

i) If (Mk)k≥1 are independent top-subsymmetric over N , then

E
∥∥∥ n∑
k=1

εkπk(x)
∥∥∥
L1(A)

∼ inf
x=a+b+c

n‖a‖L1(M) +
√
n
∥∥EN (bb∗)

1
2
∥∥
L1(N )

+
√
n
∥∥EN (c∗c)

1
2
∥∥
L1(N )

.

ii) If moreover, EN (x) = 0 and (Mk)k≥1 are symmetric over N , then∥∥∥ n∑
k=1

πk(x)
∥∥∥
L1(A)

∼ inf
x=a+b+c

n‖a‖L1(A) +
√
n
∥∥EN (bb∗)

1
2
∥∥
L1(N )

+
√
n
∥∥EN (c∗c)

1
2
∥∥
L1(N )

.

In both cases, the relevant constants are independent of M and N .

We now give some elementary remarks on symmetric tensor products. Given
a positive integer m, the symmetric tensor product ⊗msymM is defined as the von
Neumann algebra

⊗msymM =
{∑

k
x⊗mk

∣∣ xk ∈M}wot

⊂M⊗̄m .

Let us write Sm to denote the symmetric group on {1, 2, . . . ,m}. It is easily seen
that the symmetric tensor product ⊗msymM is exactly the fix point algebra of the
conditional expectation Esym(x1 ⊗ · · · ⊗ xm) = 1

m!

∑
σ∈Sm xσ(1) ⊗ · · · ⊗ xσ(m).

Lemma 1.2. Let (Mk)k≥1 be independent top-subsymmetric copies over N :
i) The ⊗msymMk’s are independent top-subsymmetric copies over ⊗msymN .
ii) Consider the j-th coordinate homomorphisms πjtens(x) = 1⊗. . .⊗x⊗. . .⊗1

into the corresponding m-fold tensor product. Then, given a von Neumann
algebra R and x ∈ L1(M⊗̄R), the following estimate holds with constants
independent of m,n

E
∥∥∥ m∑
j=1

πjtens
( n∑
i=1

εi
[
πi⊗id

]
(x)
)∥∥∥

1
∼c E

∥∥∥ m∑
j=1

πjtens
( n∑
i=1

εi
[
πifree⊗id

]
(x)
)∥∥∥

1
.
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iii) Moreover, if EN ⊗ id(x) = 0 and the Mk’s are symmetric∥∥∥ m∑
j=1

πjtens
( n∑
i=1

[
πi ⊗ id

]
(x)
)∥∥∥

1
∼c
∥∥∥ m∑
j=1

πjtens
( n∑
i=1

[
πifree ⊗ id

]
(x)
)∥∥∥

1
.

Proof. The first assertion trivially follows from the fact that

E⊗msymN (x⊗ x⊗ · · · ⊗ x) = EN (x)⊗ EN (x)⊗ · · · ⊗ EN (x) .

To prove ii), we set

M = ⊗msym
(
M⊗R

)
,

Mk = ⊗msym
(
Mk ⊗R

)
.

Let π̂k : M→Mk given by π̂k(x⊗m) =
[
πk ⊗ id

]
(x)⊗m . Similarly, consider

π̂kfree : x⊗m ∈M 7→
[
πkfree ⊗ id

]
(x)⊗m ∈Mk

free = ⊗msym
(
Mk

free ⊗R
)
.

Let us note that
•
∑m
j=1 π

j
tens(x) ∈ L1(M).

• According to i), if we set

N = ⊗msym
(
N ⊗R

)
,

(Mk)k and (Mk
free)k are independent top-subsymmetric copies over N.

• Moreover, if we further assume that theMk’s are symmetric, it also trivially
follows that both the Mk’s and the Mk

free’s are independent symmetric
copies of M over N.

Under these conditions, we obtain from Theorem 1.1 i)

E
∥∥∥ m∑
j=1

πjtens
( n∑
i=1

εi
[
πi ⊗ id

]
(x)
)∥∥∥

1
= E

∥∥∥ n∑
i=1

εiπ̂i
( m∑
j=1

πjtens(x)
)∥∥∥

1

∼ E
∥∥∥ n∑
i=1

εiπ̂
i
free

( m∑
j=1

πjtens(x)
)∥∥∥

1

= E
∥∥∥ m∑
j=1

πjtens
( n∑
i=1

εi
[
πifree ⊗ id

]
(x)
)∥∥∥

1
.

For independent symmetric mean-zero copies we use Theorem 1.1 ii) instead. �

Proof of Theorem A. Given a complex Hilbert space H, let F−1(H) denote its
antisymmetric Fock space. Write c(e) and a(e) for the creation and annihilation
operators associated to e ∈ H. Given an orthonormal basis (e±k)k≥1 of H and a
family (µk)k≥1 of positive numbers, the sequence fk = c(ek) + µka(e−k) satisfies
the canonical anticommutation relations and we take R to be the von Neumann
algebra generated by the fk’s. Let φR be the quasi-free state on R determined by
the vacuum. With this construction, R is the Araki-Woods factor arising from the
GNS construction applied to the CAR algebra with respect to φR. In fact, using a
conditional expectation, we may replace the µk’s by a sequence (µ′k)k≥1 such that
for every rational 0 < λ < 1 there are infinitely many µ′k = λ/(1 + λ). According
to Araki and Woods, we then obtain the hyperfinite III1 factor R.
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Consider the amplification Â = A⊗̄B(`2) and assume for simplicity that A is
σ-finite. A normal strictly semifinite faithful weight ψ bA is determined by a sequence
(a net in the general case) of pairs (ψn, qn) such that

• The qn’s are increasing projections in Â with SOT− limn qn = 1.
• The ψn’s are normal positive functionals on Â with suppψn = qn.
• The (ψn, qn)’s satisfy the compatibility condition ψn+1(qnxqn) = ψn(x).

Let us write kn for the nondecreasing numbers ψn(qn) ∈ (0,∞). We refer to
Propositions 8.10, 8.19 and 8.22 of [16] for the fact that there is a normal strictly
semifinite faithful weight ψ bA with kn ∈ N and ρn ∈ L1(B(`2)⊗̄R) such that

‖a‖p ∼c lim
n→∞

∥∥a⊗ ρn∥∥K1
rc1

(ψn⊗φR)

holds for every a ∈ Lp(A) up to an absolute constant c. The coefficients ρn are
universal, i.e. do not depend on A. The specific form of ψ bA depends on the
spectrum of the operator f|∂0 7→ f|∂1 which takes the left boundary value of an
analytic function f on the strip 0 < Rez < 1 to its right boundary value, see Chapter
8 of [16] for further details. Writing ψR,n = ψn⊗φR, we know that ψR,n = knφR,n
for some non-faithful state φR,n with density dR,n, so that φR,n(x) = tr(dR,nx)
and the norm on the right takes the form

‖z‖K1
rc1

(ψn⊗φR) = inf
z=z1+d

1
2
R,nzr+zcd

1
2
R,n

kn ‖z1‖1 + k
1
2
n ‖zr‖2 + k

1
2
n ‖zc‖2.

On the other hand, we have ρn = ξn⊗γ where γ is a mean-zero element of L1(R, φR)
and ξn =

∑
i,j≤n eij ∈Mn. Indeed, see [16, Page 136 and proof of Proposition 8.10]

for the claim on γ and the proofs of [16, Lemma 8.21 and Proposition 8.22] to get
an idea of how to derive the form of ξn, see also [17] for more on this. Taking this
into account Theorem 1.1 ii) applies for N = 〈1A〉 and yields

E
∥∥∥∑

k
εkπk(x)

∥∥∥
p
∼ lim

n→∞
E
∥∥∥(∑

k
εkπk(x)

)
⊗ ρn

∥∥∥
K1
rc1

(ψn⊗φR)
(1.1)

∼ lim
n→∞

E
∥∥∥ n∑
j=1

πjtens
(∑

k
εk
[
πk ⊗ id

]
(x⊗ ρn)

)∥∥∥
1
.

Indeed, in the last step we use
• The mean-zero condition

φR,n

(∑
k
εk
[
πk ⊗ id

]
(x⊗ ρn)

)
= 0.

• The πjtens’s from Lemma 1.2 provide symmetric independent copies.
The mean-zero condition follows from the fact that γ is mean-zero in R. Now
according to Lemma 1.2 ii), we may replace πk by πkfree at the right hand side
of (1.1). This implies the first assertion calculating backwards. For the second
assertion, we first note that the argument above is also valid without random signs
whenever the Mk’s are symmetric and EN (x) = 0. In other words, we have

(1.2)
∥∥∥∑

k
πk
(
x− EN (x)

)∥∥∥
p
∼c
∥∥∥∑

k
πkfree

(
x− EN (x)

)∥∥∥
p
.

Indeed, we just need to argue as we did above and use Lemma 1.2 iii) for mean-zero
symmetric copies. In the general case, we may assume by approximation that only
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finitely many πk’s are considered. Then we have∥∥∥ n∑
k=1

πk(x)
∥∥∥
p
≤

∥∥∥ n∑
k=1

πk
(
x− EN (x)

)∥∥∥
p

+
∥∥∥ n∑
k=1

πk
(
EN (x)

)∥∥∥
p

=
∥∥∥ n∑
k=1

πk
(
x− EN (x)

)∥∥∥
p

+
∥∥∥ n∑
k=1

πkfree
(
EN (x)

)∥∥∥
p

∼c
∥∥∥ n∑
k=1

πkfree
(
x− EN (x)

)∥∥∥
p

+
∥∥∥ n∑
k=1

πkfree
(
EN (x)

)∥∥∥
p
.

We have used (1.2) and the invariances

πk|N = πkfree|N
= id.

Moreover, using EN = EN ◦ πkfree we find πkfree ◦ EN = EN ◦ πkfree and∥∥∥ n∑
k=1

πk(x)
∥∥∥
p
.c
∥∥∥ n∑
k=1

πkfree(x)
∥∥∥
p

+ 2
∥∥∥EN ( n∑

k=1

πkfree(x)
)∥∥∥
p
≤ 3
∥∥∥ n∑
k=1

πkfree(x)
∥∥∥
p
.

The reverse inequality follows similarly. �

Remark 1.3. If we allow the constant to be dependent on p, Theorem A holds
for 1 < p < ∞ and not only for copies. Indeed, this follows directly from the
noncommutative Rosenthal inequality [21]. As in the classical case, we don’t have
a uniform constant cp as p→∞. On the other hand, we know from Claus Köstler
[22] that the symmetry assumption in the second assertion of Theorem A can be
replaced by the weaker notion of subsymmetric copies defined in the Introduction.

Remark 1.4. Let M be a finite von Neumann algebra equipped with a faithful
normal trace τ and let u1, u2, . . . , un ∈ M be unitaries. We claim that the inequality
below holds for 1 ≤ p ≤ 2, independent top-subsymmetric copies and constants
independent of p

E
∥∥∥ n∑
k=1

εkπk(x)⊗ uk
∥∥∥
Lp(A⊗̄M)

(1.3)

∼c inf
x=a+b+c

n
1
p ‖a‖Lp(M) +

√
n
∥∥EN (bb∗)

1
2
∥∥
Lp(N )

+
√
n
∥∥EN (c∗c)

1
2
∥∥
Lp(N )

.

Indeed, the case p = 1 is a more general version of Theorem 1.1 that was already
considered in [12]. Moreover, it can be easily checked that our arguments in Lemma
1.2 and Theorem A are stable under taking tensors with arbitrary unitaries, as far
as we work with this refinement of Theorem 1.1. This gives

E
∥∥∥∑

k
εkπk(x)⊗ uk

∥∥∥
Lp(A⊗̄M)

∼c E
∥∥∥∑

k
εkπ

k
free(x)⊗ uk

∥∥∥
Lp(A⊗̄M)

.

If we now combine it with the free Rosenthal inequality from [18]

E
∥∥∥ n∑
k=1

εkπ
k
free(xk)

∥∥∥
Lp(A)

∼c inf
xk=ak+bk+ck

( n∑
k=1

‖ak‖pp
) 1
p

+
∥∥∥( n∑

k=1

EN (bkb∗k)
) 1

2

∥∥∥
p

+
∥∥∥( n∑

k=1

EN (c∗kck)
) 1

2

∥∥∥
p
,
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we easily end up with (1.3). This is a form of the noncommutative Rosenthal
inequality [21] for independent top-subsymmetric copies with no singularity at p = 1
and will be instrumental in the following paragraph.

Proof of Corollary A1. Inequality (1.3) implies the assertion by a central limit
procedure which allows us to pass from the three terms in Rosenthal inequality to
the two terms in the assertion. The argument for the particular case p = 1 was
given in Section 8 of [12]. The case 1 < p ≤ 2 just requires simple modifications
that we leave to the reader. �

Proof of Corollary A2. The construction in [16] is sketched as follows

Lq(M)
(α)−→

(
Hr2p′,2(M, θ)⊗M,h Hc2p′,2(M, θ)

)
∗

(β)−→ Kprcp(φ⊗ ψ ⊗ ξ) (γ)−→ Lp(A).

We now review the cb-embeddings (α), (β) and (γ) in some detail to identify where
the singularity appears. It will happen once in (β) and once in (γ). However,
in both cases our version (1.3) of the noncommutative Rosenthal inequality for
independent copies —no need of unitaries this time— will allow us to remove the
singularity. Namely, the embedding (α) generalizes the so-called ‘Pisier’s exercise’
to embed the Schatten class Sq = Cq ⊗h Rq into an operator space of the form(

Cp ⊕OH
)
/graph(Λ1)⊥ ⊗h

(
Rp ⊕OH

)
/graph(Λ2)⊥,

see [15, 43] for further details. When working with general von Neumann algebras
this requires to encode complex interpolation in terms of certain spaces of analytic
functions. This follows from the factorization

Lq(M) = Lr2q(M)⊗M,h L
c
2q(M),

Proposition 8.19 in [16] and duality. It turns out that the constants are independent
of p, q at this step. Moreover, a more convenient way to write the space between
(α) and (β) is by means of a 4-term sum Kp,2(ψ, ξ), with ψ and ξ normal strictly
semifinite faithful weights onM and B(`2) respectively, see Proposition 2.22 of [16]
for further details. The space Kp,2(ψ ⊗ ξ) arises from a direct limit

Kp,2(ψ ⊗ ξ) =
⋃
n≥1

Kp,2(ψn ⊗ ξn),

where ψn, ξn are the restrictions of ψ, φ to certain increasing sequences of finite
projections. If ψn ⊗ ξn = knφn with φn a state supported by the projection qn, it
turns out that

Kp,2(ψn ⊗ ξn) =
∑

u,v∈{2p,4}

k
1
u+ 1

v
n L(u,v)(qn(M⊗̄B(`2))qn).

The definition of asymmetric L(u,v) spaces is recalled in Section 2 below. On the
other hand, the space Kprcp(φ⊗ψ⊗ ξ) is also the direct limit of an increasing family
of 3-term sums

Kprcp(ψ ⊗ φ⊗ ξ) =
⋃
n≥1

Kprcp(ψn ⊗ φ⊗ ξn),

where φ is the quasi-free state φR in the proof of Theorem A above. The complete
embedding Kp,2(ψn ⊗ ξn)→ Kprcp(ψn ⊗ φ⊗ ξn) holds up to constants independent
on n, see Proposition 8.10 in [16]. The main ingredient in the argument is the
noncommutative Rosenthal inequality for independent copies in Lp. Equipped with
(1.3), we may now provide a universal constant valid for any 1 ≤ p ≤ 2. Thus
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the embedding (β) holds up to constants independent of p. Let us consider the
embedding (γ). Its construction is given in [16, Theorem 8.11]. The idea is to
construct cb-embeddings of Kprcp(ψn ⊗ φ⊗ ξn) for each n ≥ 1, so that we can take
direct limits and hyperfiniteness is preserved. The main tool is a noncommutative
Poisson process, an algebraic construction that has nothing to do with constants.
Therefore the problem reduces to cb-embed Kprcp(ψn⊗φ⊗ξn) into Lp(An). A quick
look at [16, Theorem 8.11] shows that the only point where the singularity appears
is once more from the use of noncommutative Rosenthal inequality for independent
copies. Hence, Theorem A applies and produces (1.3), implying the assertion. �

Remark 1.5. According to [15, 16], the assertion in Corollary A2 also holds with
Lq(M) replaced by any operator space of the form X1 ⊗h X2, with X1 a quotient
of a subspace of R⊕OH and X2 a quotient of a subspace of C ⊕OH.

2. Mixed-norms of free variables

In this section we recall several results from [16] for the convenience of the reader.
The main result is a variation of the free Rosenthal inequality from [18] which will
be instrumental in the course of our argument. The correct formulation involves
certain noncommutative function spaces.

2.1. Conditional Lp spaces. Inspired by Pisier’s theory [29] of noncommutative
vector-valued Lp spaces, several noncommutative function spaces have been recently
introduced in quantum probability. The first insight came from some of Pisier’s
fundamental equalities which we briefly review. Let N1,N2 be hyperfinite von
Neumann algebras. Given 1 ≤ p, q ≤ ∞, we define 1/r = |1/p− 1/q|. If p ≤ q, the
norm of x ∈ Lp(N1;Lq(N2)) is given by

inf
{
‖α‖L2r(N1)‖y‖Lq(N1⊗̄N2)‖β‖L2r(N1)

∣∣ x = αyβ
}
.

If p ≥ q, the norm of x ∈ Lp(N1;Lq(N2)) is given by

sup
{
‖αxβ‖Lq(N1⊗̄N2)

∣∣ α, β ∈ BL2r(N1)

}
.

The hyperfiniteness is an essential assumption in [29]. However, when dealing
with mixed Lp(Lq) norms, Pisier’s identities remain true for general von Neumann
algebras, see [10, 21]. On the other hand, given any von Neumann algebra M, the
row and column subspaces of Lp are defined as follows

Rnp (Lp(M)) =
{ n∑
k=1

xk ⊗ e1k

∣∣ xk ∈ Lp(M)
}
⊂ Lp

(
M⊗̄B(`2)

)
,

Cnp (Lp(M)) =
{ n∑
k=1

xk ⊗ ek1

∣∣ xk ∈ Lp(M)
}
⊂ Lp

(
M⊗̄B(`2)

)
,

where (eij) denotes the unit vector basis of B(`2). These spaces are crucial in the
noncommutative Khintchine/Rosenthal type inequalities and in noncommutative
martingale inequalities, where the row and column spaces are traditionally denoted
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by Lp(M; `r2) and Lp(M; `c2). The norm in these spaces is given by∥∥∥ n∑
k=1

xk ⊗ e1k

∥∥∥
Rnp (Lp(M))

=
∥∥∥( n∑

k=1

xkx
∗
k

) 1
2
∥∥∥
Lp(M)

,

∥∥∥ n∑
k=1

xk ⊗ ek1

∥∥∥
Cnp (Lp(M))

=
∥∥∥( n∑

k=1

x∗kxk

) 1
2
∥∥∥
Lp(M)

.

In what follows we write Rnp (Lp(M)) = Lp(M;Rnp ) and Cnp (Lp(M)) = Lp(M;Cnp ).
Now, let us assume that N is a von Neumann subalgebra of M and that there

exists a normal faithful conditional expectation EN :M→N . Then we may define
Lp norms of the conditional square functions( n∑

k=1

EN (xkx∗k)
) 1

2
and

( n∑
k=1

EN (x∗kxk)
) 1

2
.

These norms must be properly defined for 1 ≤ p ≤ 2, see [10] or [16, Chapter 1].
The resulting spaces coincide with the row/column spaces above if N is M itself.
When n = 1 we recover the spaces Lrp(M,E) and Lcp(M,E) from [10].

We have already introduced Lp(Lq) spaces, row and column subspaces of Lp
and some variations associated to a given conditional expectation. All the norms
considered so far fit into more general noncommutative function spaces —for not
necessarily hyperfinite von Neumann algebras— which we now define. Consider the
solid K in R3 determined by

K =
{

(1/u, 1/v, 1/q)
∣∣ 2 ≤ u, v ≤ ∞, 1 ≤ q ≤ ∞, 1/u+ 1/q + 1/v ≤ 1

}
.

Let N be a conditioned subalgebra ofM and take 1/p = 1/u+ 1/q+ 1/v for some
(1/u, 1/v, 1/q) ∈ K. Then we define the amalgamated Lp space associated to the
indices (u, q, v) as the subspace Lu(N )Lq(M)Lv(N ) of Lp(M) equipped with the
norm

inf
{
‖α‖Lu(N )‖y‖Lq(M)‖β‖Lv(N )

∣∣ x = αyβ
}
,

where the infimum runs over all possible factorizations x = αyβ with (α, y, β)
belonging to Lu(N )×Lq(M)×Lv(N ). Let us now fix (1/u, 1/v, 1/p) ∈ K and take
1/s = 1/u+ 1/p+ 1/v. Then we define the conditional Lp space associated to the
indices (u, v) as the completion L−1

u (N )Ls(M)L−1
v (N ) of Lp(M) with respect to

the norm
sup

{
‖αxβ‖Ls(M)

∣∣ ‖α‖Lu(N ), ‖β‖Lv(N ) ≤ 1
}
.

Both, amalgamated and conditional Lp spaces, where introduced in [16] and we refer
to that paper for a more detailed exposition. It should also be noticed that our
terminology L−1

u (N )Ls(M)L−1
v (N ) for conditional Lp spaces is different from the

one used in [16]. Now we collect the complex interpolation and duality properties
of amalgamated and conditional Lp spaces from [16]. Our interpolation identities
generalize some previous results by Pisier [28] and recently by Xu [42].
Let K0 denote the interior of K. Then we have:

a) Lu(N )Lq(M)Lv(N ) is a Banach space.
b) Luθ (N )Lqθ (M)Lvθ (N ) is isometrically isomorphic to[

Lu0(N )Lq0(M)Lv0(N ), Lu1(N )Lq1(M)Lv1(N )
]
θ
,
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with ( 1
uθ
, 1
qθ
, 1
vθ

) = ( 1−θ
u0

+ θ
u1
, 1−θ
q0

+ θ
q1
, 1−θ
v0

+ θ
v1

).

c) If (1/u, 1/v, 1/q) ∈ K0 and 1− 1/p = 1/u+ 1/q + 1/v(
Lu(N )Lq(M)Lv(N )

)∗ = L−1
u (N )Lq′(M)L−1

v (N ),(
L−1
u (N )Lq′(M)L−1

v (N )
)∗ = Lu(N )Lq(M)Lv(N ),

with respect to the antilinear duality bracket 〈x, y〉 = tr(x∗y). A natural
way to read the first identity (the second one is its dual) is to say that the
dual of the amalgamated Lp′ space associated to (u, v) is the conditional
Lp space associated to (u, v), since

1/p′ = 1/u+ 1/q + 1/v and 1/p = 1/q′ − 1/u− 1/v.

We refer the reader to Part I of [16] for some refinements of these results.

2.2. A variant of free Rosenthal’s inequality. In this paragraph we formulate
the free analogue of inequality (Σpq) in the Introduction and its dual. To be precise,
we shall work for convenience with i.d. variables. In that case, it is easily checked
that (Σpq) provides a natural way to realize the space

J np,q(Ω) = n
1
pLp(Ω) ∩ n

1
qLq(Ω)

as an isomorph of a subspace of Lp(Ω; `nq ). Quite surprisingly, replacing in (Σpq)
independent variables by matrices of independent variables requires to intersect four
spaces using the so-called asymmetric Lp spaces. This phenomenon was discovered
for the first time in [13] and is partly motivated by the isometry Lp = L2pL2p

meaning that the p-norm of f is the infimum of ‖g‖2p‖h‖2p over all factorizations
f = gh. Namely, if Lr2p and Lc2p denote the row and column quantizations of L2p

determined by definition (2.2) below, the operator space analogue of this isometry
is given by the complete isometry Lp = Lr2pL

c
2p, see below for further details. This

leads us to redefine J np,q as

J np,q =
(
n

1
2pLr2p ∩ n

1
2qLr2q

)(
n

1
2pLc2p ∩ n

1
2qLc2q

)
.

According to [16], we find

(2.1) J np,q = n
1
pLr2pL

c
2p ∩ n

1
2p+ 1

2qLr2pL
c
2q ∩ n

1
2q+ 1

2pLr2qL
c
2p ∩ n

1
qLr2qL

c
2q.

These spaces will be rigorously defined below. Our only aim here is to motivate
the forthcoming results and definitions. Let us now see how the space in (2.1)
generalizes our first definition of J np,q(Ω). On the Banach space level we have the
isometries Lr2pL

c
2q = Ls = Lr2qL

c
2p with 1/s = 1/2p + 1/2q. Moreover, again by

Hölder inequality it is clear that

n
1
s ‖f‖s ≤ max

{
n

1
p ‖f‖p, n

1
q ‖f‖q

}
and the two cross terms in (2.1) disappear. However, in the category of operator
spaces the four terms have a significant contribution. The operator space/free
version of (Σpq) is the main result in [16], and goes further than its commutative
counterpart. More precisely, in contrast with the classical case, we find a right
formulation for (Σ∞q). Indeed, as for Khintchine and Rosenthal inequalities, the
limit case as p→∞ holds when replacing independence by freeness.
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Now we give detailed definitions and results. Let us write Lr2(M) and Lc2(M) for
the row/column quantizations of L2(M) and let 2 ≤ q ≤ ∞. Then, the row/column
structures on Lq(M) are defined as follows

(2.2)
Lrq(M) =

[
M, Lr2(M)

]
2
q

,

Lcq(M) =
[
M, Lc2(M)

]
2
q

.

In fact, a rigorous definition should take Kosaki’s embeddings into account as done
in [16, Identity (1.3)], but we shall ignore such formalities. Now, if 2 ≤ u, v ≤ ∞
and 1/p = 1/u + 1/v for some 1 ≤ p ≤ ∞, we define the asymmetric Lp space
associated to the pair (u, v) as the M-amalgamated Haagerup tensor product

(2.3) L(u,v)(M) = Lru(M)⊗M,h L
c
v(M).

That is, we consider the quotient of Lru(M) ⊗h Lcv(M) by the closed subspace
I generated by the differences x1γ ⊗ x2 − x1 ⊗ γx2 with γ ∈ M. By a well
known factorization argument the norm of an element x in L(u,v)(M) is given by
‖x‖(u,v) = infx=αβ ‖α‖Lu(M)‖β‖Lv(M), see Lemma 1.9 in [16].

• If M = Mm, the space in (2.3) reduces to Sm(u,v) = Cmu/2 ⊗h R
m
v/2.

• We have a cb-isometry Lp(M) = L(2p,2p)(M), see [16, Remark 7.5].
Let 1 ≤ q ≤ p ≤ ∞. According to the discussion which led to (2.1), we know

how the general aspect of J np,q(M) should be. Now, equipped with asymmetric Lp
spaces we obtain a factorization of noncommutative Lp spaces in the right way:

J np,q(M) =
⋂

u,v∈{2p,2q}

n
1
u+ 1

v L(u,v)(M).

If we take

Mm = Mm(M) and Em = idMm ⊗ ϕ :Mm →Mm

for m ≥ 1 and define
1
r

=
1
q
− 1
p

and
1

γ(u, v)
=

1
u

+
1
p

+
1
v
,

we have an isometry

(2.4) Smp
(
J np,q(M)

)
=

⋂
u,v∈{2r,∞}

n
1

γ(u,v) L−1
u (Mm)Lγ(u,v)(Mm)L−1

v (Mm).

The proof can be found in [16]. Let N be a conditioned subalgebra of M with
corresponding conditional expectation EN :M→N . According to (2.4), we define
the J -spaces

J np,q(M, EN ) =
⋂

u,v∈{2r,∞}

n
1

γ(u,v) L−1
u (N )Lγ(u,v)(M)L−1

v (N ).

The isometry (2.4) shows us the way to follow. The philosophy is that complete
boundedness arises from amalgamation, see [15, 16]. Indeed, instead of working
with the o.s.s. of the spaces J np,q(M), it suffices to argue with the Banach space
structure of the more general spaces J np,q(M, EN ). In this spirit, for 1 ≤ q ≤ p ≤ ∞
we set 1/r = 1/q − 1/p and introduce the spaces

Rn2p,q(M, EN ) = n
1
2p L2p(M) ∩ n

1
2q L−1

2r (N )L2q(M)L−1
∞ (N ),
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Cn2p,q (M, EN ) = n
1
2p L2p(M) ∩ n

1
2q L−1

∞ (N )L2q(M)L−1
2r (N ).

Remark 2.1. The notion ofM-amalgamated Haagerup tensor product X1⊗M,hX2

extends naturally to any pair (X1,X2) of operator spaces such that X1 containsM
as a right ideal and X2 does it as a left ideal. We shall write X1⊗MX2 to denote the
underlying Banach space structure of X1 ⊗M,h X2. According to the definition of
the Haagerup tensor product and recalling the isometric embeddings Xj ⊂ B(Hj),
we have

‖x‖X1⊗MX2 = inf
{∥∥∥(∑

k
x1kx

∗
1k

)1/2∥∥∥
B(H1)

∥∥∥(∑
k
x∗2kx2k

)1/2∥∥∥
B(H2)

}
,

where the infimum runs over all possible decompositions of x+ I into a finite sum

x =
∑

k
x1k ⊗ x2k + I.

This uses the o.s.s. of Xj since row/column square functions live in B(Hj) but not
necessarily in Xj . Therefore, if X1 is stable under row square functions (finite sums)
and X2 is stable under column square functions, no o.s.s. on the Xj ’s is needed to
define X1 ⊗M X2. In particular, we may consider the Banach space

Rn2p,q(M, EN )⊗M Cn2p,q(M, EN ).

In what follows, we might abuse of the terminology by writing X1 ⊗M,h X2 for the
space X1⊗MX2. If that happens, it will be clear what space do we mean from the
context. The reader can find some of the basic properties of this construction in
[16, Chapters 6 and 7].

Remark 2.2. The cb-isometry

X1 ⊗M,h X2 =
(
X1 ⊗h Rm

)
⊗Mm(M),h

(
Cm ⊗h X2

)
reflects the behavior of row/column operator spaces with respect to amalgamated
tensor products and it is a key property that we will be using along the paper.
Indeed, it suffices to understand that

dimRm ⊗Mm,h Cm = 1,

which follows from the fact that e1i ⊗ ej1 ∼ δije11 ⊗ e11 where ∼ refers to the
equivalence relation imposed by the quotient of amalgamation. These equivalences
can be easily justified by the reader.

The isomorphisms below are the key results in [16]:
a) If 1 ≤ q ≤ p ≤ ∞, we have

J np,q(M, EN ) ' Rn2p,q(M, EN )⊗M Cn2p,q(M, EN ).

b) If 1 ≤ p ≤ ∞ and 1/q = 1− θ + θ/p, we have

J np,q(M, EN ) '
[
J np,1(M, EN ),J np,p(M, EN )

]
θ
.

Moreover, in all cases the involved relevant constants are independent of n.

Remark 2.3. It is worth mentioning that the constants for

J np,q(M, EN ) '
[
J np,1(M, EN ),J np,p(M, EN )

]
θ

obtained in [16, Theorem 7.2] have a singularity when (p, q) ∼ (∞, 1). To be more
explicit, for q small and p large we obtain a constant cp,q ∼ (p− q)/(pq+ q−p) and
the same singularity appears in Theorem 2.4 below. However, the assertion in such
theorem holds for the extremal values (p, q) = (∞, 1) and the singularity seems
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to be removable. It appears as a byproduct of the noncommutative Burkholder
inequality, which is used in the argument, see [16, Remark 7.11]. Fortunately, our
construction of operator space Lp embeddings in [15, 16] only uses Theorem 2.4 for
q = 2 and no singularity occurs in that case.

In what follows, we shall also need to work with the predual space of J np,q(M, EN )
which is defined as follows. Given 1 ≤ p ≤ q ≤ ∞, let us consider the index
1
r = 1

p −
1
q and the coefficient ρ(u, v) determined by 1

ρ(u,v) = 1
p −

1
u −

1
v . Then, we

define the space

Knp,q(M, EN ) =
∑

u,v∈{2r,∞}

n
1

ρ(u,v)Lu(N )Lρ(u,v)(M)Lv(N ).

The antilinear bracket 〈x, y〉n = n tr(xy∗) gives Knp,q(M, EN )∗ = J np′,q′(M, EN ),
see [16, Remark 7.4]. As for the J -spaces, we shall write Knp,q(M) to denote the
space Knp,q(M, EN ) with (N , EN ) = (〈1M〉, ϕ). Having defined the noncommutative
forms of our J and K spaces, we can now state the free analog of (Σpq) and its
dual from [16]. It is fortunate that in the free case a more general statement holds
not requiring copies.

Theorem 2.4. If 1 ≤ p ≤ q ≤ ∞, the maps
n∑
k=1

xk ⊗ δk ∈ K1
p,q

(
`n∞(M),

1
n

n∑
k=1

EN
)
7→

n∑
k=1

πkfree(xk)⊗ δk ∈ Lp(Afree; `nq )

n∑
k=1

xk ⊗ δk ∈ J 1
p′,q′

(
`n∞(M),

1
n

n∑
k=1

EN
)
7→

n∑
k=1

πkfree(xk)⊗ δk ∈ Lp′(Afree; `nq′)

are isomorphisms with complemented range and constants independent of n. In
particular, considering the restriction to the diagonal subspaces x1 = x2 = . . . = xn
we obtain isomorphisms

x ∈ Knp,q(M, EN ) 7→
n∑
k=1

πkfree(x)⊗ δk ∈ Lp(Afree; `nq ),

x ∈ J np′,q′(M, EN ) 7→
n∑
k=1

πkfree(x)⊗ δk ∈ Lp(Afree; `nq ),

with complemented range and constants independent of n. Moreover, replacing
(M,N , EN ) by (Mm(M),Mm, idMm

⊗ ϕ), we obtain complete isomorphisms with
completely complemented ranges and constants independent of n

x ∈ Knp,q(M) 7→
n∑
k=1

πkfree(x)⊗ δk ∈ Lp(Rfree; `nq ),

x ∈ J np′,q′(M) 7→
n∑
k=1

πkfree(x)⊗ δk ∈ Lp(Rfree; `nq ).

Rfree stands for the non-amalgamated free product (M, ϕ) ∗ (M, ϕ) ∗ · · · ∗ (M, ϕ).

Sketch of the proof. It clearly suffices to prove the first assertion. Since the
J npq-spaces form an interpolation scale, as observed in Remark 2.3, the same holds
for Knpq by duality. On the other hand, the spaces Lp(Afree; `nq ) are particular
examples of amalgamated or conditional Lp spaces (according to the value of p and
q) and hence also form an interpolation scale. This is well-known for hyperfinite
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algebras through Pisier’s work, but note that the free product are in general not
hyperfinite. It suffices to show the extremal cases. The case p = q is trivial, while
the argument for the map J 1

p′,1 → Lp′(`n1 ) is essentially contained in [13]. Indeed,
using ∥∥∥ n∑

k=1

xk ⊗ δk
∥∥∥
Lp(Afree;`n1 )

= inf
xk=akbk

∥∥∥( n∑
k=1

aka
∗
k

) 1
2

∥∥∥
p

∥∥∥( n∑
k=1

b∗kbk
) 1

2

∥∥∥
p
,

see e.g. [10], the norm estimate for J 1
p′,1 boils down to∥∥∥(∑

k

πkfree(xk)πkfree(xk)∗
) 1

2

∥∥∥
p
.
( n∑
k=1

‖xk‖2p2p
) 1

2p
+
∥∥∥( n∑

k=1

EN (xkx∗k)
) 1

2

∥∥∥
2p

(2.5)

and its column version. Equation (2.5) follows from the free Rosenthal inequality
[18], see [16, Corollary 5.3]. It is important to recall that, in contrast to the free
Rosenthal inequality, we do not require the xk’s to be mean-zero in (2.5). The
combination of (2.5) with J np,q(M, EN ) ' Rn2p,q(M, EN )⊗MCn2p,q(M, EN ) gives rise
to the boundedness of J 1

p′,1 → Lp′(`n1 ). By interpolation, we deduce that J 1
p′,q′ →

Lp′(`nq′) is bounded. By duality, see the argument in [13], the boundedness of the
inverse and the fact that the range is complemented follows from the boundedness of
the map K1

pq → Lp(`nq ). This is even easier and follows from algebraic considerations
that can be found in [13, Proposition 3.5]. The proof is complete. �

Remark 2.5. Several remarks are in order:
i) The first result of this kind appeared in [13], where tensor independence

played the role of freeness and amalgamation was not considered. According
to the classical theory, we found in this case a non-removable singularity
as p → ∞. Then, the duality argument produces a singularity as p → 1.
As a byproduct of our methods, we shall show in this paper that this
singularity is removable. A key point for it is to observe that, in the free
setting considered in Theorem 2.4, we only find a (apparently removable)
singularity when (p, q)→ (1,∞) simultaneously.

ii) The variables πkfree(xk) are replaced by πkfree(xk,−xk) in the formulation
of Theorem 2.4 given in [16]. This was done to create mean-zero random
variables, a necessary condition for the free Rosenthal inequality [18]. In
(2.5) mean-zero random variables are not required and this simplifies our
embedding.

iii) The simpler formulation in [13] allowed us to take values in an arbitrary
operator space X. In the framework of Theorem 2.4, this requires some
additional insight that will be analyzed in a forthcoming paper.

3. Sums of independent copies in L1(`∞)

Let (Mk)k≥1 be an increasingly independent family of top-subsymmetric copies
of the von Neumann algebraM overN . Let us also consider a σ-finite von Neumann
algebra R equipped with a normal faithful state φ. Given x ∈ L1(M)⊗R, we want
to study sums of independent copies in L1(A; `∞(R)). According to Section 2, we
know that∥∥∥ n∑

k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

= inf
πk(x)=αykβ

‖α‖L2(A)

(
sup

1≤k≤n
‖yk‖A⊗̄R

)
‖β‖L2(A).
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On the other hand, we have the following formula for any z ∈M⊗̄L1(R)

(3.1) ‖z‖L∞(M;L1(R)) = inf
{∥∥∥(∑

k
EM(aka∗k)

) 1
2
∥∥∥
M

∥∥∥(∑
k
EM(b∗kbk)

) 1
2
∥∥∥
M

}
where the infimum runs over all decompositions of z into a finite sum

∑
k akbk and

EM :M⊗̄R →M is the conditional expectation EM = id⊗ φ. Indeed, recall that
the term on the right is the norm of z in

Lr∞(M⊗̄R; EM)⊗M⊗̄R Lc∞(M⊗̄R; EM).

Then, since the following identifications clearly hold

Lr∞(M⊗̄R; EM) = L−1
2 (M)L2(M⊗̄R)L−1

∞ (M),

Lc∞(M⊗̄R; EM) = L−1
∞ (M)L2(M⊗̄R)L−1

2 (M),

we deduce that we are talking about the norm of z in

L−1
2 (M)L2(M⊗̄R)L−1

∞ (M)⊗M⊗̄R L−1
∞ (M)L2(M⊗̄R)L−1

2 (M).

In these terms, it is clear that (3.1) follows from [16, Proposition 6.9] after taking
(M,N ) there to be our pair (M⊗̄R,M), recall one more time that our terminology
for conditional Lp spaces is different from the one used in [16]. Given λ > 0, we
also define the spaces

Rλ∞,1(M, EN ) = M ∩
√
λL−1

2 (N )L2(M)L−1
∞ (N ),

Cλ∞,1(M, EN ) = M ∩
√
λL−1
∞ (N )L2(M)L−1

2 (N ).

According to [16], the norm on these spaces has the form

‖α‖Rλ∞,1(M,EN ) = max
{
‖α‖M,

√
λ
∥∥EN (αα∗)

1
2
∥∥
N

}
,

‖β‖ Cλ∞,1(M,EN ) = max
{
‖β‖M,

√
λ
∥∥EN (β∗β)

1
2
∥∥
N

}
.

Of course, when λ = n we recover the spaces Rn∞,1(M, EN ) and Cn∞,1(M, EN ) from
the previous section. Now we want to consider the corresponding J -space with
values in L1(R)

J λ∞,1
(
M, EN ;L1(R)

)
= Rλ∞,1(M, EN )⊗M L∞

(
M;L1(R)

)
⊗M Cλ∞,1(M, EN ).

Note that both Rλ∞,1(M, EN ) and Cλ∞,1(M, EN ) coincide algebraically with M
itself. Thus, the norm in J λ∞,1

(
M, EN ;L1(R)

)
of an element z in the dense subspace

M⊗ L1(R) is given by

‖z‖J λ∞,1(M,EN ;L1(R)) = inf
z=αyβ

‖α‖Rλ∞,1(M,EN )‖y‖L∞(M;L1(R))‖β‖Cλ∞,1(M,EN ).

When no confusion can arise, we shall write J λ∞,1(L1(R)).

Lemma 3.1. We have

‖z‖J λ∞,1(L1(R)) ∼ max
{
‖z‖L∞(M;L1(R)),

√
λ inf
z=αy

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R)),

√
λ inf
z=yβ

‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N ,

λ inf
z=αyβ

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N

}
.
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Moreover, the relevant constants are independent of λ.

Proof. The argument can be found in Chapter 6 of [16], see Lemma 6.3. �

Once we have introduced the key spaces, we are ready for some preliminary
estimates. In what follows, we shall assume that z is an element in J λ∞,1(L1(R))
and we shall work with a factorization z = αyβ with

max
{
‖α‖M,

√
λ
∥∥EN (αα∗)

1
2
∥∥
N

}
‖y‖L∞(M;L1(R)) max

{
‖β‖M,

√
λ
∥∥EN (β∗β)

1
2
∥∥
N

}
being ≤ ‖z‖J λ∞,1(L1(R)) + ε for small ε. Let a =

√
1− αα∗, b =

√
1− β∗β and

Ak = π1(a)π2(a) · · ·πk−1(a) , Bk = πk−1(b) · · ·π2(b)π1(b).

Lemma 3.2. We have∥∥∥ n∑
k=1

Akπk(z)Bk ⊗ δk
∥∥∥
L∞(A;`n1 (L1(R)))

≤ ‖y‖L∞(M;L1(R)).

Proof. We claim that∥∥∥ n∑
k=1

αkykβk ⊗ δk
∥∥∥
L∞(A;`n1 (L1(R)))

≤
∥∥∥( n∑

k=1

αkα
∗
k

) 1
2

∥∥∥
A

(
sup

1≤k≤n
‖yk‖L∞(A;L1(R))

)∥∥∥( n∑
k=1

β∗kβk
) 1

2

∥∥∥
A
.

Indeed, if (α, β) =
(∑

k αkα
∗
k,
∑
k β
∗
kβk
)
, we find vk, wk ∈ A with

• αk = α
1
2 vk and βk = wkβ

1
2 ,

• max
{∥∥∑

k
vkv
∗
k

∥∥
A,
∥∥∑

k
w∗kwk

∥∥
A

}
≤ 1.

Since L∞(A; `n1 (L1(R))) is an A-bimodule, it suffices to show∥∥∥ n∑
k=1

vkykwk ⊗ δk
∥∥∥
L∞(A;`n1 (L1(R)))

≤ sup
1≤k≤n

‖yk‖L∞(A;L1(R)).

Factorize yk =
∑
s aksbks in such a way that

max
{∥∥∥∑

s
EA(aksa∗ks)

∥∥∥
A
,
∥∥∥∑

s
EA(b∗ksbks)

∥∥∥
A

}
≤ ‖yk‖L∞(A;L1(R)) + ε.

In particular, we may factorize vkykwk =
∑
s vkaksbkswk to deduce the estimate∥∥∥ n∑

k=1

vkykwk ⊗ δk
∥∥∥
L∞(A;`n1 (L1(R)))

≤
∥∥∥∑

k,s
EA
(
vkaksa

∗
ksv
∗
k

)∥∥∥ 1
2

A

∥∥∥∑
k,s

EA
(
w∗kb

∗
ksbkswk

)∥∥∥ 1
2

A

≤
∥∥∥∑

k
vkv
∗
k

∥∥∥ 1
2

A

(
sup

1≤k≤n
‖yk‖L∞(A;L1(R)) + ε

) ∥∥∥∑
k

w∗kwk

∥∥∥ 1
2

A

≤ sup
1≤k≤n

‖yk‖L∞(A;L1(R)) + ε.

This proves our claim if we let ε→ 0+. Applying it for

(αk, yk, βk) =
(
Akπk(α), πk(y), πk(β)Bk

)
,
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gives rise to∥∥∥ n∑
k=1

Akπk(z)Bk ⊗ δk
∥∥∥
L∞(A;`n1 (L1(R)))

≤
∥∥∥( n∑

k=1

Akπk(αα∗)A∗k
) 1

2

∥∥∥
A
‖y‖L∞(M;L1(R))

∥∥∥( n∑
k=1

B∗kπk(β∗β)Bk
) 1

2

∥∥∥
A
.

Therefore, the assertion follows from∥∥∥∑
k
Akπk(αα∗)A∗k

∥∥∥
A
≤ 1 and

∥∥∥∑
k

B∗kπk(β∗β)Bk
∥∥∥
A
≤ 1.

Indeed, these estimates are implicit in [12, Lemma 7.6]. The proof is complete. �

The next lemma requires a further property of the space L∞(M;L1(R)) used
in the definition of the amalgamated tensor product J λ∞,1(L1(R)). Indeed, we
require that for a conditioned subalgebra N of M and a normal ∗-homomorphism
ρ :M→N⊗̄B(`2), we have

(3.2)
∥∥ρ⊗ id : L∞

(
M;L1(R)

)
→ L∞

(
N⊗̄B(`2);L1(R)

)∥∥ ≤ 1.

To prove it we use an isometric inclusion

(3.3) L∞(M;L1(R)) ⊂ NDEC(Rop,M).

In other words, by slicing Tx(r) = (id ⊗ r)(x), we can view Tx : Rop → M as a
normal decomposable map. The norm in the space of decomposable maps (see [19]
for details) is given by

‖Tx‖dec = inf
{∥∥∥( S1 Tx

T ∗x S2

)∥∥∥
M2(R)→M2(M)

s.t.
(
S1 Tx
T ∗x S2

)
completely positive

}
.

To prove (3.3) let us take a, b ∈ L2(M) and Mab(y) = ayb. For x ∈ M⊗ L1(R)
we see that MabTx ∈ NDEC(Rop, L1(M)) and is of finite rank. However, every
completely positive map T ′ : Rop →Mop

∗ defines an element in (Rop ⊗maxMop)∗.
Given a finite tensor z =

∑
j rj ⊗mj of norm less than one, we may lift it to an

element ẑ of norm less than one in the unit ball of Rop ⊗maxMop. This implies

|〈ẑ,MabTx〉| ≤ ‖Tx‖dec‖a‖2‖b‖2 .
Since MabTx is of finite rank we know that

|〈ẑ,MabTx〉| = |〈z, axb〉| .
Then [16, Proposition 6.9] implies that

‖x‖L∞(M;L1(R)) = sup
‖a‖L2(M), ‖b‖L2(M)≤1

‖axb‖1 ≤ ‖Tx‖dec.

According to (3.1), the converse follows easily by factoring x = x1x2 and using that
x1x
∗
1 and x∗2x2 correspond to completely positive maps. Then (3.2) follows from

the fact that ‖ρTx‖dec ≤ ‖Tx‖dec.
In the following result, we shall use the conditional expectations Ek : A →Mk.

Lemma 3.3. If δ ≤ 1/e and λ = δ−1n, we have∥∥∥π−1
n

[
En
( n∑
k=1

(1−Ak)πn(z)(1−Bk)
)]∥∥∥

J λ∞,1(L1(R))
≤ 2neδ ‖z‖J λ∞,1(L1(R)).
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Proof. By the normal version of Kasparov’s dilation theorem [27], we may assume
En(x) = e11ρ(x)e11, where ρ : A →Mn⊗̄B(`2) is a normal ∗-homomorphism. Let
us factorize z = αyβ as we did before Lemma 3.2, with λ = δ−1n. Then we get

En
( n∑
k=1

(1−Ak)πn(z)(1−Bk)
)

= RDC,

where R,D,C are given by

R =
n∑
k=1

e11ρ
(
(1−Ak)πn(α)

)
⊗ e1k,

D =
n∑
k=1

ρ(πn(y))⊗ ekk,

C =
n∑
k=1

ρ
(
πn(β)(1−Bk)

)
e11 ⊗ ek1.

It is easily checked that

RR∗ =
n∑
k=1

En
(
(1−Ak)πn(αα∗)(1−Ak)∗

)
⊗ e11.

According to the proof of [12, Lemma 7.8] we have

(3.4)
∥∥π−1

n

(
(RR∗)

1
2
)∥∥
M =

∥∥π−1
n (RR∗)

∥∥ 1
2

M ≤
√

2neδ ‖α‖M.

To estimate π−1
n

(
(RR∗)

1
2
)

in Rλ∞,1(M, EN ) it remains to control the term

√
δ−1n

∥∥EN (π−1
n (RR∗)

)∥∥ 1
2

N =
√
δ−1n

∥∥∥ n∑
k=1

EN
(
(1−Ak)πn(αα∗)(1−Ak)∗

)∥∥∥ 1
2

N
.

Finally, applying Lemma 7.1 (ii) and Lemma 7.7 (iv) from [12], we obtain∥∥EN (π−1
n (RR∗)

)∥∥ 1
2

N =
∥∥∥ n∑
k=1

EN
(
(1−Ak)EN (αα∗)(1−Ak)∗

)∥∥∥ 1
2

N
(3.5)

≤
∥∥∥ n∑
k=1

EN
(
(1−Ak)(1−Ak)∗

)∥∥∥ 1
2

N

∥∥EN (αα∗)
∥∥ 1

2

M ≤
√

2neδ
∥∥EN (αα∗)

∥∥ 1
2

M.

The combination of (3.4) and (3.5) (as well as a symmetric argument) produces∥∥π−1
n

(
(RR∗)

1
2
)∥∥
Rλ∞,1

≤
√

2neδ ‖α‖Rλ∞,1 ,
∥∥π−1

n

(
(C∗C)

1
2
)∥∥
Cλ∞,1

≤
√

2neδ ‖β‖Cλ∞,1 .

Since we have the factorization

π−1
n

[
En
( n∑
k=1

(1−Ak)πn(z)(1−Bk)
)]

= π−1
n

(
(RR∗)

1
2
)
π−1
n

(
uDv

)
π−1
n

(
(C∗C)

1
2
)

for certain contractions u, v, and L∞(Mn(M);L1(R)) is anM-bimodule, we deduce∥∥∥π−1
n

[
En
( n∑
k=1

(1−Ak)πn(z)(1−Bk)
)]∥∥∥

J λ∞,1(L1(R))

≤ 2neδ ‖α‖Rλ∞,1‖β‖Cλ∞,1
∥∥π−1

n (D)
∥∥
L∞(Mn(M);L1(R))

≤ 2neδ ‖α‖Rλ∞,1‖β‖Cλ∞,1
∥∥ρ(πn(y))

∥∥
L∞(M;L1(R))
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≤ 2neδ
(
‖α‖Rλ∞,1‖y‖L∞(M;L1(R))‖β‖Cλ∞,1

)
≤ 2neδ

(
‖z‖J λ∞,1(L1(R)) + ε

)
.

We have applied inequality (3.2). The assertion follows by letting ε→ 0 above. �

Lemma 3.4. If δ ≤ 1/e and λ = δ−1n, we have∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

≥ n(1− 4eδ) ‖x‖J λ∞,1(L1(R))∗ .

Proof. By homogeneity, we will assume that

‖x‖J λ∞,1(L1(R))∗ = 1.

Let z ∈ A⊗ L1(R) be a norm 1 element of J λ∞,1(L1(R)) such that |〈x, z〉| = 1− γ
and factorize z = αyβ with ‖α‖Rλ∞,1 = ‖y‖L∞(M;L1(R)) = ‖β‖Cλ∞,1 ≤ 1 + γ. First
we observe from Lemma 3.2 that∣∣∣ n∑

k=1

〈
πk(x), Akπk(z)Bk

〉∣∣∣ ≤ (1 + γ)
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

.

Now, to work through the error estimate, we use

z − azb = z(1− b) + (1− a)z − (1− a)z(1− b).

Hence

n(1− γ) ≤
∣∣∣ n∑
k=1

〈πk(x), πk(z)〉
∣∣∣

≤
∣∣∣ n∑
k=1

〈
πk(x), Akπk(z)Bk

〉∣∣∣+
∣∣∣ n∑
k=1

〈
πk(x), πk(z)−Akπk(z)Bk

〉∣∣∣
≤ (1 + γ)

∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

+
∣∣∣∑
k=1

〈
πk(x), (1−Ak)πk(z)(1−Bk)

〉∣∣∣
+

∣∣∣ n∑
k=1

〈
πk(x), (1−Ak)πk(z)

〉∣∣∣+
∣∣∣∑
k=1

〈
πk(x), πk(z)(1−Bk)

〉∣∣∣.
By top-subsymmetry and [12, Lemma 7.1], we deduce∣∣∣ n∑

k=1

〈
πk(x), (1−Ak)πk(z)

〉∣∣∣ =
∣∣∣〈πn(x),

n∑
k=1

(1−Ak)πn(z)
〉∣∣∣

=
∣∣∣〈πn(x),En

( n∑
k=1

(1−Ak)
)
πn(z)

〉∣∣∣ =
∣∣∣〈x,EN( n∑

k=1

(1−Ak)
)
z
〉∣∣∣

≤
∥∥∥EN( n∑

k=1

(1−Ak)
)
z
∥∥∥
J λ∞,1(L1(R))

‖x‖J λ∞,1(L1(R))∗ ≤
∥∥∥EN( n∑

k=1

(1−Ak)
)∥∥∥
N
.
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Similarly, we find∣∣∣ n∑
k=1

〈
πk(x), πk(z) (1−Bk)

〉∣∣∣ ≤ ∥∥∥EN( n∑
k=1

(1−Bk)
)∥∥∥
N
.

We refer to [12, Lemma 7.7 (iii)] for

max

{∥∥∥EN( n∑
k=1

(1−Ak)
)∥∥∥
N
,
∥∥∥EN( n∑

k=1

(1−Bk)
)∥∥∥
N

}
≤ neδ.

Here we are using implicitly that we have

max
{∥∥EN (αα∗)

1
2
∥∥
N ,
∥∥EN (β∗β)

1
2
∥∥
N

}
≤ 1√

δ−1n
.

Our argument for the symmetric term uses Lemma 3.3 instead∣∣∣ n∑
k=1

〈
πk(x), (1−Ak)πk(z) (1−Bk)

〉∣∣∣
=

∣∣∣〈x, π−1
n

[
En
( n∑
k=1

(1−Ak)πn(z) (1−Bk)
)]〉∣∣∣ ≤ 2neδ ‖x‖J λ∞,1(L1(R))∗ .

This yields

n(1− γ) ≤ (1 + γ)
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

+ 4neδ.

Taking γ → 0+, we deduce the assertion and the proof is complete. �

Remark 3.5. Apart from our references to [12] in Section 1, the estimation of the
error terms above is the only place in this paper where top-subsymmetry really
takes place.

Let us consider the following norms

‖x‖Lr1(M,EN ;R) = inf
x=ayb

‖a‖L2(N ) ‖y‖M⊗̄R‖b‖L2(M),

‖x‖Lc1(M,EN ;R) = inf
x=ayb

‖a‖L2(M)‖y‖M⊗̄R‖b‖L2(N ) ,

‖x‖Ls1(M,EN ;R) = inf
x=ayb

‖a‖L2(N ) ‖y‖M⊗̄R‖b‖L2(N ) .

Lemma 3.6. If z ∈M⊗ L1(R), we have

‖z‖Lr1(M,EN ;R)∗ = inf
z=αy

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R)),

‖z‖Lc1(M,EN ;R)∗ = inf
z=yβ

‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N ,

‖z‖Ls1(M,EN ;R)∗ = inf
z=αyβ

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N .

Proof. Given x ∈M⊗R, let x = ajyjbj with

‖x‖Lr1(M,EN ;R) ∼ ‖a1‖L2(N ) ‖y1‖M⊗̄R ‖b1‖L2(M),

‖x‖Lc1(M,EN ;R) ∼ ‖a2‖L2(M)‖y2‖M⊗̄R ‖b2‖L2(N ) ,

‖x‖Ls1(M,EN ;R) ∼ ‖a3‖L2(N ) ‖y3‖M⊗̄R ‖b3‖L2(N ) .
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Here ∼ means up to (1 + δ) for an arbitrary δ > 0. Then, we have

〈x, z〉 = trM⊗̄R
(
yjbjz

∗aj
)
≤ ‖yj‖M⊗̄R‖a∗jzb∗j‖L1(M⊗̄R)

≤ ‖aj‖L2(Aj)‖yj‖M⊗̄R‖bj‖L2(Bj) sup
‖αj‖L2(Aj)≤1

‖βj‖L2(Bj)≤1

‖αjzβj‖L1(M⊗̄R),

with respect to anti-linear duality and where

(A1,B1,A2,B2,A3,B3) = (N ,M,M,N ,N ,N ).

According to this, it is easily seen that the closure of M⊗ L1(R) with respect to
the norm (for each j = 1, 2, 3) given by the supremum above embeds isometrically
into the dual of L•1(M, EN ;R) with (•, j) = (r, 1), (c, 2), (s, 3). Therefore, it suffices
to see that

sup
α1,β1

‖α1zβ1‖L1(M⊗̄R) = inf
z=αy

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R)),(3.6)

sup
α2,β2

‖α2zβ2‖L1(M⊗̄R) = inf
z=yβ

‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N ,(3.7)

where α1, β2 ∈ BL2(N ) and α2, β1 ∈ BL2(M); as well as

sup
α3,β3

‖α3zβ3‖L1(M⊗̄R)(3.8)

= inf
z=αyβ

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N

with α3, β3 ∈ BL2(N ). Since the proof of (3.6) and (3.7) is quite similar to that of
(3.8), we shall only give a detailed argument for the last one. Given a factorization
z = αyβ and α0, β0 ∈ L2(N ), the upper estimate follows from

‖α0zβ0‖L1(M⊗̄R)

≤ ‖α0α‖L2(M)‖y‖L∞(M;L1(R))‖ββ0‖L2(M)

≤ ‖α0‖L2(N )

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N ‖β0‖L2(N ).

For the lower estimate, we set

|||z||| = inf
z=αyβ

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N .

This expression defines a norm. Indeed, the positive definiteness follows from

|||z||| ≥ ‖z‖Lr∞(M;EN )⊗ML∞(M;L1(R))⊗MLc∞(M;EN ),

while the triangle inequality can be proved following Pisier’s factorization argument
in [29, Lemma 3.5]. Given z0 ∈ M ⊗ L1(R), let us consider a norm 1 linear
functional

φz0 :
(
M⊗ L1(R), ||| |||

)
→ C such that φz0(z0) = |||z0|||.

Note that we have∣∣φz0(αyβ)
∣∣ ≤ ∥∥EN (αα∗)

∥∥ 1
2

N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
∥∥ 1

2

N .

In particular, we may apply —as in [16, Theorem 3.16 + Proposition 6.9]— a
standard Grothendieck-Pietsch separation argument to find states ϕ1 and ϕ2 in
N ∗ with associated densities d1, d2 in L1(N ∗∗), so that∣∣φz0(αyβ)

∣∣ ≤ ϕ1(EN (αα∗))
1
2 ‖y‖L∞(M;L1(R))ϕ2(EN (β∗β))

1
2(3.9)

= ‖d
1
2
1 α‖L2(M∗∗)‖y‖L∞(M;L1(R))‖βd

1
2
2 ‖L2(M∗∗).
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We want to construct a norm one functional ψ : L1(M∗∗⊗̄R)→ C with

φz0(αyβ) = ψ
(
d

1
2
1 αyβd

1
2
2

)
.

Let ej = supp dj be the support of dj for j = 1, 2. We know that the space
L1(M∗∗⊗̄R) = L1(M∗∗)⊗̂L1(R) is given by the operator space tensor product.
Therefore elements of the form

ξ =
n∑

i,j,k,l=1

aikblj xkl ⊗ yij

with
‖a‖2

∥∥(xkl)
∥∥
Mn(L1(M∗∗))

∥∥(ykl)
∥∥
Mn(L1(R))

‖b‖2 ≤ 1

are dense in the unit ball of L1(M∗∗)⊗̂L1(R). Note also that η = (
∑
kl aikxklblj)ij

is of norm ≤ 1 in Sn1 (L1(M∗∗)) = Dec (Mn, L1(M∗∗)) where decomposable refers
to linear combination of positive elements. Thus we can find h1, h2 ∈ L2(M∗∗) and
u : Mn →M∗∗ in the unit ball of Dec (Mn,M∗∗) such that∑

kl
aikxklblj = h1u(eij)h2.

Recall that Dec (Mn,M∗∗) = Dec (Mn,M)∗∗ and therefore we can find a net of
maps us in the unit ball of Dec (Mn,M) such that h1u(eij)h2 = lims h1us(eij)h2.
Passing to convex combinations, we may assume that us(eij) converges in the strong
and strong∗ topologies, so that h1ush2 converges to η in norm. If we assume
additionally that ξ = e1ξe2, we may replace h1 and h2 by e1h1 and h2e2. According
to Kaplansky’s density theorem and the norm density of

√
d1M∗∗ in e1L2(M∗∗),

we see that
√
d1M is norm dense in e1L2(M∗∗). Similarly, M

√
d2 is norm dense

in L2(M∗∗)e2. Thus we can find mt1 , m̃t2 ∈M such that

e1h1 = limt1 d
1
2
1 mt1 and h2e2 = limt2 m̃t2d

1
2
2 .

This shows that

ξ = lims limt1,t2

n∑
i,j=1

d
1
2
1 mt1us(eij)m̃t2d

1
2
2 ⊗ yij .

We deduce from (3.9) that for fixed s, t1, t2∣∣∣φz0( n∑
i,j=1

mt1us(eij)m̃t2 ⊗ yij
)∣∣∣

≤
∥∥d 1

2
1 mt1

∥∥
2

∥∥∥ n∑
i,j=1

us(eij)⊗ yij
∥∥∥
L∞(M;L1(R))

∥∥m̃t2d
1
2
2

∥∥
2

Recall that (yij) ∈Mn(L1(R)) has norm ≤ 1. Since us is decomposable we see that
us ⊗ id : Mn(L1(R))→ L∞(M;L1(R)) is a contraction, which is easy to check for
completely positive us. Thus we get∥∥∥ n∑

i,j=1

us(eij)⊗ yij
∥∥∥
L∞(M⊗R)

≤ ‖us‖dec
∥∥(yij)

∥∥
Mn(L1(R))

,

and therefore

ψ(ξ) = lims limt1,t2

∣∣∣ψz0( n∑
i,j=1

mt1us(eij)m̃t2 ⊗ yij)
∣∣∣ ≤ 1.



A TRANSFERENCE METHOD 27

Let us resume what we have proved so far. For fixed n ∈ N we have shown that
ψ(
√
d1m
√
d2 ⊗ y) = φz0(m⊗ y) extends to a continuous functional on the Banach

space projective tensor product e1L1(M∗∗)e2 ⊗π L1(R) such that∣∣∣ψ( n∑
ij=1

xij ⊗ yij
)∣∣∣ ≤ ∥∥(xij)

∥∥
Sn1 (L1(M∗∗))

∥∥(yij)
∥∥
Mn(L1(R))

.

Since left and right multiplications with e1, e2 are completely contractive, we may
extend ψ to L1(M∗∗) ⊗π L1(R) satisfying the same inequality. This means ψ
induces a linear map Tψ : L1(R)→ L1(M∗∗)∗ =Mop∗∗ such that∥∥idMn ⊗ Tψ : Mn(R)→Mn(Mop∗∗)

∥∥ ≤ 1 .

Since this is true for all n ∈ N we deduce that Tψ is completely bounded. According
to Effors/Ruan’s theorem [4, Theorem 7.2.4] CB(L1(R),Mop∗∗) = Rop⊗̄Mop∗∗ =
(L1(R⊗̄M∗∗))∗. Therefore ψ corresponds to a norm one functional on L1(R⊗̄M∗∗)
such that

ψ
(
d

1
2
1 xd

1
2
2 ⊗ y

)
= φz0(x⊗ y) .

Now we have to replace d1, d2 ∈ L1(N ∗∗) using an ultraproduct procedure. We
recall from [16, Section 6.2] that we have a completely positive, completely isometric
M-bimodule map

ρ : L1(M∗∗)→
∏
U
L1(M),

such that ρ∗ : (
∏
U L1(M))∗ → (Mop)∗∗ is a conditional expectation. Thus

ρ⊗ id : L1(M∗∗)⊗̂L1(R)→
∏
U
L1(M)⊗̂L1(R).

Therefore we find a norm one functional ψ′ :
∏
U L1(M)⊗̂L1(R) → C such that

ψ′ ◦(ρ⊗ id) = ψ. The map ρ also induces a map ρp : Lp(M∗∗)→
∏
U Lp(M) which

remains a M-bimodule map. In particular, we get

ρ
(
d

1
2
1 xd

1
2
2

)
= ρ2

(
d

1
2
1

)
xρ2

(
d

1
2
2

)
for x ∈M.

Let us recall that the inclusion L2(N ∗∗) ⊂ L2(M∗∗) is defined with the help of
the conditional expectation EN : M → N , more precisely EN∗∗ which is still a
(maybe non-faithful) conditional expectation. We recall from [16, Lemma 6.2 ii)]
that ρ(L1(N ∗∗)) ⊂

∏
U L1(N ) and hence ρ2(

√
dj) ∈

∏
U L2(N ). Therefore we find

|||z0||| =
∣∣ψ′ ◦ (ρ⊗ id)

(
d

1
2
1 z0d

1
2
2

)∣∣
≤

∥∥ρ2

(
d

1
2
1

)
z0ρ2

(
d

1
2
2

)∥∥Q
U L1(M⊗̄R)

= limi,U
∥∥ρ2

(
d

1
2
1

)
i
z0ρ2

(
d

1
2
2

)
i

∥∥
L1(M⊗̄R)

≤ sup
‖α‖L2(N),‖β‖L2(N)≤1

∥∥αz0β
∥∥
L1(M⊗̄R)

.

This concludes the proof of (3.8). The argument for (3.6) and (3.7) is similar. �

Let us define the space

Kλ1,∞(M, EN ;R) = λL1(M;R)

+ Ls1(M, EN ;R)

+
√
λLr1(M, EN ;R)

+
√
λLc1(M, EN ;R),
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where L1(M;R) is a shortened way of writing L1(M;L∞(R)). We shall often write
Kλ1,∞(R). The norm of x ∈ Kλ1,∞(R) is given by

inf
x=

P4
1 xj

λ‖x1‖L1(M;R)+
√
λ‖x2‖Lr1(M,EN ;R)+

√
λ‖x3‖Lc1(M,EN ;R)+‖x4‖Ls1(M,EN ;R).

The following result probably holds in larger generality. However, this requires
additional fine tuning on the assumptions. For our purpose, finite-dimensional R’s
are enough.

Theorem 3.7. Let us consider a conditioned subalgebra N of M and a finite
dimensional von Neumann algebra R. Let (Mk)k≥1 be an increasingly independent
family of top-subsymmetric copies ofM over N . Then, the following estimate holds
up to an absolute constant for any n ≥ 1∥∥∥ n∑

k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

∼ ‖x‖Kn1,∞(R).

Proof. By the triangle inequality

(3.10)
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

≤ n‖x‖L1(M;R).

If x = ayb with a ∈ L2(N ) and b ∈ L2(M), then

πk(x) = aπk(y)πk(b) and
n∑
k=1

πk(x)⊗δk = a
( n∑
k=1

πk(y)uk⊗δk
)( n∑

k=1

πk(b∗b)
) 1

2
,

where the uk’s are contractions in A. This immediately gives

(3.11)
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

≤
√
n ‖a‖L2(N )‖y‖M⊗̄R‖b‖L2(M).

In fact, the same argument provides the remaining individual estimates

(3.12)
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

≤ min
{√

n ‖x‖Lc1(M,EN ;R), ‖x‖Ls1(M,EN ;R)

}
.

The combination of (3.10), (3.11) and (3.12) shows that the upper estimate holds
contractively. Let us now prove the lower estimate. Since R is finite dimensional
we may characterize the dual space of Kλ1,∞. Indeed, it follows from Lemma 3.1
and Lemma 3.6 that

‖z‖J λ∞,1 ∼ max
{
‖z‖L∞(M;L1(R)),

√
λ inf
z=αy

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R)),

√
λ inf
z=yβ

‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N ,

λ inf
z=αyβ

∥∥EN (αα∗)
1
2
∥∥
N ‖y‖L∞(M;L1(R))

∥∥EN (β∗β)
1
2
∥∥
N

}
= λ sup

{
|tr(x∗z)|

∣∣ ‖x‖Kλ1,∞ ≤ 1
}
.

Since the embedding of Kλ1,∞ in its bidual is isometric, we deduce from Lemma 3.4

‖x‖Kλ1,∞(R) . λ‖x‖J λ∞,1(L1(R))∗ ≤ 16e
∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
L1(A;`n∞(R))

.
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We used λ = n/δ and δ = 1/8e so that 1− 4eδ = 1
2 . The proof is complete. �

4. A vector-valued embedding result

Given two von Neumann algebras M and R as in the previous section, our aim
now is to find a complete embedding of Lp(M;R) for each 1 < p < ∞ into an
ultraproduct of the form ∏

n,U
L1

(
An; `kn∞ (R)

)
.

Moreover, for our applications we also need some additional information on how
such an embedding is constructed in order to maintain the notion of independent
copies. In the following, XM will be an operator space containingM as a two-sided
ideal. Then we may define

L2p(M)XML2p(M) = Lr2p(M)⊗M,h XM ⊗M,h L
c
2p(M).

We will also work with subspaces and quotients of(
M⊕ Lr2(M)

)
⊗M,h XM ⊗M,h

(
M⊕ Lc2(M)

)
.

Our main tool is a standard modification of the so-called Pisier’s exercise, see [15, 43]
and [30, Exercise 7.9]. In other words, a way to reformulate complex interpolation
in this setting. We follow the same approach as in [15, 16]. Indeed, let S be the
strip of complex numbers z with 0 ≤ Re(z) ≤ 1 and let ∂0 ∪ ∂1 be the partition
of its boundary ∂S with ∂j the line of z’s with Re(z) = j. If 0 < θ < 1, let µθ
be the harmonic measure of the point z = θ. This is a probability measure on the
boundary ∂S (with density given by the Poisson kernel in the strip) that can be
written as µθ = (1− θ)µ0 + θµ1, with µj being probability measures supported by
∂j and such that

(4.1) f(θ) =
∫
∂S
fdµθ

for any bounded analytic f extended non-tangentially to ∂S. Let

SrM =
(
Lc2(∂0)⊗̄M

)
⊕
(
Lr2(∂1)⊗h Lr2(M)

)
,

ScM =
(
M⊗̄Lr2(∂0)

)
⊕
(
Lc2(M)⊗h Lc2(∂1)

)
.

The von Neumann algebra tensor product used above is the weak closure of the
minimal tensor product, which in this particular case coincides with the Haagerup
tensor product since we have either a column space on the left or a row space on
the right. In particular, the only difference is that we are taking the closure in the
weak operator topology. The direct sums will be taken Hilbertian. Then, if M
comes equipped with a normal strictly semifinite faithful weight ψ and dψ denotes
the associated density, we define Hrθ(M) as the subspace of all pairs (f0, f1) of
functions in SrM such that for every scalar-valued analytic function g : S → C
(extended non-tangentially to the boundary) with g(θ) = 0, we have

(1− θ)
∫
∂0

g(z) d
1
2
ψf0(z) dµ0(z) + θ

∫
∂1

g(z)f1(z) dµ1(z) = 0.

Similarly, the condition on Hcθ(M) ⊂ ScM is

(1− θ)
∫
∂0

g(z)f0(z) d
1
2
ψ dµ0(z) + θ

∫
∂1

g(z)f1(z) dµ1(z) = 0.
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We shall also need to consider the subspaces

Hr,0 =
{

(f0, f1) ∈ Hrθ(M)
∣∣ (1− θ)

∫
∂0

d
1
2
ψf0dµ0 + θ

∫
∂1

f1dµ1 = 0
}
,

Hc,0 =
{

(f0, f1) ∈ Hcθ(M)
∣∣ (1− θ)

∫
∂0

f0d
1
2
ψdµ0 + θ

∫
∂1

f1dµ1 = 0
}
.

We define the M-bimodules

Hr(M, θ) = Hrθ(M)/Hr,0 and Hc(M, θ) = Hcθ(M)/Hc,0.

Remark 4.1. We may think of Hr(M, θ) as the space of M + Lr2(M)-valued
analytic functions f on the strip, with f(∂0) ⊂M and f(∂1) ⊂ Lr2(M) quotiented
by the equivalence relation f1 ∼ f2 iff both take the same value at θ. A similar
observation holds for Hc(M, θ). It is somewhat encoded in the proof of Proposition
4.3 that indeed

Hr(M, θ) = Lr2p(M) and Hc(M, θ) = Lc2p(M).

In the following we use the notation

Hθ(XM) = Hr(M, θ)⊗M,h XM ⊗M,h Hc(M, θ).

Lemma 4.2. Given 1 ≤ p ≤ ∞, we have a contractive inclusion

Sm2p′L2p(Mm ⊗M)Mm(XM)L2p(Mm ⊗M)Sm2p′ ⊂ Rm ⊗h H 1
p
(XM)⊗h Cm.

Proof. We claim that the inclusion

Sm2p′L2p(Mm ⊗M) ⊂ Rm ⊗h Hr(M, 1/p)⊗h Rm
is contractive. Let x = ab be such that a ∈ Sm2p′ and b ∈ L2p(Mm⊗M) are norm 1
elements. Using the fact that Rm⊗hHr(M, 1/p)⊗hRm is a right Mm(M)-module
we may apply polar decomposition and assume that a and b are positive. Indeed,
write ab = |a∗|uab = |a∗||b∗u∗a|uab and use that∥∥|a∗|∥∥

2p′
= ‖a‖2p′ and

∥∥|b∗u∗a|∥∥2p
≤ ‖b‖2p.

Define the analytic function f : z ∈ S 7→ a(1−z)p′bpz with f( 1
p ) = x. If we set

fj = f|∂j , it is clear that

‖x‖Rm⊗hHr(M,1/p)⊗hRm

≤
∥∥(f0, f1)

∥∥
Rm⊗hSrM⊗hRm

=
(

(1− 1
p )‖f0‖2Rm⊗h(Lc2(∂0)⊗̄M)⊗hRm + 1

p ‖f1‖2Rm⊗h(Lr2(∂1)⊗hLr2(M))⊗hRm

) 1
2
.

The space Rm ⊗h (Lc2(∂0)⊗̄M)⊗h Rm is completely isometric to

(Rm ⊗h Rm)⊗Mm,h

(
Cm ⊗h (Lc2(∂0)⊗̄M)⊗h Rm

)
⊗Mm,h (Cm ⊗h Rm),

which in turn is isometric to Sm2 L∞(Mm ⊗M;Lc2(∂0)). On the other hand, given
any z ∈ ∂0 we have that f(z) = ap

′
uz with uz being a unitary in Mm(M) for each

z ∈ ∂0. Hence, we get

‖u‖L∞(Mm⊗M;Lc2(∂0)) =
∥∥∥( ∫

∂0

u∗zuz dµ0(z)
) 1

2

∥∥∥
Mm⊗M

= 1
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and ‖f0‖2Rm⊗h(Lc2(∂0)⊗̄M)⊗hRm ≤ ‖a‖
2p′

2p′ ≤ 1. Moreover, it is easy to check that

‖f1‖2Rm⊗h(Lr2(∂1)⊗hLr2(M))⊗hRm =
∫
∂1

‖vzbp‖2L2(Mm⊗M) dµ1(z) = ‖b‖2p2p ≤ 1.

Putting altogether, we deduce our claim. Similarly,

L2p(Mm ⊗N)Sm2p′ ⊂ Cm ⊗h Hc(M, 1/p)⊗h Cm
holds contractively. Therefore, the assertion follows from

Rm ⊗h H 1
p
(XM)⊗h Cm

=
(
Rm ⊗h Hr(M, 1/p)⊗h Rm

)
•Mm(XM) •

(
Cm ⊗h Hc(M, 1/p)⊗h Cm

)
.

where the symbol • stands for the amalgamated tensor product ⊗Mm(M),h. �

Proposition 4.3. We have a complete isometry

Lp(M;R)→ H 1
p
(M⊗̄R) for each 1 < p <∞.

Proof. We have

Sm1 (Lp(M;R)) = Sm2p′Lp(Mm ⊗M;R)Sm2p′
= Sm2p′L2p(Mm ⊗M)Mm(M⊗̄R)L2p(Mm ⊗M)Sm2p′ .

Hence Lemma 4.2 implies that

Sm1 (Lp(M;R)) ⊂ Rm ⊗h H 1
p
(M⊗̄R)⊗h Cm = Sm1 (H 1

p
(M⊗̄R))

is contractive for all m. Therefore, the inclusion of Lp(M;R) into H1/p(M⊗̄R)
is a complete contraction. To complete the argument, we proceed by duality and
analyze the inclusion

(4.2) Sm1 (Lp′(M;L1(R))) ⊂Mm(H 1
p
(M⊗̄R))∗.

As in the proof of Lemma 4.2, we may factorize x = abscd with a, d ∈ Sm2p and
b, c ∈ L2p′(Mm⊗M) positive norm 1 elements and s being a not necessarily positive
norm 1 element in L∞(Mm(M);L1(R)). Let us now consider a norm 1 element
y ∈ Mm(H1/p(M⊗̄R)). Then we may find an analytic function ξ = αwβ in the
equivalence class determined by y such that

• We have w ∈Mk(M⊗̄R) for some k ≥ 1 and

α = (α0, α1) ∈Mm,k

(
Lc2(∂0)⊗̄M

)
⊕Mm,k

(
Lr2(∂1)⊗h Lr2(M)

)
,

β = (β0, β1) ∈Mk,m

(
M⊗̄Lr2(∂0)

)
⊕Mk,m

(
Lc2(M)⊗h Lc2(∂1)

)
.

• The estimate ‖w‖Mk(M⊗̄R) ≤ 1 holds and(
(1− 1

p )‖α0‖2Mm,k(Lc2(∂0)⊗̄M) + 1
p ‖α1‖2Mm,k(Lr2(∂1)⊗hLr2(M))

) 1
2 ≤ 1,(

(1− 1
p )‖β0‖2Mk,m(M⊗̄Lr2(∂0)) + 1

p ‖β1‖2Mk,m(Lc2(M)⊗hLc2(∂1))

) 1
2 ≤ 1.

By adding zeros if necessary, we assume m = k for simplicity. As in Lemma 4.2, we
may define g(z) = azpb(1−z)p

′
sc(1−z)p

′
dzp. Note that g is also analytic and hence

the identity below holds

〈x, y〉 =
〈
g( 1
p ), ξ( 1

p )
〉

=
∫
∂S

〈
g(z), ξ(z)

〉
dµ 1

p
(z).
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Now we claim that∣∣∣ ∫
∂0

〈
g(z), ξ(z)

〉
dµ0(z)

∣∣∣ ≤ ∥∥∥( ∫
∂0

α0(z)∗α0(z) dµ0(z)
) 1

2

∥∥∥
Mm(M)

(4.3)

×
∥∥∥( ∫

∂0

β0(z)β0(z)∗ dµ0(z)
) 1

2

∥∥∥
Mm(M)

Indeed, since g|∂0 (z) = uzb
p′scp

′
vz with uz, vz unitaries and b, c, s, w are norm 1∣∣∣ ∫

∂0

〈
g(z), ξ(z)

〉
dµ0(z)

∣∣∣
=

∣∣∣ ∫
∂0

tr
(
wβ0(z)v∗zc

p′s∗bp
′
u∗zα0(z)

)
dµ0(z)

∣∣∣
≤ Λ

∥∥∥∫
∂0

α0(z)∗α0(z) dµ0(z)
∥∥∥ 1

2

Mm(M)

∥∥∥∫
∂0

β0(z)β0(z)∗ dµ0(z)
∥∥∥ 1

2

Mm(M)
,

where

Λ = ‖w‖Mm(M⊗̄R) sup
z∈∂0

∥∥v∗zcp′s∗bp′u∗z∥∥L1(Mm(M⊗̄R))
= Λ1Λ2.

We have Λ1 ≤ 1 by hypothesis, while Hölder’s inequality gives

Λ2 ≤ ‖cp
′
‖L2(Mm(M))‖s∗‖L∞(Mm(M);L1(R))‖bp

′
‖L2(Mm(M)) ≤ 1.

This proves (4.3). Similarly, we have∣∣∣ ∫
∂1

〈
g(z), ξ(z)

〉
dµ1(z)

∣∣∣ =
∣∣∣ ∫
∂1

〈
ũzsṽz, a

pα1(z)wβ1(z)dp dµ1(z)
〉∣∣∣

≤
∫
∂1

∥∥apα1(z)wβ1(z)dp
∥∥
L1(Mm(M);R)

dµ1(z)

≤
(∫

∂1

‖apα1(z)‖22 dµ1(z)
) 1

2 ‖w‖Mm(M⊗̄R)

(∫
∂1

‖β1(z)dp‖22 dµ1(z)
) 1

2

≤
∥∥∥ ∫

∂1

trM
(
α1(z)α1(z)∗

)
dµ1(z)

∥∥∥ 1
2

Mm

∥∥∥ ∫
∂1

trM
(
β1(z)∗β1(z)

)
dµ1(z)

∥∥∥ 1
2

Mm

.

In the last inequality we use that a, d are norm 1 in Sm2p. Summarizing, we get∣∣〈x, y〉∣∣ ≤ (1− 1
p )
∣∣∣ ∫
∂0

〈g, ξ〉 dµ0

∣∣∣+ 1
p

∣∣∣ ∫
∂1

〈g, ξ〉 dµ1

∣∣∣
≤ (1− 1

p ) ‖α0‖Mm(Lc2(∂0)⊗̄M) ‖β0‖Mm(M⊗̄Lr2(∂0))

+ 1
p ‖α1‖Mm(Lr2(∂1)⊗hLr2(M)) ‖β1‖Mm(Lc2(M)⊗hLc2(∂1))

≤
(

(1− 1
p ) ‖α0‖2 + 1

p ‖α1‖2
) 1

2
(

(1− 1
p ) ‖β0‖2 + 1

p ‖β1‖2
) 1

2 ≤ 1.

Therefore, the inclusion (4.2) is contractive and the assertion follows by duality. �

Theorem 4.4. Given 1 < p <∞ and M,R as above assuming in addition that R
is finite dimensional. Then there exist states φn on Mn, positive integers kn and
elements ξn ∈ L1(Mn) such that we have a complete embedding

x ∈ Lp(M;R) 7→
( kn∑
j=1

πjtens(ξn ⊗ x)⊗ δj
)
∈
∏

n,U
L1

(
Mn(M)⊗kn ; `kn∞ (R)

)
.
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Proof. When restricted to analytic functions, the operator Λ(f |∂0) = f |∂1 is
densely defined and injective. In combination with (4.1), this allows us to see the
subspace of analytic functions on S vanishing at 1/p as the annihilator of the graph
of Λ, conveniently regarded as a space of analytic functions. The reader is referred
to [15, Remark 2.2] for further details. Moreover, it is also observed in [15] that we
can replace Λ by a strictly positive diagonal operator d−1

λ on `2 without changing
the operator space structure. In other words, we have complete isomorphisms

ur :
(
Lc2(∂0)⊕ Lr2(∂1)

)/{
f analytic s.t. f( 1

p ) = 0
}
→
(
C ⊕R

)/
graph(d−1

λ )⊥,

uc :
(
Lr2(∂0)⊕ Lc2(∂1)

)/{
f analytic s.t. f( 1

p ) = 0
}
→
(
R⊕ C

)/
graph(d−1

λ )⊥.

For further reference, we set ξr = ur(1) and ξc = uc(1), where 1 denotes the constant
function 1 on the strip. Here dλ : `2 → `2 is a diagonal operator dλ(δk) = λkek with
0 < λk <∞ and the fact that we may consider the same operator in both cases is
also justified in [15]. The exact same argument mentioned above shows that, if we
tensorize with the identity map, we also obtain complete isomorphisms

ur : SrM/Hr,0 →
[(
C⊗̄M

)
⊕
(
R⊗h Lr2(M)

)]/
graph(d−1

λ )⊥,

uc : ScM/Hc,0 →
[(
M⊗̄R

)
⊕
(
Lc2(M)⊗h C

)]/
graph(d−1

λ )⊥.

Let us define

H̃r(M, 1/p) = ur(Hr(M, 1/p)) and H̃c(M, 1/p) = uc(Hc(M, 1/p)).

As in [15], we observe that[(
C⊗̄M

)
⊕
(
R⊗h Lr2(M)

)]/
graph(d−1

λ )⊥,[(
M⊗̄R

)
⊕
(
Lc2(M)⊗h C

)]/
graph(d−1

λ )⊥,

can also be understood as K-spaces. Indeed, if we use anti-linear duality, we have
d−1
λ : x ∈ C 7→ (d−1

λ x)t ∈ R in the first case and d−1
λ : x ∈ R 7→ (xd−1

λ )t ∈ C in
the second one. This means that graph(d−1

λ )⊥ is spanned by elements of the form
(−d−1

λ x, x) in the first quotient and by (−xd−1
λ , x) in the second one. In conclusion

this allows us to cb-embed[
ur ⊗ id⊗ uc

](
H 1

p
(M⊗̄R)

)
= H̃ 1

p
(M⊗̄R)

= H̃r(M, 1/p)⊗M,h

(
M⊗̄R

)
⊗M,h H̃c(M, 1/p)

into a four term K-space Kλ with norm given by

‖x‖Kλ = inf
x=x1+d−1

λ x2d−1
λ +d−1

λ x3+x4d−1
λ

4∑
j=1

‖xj‖Ej ,

where the spaces E1,E2,E3,E4 are given by

E1 = M⊗̄B(`2)⊗̄R,
E2 = L1(M⊗̄B(`2);R),
E3 = Lr2(M⊗̄B(`2))⊗M⊗̄B(`2),h (M⊗̄B(`2)⊗̄R),
E4 = (M⊗̄B(`2)⊗̄R)⊗M⊗̄B(`2),h L

c
2(M⊗̄B(`2)).

Indeed, all these spaces can be essentially obtained by applying Remark 2.2. For
instance, to obtain E4 we have to show that the given space comes from the choice
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C⊗̄M and Lc2(M) ⊗h C for the left and right spaces. More concretely, we have a
completely isometric embedding of

(C⊗̄M)⊗M,h (M⊗̄R)⊗M,h (Lc2(M)⊗h C)

into E4. However, according to Remark 2.2 we may embed it cb-isometrically into
(C⊗̄M⊗hR)⊗M⊗̄B(`2),h (C⊗hM⊗̄R⊗hR)⊗M⊗̄B(`2),h (C⊗hLc2(M)⊗hC) which
in turn embeds in

(M⊗̄B(`2))⊗M⊗̄B(`2),h (M⊗̄B(`2)⊗̄R)⊗M⊗̄B(`2),h L
c
2(M⊗̄B(`2)).

This completes the argument since the latter space is E4. On the other hand, since
R is of finite dimension (m say) we know that topologically we may write K∗λ as
follows

K∗λ '
(
(M⊗̄B(`2))m

)∗ ∩ (d−1
λ M⊗̄B(`2)d−1

λ

)m
∩

(
d−1
λ L2(M⊗̄B(`2))

)m ∩ (L2(M⊗̄B(`2)d−1
λ )m

= L1

(
M⊗̄B(`2)

)m ∩ (d−1
λ M⊗̄B(`2)d−1

λ

)m
∩

(
d−1
λ L2(M⊗̄B(`2))

)m ∩ (L2(M⊗̄B(`2))d−1
λ

)m
.

Here we used the fact that a matrix [xij ] with xij ∈ M ⊂ L1(M) belonging
to (M⊗̄B(`2))∗∗ already belongs to L1(M⊗̄B(`2)). Let (pn)n≥1 be an increasing
sequence of orthogonal projections commuting with dλ and converging strongly to
1. Then we deduce that for x ∈ Kλ limn→∞

〈
pnxpn, y

〉
= 〈x, y〉 because we can

use convergence in the norm of L1 or L2 on at least one side of the bracket. Using
a weak∗-limit we obtain

‖x‖Kλ = ‖x‖K∗∗λ ≤ lim
n,U

∥∥(1⊗ pn ⊗ 1)x(1⊗ pn ⊗ 1)
∥∥
Kλ
≤ ‖x‖Kλ

for any free ultrafilter U on the integers. Therefore, allowing to take ultraproducts
(as we do) in the final space, it suffices to consider the finite-dimensional case where
B(`2) is replaced by the matrix algebra Mn. Define on Mn

ψn

( n∑
i,j=1

αijeij

)
=

n∑
k=1

λ2
k αkk and φn(x) =

ψn(x)
ψn(1)

.

Since the original dλ is unbounded, we may assume that
∑
k λ

2
k > 1. Then, by

approximation we can indeed assume that ψn(1) = kn is an integer, see [15] for
more details. If dψn and dφn stand for the corresponding densities, we clearly have

dλ = d
1
2
ψn

=
√

kn d
1
2
φn
.

In particular, we may replace Kλ by Kn with

‖x‖Kn = inf
x=

P4
1 xj
‖x1‖En1 +kn

∥∥d 1
2
φn
x2d

1
2
φn

∥∥
En2

+
√

kn
∥∥d 1

2
φn
x3

∥∥
En3

+
√

kn
∥∥x4d

1
2
φn

∥∥
En4

and where Enj is the result of replacing in Ej the algebra B(`2) by Mn. We can
identify this space in the terminology of Theorem 3.7. Namely, if we fix a positive
integer m and set Em = id ⊗ φn ⊗ ϕ : Mm ⊗Mn ⊗M → Mm, then it is easily
checked that we have the following isometric isomorphism

Sm1 (Kn) = Kkn
1,∞
(
Mmn(M), Em;R

)
.

For instance, according to Remark 2.2, Sm1 (En3) can be written as[
Rm ⊗h Lr2(Mn(M))⊗h Rm

]
⊗Mmn(M),h

[
Cm ⊗hMn(M⊗̄R)⊗h Rm

]
⊗Mm,h Cm2 ,
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which in turn is cb-isometric to

Lr2(Mmn(M))⊗Mmn(M),h (Mmn(M)⊗̄R)⊗Mm,h L
c
2(Mm).

In other words, we obtain the space Lc1(Mmn(M), Em;R). The term En4 is handled
in the same way while the terms En1 and En2 are even easier. Applying Theorem
3.7 for tensor copies, we have an embedding

x ∈ Kkn
1,∞
(
Mmn(M), Em;R

)
7→

kn∑
j=1

πjtens(x)⊗ δj ∈ L1

(
Am,n; `kn∞ (R)

)
,

with Am,n = Mm ⊗Mn(M)⊗kn . In particular, this produces a cb-embedding

wn : x ∈ Kn 7→
kn∑
j=1

πjtens(x)⊗ δj ∈ L1

(
Mn(M)⊗kn ; `kn∞ (R)

)
,

with relevant constants independent of n. Finally, the construction of our complete
embedding is as follows. We first apply Proposition 4.3 and then we proceed as
above. Namely, if u = ur ⊗ id⊗ uc, we have

Lp(M;R)
j−→ H 1

p
(M⊗̄R) u−→ H̃ 1

p
(M⊗̄R) id−→

⋃
n≥1

Kn

and we have constructed a complete embedding∏
n,U

wn :
⋃
n≥1

Kn −→
∏

n,U
L1

(
Mn(M)⊗kn ; `kn∞ (R)

)
.

Let qn : B(`2)→ Mn be the projection into the upper left corner and let us define
the element ξn = qnξrqnξcqn ∈ L1(Mn). Since u(j(x)) = u(1 ⊗ x) = ξrξc ⊗ x, the
form of the embedding

∏
n,U wn ◦ u ◦ j is the one given in the assertion. �

5. Mixed-norm transference and applications

Given a Hilbert space H, we shall write Hr and Hc to denote the row and
column operator space structures on H. Accordingly, Hrp and Hcp stand for the
complex interpolation spaces [Hr,Hc]1/p and [Hc,Hr]1/p, respectively. Let us fix
1 ≤ p ≤ q ≤ ∞ and n ≥ 1 a positive integer. By Pisier’s exercise [30] and some
refinements [12, 15, 43], we may construct complete embeddings

αq : Cnq → Lc2(Ω, µq; `n2 ) + L
cp
2 (Ω, νq; `n2 ),

βq : Rnq → Lr2(Ω, µq; `n2 ) + L
rp
2 (Ω, νq; `n2 ),

for suitable measures µq and νq on a finite set Ω = {1, 2, . . . ,m} with m depending
on n. In fact, an elaborated version of this result was already used in the previous
section. A much more concrete approach is available in [17, Lemma 2.2]. Let
µi = µq{i} and νi = νq{i} = λiµi for some λi > 0. Let us write dλ for the diagonal
operator on `m2 determined by the λi’s. That is, dλ =

∑
k λkekk. The symbol +

above refers as in the previous section to the quotient of the direct sums

Lc2(Ω, µq; `n2 )⊕ Lcp2 (Ω, νq; `n2 ) and Lr2(Ω, µq; `n2 )⊕ Lrp2 (Ω, νq; `n2 )

by the subspace

S =
{(
aij ,−λ

− 1
2

i aij
) ∣∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.
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More concretely, in the first case a = (aij) ∈ Lc2(Ω, µq; `n2 ) is a column with m
entries in `n2 , while in the second case a = (aij) ∈ Lr2(Ω, µq; `n2 ) is a row. In
particular, we may write S in each case as follows

Sα =
{(
a,−d

− 1
2

λ a
) ∣∣ a ∈ Lc2(Ω, µq; `n2 )

}
=
{(
− d

1
2
λa, a

) ∣∣ a ∈ Lc2(Ω, µq; `n2 )
}
,

Sβ =
{(
a,−ad−

1
2

λ

) ∣∣ a ∈ Lr2(Ω, µq; `n2 )
}

=
{(
− ad

1
2
λ , a

) ∣∣ a ∈ Lr2(Ω, µq; `n2 )
}
.

The embedding is of the form

αq(a) = 1Ω ⊗ a+ Sα.

The formula for βq is the same. Let us define

Sαβ = Sα⊗h
(
Lr2(Ω, µq; `n2 )⊕Lrp2 (Ω, νq; `n2 )

)
+
(
Lc2(Ω, µq; `n2 )⊕Lcp2 (Ω, νq; `n2 )

)
⊗hSβ .

Lemma 5.1. If 1 ≤ p ≤ q ≤ ∞, we have a cb-embedding

vq : `nq →
(
Lc2(Ω, µq; `n2 ) + L

cp
2 (Ω, νq; `n2 )

)
⊗h
(
Lr2(Ω, µq; `n2 ) + L

rp
2 (Ω, νq; `n2 )

)
,

vq
(
ξ1, ξ2, . . . , ξn

)
=

n∑
k=1

ξk αq(ek1)⊗ βq(e1k) =
[ n∑
k=1

ξk

( m∑
i,j=1

eij

)
⊗ ekk

]
+ Sαβ .

Proof. It follows from our considerations above and `nq ⊂ Cnq ⊗h Rnq . �

The embedding vq is special in the sense that its range is contained in the
subalgebra Mm ⊗ `n∞, after a suitable change of variables. To explain this we
recall that µq{i} = µi and νq{i} = λiµi. Therefore, the map

j : (aij) ∈ Lc2(Ω, µq; `n2 ) 7→
(√
µi aij

)
∈ Cmn

is a complete isometry. To respect the sum operation, we have to apply j also
on L

cp
2 (Ω, νq; `n2 ). If λ stands for the measure on Ω given by λ{i} = λi, we find

another complete isometry j : Lcp2 (Ω, µq; `n2 ) → L
cp
2 (Ω, λ, `n2 ). Hence, applying the

same argument for the other side and using the terminology

L
cp
2 (Ω, λ; `n2 ) = d

1
2
λC

mn
p and L

rp
2 (Ω, λ; `n2 ) = Rmnp d

1
2
λ ,

we find a complete isometry

J :
(
Lc2(Ω, µq; `n2 )⊕ Lcp2 (Ω, νq; `n2 )

)
⊗h
(
Lr2(Ω, µq, `n2 )⊕ Lrp2 (Ω, νq; `n2 )

)
→

(
Cmn ⊕ d

1
2
λC

mn
p

)
⊗h
(
Rmn ⊕Rmnp d

1
2
λ

)
with J = (j, j) ⊗ (j, j). Passing to quotients, we may replace ⊕ by +. The key
observation here is that algebraically we have J (vq(`nq )) ⊂Mm ⊗ `n∞. Indeed, note

(5.1) J
[( m∑

i,j=1

eij

)
⊗ ekk

]
=
( m∑
i,j=1

µ
1
2
i µ

1
2
j eij

)
⊗ δk.

Before we proceed with our next result, we review the Kk
p,∞(Mm, φ) space given by

a state φ. In this case, given any pair u, v ∈ {2p,∞}, the inclusion map Sm(u,v) ⊂ S
m
p

depends on φ. Indeed, we may and will assume that φ(x) =
∑
k φkxkk. Then, the

density dφ is indeed a diagonal operator with coefficients φk and we have Kosaki’s
embedding

x ∈ Sm(u,v) 7→ d
1
2p−

1
u

φ x d
1
2p−

1
v

φ ∈ Smp .
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Therefore, we find

‖x‖Kk
p,∞(Mm,φ) = inf

{
k

1
p ‖x1‖Smp + k

1
2p ‖x2‖Sm2p + k

1
2p ‖x3‖Sm2p + ‖x4‖Mm

}
,

where the infimum runs over x = x1 + x2d
1
2p
φ + d

1
2p
φ x3 + d

1
2p
φ x4d

1
2p
φ . This gives

‖x‖Kk
p,∞(Mm,φ) = inf

{∥∥d 1
2p
kφx

1d
1
2p
kφ

∥∥
Smp

+
∥∥d 1

2p
kφx

2
∥∥
Sm2p

+
∥∥x3d

1
2p
kφ

∥∥
Sm2p

+ ‖x4‖Mm

}
,

where this time the infimum is taken over d
− 1

2p
φ x d

− 1
2p

φ = x1 + x2 + x3 + x4. A
similar calculation applies in the operator-valued setting. In the following result,
we shall use the notation

‖x‖dαXdβ = ‖dαxdβ‖X .

Lemma 5.2. Let us consider a von Neumann algebra M, positive integers m,n, k
and a state φ on Mm. Let EM : Mm(M) ⊗ `kn∞ → M stand for the conditional
expectation

EM
( k∑
i=1

n∑
j=1

xij ⊗ δij
)

=
1
nk

k∑
i=1

n∑
j=1

φ⊗ id(xij).

Let R = Mm(M)⊗ `n∞ and consider the space Xp
φ,n(M) defined by

Lp(M; `n∞(Mm)) + d
1
2p
kφL2p(R)L2p(M) + L2p(M)L2p(R)d

1
2p
kφ + d

1
2p
kφLp(R)d

1
2p
kφ .

Then the following identity holds∥∥∥ k∑
i=1

n∑
j=1

d
1
2p
φ xj d

1
2p
φ ⊗ δij

∥∥∥
Kkn
p,∞(Mm(M)⊗`kn∞ ,EM)

=
∥∥∥ n∑
j=1

xj ⊗ δj
∥∥∥
Xpφ,n(M)

.

Proof. The subspace of sequences(
x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn

)
,

with every xj repeated k times is complemented in Kkn
p,∞(Mm(M)⊗ `kn∞ , EM) since

it is complemented in the four spaces composing it. Let us assume for simplicity
thatM has a normalized trace τ . Our reference state and trace in the construction
of the Haagerup Lp spaces are

ψ(xij) =
1
nk

k∑
i=1

n∑
j=1

φ⊗ τ(xij) and tr(xij) =
1
nk

k∑
i=1

n∑
j=1

trMm
⊗ τ(xij).

The density is given by dψ = dφ⊗1M and letting M̂kmn = Mm(M)⊗ `kn∞ we have

Kkn
p,∞
(
M̂kmn, EM

)
= (nk)

1
p d

1
2p
ψ Lp(M̂kmn) d

1
2p
ψ

+ (nk)
1
2p d

1
2p
ψ L2p(M̂kmn)L2p(M) + (nk)

1
2p L2p(M)L2p(M̂kmn)d

1
2p
ψ

+ L2p(M)L∞(M̂kmn)L2p(M) = Z1 + Z2 + Z3 + Z4.

This means that∥∥∥ k∑
i=1

n∑
j=1

d
1
2p
φ xj d

1
2p
φ ⊗ δij

∥∥∥
Kkn
p,∞( cMkmn,EM)

= inf
xj=x1

j+x
2
j+x

3
j+x

4
j

4∑
s=1

∥∥∥∑
i,j
xsj ⊗ δij

∥∥∥
Zs
.
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Let us compute the four norms∥∥∥∑
i,j
xj ⊗ δij

∥∥∥
Z1

= (nk)
1
p

( 1
nk

∑
i,j

∥∥d 1
2p
φ xjd

1
2p
φ

∥∥p
Lp(Mm(M))

) 1
p

= k
1
p

( n∑
j=1

∥∥d 1
2p
φ xjd

1
2p
φ

∥∥p
p

) 1
p

= k
1
p

∥∥∥ n∑
j=1

xj ⊗ δj
∥∥∥
d

1
2p
φ Lp(R)d

1
2p
φ

,

∥∥∥∑
i,j
xj ⊗ δij

∥∥∥
Z2

= k
1
2p inf
d
1/2p
φ xj=zjb

( n∑
j=1

‖zj‖2pL2p(Mm(M))

) 1
2p ‖b‖L2p(M)

= k
1
2p

∥∥∥ n∑
j=1

xj ⊗ δj
∥∥∥
d

1
2p
φ L2p(R)L2p(M)

,∥∥∥∑
i,j
xj ⊗ δij

∥∥∥
Z4

= inf
xj=azjb

‖a‖L2p(M) sup
1≤j≤n

‖zj‖Mm(M)‖b‖L2p(M)

=
∥∥∥ n∑
j=1

xj ⊗ δj
∥∥∥
Lp(M;`n∞(Mm))

.

The Z3-term is calculated as Z2. The proof is complete. �

Theorem 5.3. Let 1 ≤ p ≤ q ≤ ∞ and set m = |Ω| as above. Then, there exists a
state φm on Mm and a positive integer km such that we have a complete embedding

Lp(M; `nq )→ Lp

(
M⊗̄

[
∗kmn

(
Mm, φm

)]
; `kmn∞

)
given by the relation

n∑
j=1

xj ⊗ δj 7→
km∑
i=1

n∑
j=1

xj ⊗ πijfree(am)⊗ δij ,

where am = am(p, q) ∈Mm. The relevant constants are independent of m and n.

Proof. By enlarging m if necessary, we may assume that
∑
i λ

p
i = km is an integer.

Then we define the normalized state φm(x) = k−1
m

∑
i λ

p
i xii. We observe that for

arbitrary elements xj ∈Mm ⊗ Lp(M), the right hand side of Lemma 5.2 coincides
with the norm of diagonal sequences (i.e. mn×mn matrices which are diagonal on
its n-component) in the space

Lp

(
M;

(
Cmn + d

1
2
λC

mn
p

)
⊗h
(
Rmn +Rmnp d

1
2
λ

))
.

Indeed, we use the properties of the Haagerup tensor product and the fact that
projection onto the diagonal Mn → `n∞ is completely contractive with respect to all
the four interpolation norms. The embedding is given by u ◦

(
idLp(M) ⊗ (J ◦ vq)

)
where u is the first map from Theorem 2.4 for q =∞ and kmn instead of n. Note
that u is well-defined because of J(vq(`nq )) ⊂ Mm ⊗ `n∞. Moreover, identity (5.1)
tells us that

am = d
1
2p
φ

( ∑
i,j≤k′m

√
µiµjeij

)
d

1
2p
φ

with k′m ≤ km. The proof is complete. �

Remark 5.4. The constants in Theorem 5.3 are also independent of p, q as far as
we do not have p→ 1 and q →∞ simultaneously. The use of Theorem 2.4 produces
such singularity, see Remarks 2.3 and 2.5 for further details.
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Proof of Theorem B. Let us consider
n∑
k=1

πk(x)⊗ δk ∈ Lp(A; `nq ).

According to Theorem 5.3, the following equivalence holds∥∥∥ n∑
k=1

πk(x)⊗ δk
∥∥∥
Lp(A;`nq )

∼c
∥∥∥ km∑
i=1

n∑
j=1

πj(x)⊗ πijfree(am)⊗ δij
∥∥∥
Lp(A⊗B;`kmn∞ )

,

with B = ∗kmn(Mm, φm). Applying the complete embedding that we constructed
in Theorem 4.4 to the term on the right hand side (note that both Theorems 4.4
and 5.3 provide constants independent of m and n) we obtain a new term in the
ultraproduct ∏

s,U
L1

([
Ms ⊗A⊗ B

]⊗ks ; `kmksn
∞

)
of the following form km∑

i=1

n∑
j=1

ks∑
w=1

πwtens

[
ξs ⊗ πj(x)⊗ πijfree(am)

]
⊗ δijw


s

for a fixed family of matrices ξs ∈Ms. On the other hand, we have

πijfree = πjfree ◦ π
i
free

by the transitivity of free products, see e.g. Proposition 2.5.5. in [41]. Therefore,
if we let αj = πj ⊗ πjfree and amalgamate over Ms, we may rewrite the term above
as follows  km∑

i=1

n∑
j=1

ks∑
w=1

πwtens

[
αj
(
ξs ⊗ x⊗ πifree(am)

)]
⊗ δijw


s

.

Then, arguing as in the proof of Lemma 1.2 (in particular part i), we obtain n∑
j=1

α̂j

[ km∑
i=1

ks∑
w=1

πwtens
(
ξs ⊗ x⊗ πifree(am)

)
⊗ δiw

]
⊗ δj


s

with α̂j a tensor amplification of αj . However, according to Lemma 1.2 i) the α̂j ’s
provide an increasingly independent family of top-subsymmetric copies over the
symmetric tensor product of Ms. Hence, we are in position to apply Theorem 3.7
with πj replaced by α̂j and R = `kskm∞ . Again, the constants are independent of
the involved parameters. This gives us a new term which does not depend on the
choice of the morphisms α̂j , so that we may use

α̂j = πjfree ⊗ π
j
free

instead. The assertion is then obtained by calculating backwards. �

Remark 5.5. If we do not require the constant to be (p, q)-independent, Theorem
B also holds for p > q by a simple duality argument. The singularity arises in this
case from the complementation constant of the subspace of independent copies in
Lp(A; `nq ). As for (Σpq), this singularity is not removable.
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Corollary 5.6. Let 1 ≤ p ≤ q ≤ ∞ and let (Mk)k≥1 be an increasingly independent
family of top-subsymmetric copies of M over N . Then, we have an isomorphic
embedding

x ∈ Knp,q(M, EN ) 7→
n∑
k=1

πk(x)⊗ δk ∈ Lp
(
A; `nq

)
with complemented range and constants independent of n. In particular, replacing
(M,N , EN ) by (Mm(M),Mm, idMm

⊗ ϕ) so that A = Mm(R) for some R, we
obtain a complete isomorphism with completely complemented range and constants
independent of n

x ∈ Knp,q(M) 7→
n∑
k=1

πk(x)⊗ δk ∈ Lp
(
R; `nq

)
.

Proof. It follows immediately from Theorem 2.4 and Theorem B. �

Remark 5.7. According to Remarks 2.3 and 2.5 we know that, except for the
case (p, q) ∼ (1,∞), the constants in Corollary 5.6 are also independent of p, q. On
the other hand, since we are using transference, we need to work with independent
copies. In the free case we can also work with non i.d. variables, see Theorem 2.4.

The rest of the paper is devoted to the proof of Corollary B. We begin by stating
a refinement of [13, Theorem 4.2] which follows easily from our previous results in
this paper. We shall write Lp(Mn) for the Schatten class Snp equipped with the
normalized trace 1

n trn.

Lemma 5.8. Let 1 ≤ p ≤ q ≤ 2 and a positive integer n ≥ 1. Then, the following
mapping is a complete isomorphism onto a completely complemented subspace with
constants independent of p, q and n

Ψpq : x ∈ Lq(Mn) 7→ 1
n2/q

n2∑
k=1

πktens(x)⊗ δk ∈ Lp(Mnn2 ; `n
2

q ).

As before, if 1 ≤ p ≤ q ≤ ∞, the same holds with a singularity when (p, q) ∼ (1,∞).

Proof. According to Theorem 4.2 and Remark 4.3 in [13], the assertion holds for
1 < p ≤ q ≤ ∞ with a constant cp majorized by p/p−1. The fact that it also holds
for p = 1 now follows from Theorem 3.7 and the argument in [13]. The universality
of the constants follows by Corollary 5.6 + Remark 5.7 followed by the original
argument [13] again. �

Remark 5.9. The choice m = n2 in Lp(Mnm ; `mq ) is optimal, see [13] for details.

In what follows, we will need some preparation on ultraproducts of semifinite
von Neumann algebras. Let (Mn) be a family of semifinite von Neumann algebras
with normal semifinite faithful traces (τn). We may define τU (xn) = limn,U τn(xn)
on the ultraproduct von Neumann algebra

MU =
(∏

n,U
L1(Mn)

)∗
.

Let us set

MU,sf =
{

(qnxnqn)•
∣∣ limn,U τn(qn) <∞, (xn)• ∈MU

}wot

.
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Then it turns out that MU,sf is a semifinite von Neumann subalgebra of MU and
τU ((xn)•)) = limn,U τn(xn) defines an trace on MU,sf . An appropriate way to
check this consist in checking the axioms of a (tracial) Hilbert algebra

A =
{

(xn)•
∣∣ limn,U ‖xn‖ <∞ and limn,U τ(x∗nxn) <∞

}
,

where (xn)• corresponds to the equivalence class of a bounded sequence of positive
elements in (

∏
U L1(Mn))∗. Then τU can be extended to a normal semifinite trace

on MU,sf viewed as the closure of A in the GNS-representation of the Hilbert
algebra. We refer to [36] for more on ultraproducts of noncommutative Lp spaces
and how they can be identified as a noncommutative Lp space Lp((

∏
U L1(Mn))∗).

Let µs(x) stand for the generalized s-numbers of x, see [5]. The following will be a
key result below.

Lemma 5.10. Let (xn) be a bounded sequence in Lp(Mn) such that

lim
δ→0

limn,U

∫ δ

0

µs(xn)p ds = 0 = lim
γ→∞

limn,U

∫ ∞
γ

µs(xn)p ds.

Then we have (xn)• ∈ Lp(MU,sf ). Moreover, the converse is also true.

Proof. Given ε > 0, we choose γ, δ such that

max
{∫ δ

0

µs(xn)p ds,
∫ ∞
γ

µs(xn)p ds
}
< ε/2.

It is clearly no restriction to assume that the xn’s are positive elements. Let us set
an = µγ(xn) and bn = µδ(xn). If qn = 1[an,bn](xn), we observe that τ(qn) ≤ γ and
that zn = qnxnqn is bounded by bn. Note that δpµδ(xn) ≤ ‖xn‖pp implies that

lim
n,U

bn ≤ δ−p lim
n,U
‖xn‖pp

is well-defined. Therefore (zn)• ∈ MU,sf . The first assertion then follows from
‖xn− yn‖pp < ε. For the converse we observe thatMU,sf is norm dense in Lp(MU )
and the assertion is trivially true for (xn)• in MU,sf . The proof is complete. �

Proof of Corollary B. If 1 ≤ p < q ≤ 2, we shall prove:
a) There is no cb-embedding of Rq + Cq into semifinite Lp.
b) Let R0 stand for the hyperfinite II1 factor and assume that there exists a

complete embedding of `q into Lp(M) with M semifinite. Then, Lq(R0)
cb-embeds into some semifinite Lp space.

The combination of both results gives rise to the assertion. Indeed, we know from
the noncommutative Khintchine inequality [24] that Rq+Cq cb-embeds into Lq[0, 1]
which also cb-embeds into Lq(R0). Therefore, we deduce from a) that there is no
cb-embedding of Lq(R0) into semifinite Lp. Apply b) to conclude.

Step 1. The proof of a) essentially reproduces Xu’s argument in [43]. Assume
there exists a complete embedding j : Rq + Cq → Lp(M) with M semifinite and
equipped with a normal semifinite faithful trace τ . Let

j∗ : Lp′(M)→ Rq ∩ Cq
denote the adjoint mapping. Since Rq∩Cq can be regarded as the diagonal subspace
of Rq ⊕ Cq, we may write j∗ = (Λ1,Λ2). Since Λ1 : Lp′(M) → Rq is completely
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bounded, we deduce that there exists a positive unit functional f ∈ Lp′/2(M)∗ such
that

‖Λ1(x)‖Rq ≤ cf(xx∗)
1−θ
2 f(x∗x)

θ
2 with 1/q = (1− θ)/p+ θ/p′.

This was proved by Pisier [32] for p = 1 and by Xu [44] for 1 < p ≤ 2. We also
refer to [43, Lemma 5.8] for a precise statement. When p > 1, f can be regarded as
a positive element in the unit ball of Lp/(2−p)(M) while for p = 1, f can be taken
as a normal state on M since Λ1 is normal, see [31] for details. In particular, we
deduce

‖Λ1(x)‖Rq ≤ c τ(fxx∗)
1−θ
2 τ(fx∗x)

θ
2 .

Arguing as in the proof of Theorem 5.6 of [43], we may apply an approximation
argument which allows us to assume thatM is finite and f = 1M. In that case our
estimate for Λ1 becomes ‖Λ1(x)‖Rq ≤ c τ(xx∗)1/2. Moreover, the same argument
for Λ2 produces

(5.2) ‖j∗(x)‖Rq∩Cq = max
{
‖Λ1(x)‖Rq , ‖Λ2(x)‖Cq

}
≤ c τ(xx∗)

1
2 .

This provides a factorization j∗ = v∗u∗ with u∗ : Lp′(M) → L2(M) the natural
inclusion map. Arguing (twice) as in [43], we see that u∗ becomes a complete
contraction when we impose on L2(M) the o.s.s. of L

cp′
2 (M) ∩ Lrp′2 (M). On the

other hand, it follows from (5.2) that v∗ is a bounded map between Hilbert spaces
so that v ∈ S∞. To conclude, we note that j = uv provides a factorization

Rq + Cq
v−→ Rp + Cp

u−→ j(Rq + Cq).

By a simple modification of [43, Lemma 5.9], we deduce that

u ∈ CB(Rp + Cp, Rq + Cq) = S2pq/|p−q|.

Thus, the identity on Rq+Cq belongs to S2pq/|p−q| which contradicts 1 ≤ p < q ≤ 2.

Step 2. Assume that there exists a cb-embedding jp of `q into Lp(M) for some
semifinite von Neumann algebraM equipped with a normal faithful semifinite trace
τ . According to Lemma 5.8 and our assumption, we find a cb-embedding

unp : x ∈ Lq(Mn) 7→ 1
n2/q

n2∑
k=1

πktens(x)⊗ δk ∈ Lp(M
⊗n2
n ; `n

2

q )

7→ 1
n2/q

n2∑
k=1

πktens(x)⊗ jp(δk) ∈ Lp(M
⊗n2
n ⊗M).

Taking ultraproducts, we find a cb-embedding

wp : Lq(R0)→
∏

n,U
Lp
(
M
⊗n2
n ⊗M

)
= Lp(M̂U ).

On the other hand, by our assumption we may regard `q as an infinite-dimensional
subspace of Lp(M) not containing `p. According to the noncommutative form
[14] of Rosenthal’s theorem, given any p < r < q we may find a positive density
d ∈ L1(M) with τ(d) = 1 and a embedding jr : `q → Lr(M) satisfying

(5.3) jp(x) = d
1
p−

1
r jr(x) + jr(x)d

1
p−

1
r .
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Let us consider the map

unr : x ∈ Lq(Mn)
u1
r7−→ 1

n2/q

n2∑
k=1

πktens(x)⊗ δk ∈ Lr(M
⊗n2
n ; `n

2

q )

u2
r7−→ 1

n2/q

n2∑
k=1

πktens(x)⊗ jr(δk) ∈ Lr(M
⊗n2
n ⊗M).

The first half is a complete embedding by Lemma 5.8. The second one is not
necessarily bounded since jr is not necessarily completely bounded. However, it is
easily seen that the composition of both is an isomorphic embedding. Namely, we
may clearly assume that x ∈ Lq(Mn) is self-adjoint. In that case,

Ax =
〈
πktens(x)

〉′′
1≤k≤n2

is a commutative von Neumann algebra. Thus

‖unr(x)‖Lr(M
nn

2⊗M)

=
∥∥∥ 1
n2/q

n2∑
k=1

πktens(x)⊗ jr(δk)
∥∥∥
Lr(Ax⊗M)

∼
∥∥∥ 1
n2/q

n2∑
k=1

πktens(x)⊗ δk
∥∥∥
Lr(Ax;`n2

q )
= ‖u1

r(x)‖Lr(Ax;`n2
q ) ∼ ‖x‖Lq(Mnn

2 ).

We may take ultraproducts again and consider

wr : Lq(R0)→
∏

n,U
Lr
(
M
⊗n2
n ⊗M

)
= Lr(M̂U ).

If δ = (δn)• with δn = 1M
nn

2 ⊗ d and according to (5.3), we have

(5.4) wp(x) = δ
1
p−

1
rwr(x) + wr(x)δ

1
p−

1
r .

We claim that wp(x) belongs to Lp(M̂U,sf ), the semifinite part of M̂U , for any
x ∈ Lq(R0). It suffices to check that the limits of Lemma 5.10 are zero. We do it
only for δ1/p−1/rwr(x), since the term wr(x)δ1/p−1/r is estimated similarly. Since
we have µs(ab) ≤ µs/2(a)µs/2(b) and µs(δn) = µs(d) for all n, we set 1

t = 1
p −

1
r

and obtain(∫ 2δ

0

µs
(
δ

1
p−

1
r

n unr(x)
)p
ds
) 1
p ≤ 2

1
p

(∫ δ

0

µs(d
1
p−

1
r )t ds

) 1
t
(∫ δ

0

µs(unr(x))r ds
) 1
r

≤ 2
1
p

(∫ δ

0

µs(d
1
p−

1
r )t ds

) 1
t ‖unr(x)‖r

. 2
1
p

(∫ δ

0

µs(d
1
p−

1
r )t ds

) 1
t ‖x‖q.

Therefore, we deduce that

lim
δ→0

limn,U

(∫ δ

0

µs
(
δ

1
p−

1
r

n unr(x)
)p
ds
) 1
p

= 0.

The argument to estimate
∫∞
γ

is exactly the same. This completes the proof. �
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Remark 5.11. Following a suggestion by G. Pisier let us describe what goes
‘wrong’ when considering a family vn : `nq → Lp(Mn) of complete embeddings
into a semifinite von Neumann algebras Mn. Note that by local reflexivity such
cb-isomorphism exists. Let us consider the following conditions.

i) There exits a cb-embedding of `q into Lp(M) with M semifinite.
ii) There exists a sequence (Mn)n≥1 of semifinite von Neumann algebras and

linear maps vn : `nq → Lp(Mn) such that ‖vn‖cb‖v−1
n ‖cb ≤ c for all n ≥ 1

and for every f ∈ Lq(0, 1), the sequence (fn)• determined by

fn = vn

(
n1− 1

q

n∑
k=1

( ∫ k
n

k−1
n

f(x) dx
)
δk

)
belongs to the semifinite part Lp(M̂U,sf ) of

∏
n,U Lp(Mn, τn).

iii) There exists a sequence (Mn)n≥1 of semifinite von Neumann algebras and
linear maps wn : `nq → Lp(Mn) such that ‖wn‖cb‖w−1

n ‖cb ≤ c for all n ≥ 1
and there exists a sequence of densities dn ∈ L1(Mn) such that (dn)•

belongs to the semifinite part of
∏
n,U L1(Mn, τn) and

wn(x) = d
1
p−

1
r

n jn,r(x) + jn,r(x) d
1
p−

1
r

n ,

is Rosenthal’s factorization [14] for some contractions jn,r : `nq → Lr(Mn).

iv) There exits a cb-embedding of Lq(R0) into Lp(M) with M semifinite.

We will show that the conditions above are equivalent. Hence, even though a family
of complete embeddings vn : `nq → Lp(Mn) with uniformly controlled constants
exists, the uniform integrability condition in ii) or iii) is violated.

Proof. The implication iv) ⇒ i) is obvious and we have seen in the proof of
Corollary B above that i) ⇒ iii), just take the same dn all the time. The proof
of ii) ⇒ iii) follows similarly. Indeed, by assumption we obtain a continuous map
v : Lq(0, 1) → Lp(M̂U,sf ). We apply the noncommtuative Rosenthal theorem [14]
and find v(f) = d

1
p−

1
r j(f)+j(f) d

1
p−

1
r for a bounded map j : Lq(0, 1)→ Lr(M̂U,sf )

and some density d ∈ L1(M̂U,sf ). By restricting j to step functions on the intervals
[k−1
n , kn ], we have found the complete embeddings wn from condition iii). For the

implication iii)⇒ iv) we apply the argument from our proof of Corollary B. Indeed,
it suffices to check that for every self-adjoint x ∈ R0, the sequence

un(x) =
1

n2/q

n2∑
k=1

πk(x)⊗ wn2(δk)

=
1

n2/q

n2∑
k=1

πk(x)⊗
(
d

1
p−

1
r

n2 jn2,r(δk) + jn2,r(δk) d
1
p−

1
r

n2

)
belongs to the semifinite part of

∏
n,U Lp(R

⊗n2
0 ⊗Mn). Referring to the argument

after (5.4), it suffices to note that∥∥∥ 1
n2/q

n2∑
k=1

πk(x)⊗ jn2,r(δk)
∥∥∥
Lr(R

⊗
n2

0 ⊗Mn)
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≤ ‖jn2,r‖
1

n2/q

(∫
Ax

[ n2∑
k=1

|πk(x)|q
] r
q

dµx

) 1
r ≤ ‖jn2,r‖‖x‖R0

is uniformly bounded in n for every x ∈ R0. The proof is complete. �
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