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Abstract

A Schur multiplier is a linear map on matrices which acts on its entries by
multiplication with some function, called the symbol. We consider idempotent
Schur multipliers, whose symbols are indicator functions of smooth Euclidean
domains. Given 1 < p # 2 < oo, we provide a local characterization (under
some mild transversality condition) for the boundedness on Schatten p-classes
of Schur idempotents in terms of a lax notion of boundary flatness. We prove
in particular that all Schur idempotents are modeled on a single fundamental
example: the triangular projection. As an application, we fully characterize
the local Lp-boundedness of smooth Fourier idempotents on connected Lie
groups. They are all modeled on one of three fundamental examples: the
classical Hilbert transform, and two new examples of Hilbert transforms that
we call affine and projective. Our results in this paper are vast noncommutative
generalizations of Fefferman’s celebrated ball multiplier theorem. They confirm
the intuition that Schur multipliers share profound similarities with Euclidean
Fourier multipliers —even in the lack of a Fourier transform connection— and
complete, for Lie groups, a longstanding search of Fourier Lj-idempotents.

Introduction

Schur multipliers are linear maps on matrix algebras with a great impact on
geometric group theory, operator algebras, and functional analysis. Their definition
is rather simple on discrete spaces Sy(A) = (M (j,k)A k). It easily extends to
nonatomic o-finite measure spaces (€2, 1), by restricting to operators A in Lo(€, p)
admitting a kernel representation over 2 x Q). Their role in geometric group theory
and operator algebras was first analyzed by Haagerup. His pioneering work on free
groups [19] and the research thereafter on semisimple lattices [4] 3] encoded deep
geometric properties via approximation properties with Schur multipliers. Other
interesting links can be found in [I1, 351 37, [39, 40, [42].

In 2011, stronger rigidity properties of high rank lattices were discovered by
studying L,-approximations [25] [26]. In first place, there are no L,-approximations
by means of Fourier or Schur multipliers over SL,(R) for p > 2+ «,, with a,, — 0
as n — oo. Secondly, it turns out that this unprecedented pathology leads to a
strong form of nonamenability which is potentially useful to distinguish the group
von Neumann algebras of PSL,,(Z) for different values of n > 3, the most iconic
form of Connes’ rigidity conjecture. This has strongly motivated our recent work
[10, B3] with several forms of the Hérmander-Mikhlin theorem. Nevertheless, there
is still much to learn about less regular multipliers. A key point in [26] was a
careful analysis of Schur multipliers over the n-sphere for symbols of the form
My(z,y) = ©((x,y)). More precisely, the boundedness of Sys, on the Schatten

2

class S}, for p > 2 + =5 imposes Holder regularity conditions on ¢. This article

grew from the analysis of the spherical Hilbert transform

Hg: A~ (sgn(m,y)Aw)w
1
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Is it Sp-bounded for some nz—fl <p#2< %? It is worth noting the analogy
with the ball multiplier problem, which was only known to be unbounded for p
outside this range before Fefferman’s celebrated contribution [15]. Our main result
completely solves this problem: Hg is S,-unbounded unless n =1 or p = 2. In fact

we characterize Sp,-boundedness for a much larger class of idempotents.

Let M, N be two differentiable manifolds with the Lebesgue measure coming
from any Riemmanian structure on them. Consider a C'-domain ¥ C M x N so
that its boundary 0% is a smooth hypersurface, which is locally represented by
level sets of some real-valued C!-functions with nonvanishing gradients. We say
that ¥ is transverse at a point (z,y) in its boundary when the tangent space of
0% at (x,y) maps surjectively on each factor T,M and T,N. In that case, both
sections 0%, = {y’ € N | (z,y') € 90X} and 9%¥ = {2’ € M | (¢, y) € OX} become
codimension 1 manifolds on a neighbourhood of y and x respectively.

Theorem A. Let p € (1,00) \ {2} and consider a C'-domain ¥ C M x N. Then
the following statements are equivalent for any transverse point (xo,yo) € 0X:

(1) Sp-boundedness. The idempotent Schur multiplier Sy, whose symbol equals
1 on ¥ and 0 elsewhere is bounded on S,(L2(U),L2(V')) for some pair of
neighbourhoods U,V of xg,yo in M, N.

(2) Zero-curvature condition. There are neighbourhoods U,V of xg,yo in M, N
such that the tangent spaces Ty(0%Xz,) and Ty (0X,,) coincide for any pair
of points (x1,y), (z2,y) € 0L N (U x V).

(3) Triangular truncation representation. There are neighbourhoods U,V of the
points xg,yo in M, N and C'-functions f1 : U — R and f» : V = R, such
that the domain SN (U x V) = {(z,y) €e U x V : fi(z) > f2(y)}.

Theorem A characterizes the local behavior of S),-bounded idempotent Schur
multipliers at transverse points. This includes spherical Hilbert transforms and
vastly amplifies Fefferman’s ball multiplier theorem [I5]. When M = N = R"
and n(z,y) = (n1(z,y),n2(z,y)) is a normal vector to 9% at (x,y), transversality
means that both n-dimensional components ni, ns are nonzero. The zero-curvature
condition means that na(z1, y) and na(x9, y) are parallel—equivalent forms in terms
of ny(x,y1) and ny(z,ys) instead, or simpler formulations for C?>-domains will be
also discussed after the proof of Theorem A. Fefferman’s Fourier analytic framework
corresponds to sets of the form

E:{(x,y):x—yeﬂ}

for an Euclidean domain €2, which turn out to be fully transverse and partly explains
why transversality did not appear so far. It is also quite remarkable that Theorem
A holds beyond Euclidean spaces, since Schur multipliers on general manifolds lack
to admit a Fourier transform connection. It has come as a surprise that even
after substantial and necessary differences with Fefferman’s formulation, a similar
phenomenon applies in such a general context. In a different direction, a global
nonlocal characterization of S,-bounded idempotent Schur multipliers also follows
for relatively compact fully transverse domains 3. Let us note that this class of
domains has no representatives in the Fourier analytic setting, since Toeplitz-like
domains ¥ = {(x, y)ix—yE€ Q} are not relatively compact.
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Y € 0%, NOY,,
1,05, #T,0%,,

FIGURE 1. Failure of for spherical Hilbert transforms Hg s
Here Hg s = Sy with ¥ = {(z,y) € S" x 8" : (z,y) > 6} for n = 2.

Theorem A has profound consequences for Fourier multipliers on Lie group von
Neumann algebras. Smooth Fourier multipliers on group algebras were intensively
investigated over the last decade [Bl 111, 177, 22] 23, 30, [33]. The nonsmooth theory
concerns a longstanding search to classify idempotent Fourier L,-multipliers, but
the geometric behavior of their symbols is very sensitive to the underlying group.
Bozejko and Fendler [3] studied an analog of Fefferman’s ball multiplier theorem in
the free group for |1/p—1/2| > 1/6, though the general case p # 2 stands open since
then. More recently, Mei and Ricard found a large class of free Hilbert transforms
in their remarkable work [29]. The search for Hilbert transforms on general groups
also includes crossed products and groups acting on tree-like structures [I8] [34].

In this paper, we shall give a complete characterization of the local boundary
behavior for completely bounded idempotent Fourier multipliers on arbitrary Lie
groups. Our result is more easily stated for simply connected groups. We refer to
Section [2| for the statement of the result on general Lie groups (Theorem and
for the precise definitions of local Fourier multipliers.

Theorem B. Letp € (1,00)\{2}. Let G be a simply connected Lie group, 2 C G a
Cl-domain and gy € ) a point in the boundary of Q. The following are equivalent:

(1) xq defines locally at go a completely bounded Fourier L,-multiplier.

(2) There is a smooth action G — Dift(R) by diffeomorphisms on the real line,
such that Q coincides on a neighbourhood of go with {g € G |g-0 > go-0}.

Lie himself classified Lie groups admitting (local) actions by diffeomorphisms
on the real line [28]. This classification into three types (translation, affine, and
projective) gives rise to the following three fundamental examples of a group G
with a smooth domain :

i) The real line G; = R with ; = (0, 00).
ii) The affine group Go = Aff (R)f]and Qo = {az +b:b > 0}.
iii) The universal covering group Gz = PSLy(R)'| with Q3 = {g : a,4(0) > 0}.

*Affine increasing bijections z — ax + b for a € R} and b € R, isomorphic to R x R} .

"The action « : ﬁéig(R) ~ R is obtained by lifting the standard action of PSL2(R) on the
projective line to the universal covers. If p : R — P! (R) denotes the universal cover, then the
universal cover of SL2(R) is identified with the group of homeomorphisms g : R — R for which
there is A € PSLa(R) such that pog=A-p.
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Lie’s classification implies the following interesting consequence.
Corollary B1. Conditions (1) and (2) in Theorem B are equivalent to:

(3) There is j € {1,2,3} and a smooth surjective homomorphism f: G — G;
such that the domain Q2 coincides on a neighbourhood of go with gof~*(;).

Therefore, there are three fundamental models for Hilbert transforms on Lie groups.

The above examples define (not only local, but) global completely bounded L,
Fourier multipliers for 1 < p < co. Example i) is the classical Hilbert transform
and Example iii) follows from recent Cotlar identities for unimodular groups [18].
The nonunimodular Example ii) will be properly justified in Example

Theorem B and Corollary Bl give very satisfactory descriptions of completely
bounded Fourier idempotents in arbitrary Lie groups. It is certainly surprising
that these multipliers are modeled out of exactly three fundamental examples, the
classical Hilbert transform and its affine and projective variants. It also shows that
every Cl'-idempotent is automatically C*°. This rigidity property collides head-on
with the much more flexible scenario of Theorem A. In the following result, we
further describe Fourier L,-idempotents for large classes of Lie groups.

Corollary B2. Let p € (1,00) \ {2} and let G be a Lie group:

i) If G is simply connected and nilpotent, every cb-Ly-bounded smooth Fourier
idempotent is locally of the form H o ¢, for the Hilbert transform H and
some continuous homomorphism ¢ : G — R.

i) If G is a simple Lie group which is not locally isomorphic to SLo(R), then
G does not carry any smooth Fourier idempotent which is locally completely
L,-bounded on its group von Neumann algebra.

iii) If G is locally isomorphic to SLa(R), then G carries a unique local Fourier
idempotent which is completely Ly-bounded on its group algebra (up to
left/right translations) given by g — %(1 + sgn Tr(9612)).

As an illustration for stratified Lie groups, the homomorphism ¢ corresponds on
the Lie algebra level with the projection onto any 1-dimensional subspace of the first
stratum. The second statement above spotlights the singular nature of harmonic
analysis over simple Lie groups. It also yields an alternative way to answer our
motivating question: the spherical Hilbert transform Hg is not L,-bounded for
any p # 2. Finally, as we shall justify, the third statement gives a straightforward
solution (in the negative) to Problem A in [I§]. We refer to [36}, [38] for the operator
space background necessary for this paper.

The plan of the paper is as follows. Section [I] is devoted to idempotent Schur
multipliers. It contains the proof of Theorem A and several discussions, including
our analysis of the spherical Hilbert transform. Section [2] is devoted to Fourier
multipliers. It contains the proof of Theorem B and its corollaries. The proof relies
on a result of independent interest on the local transference between Fourier and
Schur multipliers for arbitrary locally compact groups, Theorem [2.1
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1. Idempotent Schur multipliers

In this section we give a complete proof of Theorem A. We begin by recalling
some particularly flexible changes of variables for Schur symbols, which preserve
the Sp-norm of the corresponding Schur multipliers on nonatomic spaces. Then, we
prove the implications (I) = = = (1)) in Theorem A separately. We shall
finish with some comments and applications to spherical Hilbert transforms.

1.1. Schur multipliers. Let (X, u) and (Y, v) be o-finite measure spaces. Given
1 <p < oo, let Sp(La(X),L2(Y)) be the space all of bounded linear operators
T : Ly(X) = Lo(Y) with Tr|T'|P < oo, which is a Banach space for the norm below

ITlls, = (T |T7)*.

When p = 2, the Schatten class Sa(La(X), L2(Y)) is the space of Hilbert-Schmidt
operators La(X) — Lo (Y). Tt coincides with Lo (X xY), regarding any Lo-function
(x,y) — K(x,y) as the kernel of the corresponding Hilbert-Schmidt operator

Ty f(y) = /X K (2, y) f(2)dpu(z).

Given m € Lo (X x YY), the Schur S,-multiplier with symbol m is defined (when it
exists) as the unique bounded linear map S, on S,(L2(X), L2(Y')) which assigns
Tk = (K(z,9))zexyey € S2NSy, to (m(z, y) K (x,y))sex,yey = Sm(Tx). We shall
write [[ml| ;g for its norm, with the convention [[ml| ;g = oo if Sp, does not exist.

The following general fact will be crucial in our proof of Theorem A. It evidences
a much greater flexibility of Schur multipliers compared to Fourier multipliers. The
proof follows from [26], we include the argument below.

Lemma 1.1. Let (X, ), (X', 1), (Y,v), (Y, ') be atomless o-finite measure spaces
and f: X — X' and g: Y — Y’ be measurable maps. Assume the pushforward
measures f.u and g.v are absolutely continuous with respect to the measures '
and V' respectively. Then, for every m € Loo(X' x Y")

[l o (f X Onrs, (Laxm), Lavwy) = 1M ars, (La(xr fu) Lo (v g0
S Nmllars, (o) Lavrwn) -
Proof. The last inequality follows directly from [26] Lemma 1.9] and the absolute
continuity assumption. To prove the first identity and lighten the notation, let us
assume for simplicity that (X, u) = (Y,v), (X', ¢/) = Y’,v') and f =g. Let B, 5’
be the underlying o-algebras, and consider A := f~!(B’). Then f allows to identify
Lo(X', B, fepr) with Lo(X, A, ). In particular we have
[mo (f x f)HMSp(Lz(X,A,p,)) = ”mHMSP(Lz(X’,B’,f*u))’
and similarly for the cb-norm. On the other hand, [26] Lemma 1.13] implies that
the cb norms of mo (f x f) on S,(La2(A, 1)) and S, (L2 (B, i) coincide, so we deduce
lmeo (F X P)llepars, (pax.8,0)) = 1Mlleonrs, Laxr 5 5.0)) -

Then [26l Theorem 1.18] allows us to conclude. Indeed, our assumptions that
and g’ have no atoms imply that both cb-norms are equal to their norms. [
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1.2. Proof of Theorem A: Boundedness implies zero-curvature. In this
paragraph we prove = from the statement of Theorem A. The key new idea
we introduce is an amplification of Meyer’s lemma [15, Lemma 1], which directly
connects Schur idempotents with Meyer’s classical condition, to which Fefferman’s
construction may be applied. Taking charts, we can and will assume that M and NV
are open subsets of R™ and R" respectively. We shall further assume for simplicity
that m = n, our argument applies as well when m # n. Given z € 0%, let
n(z) = (n;(z),n2(z)) € R™ @ R™ be a normal to 0 at z pointing towards X.

Lemma 1.2. Consider a C'-domain ¥ C R™ x R"™ and open sets U,V C R" such
that 0% intersects U X V. Let Sy, be the idempotent Schur multiplier whose symbol is
the characteristic function of ¥ and assume that it is bounded on S,(L2(U), L2(V))
with norm C. Let x1,%2,...,2ny € U and y € V such that z; = (z;,y) is a
transverse point in the boundary 0¥ for every j =1,2,...,N. Define u; = ny(z;)
and consider functions f1, fo, ..., fn € Ly,(R™). Then, we have

N 1 N N
I ) A )

Here we write H, for the u-directional Hilbert transform ﬁ;f(ﬁ) = X(g,u>>of(§)'

L,(R")

The implication 1} in Theorem A follows from Lemma Indeed, by
the transversality assumption, the map z — na(z)/||nz(z)|| is continuous on a
neighbourhood of the transverse point (z, yo) in Theorem A. Moreover, for y close
to yo we have that 93¥ is locally a manifold, so is connected. Therefore, if
was not true, there would exist y close to yo such that the subset of the sphere
X = {na(2',y)/|In2(2',y)|| : 2’ € 0XYNU} contains a connected subset not reduced
to a point. According to and Lemma this would imply that the square
function inequality there holds uniformly in L, (R") for any finite set in a continuum
of directions in the (n — 1)-sphere. However, Fefferman’s main result in his proof
of the ball multiplier theorem [15] claims that such a uniform inequality cannot
hold. In fact, Fefferman stated it for n = 2 but the result in arbitrary dimension
follows from the 2-dimensional case by K. de Leeuw’s restriction theorem [27]. In
particular, the zero-curvature condition must hold.

Proof of Lemma [1.2] The proof relies on the following two claims:

(A) Let (z,y) be a transverse point in the boundary of 9% and let T' € GL,,(R)
be such that T*n; (z,y) = —na(z,y). Then, the following identity holds for
almost every £,7 € R”

. 1
lim x5 (2 +eT¢y +en) = 5 (1 +sgn(nz(z,y),1-¢)).
e—0*t 2
(B) Let u; be as in the statement. Then the Schur multiplier
- n n 1
((57])7”)6(]1 X{laaN})XR '—>§(1+Sgn<ﬂ*§7%>)
is bounded on S, (Lz(R"), L2(R" x {1,2,..., N'})) with norm < [|xs|| /s, -

Assuming the validity of the above claims, we may now conclude the proof using
standard transference ideas that go back at least to the work of Bozejko and Fendler
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[2]. We know from [7, Theorem 5.2] that there is an ultrafilter &« on N and a
completely isometric map

Jpt Lp(R™) — HSp(L2(Rn))
u

that intertwines Fourier and Schur multipliers. This gives j,(Hy(f)) = Sm. (3p(f))
for every u € R" and f € L,(R™). Here m,(&,n) = 3(1 +sgn(n — & u)). As a
consequence we have for every fi, fa,..., fv € L,(R™)

N 1 N
Ha, (7)) = H, (f;) ®e; H
H(g D)y = N Hs D @ ia],
N
— | X, () @ esa|
j=1 g
N
= ZSmuj(Jp(fj))@’ej,l s
Jj=1
According to claim (B) we deduce
N 1
2 .
(21, )| = s, | v @ e
i—=1 »(R™) 1 Sp
J J
N 1
_ 2)?
= Iesllus, | (S 157)7 ], o

Jj=1

Thus, the assertion is a consequence of claim (B), for which we need to justify
claim (A) first. To do so, we can assume that ¥ = f~1(0,00) for a C'-submersion
f:UxV = R. Then Vf(z,y) = (Vo f(z,y), Vyf(x,y)) is a normal vector to the
boundary 90X = f~1(0) at every (z,y) € OX. Thus, replacing f by a multiple, we
can assume that its gradient is (nj(z,y),na2(z,y)). Then, the Taylor expansion of

f gives
f($+5T§7y+577) = 5<n1($ay)7T§>+5<n2($7y)a77>+0(5)
= e(na(z,y),n - &) + o(e).
Therefore, if n — £ is not orthogonal to na(x,y) (a condition that holds for almost
every ¢ and 1), we have yx(z 4+ T,y +en) = 5(1 +sgn(na(z,y),n — &) for every
¢ > 0 small enough. This proves claim (A).

To prove claim (B) we apply (A). More precisely, let T; € GL,(R) be such that
Tini(zj,y) = —nz(zj,y) = —u; for every j = 1,2,..., N. The existence of these
maps is clear, because by the transversality assumption both n; (z;,y) and na(z;, y)
are nonzero vectors in R™ and GL,,(R) acts transitively on them. By Lemma
the Schur multiplier with symbol

me((€,5),m) = xs(x; +eT;€,y +en)

is bounded with norm < ”XEHMS,, for every € > 0. Taking ¢ — 0", we obtain that
the almost everywhere limit of m. is S,-bounded with norm < ||xx||,, s, However
this limit is (1 + sgn(n — &, u;))/2 from claim (A). This proves claim (B). O
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Remark 1.3. Taking
L={(z,y):z—ycQ}
for some smooth domain €, Lemma [T.2] reduces to the classical Meyer’s lemma.

1.3. Proof of Theorem A: Zero-curvature implies triangular truncations.
The implication 1' is a general geometric statement concerning transverse
hypersurfaces in manifolds of product type. Note that both conditions are invariant
by diffeomorphisms of product type, that is of the form (z,y) — (¢(x),¥(y)). It
will be useful to have a description of a local normal form, analogous to the fact
that hypersurfaces are locally the diffeomorphic image of a hyperplane.

Lemma 1.4. Let ¥ C R™ x R™ be a C'-domain and (xq,yo) be a transverse point
of its boundary. Then, there are diffeomorphisms ¢ and ¥ from neighbourhoods U
and V' of xy and yo into R™ satisfying ¢(xo) = ¥(yo) = 0 and

BN xV) = (6x ) {((s,2),9) s > g.0)}
for some Ct-function g: R"~ x R™ — R satisfying g(0,y) = (y,e1) for every y.

Proof. Fix zg = (x0,Y0), by the transversality assumption that T, 0% surjects
onto the second coordinate, T,,0% N (R™ @ 0) # R™ ¢ 0. Equivalently, we have
ni(z9) # 0. In particular, we may construct a local diffeomorphism ¢ on the first
variable, satisfying that ¢(zg) = 0 and (e1,0) ¢ T,,0%. Then, according to the
implicit function theorem, there is a C'-function h: R*~! x R® — R such that

¢ x id(Z) = {((s,:z),y) s> h(m)}

on a neighbourhood of (0,y0). Moreover, the function h(0,-) vanishes at yo and
by the second half of the transversality assumption, it has nonzero differential at
yo. By the implicit function theorem again, there is a diffeomorphism v from a
neighbourhood of yg into R™ vanishing at yo and such that h(0,y) = (¢¥(y), e1) for
every y close enough to yo. Taking g(z,y) = h(Z,v¥"1(y)), we get

6 x U(®) = {((5:2),) : 5 > 9(3,1)}
in a neighbourhood ¢(U) x ¢(V') of (0,0) as expected. Also g(0,y) = (y,e1). O

With this in hand, we can prove the implication :>. Both conditions are
unchanged if we replace (zg, ) by (¢ X 1¥(20), ¢ x (X)) for any pair (¢, ) of local
diffeomorphisms. By Lemma [T.4] we may assume without loss of generality that
Y = {(z,y) : s > g(Z,y)} locally around 2o = (0,0) for g: R""! x R® - R a
C'-function satisfying ¢(0,4) = (y,e;1). Then, for every point (z,y) € ¥ where
z = (s,%), we have T,0%, = ker(d,g(#,y)). Consider U C U and V C V convex
neighbourhoods of 0 such that (g(%,y),#) € U for every (z,y) € U x V. Then,

applied to z1 = (¢9(Z,y), &) and 22 = (g(0,y),0) yield

ker d,g(#,y) = kerd,g(0,y) = span{ea, e3,...,e,} for every (z,y) € U x V.
In particular, 9,,9(%,y) = 0 for every j > 2, so g(Z,y) = w(Z, (y,e1)) (since V is
convex) for a C!-function w : R"~! x R — R satisfying w(0,t) = t for all t. By the

implicit function theorem, we obtain that locally {(s,Z,t) : s > w(Z,t)} is of the
form {(s,Z,t) : t > u(s, &)} for a C'-function u: R" — R. This proves (3).
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1.4. Proof of Theorem A: Transference on triangular truncations. The
implication = in Theorem A is immediate from the boundedness of the
triangular projection on Schatten p-classes for 1 < p < oo and the transference
Lemma [I.1] above. This completes the proof of Theorem A. O

1.5. Relatively compact domains. Using a partition of unity argument, it is
not difficult to prove that Theorem A holds globally for relatively compact fully
transverse domains ¥. More precisely, let p € (1,00) \ {2} and consider a relatively
compact domain ¥ in M x N which is transverse at every point of 9X. Then Sy
is an S,-bounded multiplier if and only if any of the equivalent conditions and
in the statement of Theorem A holds at every point of the boundary.

Remark 1.5. The fact that ¥ is relatively compact is crucial in the preceding
argument. For instance, holds trivially at every boundary point for every fully
transverse C'-domain of R x R. But there are examples of such domains —which
are Toeplitz, arising from Fourier symbols— that do not define an .S, multiplier for
any p # 2. An explicit construction is given in [6l Appendix A].

At this point, it is interesting to observe the difference here between Fourier
and Schur idempotents. We know from Fefferman’s theorem [I5] that there are no
Fourier L,-idempotents associated to smooth compact domains. However, there
are plenty such Schur idempotents: necessarily nonToeplitz, since Toeplitz symbols
give rise to Fourier idempotents. A funny instance is precisely given by other forms
of ball multipliers ¥z = {(x,y) € R" x R": |z|? + |y|> < R?}, which are clearly
Sp-bounded and have been recently used by Chuah-Liu-Mei in their recent paper
[0, Example 4.4]. Theorem A proves in addition that the spheres 90X g satisfy the
zero-curvature condition . More intriguing examples are the spherical Hilbert
transforms defined in the Introduction as

Hg: A~ (sgn<x,y>Axy>

More generally, we also define Hg 5(A) = (X(z,y)>5Azy) for any 0 € (=1,1). The
case § = 0 corresponds to 3(1+sgn(z,y)) which is formally equivalent to Hg above.

m,yGS"'

Corollary 1.6. Let us fir 1 < p # 2 < oco. Then, the n-dimensional spherical
Hilbert transforms Hg s are all Sp-bounded for n =1 and Sp-unbounded for n > 2.

Proof. Spherical Hilbert transforms arise from relatively compact domains whose
boundary is fully transverse. In particular, we may apply Theorem A. Next, in
dimension 1 the assertion follows since the zero-curvature condition is trivially
satisfied. Alternatively, the symbol can be expressed as a triangular truncation in
terms of the polar coordinates of x and y. When n > 2, it is easily checked that
the tangent spaces at 0%,, and 0%, differ at their intersection points. This was
illustrated for n = 2 in Figure [l Theorem A implies the assertion. O

Remark 1.7. Alternatively, Corollary [I.6]also follows as a special case of Corollary
B2. Indeed, Lemmaimplies that Hg s has the same norm as the Schur multiplier
on SO(n+1)xSO(n+1) with symbol (g, h) — sgn((g~*h)1.1), which by [7] coincides
with the cb-norm of the Fourier multipler with symbol g + sgn(gi 1). But for n > 2
SO(n + 1) is a simple Lie group not locally isomorphic to SLy(R), so it does not
carry any idempotent multiplier.
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Remark 1.8. We may also consider the symbols 35 = {(z,y) € R" : (z,y) > §} in
the full Euclidean space for n > 2. In this case, Theorem A gives S,-unboundedness
for (n,d) # (2,0). By [26] Theorem 1.18] and since Sy, = Hs ® idr,, it turns
out that S,-boundedness for (n,d) = (2,0) follows from Corollary

1.6. Curvature on smoother domains. Our curvature condition admits an
alternative formulation under additional regularity. Let ¥ be a C?>-domain. Then
SN U xV)={(z,y) : F(z,y) > 0} for some C>-function F : M x N — R and
small enough neighbourhoods U, V. Our curvature condition holds if and only if
we have

<d$dyF(x,y),u ® v> =t (awjaku(x, y)) s 0

g,

for (u,v) € kerd,F(x,y) x kerd,F(x,y) at every (z,y) € 0¥ N (U x V). The
argument is quite simple. By fixing boundary points (x,y) and vectors (u,v) as
specified above, let 7 : [0,1] — 9XYNU be a curve with y(0) = x and 4'(0) = u, and
set h(s) = dyF(v(s),y). The curvature condition means that h(s) = a(s)h(0)
for some nonvanishing function « : [0, 1] — R. In particular, we get

<drdyF(x, ¥),u® v> = (K(0),0) = o/ (0)(h(0),v) = 0.

Reciprocally, assume that the C2-curvature condition above holds. Consider a curve
v:10,1] = XY N U and define h as above. Since we have v/(s) € ker d, F(v(s),y)
and h/(s) = +/(s)"-dyd, F(7(s),y) by construction, it turns out that (h'(s),v) equals
(dpdyF(v(s),y),7'(s) ®v) for any v € ker d, F(v(s),y). Applying the C2-curvature
condition, this implies that h'(s) is parallel to h(s) for every s, which leads to the
ODE

W(s)
h(0)

2@5?&(2) } = h(s) = exp (/OS )\(t)dt)h(()) = a(s)h(0)

for a nonvanishing « : [0,1] — R. This implies condition in Theorem A.

Remark 1.9. In this form, is invariant under exchanging x and y, which is
clear a posteriori without the C? assumption, since both and are. On the
other hand, condition in Theorem A seems new, while its C2-form above is quite
similar to the rotational curvature det[d,d,F(x,y)] defined by Stein in [43] XI.3.1].

1.7. On the transversality condition. The transversality assumption has been
essential in our proofs of :>:> in Theorem A, but it is not clear that it is
really needed for the statement. Indeed, conditions and make sense without
it, and is already meaningful if one only assumes that ns(zg,yo) # 0, and we
do have an example where the equivalence fails. It is likely that such examples can
be found, but probably not for domains with analytic boundary. We leave these
questions as open problems. In the degenerate case where n; is identically 0, or
equivalently when ¥ is locally of the form ¥ = {(z,y) : y € Q}, all conditions in
Theorem A hold. The S,-boundedness is in that case even true for 1 < p < oo
because the Schur multiplier whose symbol is the indicator function of ¥ is just the
right-multiplication by the orthogonal projection on Lo(€2).
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2. Idempotent Fourier multipliers on Lie groups

Let G be a Lie group, that we equip with a left Haar measure. As to every
locally compact group, we can associate to it:

e Its von Neumann algebra LG.
e The noncommutative L, spaces L,(LG) for 1 < p < oc.
e The Fourier L,-multipliers 7}, with symbol m: G — C.

The group von Neumann algebra L£G is the weak-* closure in B(Lz2(G)) of the
algebra of convolution operators A(f) : & € La(G) — [« for f € C.(G). When
G is unimodular, its L,-theory is quite elementary: LG carries a natural semifinite
trace 7 given by T(A\(f)*A(f)) = [|f(g)|*dg for every f € Lo(G) with A(f) € LG
and L, (LG) is then defined as the completion of {z € LG : ||z||, < oo} for the norm
||l, = 7(J=|?)}/P. Tt turns out that L,(LG) contains {\(f) : f € Co(G)*C.(G)} asa
dense subspace. A bounded measurable m: G — C defines a Fourier L,-multiplier
if A(f) = A(mf) extends to a bounded map T, on L,(LG). These definitions are
more involved for nonunimodular groups and will be recalled in Section below.

When p = 1, 00, a bounded measurable function m: G — C defines a completely
bounded Fourier L,-multiplier if and only if the Schur multiplier associated to
the symbol (g,h) — m(gh™!) —called the Herz-Schur multiplier with symbol m
and denoted S,,— is completely S,-bounded, with same norms [3]. For amenable
groups, the same holds for 1 < p < oo [7,82], and it is an intriguing open problem
whether this holds beyond amenable groups. We shall use that this always holds
locally. This phenomenon was discovered recently [33, Theorem 1.4] when p is an
even integer and G unimodular, and the following generalizes this to the general
case, see [8] for other local results of similar nature. In what follows, the Fourier
support of an element « € L,(LG) will refer to the smallest closed subset A such
that T,,,(x) = z for every Fourier L,-multiplier with symbol m which is equal to 1
on A. When G is unimodular and x = A(f) for f € C.(G) x C.(G), it is easy to see
that this coincides with the support of the function f.

Theorem 2.1. Let G be a locally compact group and consider a bounded measurable
function m: G — C. Then, the following are equivalent for p € (1,00) and go € G:

(1) There is a neighbourhood U of go such that the restriction T,y of Tpy, to the
space of elements of L,(LG) Fourier supported by U is completely bounded.

(2) There exists a function ¢: G — C which equals 1 on a neighbourhood of go
such that om defines a completely bounded Fourier multiplier on L,(LG).

(3) There are open sets V,W C G with go € VW ™! such that the function
(g,h) € Vx W s m(gh™?) defines a completely bounded Schur multiplier
on the Schatten class Sp(L2(V'), La(W)).

When these conditions hold, we say that m defines locally at gy a completely
bounded Fourier L,-multiplier. The proof is given in Section We can record
the following consequence, which is immediate by looking at condition .

Corollary 2.2. Let G be a connected Lie group and denote by G its universal cover.
Let go € G be any lift of go € G. Then m: G — C defines locally at gy a completely
bounded Fourier Ly-multiplier over LG if and only its lift m defines locally at o a
completely bounded Fourier L,-multiplier as well.
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2.1. Idempotent multipliers. Now we are ready to prove Theorem B and also
Corollaries B1 and B2 from the Introduction. In fact, we shall prove a slightly
expanded version of Theorem B which includes non simply connected groups and
Corollary B1 at once. The,vgroups G1,Go, G3 in the statement below refer to the
real line R, Aff; (R) and PSLy(R) as in the Introduction.

Theorem 2.3. Let p € (1,00) \ {2}. Let G be a connected Lie group, Q@ C G
a Cl-domain and gy € OS2 a point in the boundary of Q. Consider the following
conditions:

(1) xq defines locally at go a completely bounded Fourier L,-multiplier.

(2) There is a smooth action G — Dift(R) by diffeomorphisms on the real line,
such that Q coincides on a neighbourhood of go with {g € G| g-0 > go-0}.

(3) There is j € {1,2,3} and a smooth surjective homomorphism f: G — G,
such that the domain Q0 coincides on a neighbourhood of go with gof~*(;).

(4) 0 = g exp(h) locally near gg for some codimension 1 Lie subalgebra b C g.
Then (1) & (4) < (2) < (3). If G is simply connected, then we also have (4) = (2).

Proof. The main difficulty is to prove the equivalence & , which we leave
to the end of the proof. The implication = is clear, with H = exp(h) the
stabilizer of 0. Under the assumption that G is simply connected, the converse
= holds by a Theorem of Mostow [3I], which implies that H is a closed
subgroup. Therefore, G/H is a 1-dimensional manifold that is simply connected, so
is diffeomorphic to R. The implication = is also clear because G; is given
as a group of diffeomorphisms of R with Q; = {g € G, | g-0 > 0}. The converse
= follows from Lie’s classification of (local) actions by diffeomorphism on
the real line [28], see also [45] for modern presentations and [I6] for the global
aspect. More precisely, the fact that gy belongs to the boundary of {2 implies that
0 is not fixed by G —here we use that G is connected— and the G-orbit of 0 is
an open interval, so by identifying it with R we can assume that the G-action is
transitive. In that case, the image of G in Diff(R) is one of the three groups in
condition or Corollary B1, see [I6] Section 4.1] for the details.

Next, let us focus on the equivalence & for general Lie groups. If we
translate 2 by gg ! we may assume that go = e and the tangent space of G at go
identifies with its Lie algebra g. Also, the tangent space of 92 at gy identifies with
a codimension 1 subspace b of g. Define the C*'-manifold

ﬁ:{(g,h)eaxmgheg}.
Its sections Qg and Q" are left and right translates of the C'-domain
(2.1) ﬁg ={h:(g,h) € ?2} =g 'Q and Q= {g:(g,h) € ﬁ} =Qht

In particular, Q) is transverse at every point of its boundary. By Lemma and
Theorem we know that is equivalent to the existence of a neighbourhood
of the identity U C G such that xg defines a Schur multiplier on S,(L2(U)). By
Theorem A this is equivalent to the existence of a neighbourhood of the identity
V' C G such that both conditions below hold:

(2.2) Thaﬁgl = Thaﬁgz for every g1, g2, h € V such that g1h, goh € 0N.
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(2.3) Tgﬁﬁhl = TgﬁﬁhQ for every g, hi,ho € V such that ghy, ghe € 0S).

By the above idenfications (2.1), if we denote by L., R,: G — G the left and
right multiplication by x, these conditions are equivalent to the existence of a
neighbourhood of the identity W such that

(2.4) dzle2xfl(T118§2) =T,,00 for every z1,z0 € 0QNW.

(2.5) Aoy Ry, (T,00) = T,,00 for every x1,z2 € 02N W.

Indeed, taking x; = g;h for j = 1,2 we have
Ti(g; ' 0) = do, L1 (T, 09).

Composing by (dngz_l)*1 = dypL,,, and using (dpLg,) o (dmngl—l) =de Ly -
by the chain rule, we see that (2.2)) is equivalent to (2.4]). The equivalence for right
multiplication maps is entirely similar. Next, recalling that 7.0 = b the above

conditions can be written in the equivalent forms

1

(2.6) deL,(h) = T,00 for every x € 0QNW.
(2.7) deR.(h) = T, 00 for every x € 0Q N W.

If we remember that Ad, = d.(R,-1L.), we obtain that this system is equivalent
to deL.(h) = T,00 and Ad, b = b for every x € 9Q N W. Therefore, we have
proved that at gg = e is equivalent to the existence of a neighbourhood of the
identity W such that T,0Q = d.L,(h) and Ad, b = b for every z € QN W.
These conditions clearly hold if  is a Lie algebra and 92 locally coincides with
the exponential of a neighbourhood of 0 in h. Conversely, assume 7,09 = d.L..(h)
and Ad.(h) = b for every x € 902 N W. Making = go to the identity element e in
the second condition, we deduce that adx(h) C b for every X € h. That is, b is a
Lie subalgebra. By the local uniqueness of a manifold in G containing e and whose
tangent space at x is d.L;(h) (Frobenius’ theorem), we deduce that 9 is locally
the exponential of a neighbourhood of 0 in . This completes the proof. g

Remark 2.4. By a partition of the unity argument, the following global form of
Theorem holds: if p € (1,00) \ {2}, G is a connected Lie group and 2 C G
a relatively compact C'-domain, then g defines a Fourier cb-Ly-multiplier if and
only if the condition (4) holds for every point go in the boundary of €.

Proof of Corollary B2. Assertion i) follows since the quotient of a nilpotent Lie
algebra remains nilpotent, so the nonnilpotent examples in Theorem cannot
happen when G is nilpotent. Assertions ii) and iii) follow immediately from Lie’s
classification [28]: up to isomorphism, there is a unique pair (h,g) where g is a
simple Lie algebra and § is a codimension 1 subalgebra. It is given by g = sl, and
bh the subalgebra of upper-triangular matrices. This completes the proof. O

2.2. Local Fourier-Schur transference. The rest of this paper will be devoted
to justify Theorem A form of the following lemma was proved in [33] Lemma
1.3] for p an even integer and G unimodular, which was enough for the applications
there. Here we need a form valid for every p and every locally compact group.
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Lemma 2.5. Let V,W C G be open sets and U C VW~ be a relatively compact
open subset. There are maps J,: L,(LG) — Sp(La(V), La(W)) for 1 < p < o0
intertwining Fourier and Herz-Schur multipliers and such that

CH izl < 1p@)llp < Cllzl
for some constant C, everyn > 1 and x € M,, ® L,(LG) Fourier supported in U.

This is the key point in the proof of Theorem For the proof, we will need
the following form of the Tauberian theorem, due to Eymard [I4]. Let A(G) be the
Fourier algebra of G. That is

A@) ={g > [ olgmuih)dn: 6.6 € La(@)}.

Lemma 2.6. Let f € A(G) be a function which does not vanish on some compact
set Q C G. Then, there exists another function p € A(G) such that pf =1 over Q.

Proof. The set A, (G) of restrictions to Q of elements of A(G) is a commutative
Banach algebra —as a quotient of the Banach algebra A(G)— that is unital because
Q is compact. Moreover, by [14, Théoréme 3.34] its spectrum coincides with Q
through the evaluation maps f — f(q). So by Gelfand’s theorem, the condition that
[ does not vanish on Q exactly means that f’s image in A, (G) is invertible. [

For the reader’s convenience, we first prove Lemma and Theorem for
unimodular groups, and explain in the next paragraph how to modify the definition
of Fourier multiplier and the argument for nonunimodular groups.

Proof of Lemma 2.5 for G unimodular. Let ¢ € C.(V)4 and ¢ € C.(W)4 such that
[ ¢(gh)y(h)dh > 1 for every g € U. They exist by the assumption that the open
set U is relatively compact in VW ~!. Consider the map

Jpt Ly(L£G) 3 @ 5 ¢praps € Sp(La(V), La(W)),

where we identify ¢, 1) with the operators of multiplication by ¢, . The convention
is that 0 = 0. We claim that the maps Jp, are completely bounded with cb-norm

1 1
M llebznsy < 612, IWIIE,
whenever 1 < p < co. By interpolation, it is enough to justify the extreme cases
p =1and p = co. The case p = oo is clear. For the case p = 1, we factorize
x = z122 so that Ji(x) = ¢x1 - x99p. Take them so that ||z||; = ||z1||2]|z2]2, and
it suffices to show that both factors are bounded in S3(L2(G)) =~ Lo(G x G) by
ol oy Iz, ca) and [[9] L, (q)llz2ll Ly (ca) respectively. Using that

Joo 1 T > (E(gh71)>,

the expected bounds follow from Plancherel theorem Ly(LG) ~ Lo(G). Moreover
when 2 = A(f), the operator J,(x) has kernel (¢(g)'/?f(gh=1)w(h)'/?). Thus it
is clear that the map J, intertwines the Fourier multiplier with symbol g — m(g)
and the Schur multiplier with symbol (g, k) — m(gh~1).

The inequality C~!||z||, < ||.J,(x)]|, is a bit more involved. Let f € M, ®C.(U)
with A(f) € L,(M, ® LG) and assume that @ = A(f) by density. Let ¢ be the
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conjugate exponent of p and v € M, ® C.(G) with A(y) € L,(M, ® LG). By
Lemman there is p € A(G) such that

/qbgh h)dh=1 forall geU.

The reason why we require that p belongs to A(G) is because we want to ensure
that p defines a completely bounded Fourier L,-multiplier. Then we have

T To, (OO =T [ 0la) " (ah™plah ™ yih)asar

= /G Tr, (£(9)7(9)") {p(g) /G ¢(gh)ib(h) dh} dg

= [ T (r@rt0)") do = & T, (DAY,
In the last line, we used Lemma 2.6 and suppf C U. By Holder’s inequality, we get

|7 @ Tea (AN )] < 1T Il T (Ao g
< [Mgllen [Ty (AUD 1AV [lg
< A Jgllen 1T llen A g [ Tp AN p-
Taking the sup over vy, we get C~ ||z, < ||J, ()|, for C = || Jglleb || Tpllen < 0o. O

With the same argument as in [33], we deduce:

Proof of Theorem 211 The implication (I)=(2) is easy. Indeed, if holds and
¢ € A(G) is supported in U and equal to 1 on a neighbourhood of gq (its existence
is guaranteed by Lemma, then T, is completely bounded on L,(LG) for every
1 < p < o0, and takes values in the space of elements Fourier supported in U. In
particular, Ty,, = Ty, © Ty, is also completely bounded. The implication ﬁ
follows from [7, Theorem 4.2] which implies that (g, h) € G x G = m(gh™1)p(gh™!)
defines a completely bounded Fourier L,-multiplier. Thus, we get if VW are
chosen so that ¢ =1 on VIW~!. Finally, :> follows from Lemma [

2.3. Nonunimodular groups. Let G be an arbitrary locally compact group with
modular function A: G — Ry. Our choice of A is characterized by the following
identity for all f € C.(G)

/fhgdh Alg /f

When G is not unimodular —that is, A is not the constant 1 function— the natural
weight A(f)*A(f) — [|f]? on LG is not tracial. Even when £G is semifinite, it is
better to work with the general definition of L, spaces associated to a von Neumann
algebra. Several concrete descriptions are possible: Haagerup’s original one [20],
Kosaki’s complex interpolation [24], Connes-Hilsum’s [12, 21]... see [4I]. Here we
will use the Connes-Hilsum spatial description because we want to rely on some
results from [7], [44], to which we refer for precise definitions. In that case, L,(LG)
is realized as a space of unbounded operators on Lo(G).

In [7], Caspers and the second-named author defined Fourier L,-multipliers for
symbols that ensure that the Fourier multiplier is completely bounded for every
1 < p < oo. Here we extend the definition, allowing to talk about Fourier multipliers
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for a single p, and possibly only bounded. The shortest way to do so properly in
this context is by using Terp’s Hausdorfl-Young inequality [44].

Informally, a typical element of L,(LG) is of the form A( f)A% —where we are
identifying the function A with the densely defined operator of multiplication by A
on Lo (G)— for some suitable function f. Keeping at the informal level, the Fourier
multiplier with symbol m: G — C should be, whenever it exists, the operator
acting as follows

A(f)A? = A(mf)Ar.
Making this definition precise requires some lengthy and unpleasant discussions
about domains/cores of unbounded operators, but fortunately we can rely on the
results from [44], where these discussions have been performed. We shall need to
distinguish the cases p > 2 and p < 2. Let ¢ = % be the conjugate exponent of
p. When p > 2, the Fourier transform

Fq: Ly(G) = Ly (LG)
is an injective norm 1 linear map with dense image, where F,(f) is defined as a
suitable extension of \(f)A!/?, see [44, Theorem 4.5]. When p < 2, the adjoint
of F, gives a norm 1 injective map with dense image F,: L,(LG) — Ly(G). If
I, denotes the isometry of L,(G) defined by I,(f)(g) = f(g~)A(g)~/%, we know
from [44] Proposition 1.15] that every element x of L,(LG) is a suitable extension
of N(f)AY? for f = I,0F,(x) € L,(G). In the particular case p = 2, these two
statements together yield Plancherel’s formula : F5 is a unitary. If p = 1, the image
of Fi is the Fourier algebra A(G), and following standard notation we write

(2.8) tr(z) = p(e) if  Fi(z) = .

Definition 2.7. Let 1 < p < co and m € Lo(G). We say that m defines a bounded
Fourier L,-multiplier when the condition below holds according to the value of p:

e Case p > 2. The map

Fo(f) = Fo(mf)
(densely defined on Fy(Lq(G))) extends to a bounded map 75, on L,(LG).

e Case p < 2. The multiplication by m preserves the image of I, o fp when
the map Ty, : @ — (I;0F )t (m(I;0F,(x))) is a bounded map on L,(LG).

We say that m defines a completely bounded Fourier L,-multiplier when m defines a
bounded Fourier L,-multiplier and the Fourier multiplier 7, is completely bounded.

It follows from the above definition that m defines a (completely) bounded L,
multiplier if and only it defines a (completely) bounded L, multiplier, and in that
case

tr(To (2)y") = tr(z(Tm(y))*) forall =€ L,(LG),y € L,(LG).

Once we have polished the definition of Fourier L,-multipliers in nonunimodular
group von Neumann algebras, we can extend a Cotlar identity from [I8] to arbitrary
locally compact groups.

Example 2.8. Let G — Homeoy (R) be a continuous action of a connected Lie
group. Then, the indicator function m of {g € G | g-0 > 0} defines a completely
bounded L,, Fourier multiplier on G with completely bounded norm < 2 max{p, p’%l}.
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Proof. Let m be the indicator function of {g € G | g -0 > 0}. It suffices to prove
the following implication for every 2 < p < oo: if m defines a completely bounded
Fourier L,-multiplier with norm < (), then it defines a completely bounded Fourier
Lg,-multiplier with norm < 2C),. Indeed, using that Co = ||m|| = 1, we deduce
Cyn < 2V for every integer N, so by interpolation C), < 2p for all p > 2. By duality
the conclusion also holds for p < 2.

Let r be the dual exponent of 2p. Let f € C.(G) and consider X = F,.(f) and
Y = F.(mf); these are well-defined elements of Lo, (LG) by [44]. Then, we claim
that the equality below holds

(2.9) Y'Y =T,Y*"X)+ T, (Y X)"
Indeed, this inequality is equivalent to the almost everywhere equality
(mf)* % (mf) = m((mf)* * f) + (m((mf)* = )",

which follows for the fact that m(g=1)m(g=th) = m(h)m(g~—t) + m(h=Y)m(g~1h)
for almost every g, h € G. If the whole group G fixes 0, this is obvious because m is
identically 0. Otherwise, the stabilizer of 0 is a closed subgroup, so it has measure
0 and it is enough to justify the equality for A-0 # 0. Set (o, 8) = (¢ -0,k -0) and
observe that m(g=1)m(g~'h) = 1 if and only if & < min{0, 3}. Similarly, we have
m(h)m(g™!) =1iff a < 0 < B and m(h=!)m(g~th) = 1 iff @ < B < 0. Therefore
the expected identity reduces to the trivial one xo<org = Xa<0<g + Xa<pg<o- This
justifies , both sides of which are in L,(£G). Thus, taking the norm and
applying the triangle inequality, the hypothesis and Holder’s inequality leads to

Y155 < 2C,[1X |2p 1Y [12p-

We deduce ||Y]|2p < 2C,[| X ||2p- Since C.(G) is dense in L,.(G), we obtain that m
defines a Fourier Lo,-multiplier with norm < 2C,. A similar argument gives the
same bound for the completely bounded norm, which concludes the proof. O

Remark 2.9. The Cotlar-type identity from [I8] is refined in some cases by (2.9)).

The following summarizes the properties that we need.

Lemma 2.10. Let 1 < p < oo and consider functions ¢, € Lay(G), which we
identify with (possibly unbounded) multiplication operators on L2(G). Then

o Gwen x € Loy (LG), x¢ is densely defined and closable. In fact, its closure
[z¢] belongs to Sop(L2(G)) and has Sap-norm < D1l Loy () 1] Loy (G -
o There exists a bounded linear map L,(LG) — Sp(Lg(G)ﬂ sending y*x to

[y*])*[z@] for every x,y € Lop(LG). It has norm < ||¢||L2P(G)H¢||L2p(g).
e If q denotes the conjugate exponent of p, consider ¢, € Log(G) and

y € Ly(LG). Then, we have
(2.10) Tr (ap(@'yy')") = tr(T(2)y"),

where m € A(G) is the function m(g) = /G(qﬁa)(h)(wW)(g*lh) dh.

TThat, with a slight abuse of notation, we denote z — z¢.
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Proof. When ¢ = v are indicator functions, the first two points were proved in
[7, Proposition 3.3, Theorem 5.2]. The same argument applies in our case. Let us
justify identity . First observe that ¢¢’ and ¢’ belong to Lo(G) by Holder’s
inequality, so that m indeed belongs to A(G). In particular, m defines a completely
bounded L; and L., Fourier multiplier. Thus, it also defines a Fourier L,-multiplier
[7, Definition-Proposition 3.5]. Therefore, by interpolation [7, Section 6] it suffices
to prove for p = 1 and p = oco. These two cases are formally equivalent
and we just consider p = co. In that case, y € L1(LG) corresponds to an element
f € A(G) and ¢'yy’ is the trace class operator with kernel

(#/(9)f(hg™ ' (h)

see [7, Lemma 3.4]. By a weak-* density argument, it is enough to prove (2.10))
for z = A(go) for some gy € G. In that case, Tp,(z) = m(go)A(go) and we obtain

g,heG’

tr(Tp ()y*) = m(g0) (g5 ). We can compute
Tr ¢z (d'yy)") = Tr (Ago)vv'y"¢d)
= e[ (v)(95"9)F g "gh ) (6 (1))

g,heG}
- /G WD) (g5 9) T (g0 1) (6 (g) dg = m(0) (g5 ).

This justifies the identity (2.10) and completes the proof of the lemma. O
Lemma allows us to adapt the proof of Lemma from the unimodular case.

Proof of Lemma general case. We take ¢,1 € C.(G) as in the proof in the
unimodular case, and set m(g) = [ ¢(h)i (g h)dh. Let p € A(G) such that pm = 1
on U, as provided by the Tauberian theorem in Lemma [2.6] By Lemma we
can define completely bounded maps

Jpt Ly(LG) D x> ¢rapr € Sy(La(V), La(W)),

which intertwine Fourier and Schur multipliers. Now, if x € L,(M,,® LG) is Fourier
supported in U and y € Lq(M,, ® LG) —for ¢ being the dual exponent of p— we
get

tr(zy*) = tr (Tmp(x)y*> =tr (Tm(x)(Tp(y))*) =Tr (Jp(m)Jq(Tp(y))*)
< N @)ls, [ 7(ToW)ls, < [ qllenllpllae)llylle, cellp(@)lls, -

The first line is by definition of x being Fourier supported in U, the duality for
Fourier multipliers, and ([2.10]). The last line is Holder’s inequality. Taking suprema
over y in the unit ball of Ly(LG) gives ||z|1,ca) < [[Jgllelloll acllTp(@)]ls,. O

2.4. The group SLy(R). Consider the symbol

mo[(‘; Z)} = %<1+Sgn(ac+bd)).

This was identified in [I8] as the canonical Hilbert transform in SLo(Z). Its complete
L,-boundedness follows for 1 < p < oo from a Cotlar-type identity. The same
problem in SLs(R) was left open in [18, Problem A]. Now this is solved by condition
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in Theorem which disproves cb-Ly-boundedness for any p # 2. On the other
hand, according to Corollary B2, the map

mtg) =m[ (& 5)] = 31+ sele)) = molag’)

does define, locally at every point of its boundary, a completely bounded Fourier
L,-multiplier for every 1 < p < co. But, is it globally L,-bounded? Is it completely
L,-bounded as well? We leave these problems open for future attempts.

2.5. Stratified Lie groups. A Lie algebra g is called graded when there exists a
finite family of subspaces W1, Ws, ..., Wy of the Lie algebra satisfying conditions
below

N
g=PW; and [W;, Wi C W,
j=1

A simply connected Lie group G is called stratified when its Lie algebra g is graded
and the first stratum W; generates g as an algebra. Stratified Lie groups are
nilpotent and include, among many other examples, Heisenberg groups. According
to Corollary B2 Hilbert transforms are of the form H o ¢, for the classical Hilbert
transform H and some continuous homomorphism ¢ : G — R. A quick look at
Theorem [2.3] shows that ¢ corresponds on the Lie algebra with the projection onto
any 1-dimensional subspace of the first stratum, since codimension 1 Lie subalgebras
are exactly those codimension 1 subspaces leaving out a vector in the first stratum.
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