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Abstract. Sharp Fourier type and cotype of Lebesgue spaces and Schatten
classes with respect to an arbitrary compact semisimple Lie group are inves-
tigated. In the process, a local variant of the Hausdorff-Young inequality on
such groups is given.

Introduction

Let 1 ≤ p ≤ 2. An operator space E is said to have Fourier type p with respect to
the compact group G if the vector-valued Fourier transform extends to a completely
bounded map

FG,E : LpE(G) −→ Lp
′

E (Ĝ)

where p′ = p/(p − 1) is the exponent conjugate to p. That is, a vector-valued
Hausdorff-Young inequality of exponent p is satisfied. Similarly, if we replace the
operator FG,E by its inverse, we get the notion of Fourier cotype p′ of E with
respect to G. Following the notation of [8], we define the constants

C1
p(E,G) = ‖FG,E‖cb(LpE(G),Lp

′
E ( bG))

and C2
p′(E,G) = ‖F−1

G,E‖cb(LpE( bG),Lp
′
E (G))

.

The Fourier type and cotype become stronger conditions on the pair (E,G) as
the exponents p and p′ approach 2. This gives rise to the notions of sharp Fourier
type and cotype exponents. The present paper grew out of the project to investigate
the sharp Fourier type and cotype of Lebesgue spaces Lp and Schatten classes Sp

and it is a natural continuation of [8]. However, as we shall see below, some other
results have appeared in the process which are interesting on their own right.

In section 1 we recall that the natural candidates for the sharp Fourier type
and cotype of Lp and Sp –where now 1 ≤ p ≤ ∞– are min(p, p′) and max(p, p′)
respectively. To justify that this guess is right, one would have to show that for
1 ≤ p < q ≤ 2

(a) C1
q (Lp(Ω), G) = C2

q′(L
p′(Ω), G) = ∞

(b) C1
q (Lp

′
(Ω), G) = C2

q′(L
p(Ω), G) = ∞

with the obvious modifications for the Schatten classes. Section 2 is devoted to
make some remarks about (a) and (b). First we show that, to have any chance
of getting positive answers to these questions, we have to require the group G not
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to be finite and the operator spaces Lp and Sp to be infinite-dimensional. Then,
under such assumptions, one can easily get the following inequality

C1
q (Lp(Ω), G) ≥ lim sup

n→∞
C1
q (lp(n), G)

and the analog for Lp
′
(Ω). Therefore the growth of C1

q (lp(n), G) and C1
q (lp

′
(n), G)

provides a possible way to obtain (a) and (b). In the last part of section 2 we
analyze the vector-valued Lebesgue spaces and Schatten classes.

The growth of C1
q (lp(n), G) is investigated in section 3. To be precise, if G stands

for a compact semisimple Lie group and 1 ≤ p < q ≤ 2, then there exists a constant
0 ≤ K(G, q) ≤ 1 such that C1

q (lp(n), G) ≥ K(G, q) n1/p−1/q for all n ≥ 1. If one
is able to see that K(G, q) > 0, this result gives (a). Moreover, we would obtain
optimal growth since C1

q (lp(n), G) ≤ n1/p−1/q for any compact group. We shall see
that

K(G, q) = inf
n≥1

sup

{
‖f̂‖Lq′ ( bG)

‖f‖Lq(G)
: f central, f ∈ Lq(G), supp(f) ⊂ Un

}
where {Un : n ≥ 1} is a basis of neighborhoods of 1, the identity element of G.
The Hausdorff-Young inequality on compact groups provides K(G, q) ≤ 1. The
interesting point lies in the inequality K(G, q) > 0 which constitutes a local variant
of the Hausdorff-Young inequality on G with exponent q.

Sections 4 and 5 are completely devoted to the proof of this local inequality. In
the abelian setting, the particular case G = T was explored by Andersson in [1].
The basic idea is to consider a function f : T → C as a complex-valued function
on R supported in [−1/2, 1/2). Then, by expressing the norm of f̂ on Lq

′
(R) as a

Riemann sum, one obtains

‖f̂‖Lq′ (R)

‖f‖Lq(R)
= lim
k→∞

‖ϕ̂k‖Lq′ (T)

‖ϕk‖Lq(T)

where ϕk(t) = k1/qf(kt). This gives K(T, q) ≥ Bq –where Bq =
√
q1/q/q′1/q′ stands

for the constant of Babenko-Beckner, see [2] and [3]– but in fact the equality holds,
as it was proved by Sjölin in [15]. We show here that Andersson’s argument,
suitably modified, is also valid in the context of compact semisimple Lie groups.
In section 4 we summarize the main results of the structure and representation
theory of compact semisimple Lie groups that will be used in the process. Then
we use these algebraic results to get an expression for the Fourier transform of
central functions f : G→ C in terms of the Fourier transform FT on the maximal
torus T of G. This will allow us to work over the maximal torus where we know
that Andersson obtained a satisfactory result. However, in the non-commutative
setting, the degree dπ of an irreducible representation π does not have to be 1.
And we shall see that this becomes a further obstacle to be treated in section 5.
There we combine some results –as the Weyl dimension formula– concerning the
representation theory of compact semisimple Lie groups with classical harmonic
analysis to avoid this difficulty.

On the other hand, if we notice that C1
q (lp

′
(n), G) = C2

q′(l
p(n), G), we can under-

stand the growth of this constant as the dual problem of the growth of C1
q (lp(n), G)

in the sense that we substitute the Fourier transform operator FG,lp(n) by its in-
verse. Therefore, since the dual object is no longer a group –as it is when G is
abelian– we do not have a Fourier inversion theorem and we should not expect to
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reconstruct the proof given in sections 3, 4 and 5 step by step. At the time of this
writing, we are not able to solve this problem and so we pose it as follows:

Problem: Let G be any compact semisimple Lie group and let 1 ≤ p < q ≤ 2.
Does the estimate C1

q (lp
′
(n), G) ≥ K(G, q) n1/p−1/q hold for some positive constant

K(G, q) depending only on G and q?

Finally, we point to a non-commutative notion of Rademacher type for operator
spaces, see [9]. We think this notion could be helpful in order to study the growth
of C1

q (lp
′
(n), G).

1. Statement of the problem

All throughout this paper some basic notions of operator space theory and non-
commutative vector-valued discrete Lp spaces will be assumed. The definitions and
results about operator spaces that we are using can be found in the book of Effros
and Ruan [5], while for the study of our non-commutative Lp spaces the reader is
referred to [12], where Pisier analyzes them in detail. In any case all the analytic
preliminaries of this paper are summarized in [8], where we study the Fourier type
and cotype of an operator space with respect to a compact group. In order to state
the problem we want to solve, we begin by recalling the definitions and the main
properties of Fourier type and cotype.

Let G be a compact topological group endowed with its Haar measure µ nor-
malized so that µ(G) = 1 and let π ∈ Ĝ be an irreducible unitary representation
of G of degree dπ. Here the symbol Ĝ stands for the dual object of G. Given an
operator space E, it was shown in [8] that –by fixing a basis on the representation
space of each π ∈ Ĝ– the Fourier transform operator FG,E for functions defined on
G and with values on E, has the form f ∈ L1

E(G) 7−→
(
f̂(π)

)
π∈ bG ∈ME(Ĝ), where

f̂(π) =
∫
G

f(g)π(g)?dµ(g) and ME(Ĝ) =
∏
π∈ bG

Mdπ ⊗ E.

Here Mn denotes the space of n × n complex matrices. Let 1 ≤ p < ∞, if Spn(E)
stands for the vector-valued Schatten class on Mn ⊗ E, we define the spaces

• LpE(Ĝ) =
{
A ∈ME(Ĝ) : ‖A‖LpE( bG) =

(∑
π∈ bG

dπ‖Aπ‖pSpdπ (E)

)1/p

<∞
}

• L∞E (Ĝ) =
{
A ∈ME(Ĝ) : ‖A‖L∞E ( bG) = sup

π∈ bG
‖Aπ‖S∞dπ (E) <∞

}
.

We write Lp(Ĝ) for the case E = C. Finally, let 1 ≤ p ≤ 2, then by the Hausdorff-
Young inequality on compact groups –see [8] or Kunze’s paper [10]– it is not difficult
to check that FG,E(Lp(G)⊗E) ⊂ Lp′(Ĝ)⊗E and F−1

G,E(Lp(Ĝ)⊗E) ⊂ Lp′(G)⊗E.
This motivates the following definitions.

Definition 1.1. Let 1 ≤ p ≤ 2 and let p′ denote its conjugate exponent. The
operator space E has Fourier type p with respect to the compact group G if the
Fourier transform operator

FG,E : Lp(G)⊗ E → Lp
′
(Ĝ)⊗ E
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can be extended to a completely bounded operator from LpE(G) into Lp
′

E (Ĝ). In
that case C1

p(E,G) will stand for its cb norm.

Definition 1.2. In the same fashion, the operator space E has Fourier cotype p′

with respect to the compact group G if the inverse

F−1
G,E : Lp(Ĝ)⊗ E → Lp

′
(G)⊗ E

can be extended to a completely bounded operator from LpE(Ĝ) to Lp
′

E (G). As
before we shall denote its cb norm by C2

p′(E,G).

One of the properties proved in [8] is that every operator space has Fourier type
1 and Fourier cotype ∞ with respect to any compact group. In particular, the
complex interpolation method for operator spaces –see Pisier’s work [11]– provides
the following result.

Lemma 1.3. Let 1 ≤ p1 ≤ p2 ≤ 2 and assume that E has Fourier type p2 with
respect to G, then E has Fourier type p1 with respect to G. Similarly, Fourier
cotype p′2 of E with respect to G implies Fourier cotype p′1 of E with respect to G.

Therefore, the Fourier type and cotype become stronger conditions on the pair
(E,G) as the exponent p –and consequently its conjugate p′– tends to 2. So lemma
1.3 gives rise to the following definition.

Definition 1.4. The sharp Fourier type and cotype exponents of an operator space
E with respect to the compact group G are defined respectively by

p1(E,G) = sup{p ≤ 2 : E has Fourier type p with respect to G}
p2(E,G) = inf{p′ ≥ 2 : E has Fourier cotype p′ with respect to G}.

If E has Fourier type p1(E,G) with respect to G we say that E has sharp Fourier
type p1(E,G). The sharp Fourier cotype of E is defined analogously.

In order to simplify the statement of the problem we shall need the following
lemma –see [8]– which analyzes the Fourier type and cotype of the dual E? of an
operator space E with respect to a compact group G.

Lemma 1.5. Let 1 ≤ p ≤ 2 and let p′ be the conjugate exponent of p. Then we
have the equalities C1

p(E?, G) = C2
p′(E,G) and C2

p′(E
?, G) = C1

p(E,G).

The problem we want to investigate in this paper is how to find out the sharp
Fourier type and cotype of Lebesgue spaces and Schatten classes. Concerning these
topics we present here a result given in [8] from which we start out. In what
follows (Ω,A, ν) will denote a σ-finite or regular measure space and SpN the classical
Schatten class over the space of compact operators on l2.

Theorem 1.6. Let 1 ≤ p ≤ ∞, then the spaces Lp(Ω), Spn and SpN have Fourier
type min(p, p′) and Fourier cotype max(p, p′). In fact, the vector-valued Fourier
transform –or its inverse– is a complete contraction in each of the cases considered.

Therefore, if we consider two exponents p and q such that 1 ≤ p < q ≤ 2, we
would like to find out conditions on G and Ω under which

(a) C1
q (Lp(Ω), G) = C2

q′(L
p′(Ω), G) = ∞

(b) C1
q (Lp

′
(Ω), G) = C2

q′(L
p(Ω), G) = ∞

with the obvious modifications for the Schatten classes.
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2. Some remarks about the problem

In this section we shall point out some remarks about the problem we have just
stated. We begin by showing some necessary conditions that should hold to obtain a
positive answer to our question. Second we wonder about sufficient conditions that
we shall work with along the rest of this paper. Finally we study what happens if we
consider vector-valued Lp spaces –or Bochner-Lebesgue spaces– and vector-valued
Schatten classes.

2.1. Necessary conditions. The first necessary condition we are talking about
is on the compact group G. We have to exclude finite groups from our treatment
since, as we shall see immediately, every operator space E has sharp Fourier type
and cotype 2 with respect to any finite group. Anyway the next result is a bit more
accurate.

Proposition 2.1. Let G be a finite group, then every operator space E satisfies
the estimates C1

p(E,G), C2
p′(E,G) ≤ |G|1/p′ for 1 ≤ p ≤ 2.

Proof. Let us assume that C1
2(E,G) ≤ |G|1/2 for every operator space E, then we

have C2
2(E,G) = C1

2(E?, G) ≤ |G|1/2 by duality. The desired estimates are then
obtained by complex interpolation from the equalities C1

1(E,G) = C2
∞(E,G) = 1

–proved in [8]– and the case p = 2. Therefore we focus our attention on the
case p = 2. It suffices to check that for all m ≥ 1 and any family of functions
{fij : G→ E}1≤i,j≤m(∑

π∈ bG

dπ

∥∥∥( f̂ij(π)
)∥∥∥2

S2
dπm

(E)

)1/2

≤ |G|1/2
∥∥∥( fij

)∥∥∥
S2
m(L2

E(G)).

But if G = {g1, g2, . . . gn}, then∥∥∥( f̂ij(π)
)∥∥∥

S2
dπm

(E)
=

∥∥∥( 1
n

n∑
k=1

fij(gk)π(gk)?
)∥∥∥

S2
dπm

(E)

≤ 1
n

n∑
k=1

‖π(gk)?‖S2
dπ

∥∥∥( fij(gk)
)∥∥∥

S2
m(E)

≤ d1/2
π

∥∥∥( fij

)∥∥∥
S2
m(L2

E(G))

Therefore we obtain∥∥∥( f̂ij

)∥∥∥
S2
m(L2

E( bG))
≤
√∑
π∈ bG

d2
π

∥∥∥( fij

)∥∥∥
S2
m(L2

E(G))

and, since
∑
π∈ bG

d2
π = |G| by the Peter-Weyl theorem, we are done.

Next we show that we can not work with measure spaces (Ω,A, ν) which are a
union of finitely many ν-atoms. Before that we need to define the cb distance
between two operator spaces. It is due to Pisier and it constitutes the analog of
the Banach-Mazur distance between two Banach spaces in the context of operator
space theory. Given two operator spaces E1 and E2, we define their cb distance by
the relation dcb(E1, E2) = inf{‖u‖cb(E1,E2)‖u−1‖cb(E2,E1)} where the infimum runs
over all complete isomorphisms u : E1 → E2. The following result –also extracted
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from [8]– relates the Fourier type and cotype of two operator spaces E1 and E2

with their cb distance.

Lemma 2.2. Let 1 ≤ p ≤ 2 and let E1, E2 be operator spaces, then we have the esti-
mates C1

p(E2, G) ≤ dcb(E1, E2) C1
p(E1, G) and C2

p′(E2, G) ≤ dcb(E1, E2) C2
p′(E1, G).

Proposition 2.3. Let 1 ≤ p < q ≤ 2 and assume that (Ω,A, ν) is a union of
finitely many ν-atoms. Then every compact group G satisfies the following estimates

C1
q (Lp(Ω), G) = C2

q′(L
p′(Ω), G) ≤ ν(Ω)1/p−1/q

C1
q (Lp

′
(Ω), G) = C2

q′(L
p(Ω), G) ≤ ν(Ω)1/q′−1/p′ .

In fact, since 1/p− 1/q = 1/q′ − 1/p′, we have the same bound for both cb norms.

Proof. Applying lemma 2.2 and the last part of theorem 1.6 we get the estimates
C1
q (Lp(Ω), G) ≤ dcb(Lp(Ω), Lq(Ω)) and C1

q (Lp
′
(Ω), G) ≤ dcb(Lp

′
(Ω), Lq

′
(Ω)). On

the other hand it is straightforward to check that, for 1 ≤ p1 < p2 ≤ ∞ and such a
measure space (Ω,A, ν), we have dcb(Lp1(Ω), Lp2(Ω)) ≤ ν(Ω)1/p1−1/p2 .

In other words, we do not allow finite dimensional Lebesgue spaces. Since the
cb distance between two Schatten classes of the same finite dimension is also finite,
the arguments used in proposition 2.3 –theorem 1.6 and lemma 2.2– are also valid
to show that the unique Schatten classes with any possibility to make theorem 1.6
sharp are those of infinite dimension.

2.2. Sufficient conditions. The Fourier type and cotype of the subspaces of a
given operator space E are bounded above by the respective type and cotype of E.
The proof of this result is straightforward, see [8].

Lemma 2.4. Let 1 ≤ p ≤ 2 and let F be a closed subspace of E, then we have the
estimates C1

p(F,G) ≤ C1
p(E,G) and C2

p′(F,G) ≤ C2
p′(E,G).

After the conditions above, we shall work in the sequel with infinite compact
groups and infinite dimensional Lebesgue spaces and Schatten classes. Since the
measure space (Ω,A, ν) is no longer a union of finitely many ν-atoms, we obtain
that the n-dimensional space lp(n) is a closed subspace of Lp(Ω) for all n ≥ 1 and
any 1 ≤ p ≤ ∞. Moreover, recalling that the subspace of diagonal matrices of Spn is
completely isomorphic to lp(n), we deduce that the same happens for the Schatten
classes SpN. Hence sharpness of theorem 1.6 will be guaranteed if, for 1 ≤ p < q ≤ 2,
we have

(a′) C1
q (lp(n), G) = C2

q′(l
p′(n), G) −→ ∞ as n→∞

(b′) C1
q (lp

′
(n), G) = C2

q′(l
p(n), G) −→ ∞ as n→∞.

Therefore our aim from now on will be the study of the growth of the constants
C1
q (lp(n), G) and C1

q (lp
′
(n), G). The first remark about these constants that we can

already make is that both have a common upper bound

C1
q (lp(n), G), C1

q (lp
′
(n), G) ≤ n1/p−1/q.

This is an obvious consequence of proposition 2.3.
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2.3. Vector-valued spaces. Theorem 1.6 was also studied in [8] for vector-valued
spaces, here is the statement of the result obtained.

Theorem 2.5. Let 1 ≤ p ≤ ∞ and let E be an operator space having Fourier
type min(p, p′) –respectively Fourier cotype max(p, p′)– with respect to G. Then the
spaces LpE(Ω), Spn(E) and SpN(E) have Fourier type min(p, p′) –respectively Fourier
cotype max(p, p′)– with respect to G.

Let 1 ≤ p ≤ ∞ and min(p, p′) < q ≤ 2. Let E be as in theorem 2.5, then lemma
2.4 gives the following estimates

C1
q (LpE(Ω), G) ≥ C1

q (Lp(Ω), G) C1
q (LpE(Ω), G) ≥ C1

q (E,G)
C2
q′(L

p
E(Ω), G) ≥ C2

q′(L
p(Ω), G) C2

q′(L
p
E(Ω), G) ≥ C2

q′(E,G)

with the obvious modifications for the Schatten classes. Hence we have shown that
sharp Fourier type or cotype of Lp(Ω) –respectively SpN– provides sharp Fourier
type or cotype of LpE(Ω) –respectively SpN(E)– with respect to G. Also the same
conclusion is obtained assuming sharp Fourier type or cotype of E. In particular,
the sufficient condition given above also works for vector-valued spaces. Therefore
we focus our attention on the growth of the constants C1

q (lp(n), G) and C1
q (lp

′
(n), G).

3. On the growth of C1
q (lp(n), G).

We shall assume in what follows that G is a compact semisimple Lie group.
Semisimplicity is an essential assumption in the arguments we shall be using. Any-
way, for the moment, the only property of such groups that we shall apply is the
existence of a maximal torus T in G. The following result gives, in particular, part
(a) in section 1 –with the obvious modifications for Schatten classes– whenever we
work with infinite dimensional operator spaces and compact semisimple Lie groups.

Theorem 3.1. Let 1 ≤ p < q ≤ 2 and let G be a compact semisimple Lie group.
Then there exists a constant 0 < K(G, q) ≤ 1 depending on G and q such that for
all n ≥ 1

K(G, q) n1/p−1/q ≤ C1
q (lp(n), G) ≤ n1/p−1/q.

In particular we observe that the growth of C1
q (lp(n), G) is optimal for compact

semisimple Lie groups. The proof of this result starts out applying the existence
of a maximal torus T to consider a countable family {gk : k ≥ 1} of pairwise
commuting elements of G, just take gk ∈ T. For every n ≥ 1 we take Un to be a
neighborhood of 1 –the identity element of G– satisfying

g−1
j Un ∩ g

−1
k Un = ∅ for 1 ≤ j, k ≤ n and j 6= k.

We recall here that we can always consider a central function fn supported in Un
and belonging to Lq(G), for example take Un to be invariant under conjugations
–see lemma (5.24) of [6]– and fn = 1Un where 1U stands for the characteristic
function of U . Henceforth fn will be a central function in Lq(G) supported in
Un, to be fixed later. Then we define the function Φn : G → Cn by Φn(g) =
(fn(g1g), fn(g2g), . . . fn(gng)). We obviously have the estimate

C1
q (lp(n), G) ≥

‖Φ̂n‖Lq′
lp(n)(

bG)

‖Φn‖Lq
lp(n)(G)

.

So it suffices to prove that this quotient is bounded below by K(G, q) n1/p−1/q.
The following lemma will be very helpful for that purpose.
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Lemma 3.2. Let 1 ≤ p1, p2 ≤ ∞, π ∈ Ĝ and n ≥ 1. Consider the matrix-valued
vector Aπ,n = (π(g1), π(g2), . . . π(gn)), then

‖Aπ,n‖lp1
S
p2
dπ

(n) = ‖Aπ,n‖Sp2dπ (lp1 (n)) = n1/p1d1/p2
π .

Proof. Since g1, g2, . . . gn are pairwise commuting, there exists a basis of Cdπ of
common eigenvectors of π(g1), π(g2) . . . π(gn). Therefore, in that basis, all these
matrices are diagonal

π(gk) =

 θk1
. . .

θkdπ

 .

Moreover, |θkj | = 1 for 1 ≤ j ≤ dπ because of the unitarity of π(gk). Hence, applying
the complete isometry –see corollary (1.3) of [12]– between lp2E (dπ) and the subspace
of diagonal matrices of Sp2dπ (E), we easily obtain the desired equality.

(i) The value of ‖Φ̂n‖Lq′
lp(n)(

bG)
. We begin by recalling that, since fn is central,

f̂n(π) =
1
dπ

∫
G

fn(g)χπ(g)dµ(g) 1dπ = γπ,n1dπ

by Schur’s lemma. Here χπ is the irreducible character associated to π and
1m denotes the identity matrix of order m ×m. On the other hand fn(gk·)
is the translation by gk of fn, therefore

Φ̂n(π) =
1
dπ

∫
G

fn(g)χπ(g)dµ(g) (π(g1), π(g2), . . . π(gn)) = γπ,nAπ,n.

So we get, by lemma 3.2, the following equality

‖Φ̂n‖Lq′
lp(n)(

bG)
=

(∑
π∈ bG

dπ|γπ,n|q
′
‖Aπ,n‖q

′

Sq
′
dπ

(lp(n))

)1/q′

= n1/p
(∑
π∈ bG

d2
π|γπ,n|q

′
)1/q′

= n1/p ‖f̂n‖Lq′ ( bG).

(ii) The value of ‖Φn‖Lp
lp(n)(G). We have

‖Φn‖Lq
lp(n)(G) =

(∫
G

( n∑
k=1

|fn(gkg)|p
)q/p

dµ(g)
)1/q

=
( n∑
k=1

‖fn(gk·)‖qLq(G)

)1/q

= n1/q ‖fn‖Lq(G)

since the sets {g−1
k Un : 1 ≤ k ≤ n} are pairwise disjoint.

In summary, we have obtained that C1
q (lp(n), G) ≥ K(G, q, n) n1/p−1/q where

the constant K(G, q, n) is given by

K(G, q, n) =
‖f̂n‖Lq′ ( bG)

‖fn‖Lq(G)
.
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If we define K(G, q) = infn≥1K(G, q, n), it is obvious that K(G, q) ≤ 1 by the
Hausdorff-Young inequality on compact groups. Thus it remains to check that
K(G, q) > 0. For that aim, since we have not fixed fn yet, we need to see that

inf
n≥1

sup

{
‖f̂‖Lq′ ( bG)

‖f‖Lq(G)
: f central, f ∈ Lq(G), supp(f) ⊂ Un

}
> 0.

We shall prove this fact in section 5 where we study the supremum of the Hausdorff-
Young quotient for central functions supported in arbitrary small sets. As we shall
see immediately, semisimplicity of G will be essential in our proof.

4. A simple expression for the Fourier transform

of central functions

In this section we apply some basic results concerning the structure and represen-
tation theory of compact semisimple Lie groups to provide a simple expression for
the Fourier transform of central functions defined on such groups. These algebraic
preliminaries can be found in Simon’s book [14] or alternatively in [7], but we sum-
marize here the main topics. Let G be a compact semisimple Lie group and let g be
its Lie algebra. In what follows we choose once and for all an explicit maximal torus
T in G while h will stand for its Lie algebra. That is, h is the Cartan subalgebra of
g. The rank of G will be denoted by r, in particular T ' Tr where T = R/Z with its
natural group structure. Also, as it is customary, we consider the complexification
gC = g ⊕ ig –with complex conjugates taken so that gR = {Z ∈ gC : Z = Z} = ig
and similarly hR = ih– with the complex inner product 〈 , 〉 induced by the Killing
form. We also recall that the Weyl groupWG associated to G can be seen as a set of
r× r unitary matrices W –isometries on hR– with integer entries and detW = ±1.
In particular the set W?

G = {W t : W ∈ WG} becomes a set of isometries on h?R.
The symbol R will stand for the set of roots while, if we take H0 ∈ hR such that
α(H0) 6= 0 for any root α, the symbol R+ = {α ∈ R : α(H0) > 0} denotes the set
of positive roots. Finally we shall write ΛW and ΛDW for the weight lattice and
the set of dominant weights respectively.

Once we have fixed some notation, let us consider a central function f : G→ C
and a dominant weight λ ∈ ΛDW. By the dominant weight theorem there exists
a unique πλ ∈ Ĝ associated to λ and, since f is central, we can write by Schur’s
lemma

f̂(πλ) =
1
dλ

∫
G

f(g)χλ(g)dµ(g) 1dλ

where dλ is the degree of πλ, χλ is the character of πλ and 1m denotes the m×m
identity matrix. We now recall the definition of the functions Aβ appearing in the
Weyl character formula. Given β ∈ h?R, we define the functions expβ : hR → C and
Aβ : hR → C by the relations

expβ(H) = e2πi〈β,H〉

Aβ(H) =
∑

W∈WG

detW expβ
(
W (H)

)
.

The maximal torus T is isomorphic via the exponential mapping to the quotient
space hR/LW, where LW is the set of those H ∈ hR satisfying exp(2πiH) = 1.
That is, LW is the dual lattice of ΛW. Therefore, the functions expβ and Aβ are
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well-defined functions on T if and only if β ∈ ΛW. As it is well known, the integral
form

δ =
1
2

∑
α∈R+

α

is not necessarily a weight and so the functions expδ and Aδ could be not well-
defined on T. To avoid this difficulty we assume for the moment that G is simply
connected, this condition on G assures that δ ∈ ΛW. Hence, applying consecu-
tively the Weyl integration formula and the Weyl character formula, we get

f̂(πλ) =
1

dλ|WG|

∫
T

f(t)χλ(t) |Aδ(t)|2dm(t) 1dλ

=
1

dλ|WG|

∫
T

f(t)Aδ(t) Aλ+δ(t)dm(t) 1dλ

where m denotes the Haar measure on T normalized so that m(T) = 1. Now, if we
write Aλ+δ as a linear combination of exponentials, we obtain

f̂(πλ) =
1

dλ|WG|
∑

W∈WG

detW
∫
T

f(t)Aδ(t) exp−(λ+δ)(W (t))dm(t) 1dλ

=
1
dλ

∫
T

f(t)Aδ(t) exp−(λ+δ)(t)dm(t) 1dλ

since Aδ(W (t)) = detWAδ(t) and f(W (t)) = f(t). We recall that, taking coordi-
nates with respect to the basis {ω1, ω2, . . . ωr} of fundamental weights, any weight
λ ∈ ΛW has integer coordinates. Therefore, we can understand the last expression
as the Fourier transform of fAδ on the maximal torus T evaluated at λ+ δ. Hence
we have

f̂(πλ) =
1
dλ
FT(fAδ)(λ+ δ) 1dλ(1)

for f : G→ C central and G any compact semisimple simply connected Lie group.
When G is not simply connected, a more careful approach is needed. We have
W t(δ)± δ ∈ ΛW for all W ∈ WG. In particular we note that

exp±δ Aλ+δ =
∑

W∈WG

detW expW t(λ+δ)±δ

is a well-defined function on T for all λ ∈ ΛDW. This remark allows us to write
χλ |Aδ|2 = (expδ Aλ+δ) (exp−δ Aδ) as a well-defined function on T. Henceforth,
applying again Schur’s lemma, the Weyl integration formula and the Weyl character
formula, we get

f̂(πλ) =
1

dλ|WG|
∑

W∈WG

detW
∫
T

f(t)(exp−δ Aδ)(t) expδ−W t(λ+δ)(t)dm(t) 1dλ

=
1
dλ

∫
T

f(t)(exp−δ Aδ)(t) exp−λ(t)dm(t) 1dλ

where the last equality follows from the change of variable t 7→W t(t). That is, we
have shown that

f̂(πλ) =
1
dλ
FT(fBδ)(λ) 1dλ(2)

where Bδ = exp−δ Aδ. This expression is now valid for any compact semisimple
Lie group and it coincides with (1) for simply connected ones.
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5. A local variant of the Hausdorff-Young inequality

on compact semisimple Lie groups

As we mentioned in the introduction, this section is devoted to the proof of a
local variant of the Hausdorff-Young inequality on compact semisimple Lie groups.
We recall that this result provides the relation K(G, q) > 0 for 1 ≤ q ≤ 2, that we
needed in section 3.

Theorem 5.1. Let 1 ≤ q ≤ 2 and let G be a compact semisimple Lie group. Then
there exists a constant 0 < K(G, q) ≤ 1 such that, for any open set U ⊂ G, we have

sup

{
‖f̂‖Lq′ ( bG)

‖f‖Lq(G)
: f central, f ∈ Lq(G), supp(f) ⊂ U

}
≥ K(G, q).

Since the norms of f̂ and f –on Lq′(Ĝ) and Lq(G) respectively– do not change
under translations of f , we can assume without loss of generality that U is a neigh-
borhood of 1. Before the proof of theorem 5.1 we need some auxiliary results. Let
us assume that G is simply connected and let f : G → C be a central function. A
quick look at relation (1) given above, allows us to write

f̂(πλ) =
1
dλ

detW FT(fAδ)(W t(λ+ δ)) 1dλ(3)

for all W ∈ WG. On the other hand, let us denote by Pα the hyperplane of h?R
orthogonal to α with respect to the complex inner product given by the Killing
form. The infinitesimal Cartan-Stiefel diagram is then given by the expression

P =
⋃
α∈R

Pα.

Lemma 5.2. Let G be a compact semisimple simply connected Lie group. Then
we have {W t(λ + δ) : W ∈ WG, λ ∈ ΛDW} = ΛW \ P. Moreover, the mapping
(W,λ) ∈ WG × ΛDW 7→W t(λ+ δ) ∈ ΛW \ P is injective.

Proof. Since G is simply connected we have that {λ+ δ : λ ∈ ΛDW} = ΛW ∩Cint.
Here C stands for the fundamental Weyl chamber and Cint for its interior. Now,
since P and ΛW are invariant under the action of W?

G and for any Weyl chamber
C there exists a unique W ∈ WG such that W t(C) = C, we obtain the desired
equality. Finally, the injectivity follows from the uniqueness mentioned above.

Proposition 5.3. Let G be a compact semisimple simply connected Lie group and
let f : G→ C be a central function. Then there exists a constant A(G, q) depending
on G and q, such that

‖f̂‖Lq′ ( bG) = A(G, q)
[ ∑
λ∈ΛW\P

|FT(fAδ)(λ)|q′∏
α∈R+

|〈α, λ〉|q
′−2

]1/q′
.

Proof. Since f is central and G is simply connected, we can apply expression (3)
to obtain

‖f̂‖Lq′ ( bG) =
[ ∑
λ∈ΛDW

dλ‖f̂(πλ)‖q
′

Sq
′
dλ

]1/q′
=

[ 1
|WG|

∑
W∈WG

∑
λ∈ΛDW

dλ

∣∣∣ 1
dλ
FT(fAδ)(W t(λ+ δ))

∣∣∣q′‖1dλ‖q′Sq′dλ
]1/q′
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Moreover, the Weyl dimension formula for dλ gives

‖f̂‖Lq′ ( bG) =
[ 1
|WG|

∏
α∈R+

|〈α, δ〉|q
′−2

∑
W∈WG

∑
λ∈ΛDW

|FT(fAδ)(W t(λ+ δ))|q′∏
α∈R+

|〈α, λ+ δ〉|q
′−2

]1/q′
.

Finally we observe that∏
α∈R+

|〈α, λ+ δ〉| =
∏
α∈R
|〈W (α), λ+ δ〉|1/2 =

∏
α∈R+

|〈α,W t(λ+ δ)〉|

since any W ∈ WG is a permutation of the set of roots. Therefore, by lemma 5.2
we have

‖f̂‖Lq′ ( bG) =
[ 1
|WG|

∏
α∈R+

|〈α, δ〉|q
′−2

∑
λ∈ΛW\P

|FT(fAδ)(λ)|q′∏
α∈R+

|〈α, λ〉|q
′−2

]1/q′
.

The proof is completed just by taking A(G, q) =
[ 1
|WG|

∏
α∈R+

|〈α, δ〉|q
′−2
]1/q′

.

We are now ready to give the proof of theorem 5.1 for simply connected groups.
Let {H1, H2, . . .Hr} be the predual basis of the fundamental weights, any element of
LW can be written as a linear combination of H1,H2, . . . Hr with integer coefficients.
Then, since T ' hR/LW, we can regard T as the subset of hR

T =
{ r∑
k=1

xkHk : −1/2 ≤ xk < 1/2
}
.

On the other hand, let us fix a bounded central function f0 : G → C, then f0

can be understood as a function on T invariant under the action of WG. Now,
since the Weyl group is generated by a set of reflections in hR, f0 can be regarded
as a complex-valued function on hR, supported in T and symmetric under such
reflections. Let us recall that {ω1, ω2, . . . ωr} stands for the basis of fundamental
weights. Let τ = 1 − 2/q′, the way we have interpreted the function f0 allows us
to define the function

\Iτ (f0Aδ) : h?R −→ C as

\Iτ (f0Aδ)(ξ) =
1∏

α∈R+

|〈α, ξ〉|τ
FhR(f0Aδ)(ξ) where ξ =

r∑
k=1

ξkωk.

Remark 5.4. The motivation for the notation employed is that in a classical group
such as SU(2) the function just defined is nothing but the Fourier transform of the
fractional integral operator

Iτ (f)(x) =
1

Γ(τ)

∫ x

−∞
f(y)(x− y)τ−1dy

acting on f0Aδ. Here lies the main difference with the commutative case –where
a Hausdorff-Young inequality of local type has been already investigated, see [1]–
since the presence of the degrees dλ –as a product in proposition 5.3 by the Weyl
dimension formula– requires the presence of a factor of FhR(f0Aδ). This fact does
not happen in the commutative case since dλ = 1 for all λ ∈ ΛDW.



SHARP FOURIER TYPE AND COTYPE 13

Lemma 5.5. Let G be a compact semisimple simply connected Lie group and let
f : G→ C be a central function. Then we have FhR(fAδ)(ξ) = 0 for all ξ ∈ P.

Proof. If ξ ∈ P, there exists a root α such that ξ ∈ Pα. Let Sα be the reflection
in Pα, then FhR(fAδ)(ξ) = detSα FhR(fAδ)(Sα(ξ)) = −FhR(fAδ)(ξ) since, as it is
well known, Sα ∈ W?

G.

The function FhR(f0Aδ) is analytic since f0Aδ has compact support and, by
lemma 5.5, it vanishes at

P = {ξ ∈ h?R :
∏
α∈R+

〈α, ξ〉 = 0}.

In particular, since 0 ≤ τ < 1, \Iτ (f0Aδ) is continuous and takes the value 0 on P.
Now we write the norm of this function in terms of a Riemann sum

‖ \Iτ (f0Aδ)‖Lq′ (h?
R
) = lim

k→∞

[ ∑
λ∈ΛW

VG

kr
|FhR(f0Aδ)(k−1λ)|q′∏
α∈R+

|〈α, k−1λ〉|τq
′

]1/q′
,

where VG denotes the volume of a cell of ΛW. Moreover φk(x) = kσf0(kx)Aδ(kx)
is supported in T and the relation FhR(f0Aδ)(k−1λ) = kr−σFT(φk)(λ) is satisfied
for all λ ∈ ΛW. Taking σ = τ |R+|+ r/q, we obtain

‖ \Iτ (f0Aδ)‖Lq′ (h?
R
) = V1/q′

G lim
k→∞

[ ∑
λ∈ΛW\P

|FT(φk)(λ)|q′∏
α∈R+

|〈α, λ〉|τq
′

]1/q′
,

since we know that for λ ∈ P we get nothing. Finally, let us define ϕk : hR → C
by the relation φk = ϕkAδ. The function ϕk satisfies ϕk(W (x)) = ϕk(x) for all
W ∈ WG and is supported in k−1T, hence we can understand ϕk as a central
function on G. We can also say that, as a consequence of the well known relation

Aδ = exp−δ
∏
α∈R+

(expα−1),(4)

ϕk has no singularities. Therefore proposition 5.3 provides the following relation
for some constant B(G, q) depending on G and q

‖ \Iτ (f0Aδ)‖Lq′ (h?
R
) = B(G, q) lim

k→∞
‖ϕ̂k‖Lq′ ( bG).(5)

On the other hand, since ϕk can be seen as a central function on G, we can
estimate the norm of ϕk on Lq(G). By the Weyl integration formula we get

‖ϕk‖Lq(G) =
[ 1
|WG|

∫
T

|ϕkAδ(t)|q|Aδ(t)|2−qdm(t)
]1/q

=
[ kσq
|WG|

∫
T

|f0Aδ(kx)|q|Aδ(x)|2−qdx
]1/q

≤
[ (2π)(2−q)|R+|

|WG|
kσq

∫
T

|f0Aδ(kx)|q
∏
α∈R+

|α(x)|2−qdx
]1/q

,

where the last inequality follows from (4). Now, under the change of variable y = kx

and taking C(G, q) = (2π)τ |R
+||WG|−1/q, we obtain

‖ϕk‖Lq(G) ≤ C(G, q) kσ−τ |R
+|−r/q

(∫
T

|f0Aδ(y)|q
∏
α∈R+

|α(y)|τqdy
)1/q

.
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Recall that supp(f0Aδ) ⊂ T, therefore the integral over kT –the domain of inte-
gration after the change of variable– reduces to the same integral over T. But
σ − τ |R+| − r/q = 0 and the product inside the integral is bounded over T, say by
MG. Then we can write

‖ϕk‖Lq(G) ≤ C(G, q) MG ‖f0Aδ‖Lq(hR).(6)

In summary, by (5) and (6), we know there exists a constant D(G, q) depending
on G and q such that

K(G, q) = D(G, q)
‖ \Iτ (f0Aδ)‖Lq′ (h?

R
)

‖f0Aδ‖Lq(hR)
≤ lim inf

k→∞

‖ϕ̂k‖Lq′ ( bG)

‖ϕk‖Lq(G)
≤ 1.

Since f0 is bounded we easily obtain that f0Aδ ∈ Lq(hR), \Iτ (f0Aδ) ∈ Lq
′
(h?R) and

K(G, q) > 0. Therefore we have found a family {ϕk : k ≥ 1} of central functions on
G whose supports are eventually in U and such that their Hausdorff-Young quotient
of exponent q is bounded below by a positive constant. This concludes the proof
of theorem 5.1 for compact semisimple simply connected Lie groups.

If G is not simply connected, some extra comments have to be made. In any
case we shall not give complete proofs of any of them, the details are left to the
reader.

(i) Generalization (3) of formula (1) has no meaning here, but we can generalize
formula (2) as

f̂(πλ) =
1
dλ

detW FT(fBδ)(W t(λ+ δ)− δ) 1dλ .

This generalization provides a couple of results parallel to lemmas 5.2 and
5.5. Namely,

– We have {W t(λ + δ) − δ : W ∈ WG, λ ∈ ΛDW} = ΛW \ (P − δ). The
mapping (W,λ) ∈ WG×ΛDW 7→W t(λ+δ)−δ ∈ ΛW \(P−δ) is injective.

– If f : G→ C is central, then FhR(fBδ)(ξ) = 0 for all ξ ∈ P− δ.
(ii) Proposition 5.3 is now replaced by the following identity, valid for central

functions f : G→ C

‖f̂‖Lq′ ( bG) = A(G, q)
[ ∑
λ∈ΛW\(P−δ)

|FT(fBδ)(λ)|q′∏
α∈R+

|〈α, λ+ δ〉|q
′−2

]1/q′
.

(iii) The bases of h?R and hR respectively which generate ΛW and LW with integer
coefficients are no longer the basis of fundamental weights and its predual.
In fact, the fundamental weights generate the weight lattice of the universal
covering group of G, which is a lattice containing ΛW and strictly bigger than
it. Therefore we need to define {H1,H2, . . . Hr} and {ω1, ω2, . . . ωr} just as
the bases –of hR and h?R respectively– for which LW and ΛW have integer
coefficients. Once we have clarified this point, we can define T in the same
way and regard f0 as a bounded complex-valued function on hR, supported
in T and symmetric under the reflections that generate WG.

(iv) Let us recall that if δ /∈ ΛW , the function Aδ is not well-defined on T. But Aδ
is originally defined on hR and δ /∈ ΛW is not an obstacle to work with Aδ as
a function defined on hR. On the other hand, (ii) leads us to consider –in the
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same spirit as in the proof given for simply connected groups– the function

\
Ĩτ (f0Bδ)(ξ) =

1∏
α∈R+

|〈α, ξ + δ〉|τ
FhR(f0Bδ)(ξ).

Now, the remark given about Aδ shows that \
Ĩτ (f0Bδ)(ξ) = \Iτ (f0Aδ)(ξ + δ).

Hence we can proceed as before expressing the norm of this function in Lq
′
(h?R)

as a Riemann sum, but this time we take the lattice ΛW + δ instead of ΛW

‖ \Ĩτ (f0Bδ)‖Lq′ (h?
R
) = lim

k→∞

[ ∑
λ∈ΛW+δ

VG

kr
|FhR(f0Aδ)(k−1λ)|q′∏
α∈R+

|〈α, k−1λ〉|τq
′

]1/q′
.

(v) It is not difficult to check that FhR(f0Aδ)(k−1λ) = kr−σFT(ϕkBδ)(λ − δ),
where ϕk is defined as we did above. Hence we get

‖ \Ĩτ (f0Bδ)‖Lq′ (h?
R
) = V1/q′

G lim
k→∞

[ ∑
λ∈ΛW\(P−δ)

|FT(ϕkBδ)(λ)|q′∏
α∈R+

|〈α, λ+ δ〉|τq
′

]1/q′

= B(G, q) lim
k→∞

‖ϕ̂k‖Lq′ ( bG).

Finally, to estimate the norm of ϕk on Lq(G), we follow the same arguments. This
completes the proof of theorem 5.1 and, consequently, the proof of theorem 3.1.

Remark 5.6. Let {Un : n ≥ 1} be a basis of neighborhoods of 1, and let

K(G, q) = inf
n≥1

sup

{
‖f̂‖Lq′ ( bG)

‖f‖Lq(G)
: f central, f ∈ Lq(G), supp(f) ⊂ Un

}
.

This constant does not depend on the chosen basis and theorem 5.1 states that
0 < K(G, q) ≤ 1 for any 1 ≤ q ≤ 2 and any compact semisimple Lie group. However,
it would be interesting to find the exact value of that constant. Sharp constants for
the Hausdorff-Young inequality were investigated in [2], [3] or [13]. In the local case,
if Bq =

√
q1/q/q′1/q′ stands for the Babenko-Beckner constant, it is already known

that K(T, q) = Bq. Andersson proved it for q′ an even integer in [1] and Sjölin
completed the proof, see [15]. Also it is obvious that K(G, 1) = K(G, 2) = 1 for any
compact group G. In the general case, a detailed look at the proof of theorem 5.1
gives that the constant K(G, q) is the supremum of

|WG|τ
∏
α∈R+

|〈α, δ〉|τ V−1/q′

G lim
k→∞

(∫
h?
R

∣∣FhR(f0Aδ(ξ))
∣∣q′ ∏

α∈R+

|〈α, ξ〉|2−q
′
dξ
)1/q′

(∫
hR

|f0Aδ(x)|q
∣∣k|R+|Aδ(x/k)

∣∣2−qdx)1/q

for 1 < q ≤ 2, where the supremum runs over the family of functions f0 : hR → C,
supported in T and symmetric under the reflections generating the Weyl group
of G. If Kf0(G, q) denotes the expression given above, then one easily gets that
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Kf0(G, q) equals

|WG|τ

(2π)τ |R+|V1/q′

G

∏
α∈R+

|〈α, δ〉|τ

(∫
h?
R

∣∣FhR(f0Aδ(ξ))
∣∣q′ ∏

α∈R+

|〈α, ξ〉|2−q
′
dξ
)1/q′

(∫
hR

|f0Aδ(x)|q
∏
α∈R+

|〈α, x〉|2−qdx
)1/q

.

Moreover, taking q = 2 and by Plancherel theorem on compact groups, it follows
that VG = 1. The boundedness of this expression can be regarded as a weighted
Hausdorff-Young inequality of Pitt type, see [4] for more on this topic.

As we pointed out in the introduction, the growth of C1
q (lp

′
(n), G) remains open

for 1 ≤ p < q ≤ 2. We end this paper with some remarks about this problem.

Remark 5.7. In theorem 3.1 we found an extremal function Φn = (ϕ1, ϕ2, . . . ϕn),
such that

C1
q (lp(n), G) ≥

‖Φ̂n‖Lq′
lp(n)(

bG)

‖Φn‖Lq
lp(n)(G)

≥ K(G, q) n1/p−1/q.

Our functions ϕ1, ϕ2, . . . ϕn satisfied two crucial properties, namely

(P1) The norm of ϕ̂k(π) on Sq
′

dπ
does not depend on k for any π ∈ Ĝ.

(P2) ϕ1, ϕ2, . . . , ϕn have pairwise disjoint supports on G.

The idea was to compare the norms of Φ̂n and Φn with n1/p and n1/q respectively.
To this end, properties (P1) and (P2) were the conditions to be required since they
provided suitable simplifications for the original expressions of such norms. Now, if
we replace lp(n) by lp

′
(n) in the relation above, we want to compare the norms of

Φ̂n and Φn with n1/q′ and n1/p′ respectively. Notice that 1/p− 1/q = 1/q′ − 1/p′.
For that, we require these other properties on ϕ1, ϕ2, . . . ϕn

(P3) The absolute value |ϕk(g)| does not depend on k for any g ∈ G.
(P4) ϕ̂1, ϕ̂2, . . . , ϕ̂n have pairwise disjoint supports on Ĝ.
In the introduction we recalled that the growth of C1

q (lp(n), G) and C1
q (lp

′
(n), G)

can be understood as dual problems with respect to the Fourier transform operator.
Now, these properties justify this point. Assuming properties (P3) and (P4), we
get C1

q (lp
′
(n), G) ≥ K′(G, q, n) n1/q′−1/p′ , where K′(G, q, n) is given by

K′(G, q, n) =

 1
n

n∑
k=1

[
‖ϕ̂k‖Lq′ ( bG)

‖ϕk‖Lq(G)

]q′1/q′

.

Hence, if we define K′(G, q) = infn≥1K′(G, q, n), it remains to see that K′(G, q) > 0.
We do not know if this inequality holds for any compact semisimple Lie group and
any 1 ≤ q ≤ 2.

Remark 5.8. We do not know if properties (P3) and (P4) are compatible. However,
given f0 ∈ L2(G) continuous and any sequence of positive numbers {εn : n ≥ 1}
decreasing to 0, it is not difficult to see that there exists a system Φ = {ϕn : n ≥ 1}
of trigonometric polynomials on G satisfying

1. The functions ϕ̂1, ϕ̂2, . . . have pairwise disjoint supports on Ĝ.
2. The estimate |ϕn| ≤ |f0|+ εn holds in G.
3. The estimate |ϕn| ≥ |f0| − εn holds outside Ωn, where µ(Ωn)→ 0 as n→∞.
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Remark 5.9. As it is well-known, C1
q (lp

′
(n), G) = n1/p−1/q for any compact abelian

group G. This equality follows by taking ϕ1, ϕ2, . . . ϕn to be a collection of n
pairwise distinct characters. This motivates us to see what happens when we
consider the irreducible characters of a compact semisimple Lie group. Let χλ
be the character of the irreducible representation πλ, let us consider the function
Φn(g) = (dτλ1

χλ1(g), dτλ2
χλ2(g), . . . dτλnχλn(g)), where λ1, λ2, . . . λn are pairwise dis-

tinct dominant weights and τ = 1− 2/q′. Then we have

‖Φ̂n‖Lq′
lp
′ (n)

( bG)
=
( n∑
k=1

dλk‖dτλk χ̂λk(πk)‖q
′

Sq
′
dλk

)1/q′

= n1/q′ .

On the other hand, applying consecutively the Weyl integration formula and the
Weyl character formula, we get

‖Φn‖Lq
lp
′ (n)

(G) =
( 1
|WG|

∫
T

( n∑
k=1

|dλkAδ(t)|τp
′
|Aλk+δ(t)|p

′
)q/p′

dm(t)
)1/q

.

However these relations do not provide optimal growth. For instance, in the simplest
case G = SU(2) it can be checked that there exists a constant Kp,q depending on
p and q such that

1
n1/p′

(∫
SU(2)

‖Φn(g)‖q
lp′ (n)

dµ(g)
)1/q

≥ Kp,q nτ .

Remark 5.10. If we try to find out why our attempts to get optimal growth have
failed, we need to revisit the proof of theorem 3.1. The point is that we required
the functions ϕ1, ϕ2, . . . ϕn, not only to satisfy properties (P1) and (P2), but also to
be translations of a common function. This was essential in section 3 and here the
obstacle lies in the fact that we can not take translations since the dual object has
not a group structure. This is the main difference with the abelian case where, since
the dual object is a group, multiplication by a character in G becomes a translation
in the other side of the Fourier transform operator.

Remark 5.11. The quantized Rademacher system associated to a probability space
(Ω,M, µ), an index set Σ, and a family {dσ : σ ∈ Σ} of positive integers is defined
by a collection R = {ρσ : Ω → O(dσ)}σ∈Σ of independent random orthogonal
matrices, uniformly distributed on the orthogonal group O(dσ). In [9] we define
the notions of R-type, R-cotype and strong R-cotype of an operator space E.
Moreover, we show that

Fourier type p ⇒ strong R-cotype p′

Fourier cotype p′ ⇒ R-type p.

This implications allow us to work with the quantized Rademacher system where
other techniques are available to study the growth of C1

q (lp
′
(n), G).

Remark 5.12. Of course, the growth of C1
q (lp

′
(n), G) is trivially optimal when we

work with compact groups with infinitely many inequivalent irreducible represen-
tations of the same degree d0. The unitary groups U(n) are the simplest non-
commutative examples of this degenerate case. Also, it is not difficult to check that
C1

2(lp
′
(n), G) = n1/2−1/p′ by the Plancherel theorem for compact groups.
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