ROSENTHAL’S THEOREM
FOR SUBSPACES OF NONCOMMUTATIVE L,

MARIUS JUNGE AND JAVIER PARCET

ABSTRACT. We show that a reflexive subspace of the predual of a von Neumann algebra
embeds into a noncommutative L, space for some p > 1. This is a noncommutative
version of Rosenthal’s result for commutative L, spaces. Similarly for 1 < ¢ < 2, an
infinite dimensional subspace X of a noncommutative L, space either contains ¢, or
embeds in L, for some ¢ < p < 2. The novelty in the noncommutative setting is a double
sided change of density.

INTRODUCTION

The theory of noncommutative L, spaces has a long tradition in Banach space theory
and the theory of operator algebras [GK69, Haa79, Hil81, TJ84, Fac87] and provides the
background for recent progress in noncommutative analysis and probability [PX97, JL.X03,
JXO03]. In the commutative setting, the work of Kadec-Pelczyniski [KP62] and Rosenthal
[Ros73] on subspaces of L, are corner stones for the understanding of general Banach space
properties. In this paper we prove the noncommutative version of Rosenthal’s result.

Theorem (Rosenthal '73). A reflezive subspace of Ly embeds into L, for some p > 1.

The problem of generalizing Rosenthal theorem to the noncommutative setting is open
for at least 20 years. This problem has an interesting history. In his seminal paper
[Pis86b] on factorization properties, Pisier described a new approach to some factorization
results by Maurey obtained from Nikishin’s theorem. In this paper Pisier comes very close
to proving the noncommutative version of Rosenthal’s result. Indeed, he shows that a
reflexive subspace of a von Neumann algebra predual embeds into an interpolation space
between an L; space and certain (unusual) Lo space (see below). Since then it has been
a mystery how to modify the argument and to obtain a subspace of a noncommutative
L, space. Noncommutative L, spaces have been defined by Dixmier, Kunze and Segal in
the semifinite setting (see also Nelson [Nel74]) and by Haagerup [Haa79] in the non-tracial
case (see also [Hil81] for Connes’ approach). Randrianantoanina [Ran02] has an argument
in the semifinite setting which is different from ours and does not provide a good control
of the constants. In this paper we use modular theory of operator algebras in conjunction
with a noncommutative version of the Peter Jones theorem due to Pisier [Pis92] (related
to estimates of Kaftal, Larsen and Weiss [KLW92] for triangular matrices) to solve the

problem:
1
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Theorem A. Let N be a von Neumann algebra. A reflexive subspace of Li(N) embeds
into L,(N) for some p > 1.

The new interesting point in our proof is the natural change of density argument. We
show that there exists a positive density d € L;(N) such that tr(d) = 1 and a mapping
u: X — Ly(N) such that

r = dlfiu(m) +u(:17)d17% :
In the o-finite case this completely determines u. For simplicity let us assume that N is

finite and d = ) ; dje; has a countable spectrum. Then the map w is given by the following

relation
1—1

1—1
u(z) = Z(dz " +d; ") lexe; .
1]
Pisier’s approach to this result [Pis86b] is used as a starting point in our proof. For
subspaces of L,(N) with ¢ > 1 we have a similar result, which extends the most general

form of Rosenthal’s theorem [Ros73, Theorem 8] to the noncommutative setting.

Theorem B. Let N be a von Neumann algebra and fir 1 < q < 2. Given a subspace X
of Ly(N) not containing £,, there exists a positive density d € Li(N) with tr(d) =1 and
amap u: X — L,(N) for some index g < p < 2 such that

r = défiu(x) +u(m)d%7% :

In particular, the space X embeds isomorphically into L,(N).

This result, which also works for linear maps, is closely related to Grothendieck type
inequalities by Lust-Piquard, see [LP92] and [LPX]. One of the main obstacles in our
approach to Theorem B is that the technique of noncommutative maximal functions is
not well-enough understood for proving Nikishin type results. Therefore we have to work
in the dual setting. Pisier’s arguments for ¢ > 1 are genuinely very different from the case
g = 1 which, by duality, leads to linear maps on C*-algebras. A common characteristic of
Pisier’s factorization results in [Pis86b] is a certain differentiation argument. This is our

motivation for the following new inequality. Let 2 < p < oo and a,x be positive elements
in L,(N). Then we have

1) o+l < llallp +p2r~ max { a7z, iy}

In the commutative case the triangle inequality in L, ; provides a similar estimate with
2P — 1 instead of p2P~!. For 2 < p < 3 operator convexity of ¢ — tP~! provides an even
better estimate. Combined with ultraproduct techniques, the differential inequality (1) is
a substitute for some of Pisier’s arguments in [Pis86b].
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Another technical difficulty concerns complex interpolation of intersections. We refer
to [JPO5] for many results in this direction. For a long time, our hope has been to use
free probability to show that interpolation and intersection commute in this particular
setting. However, at the time of this writing some aspects of harmonic analysis are yet to
be discovered before this approach might be successful. In the Banach space setting of this
paper, we may use different tools from harmonic analysis. Let us be more specific. We
consider a normal faithful state ¢(-) = tr(d-) on a von Neumann algebra N and Pisier’s
symmetric norm

1 1 1
lollase = (@) +o(a"a))* ~ max { |dall, [lod? 2 -
We will show that

1 1
2) lellivaan, < o) mas{ [ dall, ad |, |

holds for all z € N and 2 < p < co. We can show that the orthogonal projection from
Ly(N @& N) to Ag(¢) extends to a bounded operator for other values of p. This allows us
to construct the map w in Theorem A.

In combination with the results from [JR], we obtain some applications to the theory of
subsymmetric sequences. A sequence (z,,) in a Banach space X is called subsymmetric if
there exists a constant ¢ such that

D, W,
n X

|32, ann
n

holds for every strictly increasing sequence (k,,) and arbitrary coefficients (a, ). We refer to
the work of Aldous [Ald81] and Krivine-Maurey [KM81] for the fact that commutative L,
spaces are stable. This implies in particular that subsymmetric sequences are symmetric,

~Y

c
X

i.e. we may replace subsequences (k,) by arbitrary permutation (o(n)). However, due to
a result by Marcolino Nhany [MN97], noncommutative L, spaces are in general not stable.

Corollary C. If (z,) C N. is a subsymmetric sequence, then (x,) is either symmetric
or the space X = span{zn\n > 1} contains C1. In particular, X always contains a
symmetric subspace.

The paper is organized as follows. In section 1 we prove (2) and the interpolation results
for intersections based on the Peter Jones theorem. This allows us to prove Theorem
A and Corollary C in section 2. Inequality (1) and Theorem B are proved in the last
section of the paper. We use standard notation from the theory of operator algebras
[Tak79, KR97a, KRI7b] and the theory of noncommutative L, spaces [Ter81] (see also
[Ter82]). The reader is assumed to be familiar with basic ingredients of modular theory
and the definition of Haagerup’s noncommutative L, spaces, see [JX03, PX03] for relevant
definitions. However, the main ideas can be understood by ‘thinking semifinite’.
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1. AN INTERPOLATION RESULT

In this section we provide the main new interpolation results on intersections and, in
particular, the key inequality (2) will be obtained. In this paper we will use Haagerup’s
definition of noncommutative L, spaces. Indeed, one first considers the crossed product
M = N x of R with respect to a normal semifinite faithful weight ¢ on N. Then M is
semifinite and there exists a unique normal semifinite faithful trace 7 on M such that the
dual action 05 : M — M satisfies 7(05(d)) = e °7(d) for all s € R. Haagerup’s L, space is
defined as follows

L,(N) = {x € Lo(M,7)| 0.(x) = e-%x} ,

where Lo(M, ) stands for the space of 7-measurable operators affiliated to M. For p = oo
we see that L.,(N) = N is the set of fs-invariant operators. Let us note that the polar
decomposition x = ulz| for € L,(N) satisfies v € N and |z| € L,(N). We refer to
[Ter81] for more details, see also [JX03, PX03, Tak03a, Tak03b]. An important feature of
the Haagerup L;(N) space is the distinguished linear functional tr : Ly(N) — C. This
linear map implements the isomorphism between L;(N) and N,.. More precisely, for every
normal functional ¢ € N, there exists a unique density ds with ¢(x) = tr(dsx). Moreover,
given 1 < p < oo, the trace functional ¢r also implements the duality between L,(N)
and L, (N). That is, L,(N)* is exactly the space of linear functionals ¢(z) = tr(dz) with
de Ly(N) and % + 1% = 1. The norm in L,(N) is given by

1
lelly = tr(l=?)»

We also have Holder’s inequality ||zy|l, < ||z|,]|lyll, whenever 5= + 1

The drawback of Haagerup’s construction is the unfamiliar 51tuat10n that for p # ¢
we have L,(N) N L,(N) = {0}. In particular, this implies that Haagerup L, spaces
do not form an interpolation scale. However, in this paper interpolation techniques are
important. We shall assume that the reader is familiar with the complex interpolation
method. Let us briefly review Kosaki’s results [Kos84a] on interpolation of L, spaces
which are crucial in our paper. Once and for all in the sequel, let us fix a von Neumann
algebra N equipped with a normal faithful state ¢ so that ¢(x) = tr(dz) is given by a
positive density d € L;(N). Then we may consider the injective maps

Ln:xGNHdl_”xdneLl(N) for 0<n<1.

A little bit of modular theory is required to show that these maps are indeed injective, see
[Kos84a, Jun04]. Thus, for fixed 0 <7 <1, (Ap, A1) = (¢,(N), L1(N)) is an interpolation
couple embedded in L;(N) as a topological vector space. To be very precise, we recall

that [|z]la, = ||, (2)||x and |[z[4, = [|2]l,(x)- In the literature, the choices n = 0,,1
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are the most important ones. Kosaki showed that
[L)(N), Ly(N)], = d '+ Ly(N)dv
»
holds isometrically. This means exactly that

1—

Izl = |[d

n n
xd?’

vy forall @ € Ly(N)
%, we may also consider the embedding

If1§q<p§ooand%:%—
1—

pgm T € Lp(N) — d s

“xd? € Ly(N) .
Then, the reiteration theorem for complex interpolation immediately gives

[tp.an(Lp(N)); Lo(N)]o = trgn(Lr(N))
for % = % + g. These interpolation results from [Kos84a| will be used freely in this text.

Our aim in this section is to prove a similar result for a double sided embedding with
respect to a fixed density d of a normal faithful state ¢. For 1 < ¢ < p < oo we define the
following norms

1

1
Lgq0) = llzds 7|l

1.1
el ) = ldo 7zlly and ||

Let us write Ly (¢) and Ly () for the respective closures of L,(N) with respect to the
norms above. Here r, ¢ are chosen because similar expressions appear for square function
inequalities in noncommutative martingale theory. They correspond to n = 0 and n =1
in the context of Kosaki’s embedding. We will work with the intersection

Ap,q(¢) = L;,q(¢) N L;,q<¢) )
defined as the completion of L,(/N) with respect to the norm

L;,q<¢>} :

Of course, up to an absolute constant, we may replace the maximum above by the sum or

I2lla,o0 = max{ll7];, .l

any other p-sum. We might use this equivalence below. We also have a natural embedding
Jpa Bpg(@) = Le(N) & Ly(N) ;.  Jpglz) = (de vz, adar).

According to Holder’s inequality we have a contractive inclusion L,(N) C A, ,(¢) given
by the identity map. Therefore (L,(N),A,,(¢)) is an interpolation couple with dense
intersection. When p = oo we shall write A,(¢) for Ay ,(¢). Thus, for (p,q) = (o0, 2) we
find the well-known Hilbert space already mentioned in the Introduction

1
1 1 3 N e 1 1
lellasie) ~ (Id5al3 + ed3)* = dlaa® +2%0)} = V2 o(laf?)*
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Here we followed Pisier’s notation

r*r + xx*
|z|s = 9

Our main result in this section is the following.
Theorem 1.1. Let 1 <g<p< o0 and%:%+§f0r0<9<l. Then

a) We have an isomorphism

Ap,r(¢) = [Lp(N)a Ap,q(¢)]0 .

b) We may construct a bounded linear map
Qr : Lr(N D N) - AP,T(¢)
such that
Q,(dr vz xd""?) = x forall x & L,(N).
In particular, j,,Q, is a projection from L.(N & N) onto j, (A, (0)).

The relevant constants can be estimated as functions of p,q,r in both cases.

We refer the reader to the end of this section for a more general form of Theorem 1.1.

Remark 1.2. The isomorphism in a) satisfies

1

1.1 1.1 ..N\7
<|\dT vl + ||lodr PHT) ~ 2l .8, @ forall z € Ly(N) |

Remark 1.3. As we shall justify below, the adjoint mapping QF : A, ,(¢)* — L/ (N & N)
has the form QF (&) = (u(&),u(§)) for some bounded linear map u : A, ,(¢)* — L,(N).
Equivalently, we have Q,.(y, —y) = 0 for all y.

It is not very convenient to prove the result for an arbitrary density d. We will apply
a well-known construction of Haagerup and reduce the problem to the case where N is a
finite von Neumann algebra and d,d~! are bounded. Moreover, by elementary functional
calculus, we may then assume that

k=1

where the e, are disjoint projections with ), e, = 1 and dj, are strictly positive numbers
such that dy < dy < --- < d,, see below for justifying this simplification. Therefore, we
will assume in what follows (unless stated otherwise) that N is finite and that d satisfies
(1.1). We note nevertheless that Theorem 1.1 is formulated for Haagerup L, spaces and
hence valid for arbitrary states. For the moment, we work with a finite von Neumann
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algebra and thus we can work with the usual definition of noncommutative L, spaces. In
particular, all L, spaces are contained in the space of T-measurable operators, see [Nel74]
for further definitions.

In order to sketch our strategy for the proof of part a) in Theorem 1.1, we need to
introduce a more convenient terminology which will be instrumental in the sequel. Let d
be a density in L (N) satisfying (1.1) and let us write Ly(V) for the space of T-measurable
operators affiliated to N. Then, given a € R and 1 < ¢ < oo, we define the spaces

LI(N,d*) = {a: € Lo(N) | d*z € Lq(N)},
Li(N,d*) = {x € Lo(N) | zd* € Lq(N)},

equipped with the following norms

[l yva) = ld%lly - and (|2l Lgv.ae) = lzd®]lq -

Then, we consider the intersection spaces
Ay(N,d*) = Ly(N,d*) " Lg(N, d¥)
so that we can recover A, ,(¢) with d as in (1.1) as follows
Dpo(®) = Dg(N,di77) .
The isomorphism in Theorem 1.1 a) is equivalent to
(1.2) Ry (N, d*) = [Agy (N, d™), Ag, (N, d™)]g

where (o, q1,9) = (p,q,7) and (g, a1, 9) = (0,1/q — 1/p,60c). As usual we may and
will understand intersections as the diagonal subspaces of the corresponding direct sum
spaces. That is, we have

Ay (N,d) C Lt (N,d) @ L (N,d*), for j=0,1.

By Kosaki’s theorem, the components in the direct sum interpolate isometrically. The
easiest way to show that these intersections commute with interpolation is to show that
there is one projection acting on both spaces ng(N, d*i) @ ng(N, d*i) for j = 0,1 which
projects onto the intersection Ay (N,d*). The projection will not be constructed on
Ly, (N,d*) @ L, (N, d*) but on spaces of upper and lower triangular elements.

The core of our argument relies on Schur multipliers. This will be made possible by the
canonical embedding 7 : N — M, (N) given by

m(x) = Z eij ® e;xe; .

4,j=1
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Let us write 7 to denote the trace functional on N. This will allow us to distinguish it
from the standard trace tr on M,,. Note that 7 is a normal (not unital) *-homomorphism
and we have (tr ® 7) om = 7. Moreover, the mapping E : M,(N) — w(N) given by
E(z) = m(1)2m(1) defines a normal conditional expectation. For the L,-version of the
map 7, we first introduce the normal faithful state ¢ (x) = >, dp7(2r) on M, (N) with
associated density

0= (idkekk) ®1.
N))

1—

(1.3) mo(d 7 xdv)

ITW(x)ég

becomes an isometric embedding and E : L, (M, (N)) — m,(L,(N)) still defines a positive
contraction, see [JX03] for further details. Note that m; takes (:EU) € Ly(M,(N)) to
Zij e;xije; € Ly(N), so that T Tp = idr, vy and TpTy = E. Our main tool are the spaces
of lower and upper triangular matrices in M,,(N) defined as follows

UT, = {(w5) € Ly(My(N)) | 2y = 0 for i > j|

With this choice, the map m, : L,(N) — L, (M,(
=9

LT, = {(wy) € Ly(My(N)) | iy = 0 for i < j} .

We shall use the fact that U7, and LT, are interpolation scales. This result was proved
by Pisier in [Pis92, Pis93] and provides a noncommutative analogue of the Peter Jones
theorem on interpolation of Hardy spaces. We will use the version given in [PX03].

Theorem 1.4 (Pisier/Xu). If 1 < p,q < oo and % — 1}‘%9 + g

UT, = [UT,,UT,)e and LT, = [LT,, LT,

hold with equivalent norms. The constants are uniformly bounded in n.

Let us note that for 1 < ¢,p < oo this result follows immediately from the well-known
fact that UT), and LT, are complemented subspaces of L,(M,(N)). Indeed, the triangular
projection T(x;; ® €;;) = 0i<;j(z;; ® €;;) defines a bounded operator on L, (M, (N)) with
norm controlled by ¢max{p,p’'}. Using T and 1 — T for p and ¢, the interpolation result
follows immediately. The whole point of Pisier’s argument is to extend this result to the
non-trivial borderline cases ¢ = 1 and p = oo.

In our result we are interested in subspaces of L,(N) which have upper or lower diagonal
form. Moreover, we have to take different powers of the density d into account. This leads
to consider the following four norms

||x||UTqT(N,da) = HZd?&;ZEQj

1<j

)
q

q

s ||x||UTqC(N,da) = HZei:vejd?‘
i<j



SUBSPACES OF NONCOMMUTATIVE L, 9

2| Ly (v.ae) = HZd e:zce]

1>]

— . o
) ||$||LT;(N,da) = H g 61$€]dj .
i>7
Then we define the associated spaces

)

UT;(N,d*) = {:c € Lo(N) | eize; =0 for i > j, ||lzlluzyvae < 00
LT;(N, da) = {l’ € Lo(N) ‘ €ixre; = 0 fori < j, HxHLTJ(Mda) < 00

Y

Y

UTS(N,d*) = {x € Lo(N) | exwe; =0 for i > j, ||z]lumsvam < oo

LT;(N,d*) = {x € Lo(N) ‘ exe; =0 fori <j, ||I||LT;(N7da) < 00

We shall also need to use the spaces

UT; (Mo(N),6%) = {(2i5) € Lo(Mo(N)) | 2 =0 fori > j, |6 (wiy)lly < o0}
LTI (M, (N),6%) = {(:cm) € Lo(Mu(N)) | 25y = 0 for i < j, [|6°s)]l, < oo},
UTE(Ma(N),8%) = {(w5) € Lo(Ma(N)) | i =0 for i > j., ||(i5)0° ], < o0} .
LT (Mo(N),6%) = {(25) € Lo(Ma(N)) | @i =0 for i < j, [|(2;5)0°lly < o0}
Let us observe that, if e;ze; = 0 for ¢ > j, we have for a = % — i
Wq(z d?eixej) = m,(d%z) = §%m,(x) .
i<j
In particular, it is easily seen that
(1.4) E: UT! (My(N),6%) — 7, (UTI (N, d*))

is still a contractive projection. This property (which extends automatically to the three
other spaces considered above) will be instrumental in the following result, where we
combine Kosaki’s embedding with interpolation of triangular matrices.

Lemma 1.5. If 1 < qy,q1 < 00 and o, € R, let us take 1/qo = (1 —0)/qo + 0/q1
and ag = (1 — 0)ag + Oy Then, the following isomorphisms hold with relevant constants
depending only on qo,q and 0

[UTT (N,d*),UT; (N, )] , = UTy(N,d*),
(LT} (N,d*), LT, (N, d‘“)]o = LT, (N,d*),
[UTCO(N d*), UT¢ (N, d*r)] , = UT:(N,d*),
(LT (N, d*), LT (N, dal)]g = LT; (N,d™).
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Proof. Since the proof of the four isomorphisms is identical, we only consider the first one.
According to the boundedness of (1.4), it suffices to prove the analogous isomorphism on
the amplified algebra M,,(N)

(1.5) [UT;O(M,L(N),(S“O) Uty (M,(N), 5"‘1)] = UT, (M,(N),0%) .
Indeed, Kosaki’s interpolation theorem tells us that
[LZO(MH(N),6a°),L21(Mn(N),5°‘1)}9 = L, (M,(N),6%)
holds isometrically. Thus, by our special choice of §, we obtain a contractive inclusion
[UT; (M,(N),5°),UT; (M,(N),6)], € UT; (M,(N),5%) .

For the converse, we assume that z € UTy (M, (N),0%) has norm less than 1. That is,
x € Lo(M,(N)) is an upper triangular matrlx such that ||0%°z||,, < 1. Let S stand for the
strip § = {Z € (C} 0 < Re(z) < 1} and denote by (0y, 01) the left and right sides of its
boundary. According to Theorem 1.4, we may find an analytic function

f:S§—=UT, +UT,
such that f(#) = d*z and

max{ sup || f(2)llvr,,» sup || f(= )HUqu} < c(qp)

z€00 z€01

holds for some universal constant c(gg). Then we define g(z) = §~(172)%0=2e1 f(2) Note
that g is analytic and that g(z) is still an upper triangular matrix for any z € S. For
z € 0y we find

l9() lory, (v 500) = [[F(2)loz,, < clgo) -
Similarly, if z € J; we have the estimate
l9() oy (vanvyo00) = [[f()Mlor, < clgo) -

Clearly we have g(6) = x and (1.5) follows from the three lines lemma. [

The next lemma is a very well-known classical result. We have decided to include the
proof for the convenience of the reader. The easy argument that we use here is due to
Burak Erdogan.

Lemma 1.6. Let f : R — R be an even integrable function whose restriction to Ry is
non-increasing and conver. Assume that f is differentiable almost everywhere and f' is
integrable. Then f is positive definite, i.e. its Fourier transform is positive.
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Proof. It £ € R, we have

/f Ye " dy = 2 f(zx) cos(xz€)dx
Ry

2
= fl(x)sin(zf)dr = —— f( )sin(z)dzx .
5 R, & Jr, " ¢
Here we used the fact that f is even, integration by parts and substitution. The function
glx) =—f (f) is positive, non-increasing and integrable on R, . In particular, we deduce
that

2
Ve = / g(z + 2mk) sin(z)dz > 0
0
for all integer k£ > 0 and therefore
F&) = 23 % >0 forall zeR, .
¢ k>0

By symmetry, f(f) > 0 for all £ # 0. Moreover, since f is positive, we have

:/Rf(x)da: >0

This shows that J?: R — R, , so that f is positive definite and the proof is complete. B

Lemma 1.7. Let a = (Zk akekk) ® 1 be a positive density on M, (N) with non-decreasing
entries a; < ag < -+ < a,. Let L,(x) = ax and R.(x) = xa be the left and right
multiplication maps. Then, the norm of the maps

LanRar(Lye+Ra)™F (0<n<1)

on the spaces UT, and LT, is bounded by % for all 1 < p < oo. In particular, given
a,f € R and d a density as in (1.1), the norm of the following maps is also bounded by %

on UT)(N,d®) and LT,(N,d*) for all1 < ¢ < 00 and all 0 < n < 1
Lga-0sRans (Lgs + Rgs) ™

Proof. Let x € UT, be an upper triangular matrix. Then we observe that

Lo(La+Ra) Nay) = ( i a:]) - (Mx]>

a; + a; a; + a;
because for ¢ > j we have x;; = 0. Observe that the same argument shows that on LT}, we
have to use max(a;, a;) instead of min(ay, a;). However, we have 22X0n0) — 1 _ min(ai.e;)

aitaj a;taj
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Therefore, the cases n = 0, 1 follow immediately once we have shown that
My(zs;) = <M vy)
a; + a;
is bounded on L,(M,(N)) for all 1 <p < oo. If 5,t € R, we have
min(s, t) 1 1

s+t 14+ max(s,t) ] + ellog(s)—log(t)|

min(s,t)

The Fourier inversion formula for f(z) = —7 gives

1+ |

min(s, ) 1 _ L f ei€(log(s)~log(t)) ¢
s+t 1+6|10g(s) log(t)

According to Lemma 1.6, f is positive definite and we obtain

1 ~ .
el = (55 [ Feetoserbxena,ac)
27 R p
1 Y 1€ log(a; —1€log(a;
< %/Rf(g)H(eslg( ) g,y 10E(@)

Ll Ml 1y
< 5 | i@, = L = S,

Thus, M, is bounded on L,(M,(N)) with norm § and the same holds for £,(L, + R,)~"
on the space UT),. Moreover, the same arguments show that R, (L, —{—Ra)_l is bounded on
LT, withnorm £. On the other hand, recalling one more time that mzx(j:a]aj )4 ml;fi;’j]) =1,
we deduce that £,(L,+R,) ™" on LT, and R,(L,+R,)~" on UT, are respectively bounded
by 1+ % It remains to prove the case 0 <7 < 1. Let us consider x € UT), and define the

complex function f(2) = Lg1-:Ra-(L, + Ra) " (x). Then it is easily seen that

max { sup [[7(2)l. sup [ F()], } < 2

z€0Dy z€01 - 2

dg

1l -

Thus, we find that ||f(n)|, < 2|z[l,. The argument for LT, is similar. Let us now
prove the second assertion. Since the left and right multiplication maps £ and R clearly
commute with d®, it is no restriction to assume that o« = 0 and ¢ = p. On the other hand,
taking
e;xe;
dE -n)B J dﬂﬂ
d) +d]

Rij = )

we clearly have
E(g(l n)BR(Wﬁ (AC(SB + Ré/@‘ 7Tp Z €ij X Zij = Wpﬁd(lfﬂwRd"ﬁ ('Cdﬁ + Rdﬁ)_l(x) :

Therefore, the first assertion implies the second assertion and we are done. [ |
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In the following we use the notations
UT,(N) = UT;(N,d") = UTC(N d),
T,N) = LTJ(N,d)
AUT(N d*) = UT/(N,d*
)

q
ALT(N da

)N
= LTI(N,d*) n

for spaces of upper and lower triangular elements.
Lemma 1.8. Let 1 < qp,q1 < 00, @ € R and ay = 0a. Then the map
A:UTy (N,d*) & UT; (N,d*) — [UT,,(N),AJT(N,d)],

defined by
Ay,z) = (Lagoo + 'Rdae)_l(daey + 2d™?)

satisfies ||A]| < c(qp). The same holds for the space of lower triangular matrices.

Proof. According to Lemma 1.5, we know that
UT, (N,d™) = [UTQO(N), Uty (N, d“)}e
UT, (N,d*) = [UTQO(N), UTy (N, d“)}e

holds up to a constant ¢(gp). Obviously, we have A(z,z) = x. Therefore, it suffices to
show that A is bounded on UT,,(N)@®UTg,(N) and on UT; (N, d*)SUT, (N, d*). Indeed,
we deduce from Lemma 1.7 that

A, ) lory vy = | Lao(Lae + Rao) ™ (y) + Rao (Lao + Rae) ' (2)|

q0
3 3
< ) [yl + B 2]l < 3 ||(y72)||UTqO(N)®UTqO(N) .

On the other hand, we have

3
||A(yyz)||UTqu(N,da) = H,Cda(ﬁda—I—Rda)_l(day'f‘zda)uql S §Hdo‘y+zda||ql

< 3 max {dylo. 1200 } = 31 2)lomy, ovameurs vae) -

The estimate for UTY, (N, d*) uses Rgo(Lge + Rge)~" instead. On the other hand, the
proof for lower triangular matrices is verbatim the same. The proof is complete. [ ]

The next result is well-known. It can be proved using the fact that L,(NN) are UMD
spaces (see [BGM86] and [Bou86]) or applying the boundedness for the noncommutative
Hilbert transform in chapter 8 of [PX03], see also the earlier results in [GK69, KP70].
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Lemma 1.9. Let (e;) be a family of disjoint projections in a von Neumann algebra N and
let us consider the triangular projection T.(x) = Zigj e;xve;. Then, the mapping T, is
bounded on L,(N) for 1 <p < co.

Proof. It is well-known that the triangular projection T(a) = >, j @ij€ij is completely
bounded on S, see the references above. Then, the bounded map T, yields the
modified triangular projection T, used in the assertion. [ ]

Step 1 of the proof. We will prove Theorem 1.1 assuming (1.1). For the first assertion
a), we observe from Kosaki’s interpolation that the inclusion [L,(N), A, ,(é)]e C Ay (¢)
is trivially contractive. For the converse we use the A (N, d) terminology. In other words
we have to prove that

. 1 1
A (N,d*) C [Ly(N), Ag(N,d"/*)], with = p
On the other hand, the inclusions UT,(N) C L,(N) and AVT(N,d"/*) C Ay(N,d"*) are
contractive and the same happens for the spaces of lower triangular matrices. Therefore,
considering the decomposition © = T.(z) + 2 — T.(z) for z € A, (N, d%*), it suffices to
show that
AN, d) . [UT,(N), AFT(N,d'*)],
AT(N,d”*) C [LT,(N), AF"(N,d"%)], .
Note that 1 < r < oo because 0 < ¢ < 1. According to Lemma 1.9, this implies that
T.(x) belongs to AUT(N,d%*) and x — T.(x) € AT (N,d/*). Hence, applying Lemma
1.8 we deduce that
ITe(@)wr,vyavrvarsy, = [IAMTe(@), Te(@)lljwn,v).a0 @,y

(M Te(@)|avrvaorsy < e(r)dr)llela, ovaors -

IA

The same argument with respect to lower triangular matrices gives

|2 = Te(@) |l (L1, 3y, 227 (v are), < c(r)d(r)]@]a, @, -
For the proof of part b) we construct
Qr: L(N®N)— Ay, ()
as follows

(1.6) A(y,2) = (£



SUBSPACES OF NONCOMMUTATIVE L, 15

for y,z € L.(N). Clearly, we have Qr(d%_%x, xd%_%) = x for all z € L,(N). For the norm
estimate, we use again the fact that the triangular map T, is bounded. For y,z € L.(N)
we deduce from Lemma 1.7 that

HQT(Te(y>’Te(Z> +R 1

3[|(Te(y), Te(2))]

where d(r) stands for the norm of the triangular projection on L,.(N). The same estimate
1_1

holds for UTS(N,dr»). We can also repeat the estimate for y — T.(y) and z — T.(z) with

respect to the spaces LT (N, défi) and LT¢(N, difi). This yields the norm estimate

1Q: : Li(N @ N) — A, (9)|| < 6d(r) . .

)7 (Tely) + Te(2) |,

Lwen) =3 ()H(y, )HLT(N@M,

) HUTT’E‘(]\Ld%_%)

IN

Remark 1.10. In our applications we will combine a) and b) and deduce that
1Qr + Li(N & N) — [Ly(N), Apg(@)]oll < 6c(r)d(r)?.

Here we use the triangular projection twice. In the first version of this paper we directly
constructed a map Q, : L, (N & N) — [L,(N),A,,(¢)]s projecting onto the canonical

image of A, ,(¢). Indeed, we consider upper triangular elements y = dr~ 117:751, z= :BQdT z
with z1, 29 € UT,(N). Then the “canonical” image in L (NN & N) is given by

(A7 7y, 2de™7) = (A3 van,ands7)

We have seen in Lemma 1.8 that

[A(z1, z2) |avr(vgey < 3 ( dq Ty 2di HL (NON) for a=1/q—1/p.
The same estimate holds with respect to LT,(NN). By complex interpolation we deduce

HA($1,-T2)H[UT (N), AUT(N,d%
< 3 H(xth)H[

1
P)lg

1

e UTC(N TRy

D=

UTy(N)Y®UT,(N ),UT(;(N,d%‘
< 3e(r) [[(z1, z2)|

1
UTr (N, AT

3=

PYQUTE(N,dT ~7) 3c(r) 1y, 2) || L. (vany -

For y,z € L,.(N) we consider { = d%_%y + 2da~+ and the projection
Or(y.2) = (do (£ - )HO). (£,

Then we have

+R

1 1_1
P da P

1O, : Li(N ® N) — [Ly(N), Apy(d)o]| < 6c(r)d(r).

It is known that d(r) < cmax{r,r"}. However, we have no explicit control on c(r).
It would be interesting to know whether the singularity for » — 1 is necessary when
interpolating [V, Ax 1(¢)]1.
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Remark 1.11. In contrast to @T, the projection from part b) satisfies the condition
Q,-(y,—y) = 0 mentioned in Remark 1.3. This follows immediately from (1.6) and is
important for our applications below. Let us reformulate this condition for the dual map.
Using Q,(y, —y) = 0 we see that Q, factors through

Ly(N) ~ L(N @& N)/{(y,—y) | y € Ly(N)} .
More explicitly, for € € A, (¢)* we have

(Q1(9), (y,2)) = (&Qu(y,2)) = (&(L
= (& (L

This allows us to define the bounded map (&) by (u(€),y) = 2(Q:(€), (v,y)). Clearly, we
have Q*(&) = (u(§),u(€)). Assuming (1.1) the map (Ld%_% + Rd%_%)—l is bounded. In
the next steps of our proof this is not necessarily the case, but see Corollary 1.16 below.

Step 2 of the proof. We now study the case where N is finite and equipped with a
density d such that c;1 < d < ¢51 for some constants 0 < ¢; < ¢g < o0, so that d and
d~1 are bounded. We claim that for any & > 0 we may find a density d. of the form (1.1),
with 7(d.) = 1 and such that

(1+e)'d. <d<(1+¢e)d..

Indeed, let 1 be the probability measure on the Borel o-algebra over [c1, ¢o] determined
by w(E) = 7(1g(d)), where 1g(d) denotes the corresponding spectral projection. This
provides isometric isomorphisms L,(u) = L,(A, 7), where A is the (abelian) von Neumann
subalgebra of N given by

A= {f(d) | /¢ [c1,¢2] — C bounded and measurable}.

In particular, we may approximate d by d. of the form (1.1) just by approximating the
function f(z) = x by a suitable simple function. In particular, we may even assume that
d. commutes with d. Letting ¢.(x) = tr(d.z) be the state determined by d. and taking
% = % — %, it is clear that

1
s

(1—|—5)7T1

Tl aya60) < N2lla,ae) < (L+e)s12lla, 00 -

This gives an (1 + &) -isomorphism

(1-7) [Lp(N)7 Ap,q((ﬁ)]g = [LP(N)’ Ap7q(¢8)]9-

In additi0n7 Ap,r(¢) - Ap,r(¢€) are (1 + 5)%-iSOITlOI'phiC with % = % — and

1
p

Ap,r(¢) = Ap,r(¢e) = [LP(N)aAp,q(¢e>]9 = [LP(N)vAp,q(¢)]g'
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This proves the first assertion. Let us denote by I. : A,,.(¢.) — A,,(¢) the formal
identity. Let Q,(¢) : L,(N & N) — A, ,(¢.) be the projection constructed above. Then
we denote by Q, : L,(N & N) — A, ,(¢) the densely defined map

O, (d¥a, %) = 1.0,(c)(d¥, B2 ) |

Remark 1.12. Let us explain how we may pass to the limit ¢ — 0 for the definition of Q,..
We denote by By, (R) the algebra of bounded measurable functions on R and find a normal
s-representation 7 : Boo(R) ®min Boo(R) — B(La(N)) given by 7(f ® g) = Lya)Rga)-
This shows that

£d1/u ()Cdl/u + Rdl/u)_l = SOT - lli)% £d;/u (Ed;/u + Rd;/u)_l .

A similar statement holds for R ju(Lg/u + Rau)~ L. Therefore, for x € L,.(N) the family
Te(x) = L p/u(L e +Rd;/u)_1(x) is uniformly bounded in L, (N) and converges in Ly(N).
It follows very easily from [FK86, Theorem 3.6] that 7.(x) converges in L,(NN). We recall
the canonical embedding j,, : A, (¢) — L. (N & N) given by j,,.(z) = (Lg/u®, Rg/u)
and deduce that

Gpr(Laru + Rgrru) i L(N @ N) — L,(N @ N)

is a well-defined bounded map. Thus Q, = (Lg/u +Rg/w) "t is a projection onto A, ,.(¢)
and the pointwise limit of the Q,(¢)’s. In particular, the condition from Remark 1.3 is
satisfied. Indeed, using the Borel functional calculus for B, (R) ® B, (R) we find

Q,(y,2) = /]R R(d(w)l/“ + d(WY)YE,(y 4 2)dE,, .

Let us note that in the semifinite case (without assuming ¢; < d < ¢y but still assuming
d is faithful), we may obtain the same formula by using an increasing net of spectral
projections of d.

The proof for the general case is based on Haagerup’s reduction theorem, see [JXb]. Let
us briefly explain how this construction works. Let us consider a von Neumann algebra
N equipped with a normal faithful state ¢ associated to a density d. Let us define the

discrete group
G=J2mz

neN
Then we construct the crossed product M = N x,s G. That is, if H is the Hilbert space
provided by the GNS construction applied to ¢ and ¢ denotes the one parameter modular
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automorphism group on N associated to ¢, then M is generated by the representations
m: N — B(Ly(G; H)) and X : G — B(Lo(G; H)), where

(7(2)€)(9) = 0%y(2)e(g)  and  (A(R)E)(9) = &(g — h).
By the faithfulness of 7 we are allowed to identify N with its image 7(/V). Then, a generic

element in the crossed product M has the form »_ x4A(g) with 2, € N and we have the
conditional expectation

EN(ZJZQ/\(Q)) =x9€ N .

geG
The algebra M contains an increasing net (M, )aea of finite von Neumann subalgebras
with normal conditional expectations &, : M — M,. One of the important properties of
Haagerup’s construction is that ¢» = ¢ o Ex is a normal faithful state such that Yo &, =¥
holds for each @ € A. Moreover, the restriction v, of ) to M, has a density d, such that

cl(a)lMa S da S CQ(O[)lMa

for some constants 0 < ¢;(o) < ca(v) < o0. If dy denotes the density associated to the
state 1), we consider the canonical conditional expectation &,, : L,(M) — L,(M,) and
the canonical inclusion ¢, : L,(M,) — L,(M) densely defined respectively by

€a7p(xdi) = & (x)ds and 1 ,(vdd) = :Edfb :
We refer to [JX03] for more information on these maps. It is shown in [JXb] that
(1.8) limy tap&ap(x) = o forall ze€L,(M) and 1<p<oo.
We will also need the L, version of Ey : L,(M) — L,(N):

1
Enp(ed]) = En(z)dv .

1
This comes with the natural inclusion map jy, : L,(N) — L,(M), jN,p(:L'd%) = xdi,
see again [JX03]. With this information we start our approximation procedure. Indeed,
the following mappings will be instrumental in our proof of Theorem 1.1 for general von
Neumann algebras

Uap = Enplap : Lpy(My) — Ly(N) and  wayp = Eaping : Lp(N) — Ly(M,) .
Lemma 1.13. The following properties hold:

i) If 1 <p < oo, lim, Ug pwa,(z) = for all v € L,(N).

ii) The mappings ua.,p, and w,, induce contractions
Ua,p - [Lp(Ma)a Ap,q(waﬂg - [Lp(N)’ Ap,q(¢)]9 )
Wa,p - [LP(N>7 Ap,q(¢)]9 - [Lp(Moz)a Ap,q<7/}a)]g :
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i) If1<g<p<ooand0 <0 <1, wehave

hma ua,pwa,p(x> = fOT all z € [LP(N)7 Aqu(gb)]G'

Proof. Since En ,jn,(x) =z for all z € L,(N), we have
limy, g pwWa p() — x = lim, Ex, <La7p8a,p (ij(x)) — jN,p(x)) =0,

where the last identity follows from (1.8) and the contractivity of Ey, in L,(M). This
proves the first assertion. Now let us identify A, , with its image j, (A, ) in Ly(N & N)
and also A, ,(1¢,) with its image j,,(Ap4(¢a)) in Ly(M, & M,). Then, to prove ii) we
will regard the mapping

Wap © Bpg(@) = Dpg(Ya)
as the restriction of wq 4 ® waq 1 Ly(N & N) — Ly(M, & M,) to the subspace

{(d%x,xd%ﬂxeLp(N)} with 1/s=1/q—1/p.
Ifx:yd% for y € N, we have

(19)  Waq(pg(2)) = (Wag(d),weq(zd?))

= (déé’a(y)dg, 5a(y)dc§v) = jpg(goz(y)d

Q3 Im

) = Jpa(Wap(T)) .

1-n

-
Here we use the well-known fact that &, ,(d,” xdi) = d(f Sa(x)dz, which follows from our
definition of &, , and the identity £,0% = o¥=&,, see [JX03] for further details. Therefore
the map w, , induces a compatible contraction on the interpolation couple (L,(N), A, ,(¢))
and hence on the complex interpolation space [L,(N), A, ;(¢)]g. The argument for u, , is
entirely similar. In the proof of iii) we first observe that it suffices to prove the assertion on
a dense subspace, because we already know from ii) that the maps u, pw, , are contractions.
If v € L,(N) (we remind the reader that p = oo is allowed and hence we may not assume

that lim, e pwa p(z) = @ holds in norm), we set 7, = UqpWa,, and have
lime [[Ya,q(#) = 21z, (3),85.4(6)10

< timg [Fap(@) — ol (|

1

d% (’Va,p(ff) - $) HZ + H (%,p(x) — x)d; Z)E

6
")q - 0.
q

The first inequality uses the three lines lemma, the second applies i) and uses § > 0. ®W

IN

@)l time (|Jagld @) = o2+ [raq(@d?) - od?
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Step 3 of the proof. We now conclude the proof of Theorem 1.1. For the assertion a) we
observe that the upper estimate in Remark 1.2 holds in general by the same argument used
in Step 1 above. For the lower estimate we observe that (M,, d,) satisfies the hypotheses
of Step 2. Hence we have

(

for all x € L,(M,) and o € A. This implies that

1
=

11 1_1
d e+ lleda 7)ol a8 v

120 (L), Apa(oe < Hmsup, [[Vap (@)l 2,(3),4.46)16

< limsup,, [|Wap (@)L, (Ma),Ap.g(ea)lo

S =

da "Eap(@)||L + ||Eap(x)da 7

1
‘ T

AN

lim sup,, <|

(

We will now construct the projection as a suitable limit. Let

Qa,r . Lr(Ma S Ma) - Ap,r(wa)
be the projection from Step 2 and let U be a free ultrafilter on A. Then we define

(Qr(w,9),€) = lima g (o pQar(War (), war(v), €)

for every £ € A, (¢)*. Note that A,,(¢) is a reflexive Banach space. Therefore, we deduce
that we have Q,(z,y) € A, (¢) for all (z,y) € L.(N & N). Since Q,, is a projection, we
deduce

1 1

d 3l + edt)

IN

1

1_1 1_1 -1 11
umea’r(wa’r(dT PL), Wo,r(xdr P)) = uapra,r(da Wap(T), Wap(x)da ):’ya,p(a:).
Thus Lemma 1.13 iii) and [L,(N), A, 4(¢)]e = Ay (¢) imply

Qr(d%_%x, xd%_%) =z

for all x € L,(N). Since Q, is continuous, we deduce the result by density. [

Remark 1.14. Theorem 1.1 also holds in the category of operator spaces. That is, the map
Q,: L,(N®N) — A, ,(¢) is completely bounded. This follows immediately from replacing
dby 1®din Ly(M,,(N)). Moreover, in the semifinite setting the assumption 7(d) =1 is
not really needed. Therefore, Theorem 1.1 also holds for 7-measurable operators d. More
generally, this can be extended to strictly semifinite weights. At the time of this writing
it is not clear whether there is a result in this direction for arbitrary weights. For two
densities d; and dy we can obtain results in this direction by considering (1, 2) entries in
the space A, .(¢2), where ¢, is associated to the density d = dy ® €11 + da ® €92 on My(N).
We leave the details to the interested reader.
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Using the methods of our paper, the referee found a proof for the following interpolation
result which generalizes our Theorem 1.1. We are indebted to the referee for allowing us
to reproduce his argument.

Theorem 1.15. Let 1 < qo,q1 < 00 and ap,; > 0. Define 1/qp = (1 —0)/q0 + 0/q1
and ag = (1 — 0)ap + 0oy for 0 < 8 < 1. Then, the following isomorphism holds for any
density d of a normal faithful state on N

AQe(Nv dae) - [AQO (Nv dao)? Ath <N7 dal)}g .
Proof. Here we will prove the result assuming (1.1). The proof in the general case follows

by approximation in the semifinite case and an application of Haagerup’s decomposition,
as in Step 3 above. Using the triangular map, it suffices to prove

Ag (N, d*) = [AZT(N,d*), AT (N,d™)], .

According to Lemma 1.5, the direct sums UT}, (N,d*)®UT; (N,d*) are an interpolation
scale. Thus, it suffices to find a common projection which is bounded for ¢g and ¢;. Let
us show that the map

Qy,z) = (z,x) where z = (Lgoo+es +Rdao+al)_l(£dao+a1 (y) + Raao+ar (Z))

is bounded in both spaces. Indeed, Lemma 1.7 gives

_ 3
H(ﬁdaoﬂl + Rdaﬁal) 1£dO‘0+al (y)”Uqu (N,d%9) < 5 ||y||Uqu'j (N,d*7) »
J
_ 3
H(ﬁdao+a1 + Rda0+a1) leao-HJq (Z)”UTQC,(N,dO‘j) < 5 ||Z||UTqu(N7d°‘j) ,
J
for 7 =0, 1. Hence, it remains to see that
_ 3
H(EdaoJral + Raotar) 1ﬁolaowl (y)”Uch‘(N,d&j) < ) ||y||UTqu (N,d%3) »
J
3

H(ﬁdao+a1 + Rdao+a1)717€dao+a1 (Z)”UT&"],(N,daj) < 5 HZHUT;J_(Ndaj) .

Since all these cross estimates can be handled similarly, we only estimate the first one in
the case j = 0. Using n = ap/(ap + 1) in conjunction with Lemma 1.7 one more time,
we obtain

H (»Cda0+a1 + Rdao+a1 )_1 ,Cdao+a1 (y) HUT,SO(N,dO‘O)

= [[LaaRaoo (Laooror + Ryaoar) " Lawo (y) HUTqO(N)
3 3 3
< §H£dao(y)”UTq0(N) = §||d Yllur, vy = §HyHUTg (N.do0) -

0

We apply the same arguments (and same “projection”) for lower triangular elements. W
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The following byproduct of our arguments might be of independent interest.

Corollary 1.16. Let 1 < p < o0 and a > 0. Then the maps
Rd(l—n)aﬁdna (;Cda + Rda)il (O S 77 S 1)
are bounded on L,(N) for any density d of a normal faithful state on N.

Proof. Ford =, _, dgey as in (1.1) this follows immediately from Lemma 1.7 and Lemma
1.9. Then we follow the same procedure as in the proof of Theorem 1.1 by first showing it
for finite von Neumman algebras with densities bounded above and below, and then apply
the Haagerup construction. [ ]

2. SUBSPACES OF NONCOMMUTATIVE [

In this section we follow Pisier’s approach and prove Theorem A. Let us recall the
notions of type and cotype from Banach space theory. Given a probability space €, let
us consider a sequence (g;) of independent Bernoulli random variables equidistributed in
+1. A linear map 7' : X — Y has type p if there exists ¢; > 0 such that the inequality
below holds for all finite sequences (xy) in X

(EI, wrell)’ < a3, lnlk)’

Then t,(T") = inf ¢; satisfying the inequality above. A Banach space has type p if idx has
type p. We use the standard notation t,(X) = t,(idx). A linear map 7" : X — Y is said
to be of cotype ¢ if

1

(3, IT@)I)" < (B Zkgkka;)%.

We define ¢,(T") = inf ¢y, where the infimum is taken over all ¢, satisfying the inequality
above. Again ¢,(X) = ¢,(idx) for a Banach space X. Given a von Neumann algebra N, a
linear map 7" : L,(N) — X is called (g, +)-summing if there exists a constant ¢ > 0 such
that the inequality below holds for all finite sequence (xy) of positive elements x € L,(N)

2.1) (3, 17El)" < o3, =

We denote 7, (T') = inf c. Let us recall the well-known fact

(2.2) s (T: Ly(N) — X) < 2¢,(T).

p

Indeed, for positive elements x; the order relation implies that

1D ewwell, < 1 20 well, + 11 32 wll, < 202w,
k k

k75k:1 k,Eszl
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We shall also need the following well-known fact from interpolation [BL76, section 4.7].

Lemma 2.1. Let (Ao, A1) be an interpolation couple of Banach spaces. Assume that Ay
is contractively included in Ay and let 0 < n < n < 1. Then, there exists some absolute
constant c(n,7) depending only on (n,7) such that the norm of the inclusion

[Ao, A1l C [Ao, A1y is controlled by c(n, 1) .

Without assuming full support for d we keep the notation
1_1 1_1
(2.3) I2lla,q0 = max {7 bally lledi 5l }

If we set suppd = e, the expression above vanishes on (1 — e)L,(N)(1 — e). Relation
(2.3) defines a norm on eL,(N)+ L,(N)e, a complemented subspaces of the quasi-normed
space (Lp(N), | l|a,,). We will write A, ,(¢) for the completion of eL,(N) + L,(N)e with
respect to this norm. The spaces e, ,(d)e, eA,,(6)(1 —e) and (1 —e)A, ,(¢)e are the
complemented subspaces of A, ,(¢) obtained from the closure of eL,(N)e, eL,(N)(1 — e)
and (1 —e)L,(N)e in A, ,(¢).

Lemma 2.2. Let d be the density of a normal state ¢ and let e be the support projection
of d, so that ¢ s faithful on eNe. [f% = 1].%9 + g, then [eL,(N) + L,(N)e, A, ,(0)]o is
isomorphic to the direct sum

eAy (ple®eLl,(N)(1—e)® (1 —e)L.(N)e.
The restriction of this isomorphism on eL,(N) + L,(N)e is given by

T (e:ce, d%_%x(l —e),(1- e)xd%_%) :

Proof. By definition, we have

eApg(p)e =Dy g(Pl.n.) -
Hence, we can apply Theorem 1.1 and find that

leL,(N)e,eA, ,(p)elo ~ e, (d)e .

Now we discuss the off-diagonal parts in

(2.4) [eLy(N) + Ly(N)e, Apy(d)]lo =~ [eLy(N)e, e, 4(9)els
© [eLy(N)(1—e), el q(0)(1 —e)lg

@ [(1—e)Ly(N)e, (1 = e)Ap4(¢)elo -

However, for © = ex(1 — e) we have that

(2.5) llex(1=€)lla, 0 = max {147 7 ex(1=e) g, ex(1—e)di 7 ||y b = [dsa(1—e)]l,.
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A similar remark applies for z = (1 — e)ze. Therefore, the interpolation space simpli-
fies considerably in the off-diagonal terms. Applying Kosaki’s interpolation theorem we
formally obtain

(2.6) [d37FeL,(N)(1 — e),eLy(N)(1 —¢)], = di " L(N)(1 —¢).

However, ¢ does not have full support and we can not apply Kosaki’s theorem directly.
Let 1;_. = lim; ¢; be a strictly semifinite weight on (1 —e)N(1 —e). Then ¢ = ¢);_. + ¢
is a strictly semifinite weight on N. Let e; < 1 — e be the support of 1; (with associated
density d;) and f; = e; +e. We may apply Kosaki’s interpolation theorem for ¢; = 1; + ¢
and the sum of the commuting densities d; + d. Then we obtain

[(d+d))s v L(f;Nf;), Ly(fiNfj)], = (d+ d;) i T Lo(f;Nf;) -

Since the map W(y) = ey(l — e) is a contraction on the spaces at both sides above, we

ST

can replace N by eN(1 — e) in the isometric isomorphism since the resulting spaces are
contractively complemented. Thus we find

1_1 1_1
[dq pr(N)ejveLq(N)ej}e = di 7L (N)ej .

Passing to the limit for j — oo yields (2.6). Note that in (2.4) and (2.6) we used different
topological vector spaces for the interpolation couple (Ag, A1). In (2.4), Ag+ A; = A; is
the completion of eL,(N)(1 — e) with respect to the norm in A, ,(¢). On the other hand,

in (2.6) we use eL,(N)(1 — e) as the underlying vector space. Since dé_%Lp(N)(l —e) is
dense in eL,(N)(1 —e), we have calculated the interpolation space. Thus (2.4), (2.5) and
(2.6) imply that

lez (X = e)llier,na-ereapa@a-en, = lld™ 72l =)l -

Taking adjoints, we obtain the same conclusion for the space (1 — e)L,(N)e. [

Theorem 2.3. Let X be a Banach space and T : X — Li(N) be a linear map such that
T* has cotype q. Then, there exists a density d on N such that, for all 1 < p < ¢, we may
construct a bounded linear map u : X — L,(N) satisfying

T(x) = dl_%u(x) + u(a;)dl_% forall ze X .
If moreover X C Li1(N) is a subspace, u is an isomorphic embedding of X into L,(N).
Proof. We recall from (2.2) that 7% : N — X* is (¢, +)-summing. Therefore, we deduce

from Pisier’s factorization theorem [Pis86b, Theorem 3.2] that there exists a state ¢ on N
such that

Q=

17" (y)|

xo < elyllT (blyy) + Sy ) -
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We use a standard trick (see [Pis04]) to replace ¢ by its normal part. Let ¢, be the
normal part of ¢. Let (s,) be a net of contractions in N such that lim, s, = 1 in the
strong operator and the strong® topology and lim, ¢(s,ySa) = ¢n(y). Let y € N and
x € X of norm 1 such that

1T (W)l x+ < A+ )T () (@) = (1 +¢)ltr(yT(x))] -
We may write T'(z) = a = ajay with a; € Ly(N). Note that

lim, tr(saysaa) = lim, tr(ys.as,) = tr(ya)
because lim, s,as, = lim, s,a1a258, = aijay = a. Therefore we find that

17" ()]

x- < (14¢)lim, [tr(saysaa)]

Q=

IN

¢ imsup, [[5aysall' ™7 lim, (6(say5aysa) + S(say"saysa))
1

¢ limsup, |[saysall'™ @ lima (¢(sayy”sa) + d(say*ysa))”
_2 N NS
cllyll' ™7 (bnlyy™) + dnly™y))* -

Therefore, we may assume with no loss of generality that the state ¢ is normal. This
means that it is given by ¢(y) = tr(dy) for some density d € L1(N). Let e be the support
of d, so that ¢ is faithful on eNe. We then have

IN

IN

2

* 1-2 1 1 2/q 1-2 2
e IT Wl < eyl max {idylle, vt} = el I,

Note that 7*((1 — e)y(1 —e)) = 0. According to a well-known result (cf. [BL76, p.49]) we
have

(2.8) 17" (y)|

Recall that we write Ay (¢) for Ay ,(¢). We consider (n,7) = (2/¢,2/p’) and observe that
O<n<n<lsincel <p<q and 2 < g < oo (if T* has cotype 2 it also has cotype ¢ for
all ¢ > 2). According to Lemma 2.1 we deduce that

(2.9) 17" (y)|

Therefore, the map T™ extends to a bounded map T, : [eN + Ne, Ay(¢)]a/y — X*. Let
us note that, in accordance with Lemma 2.2, the intersection in this interpolation space is
eNe+eN(1—e)+ (1 —e)Ne while by (2.7) the map 7™ vanishes on the remaining corner
(1 —€e)N(1 —e). Let us recall the projection given by Theorem 1.1

Qy : Ly(eNe® eNe) — eAy(d)e ~ [eNe,eNs(¢)e]

x+ < cllYllenviness@),, foral yeN.
2

xe < el ) [[Ylleviness@y, forall yeN.

p/

i

Using Lemma 2.2 we may define the map ép/ :Ly(N®N)— Ay(¢) by
O (y1,92) = Quleyie, eyae) ® eys(1— ) @ (1 - e)yse.
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Thus by construction we have
(2.10) T*(y) = Ty Qu(dvy,ydv)

for all y € N. Unfortunately, ép/ does not vanish on vectors of the form (y, —y). Therefore
we need a slight modification of (ép/)* which allows us to construct one map u as asserted.
For this we define a map v : Ay (¢)* — L,(N) as follows. According to Lemma 2.2 we
have Ay (¢)* = (eAy(P)e)* & (eLy(N)(1 —e€))* @ (1 — eLy(N)e*. Following Remark 1.3
we know that Q7 (£) = (ve(§), ve(§)) holds for some bounded linear map

0o (Ap(@)e)” = Ly(eNe).
Thus we may define

V(€) = ve(&) + &e1—e +&1—ce  where € has the components & = (&, &e1—e, E1-ce) -
Under the usual duality bracket (a,b) = tr(ab), we observe that

(eLy(N)(1—¢€)) =(1—e)L,(N)e and ((1—e)Ly(N)e) =eL,(N)(1—e).

Therefore, we may and will assume that {1 = (1 —€)&1—c€ and .. = €&1_c (1 —€)
are elements in L,(/N). Then we observe that

47 0(€) + v(E)d7 = A7 vo(E) + ve(E)dT + AV Ex_o + Euped? .
This implies that, for all y € N, we have
0, (dvy, ydv ), €)
= (Qu(d7 eye, eyed?), &) + (A7 y(1 — €), Eea—e) + {(1 — e)yd¥ , &1_.)
= tr(ve(£)(d7 eye + eyed? ) + tr(En—ed? y(1 — €)) + tr(Er_ce(1 — €)yd?)
= tr((d7v(€) + v(E)d¥ )y).

This will allow us to conclude easily. Indeed, we define u = v(T};)* : X — L,(N). Then
we deduce from (2.10) that

tr((d7 u() + u(@)d? )y) = (Op(d¥y,yd? ), (T5) (x))
= (T3 Qy(dy,yd?),z) = (T"(y),x) = tr(yT(x))

holds for all y. This means T'(x) = diu(x) + u(m)dﬁ Let us now consider the special
case T =1x : X — L1(N) such that X* has cotype ¢q. Then the left inverse for u is given

by v(x) = dv + edv . Clearly, v is bounded and u becomes an isomorphism. [ |
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Remark 2.4. The proof shows that we can construct the same u because we only care
about the restriction of Q, to elements of the form (d'/*'y,yd'/?"). If N is o-finite and
semifinite, we may assume e = 1 and Remark 1.12 gives

u(x) = /R R[d(s)l/p’+d(t)1/p’]*1dEsT(x)dEt.

Proof of Theorem A. The type index of X is defined as

px = inf {p | X has type p}.

According to the Krivine-Maurey-Pisier theorem (see e.g. [MS86] or [Pis86¢|) we know
that for p = px the spaces £,(n) are uniformly contained in X. If py = 1, we know from
[RX03, Theorem 5.1] that X contains ¢;. However, this contradicts the reflexivity of X.
Hence, px must be strictly bigger that 1. Let pg > 1 such that X has type py. This implies
that X* has (finite) cotype p, and therefore Theorem 2.3 applies. [ |

Proof of Corollary C. Let (z,) be subsymmetric in N, and let
X =span{z, |n>1}.

According to (the proof of) Theorem A, if X does not contain ¢; then X is isomorphic
to a subspace of L,(N) for some 1 < p < 2. Since we know from [JR| that L,(N) is
asymptotically symmetric, we deduce that (x,) is indeed symmetric. [ |

Remark 2.5. Let (x,,) be a subsymmetric sequence in L1 (N). A close inspection of [RX03,
Proposition 5.3] shows that (z,) contains a subsequence equivalent to the unit vector basis
of ¢; or (z,) is l-equiintegrable (equivalently relatively weakly compact). However, a
subsymmetric sequence is equivalent to every subsequence. Thus either (z,,) is equivalent
to the ¢; basis (hence symmetric) or 1-equiintegrable. Therefore, the only possibility of a
subsymmetric, not symmetric sequence, occurs for 1-equiintegrable sequences where the
unit ball of span{z,, : n € N} is not 1-equiintegrable, see also [RX03, Theorem 5.1].

3. NIKISHIN-TYPE RESULTS FOR p FINITE

In the commutative setting, Nikishin type results can be obtained from a careful analysis
of the maximal function. Although maximal functions have been recently introduced in
the noncommutative setting [Jun02, JXa], they seem not to be applicable for this type of
results. Our approach using duality in the noncommutative setting reduces the problem to
norm estimates for positive operators. In this section we prove the differential inequality
(1) and Theorem B. Let us start with an elementary observation. The result is known
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due to the work of Araki [Ara90] and Kosaki [Kos92]. We give a short proof to keep the
paper more self-contained.

Lemma 3.1. Let 1 < g < o and «, 3 be positive. Then
1”672 < flaBllg  forall 0<n<1.

Proof. Let us first show this for n = % Indeed,
1,1 1,01
lazB2l3, = llazBaz]l, .

Define f(z) = o' 7*a” and fix A = ||af]|,. We clearly have
mac { sup |£(2)llg, sup 1£(2)llg} <A

ZE@O Z€01

Therefore, we have ||f(3)|l; < A and deduce the assertion for n = 1/2. Now we show
the inequality for all § < n < 1. Take ¢ € L(%),(N) of norm less than 1. We may write
n/q=(1—0)/q+ 0/2q for some 0 < § < 1. Now we use interpolation and assume that N
is o-finite. The general case follows from a well-known approximation argument. Using
Kosaki’s interpolation theorem, we find an analytic function g : S — L2y () such that
g(0) = c and
mac { sup [lg(=) -, sup (=) gy } <1

2€00 2€01
Therefore, the function

h(z) = tr(g(z)ozl_%ﬁl_g)
is analytic. Here tr denotes the trace on the Haageup L space. By the three lines lemma,

we find
0

1-6
[tr(ca”B")| = [(0)] < (sup |h(2)]) " (sup|h(2)])".
2€0¢ z€01
However, we have
sup [h(2)] < sup [lg(2)[l¢la™*aps="|, < A,
2€00 z€00

and

—lm(z 1oL A Im(z
sup [h(=)] < sup lg(2)ll gy ™"z 32 57Oy < VX
z€01 z€01

Hence |tr(ca”sm)| < M79\92 = X7 Finally, we observe that our first argument for
n = 1/2 shows that if 7 satisfies the assertion, then so does 1/2. Since the assertion holds
for 1/2 < n <1, this completes the proof. [ |

Theorem 3.2. If2 < p < oo and a,x € L,(N),, we have

o+l llally < p2~ max { o all, |2} .
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Proof. We begin by recalling Lemma 3.1 (part 1) of [Kos84b|. In this paper Kosaki used the
uniform smoothness of L, (V) to show that the function f(s) = tr((a+sz)P) is differentiable
with derivative

f(s) = ptr((a+sz)’'z).

This gives

(3.1) tr((a+ x)?) —tr(a?) = p/o tr((a+ sz)’'z)ds.

We define k to be the natural number satisfying k < p — 1 < k + 1 and define

0 _ p;%;k and (i%)_(lﬂ—%;—e,p—k;l—l—G).

This implies 1/r = 6 and 1/¢g =1 — 0. Then we may use Hélder’s inequality and find

(3.2) tr((a+sz)P~'z) = tr((a+sz)a' 2%+ sz)P~'7")
< (@t sz) 0| [|2"(a 4 sz E
By Lemma 3.1 for (o, 3,n) = (z7 7, a+ sz,p — 1 — k), we get
2" (@ sz, < Jla7 i @+ sy
On the other hand, Lemma 3.1 for (o, 3,7) = (z,a”~1,1/(p — 1)) gives

1 1 _p_
ler (@t so)l|,_, < a7 Tallyr + 27

1 _p_ L
< o T+ el < 2 max { o tally, flz 5}

Let us set

¢ = max { [l ally, 2]l }
Then we find the following estimate for the second term on the right of (3.2)
(3.3) 2% (a + sx)p_l_kHT < gpitkel

We now consider the first term. For a subset A C {1,2,...,k} we use the notation
Apcp = Y1 Yp Where y; = x if © € A and y; = a if i € A°. Then we deduce from the
triangle inequality that

H(a + sx)kxl’qu < Z

We claim that

A3|A|]|aAchx1’9Hq < ZAchAchrcl’qu.

- L1 e oA
(3.4) laseaaz™™ Ny < fla 2l lzlly T
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Before proving our claim, let us show how to finish the argument

k . )
_ k R ST S A
S taeart=ly = 3 (5) far el

§=0
b kN (=i 10,4 _k—j k k 1-0 k k+1-0
< ( > é_pj'i'T_";_p(p_l) — Z ( ) gﬁ—‘rT_P(P—l) — 2k§ " — 2]{:51—0 7
=0 \J =0 \/
where the last identity follows from 1 — 6 = p%l. The assertion then follows from the

combination of (3.1, 3.2, 3.3) with the estimate given above. Therefore, it remains to
prove our claim. We need to consider different cases. First assume that A = (), so that
we have to prove (recall that 1 — 6 = -£7) the inequality [la*z'’|, < |aP~ 2|17, This
follows from Lemma 3.1 applied to (a, 3,1) = (a?~!, 2,1 —6). Now assume |A| > 1. Then
we may write

pea = a2 aq? ... gPrgor

where Y .a; + >, 0 = k < p— 1. Since we have excluded the case A = (), all the
coefficients «;, 3; are strictly positive, except possibly a; and ;1. Let us first consider
the case a3 > 0 = a,41. We define ¢; for 1 < j < r by 1/¢; = (1+ «;)/p. Note that
1 < g < pforall 5. Then we use Holder’s inequality and get

,«
loazaz' =, < (T lasallg, Iz~ ) lally~
j=1

By Kosaki’s interpolation theorem, we may estimate

. —9; — 0;
la®zlly, < [l la” 2|y

where % = 1_Tfj + %. This means 0; = :‘le. Therefore we find
J
r o o k—|A| k—|A|
lasezazllg < 2l T le” elly Nl 7 = fla” x|zl L
=1

This proves (3.4) for a; > 0 = a,.11. Let us now also assume that a; = 0. Then we define
the index ¢ by 1/q¢ = (81 + ag + (2)/p. This allows us to apply Holder’s inequality as
above and obtain

T
laaczar™l, < Ja™aa|lg (TT lasally Iz~ ) 2l
j=3

We can assume without loss of generality (taking adjoints if necessary) that 5 < fs.
Define the index ¢ by 1/§ = (2061 + a2)/p. Then we deduce the following estimate from
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Holder’s inequality and Lemma 3.1 applied to (o, 8,7) = (2%, a®2, %)

lz?aa® |z < Jeraa g |zl = Jla%a? |5 |2

< Jlz*a?lg lzlly> < flwat |, |zl = la® ]|, ]y~ -
1<5<2

Therefore, the argument from above yields (3.4) in this case. Thus we have treated the

cases a1 = 0 = a,41 and a1 > 0 = a,41. If a7 =0 < a,41, we can take adjoints and use

the same argument one more time. Let us now assume a; > 0 and o, > 0. If 3, > 2 the

argument above applies by splitting a® 2% a®+1 = (a® )z’ ~2(xa®+). Thus, the only

case not covered so far is 3, = 1. Here we have to use a little trick

HaarxaarHHq < Haarﬂh‘_ﬂ%”q for 1/qV: (Otr+04r+1+1)/p-

Indeed, we define d, = a®+t*+! and vy = —2=——. Then
art+argl

la® za® g = l|dYwd,™[l; -

Since the index ¢ > 1, we may use complex interpolation and define the analytic function
f(2) = d?xd!~* on the strip. Then, the three lines lemma combined with the fact that x
is self-adjoint implies that

1700l < mas { sup |dzed: . sup ldzady =l } < mas {Jlads g el } =l
z2€01

z€Dy

This allows us to repeat the same argument and thereby completes the proof of (3.4). H

Remark 3.3. If N is commutative, the triangle inequality gives

1
lat 2l — Jlalz = p/ tr((a + sx)P'z) ds
0
! 1 L 1 \p1
< p/ (tr(ap_ x)PT +St7‘(:)§p)1’*1> ds
0

< (2P — 1) max {tr(ap_lm),tr(a:p)} :

However, in the noncommutative case it is known that the expression ¢(|x|7)*/¢ does not
define a norm for arbitrary states. On the other hand, for 2 < p < 3 Theorem 3.2 follows
immediately from the fact that ¢ — t?~! is operator convex. Indeed, we have

—1
(a+sz)Pt = (1+s)Pt <1 e + 7 j_ x)p < (14 s)P 2 (aP™! 4 s2P71) .

s s

This implies
1 -1
2p— —1
p/ tr((a+ sx)P'x)ds < %(W(a%lx) +r(a?)) .
0
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This is even better than our estimate.
Lemma 3.4. Let d be the density of a normal state and consider the norm
1 1
ol = masx{t+|ally, thd ]y, tled |1} for 2<p<oo and t>0.

Then there are positive elements x1,T2, T3, x4 with x =Y, i*zx and ||zg|pra < [|2]|p.a-

Proof. Since ||x*||p1a = ||2|lp.t.a, we may clearly assume x self-adjoint. For a self-adjoint
element z, let z; = e,z and x_ = e_x denote its positive and negative parts, where
e, and e_ stand for the corresponding spectral projections which commute with x. We
recall from [Ter81] that L,(NN) is a contractive N-bimodule for all 0 < ¢ < co. Since e,
commutes with z, we obtain

lesallpea < el

The same argument works for x_ = e_x and the assertion follows. [ |

At the beginning of section 2 we defined the notion of a (g, +)-summing linear map
T:L,(N)— X. Let my +(T') denote the infimum of all constants ¢ for which (2.1) holds.
The following observation follows Pisier’s argument in [Pis86a).

Lemma 3.5. Let N be a von Neumann algebra. Let T : L,(N) — X be a (¢, +)-summing
map with (q,+)-summing constant 7, (T'). Then, there exists a sequence (a,) of positive
elements of norm 1 in L,(N) such that

T(xn) g : _ 4
1%) 7 < limy, gy |jan + .||
e )1%) -

holds for every bounded sequence (x,,) in L,(N)i and every free ultrafilter U.

lim, gz (1 + |

Proof. Let C,, be the smallest constant satisfying

(Slreai)’ < c.

n
D
k=1

P
for all families (z1,z9,...,2,) in L,(N)4+. In particular, we have 7, (7) = lim,, C),. Let
(0,) be a sequence converging to 0. Then we may find positive elements y;,ys, ..., y, in

L,(N) such that

(S Ireol)" =1 ma [ 3wl <cra+a
k=1 k=1

Let x,, be a positive element and set y,,.1 = z,, so that
n+1

A+ IT@IL)? = (D ITwIIE)" < Cun

p

(kiyk) + Ty
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Cn+1

n

< (14 6,)

01487 (Y ) + 7y (D)
k=1
Let us note that ||C(1+6,) "> 1_; ykll, < 1. Therefore, if we take

Cn<1 + 671)71 Zk Yk
1Cn(1+0n) "1 3 ynlly

a, =

we obtain

1 C,
(1+|‘T<5Un)”§()q < (1+446n) C'+1

Taking the limit yields the assertion. [ |

Han + 7rq7+(T)anp forall n>1.

Proposition 3.6. Let us fir 2 < ¢ < p < oo. Given a von Neumann algebra N and a
(q,+)-summing map T : L,(N) — X, there ezists a sequence of densities d,, € L1(N) with
tr(d,) =1 such that

. 1.
lin, o [T ()l x < ey @) w4 (T) ¢ i gy [ 20,1, -

holds for all t > 0 and bounded sequences (x,) in L,(N). In particular, we deduce

/
p

4 1 1 1-2;
lim [ 7@l < e(p,a) T (T) Timge (i ma {12 walls, zndi 11} ")

Proof. According to Lemma 3.4 and the linearity of 7', we may clearly assume that the
sequence (x,) lives in the positive cone L,(N);. In particular, according to Lemma 3.5
we can find a sequence (a,) of norm 1 positive elements in L,(N) satisfying

T(zn) g )p/q )
< limy gy ||an + x,0]|2
7+ (T) HX b

(

Since 1 +aX < (1 4+ MN)* for A >0 and o > 1, we deduce
T(x,) Hq
7o+ (T) 7%
Recalling that a,, is norm 1 in L,(N), we obtain by Theorem 3.2

lim g (1+

1+ Z—) hmmu H < limn,u Han + .Q?an :
q

1

. . q q
(35)  Timop [Tl < Timnmo o (T) (7 (lan + ally = o))

1
< iy (7) (9277 maxc { a2y a2 })

We define d,, = a?, and assume that ||z, ||+, < 1. This implies that

~& | =

_ 1 1 % L
masc {2 wally s loealls} = = ma { (89l ,)” @l tand? 1} <
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In conjunction with (3.5), this proves the first assertion for sequences (x,) of positive
operators. A further constant 4 comes from Lemma 3.4 in the general case. Let us prove the
second assertion. We define o = lim,, j ||z, ||, and = lim,, 3 max{||dy/” z,||1, || zndi/™ |1}

By the first part we have
limy, g |T(xn)||x < 4e(p, @)mg+(T) %ng max {tii%a,tlféﬂ} :
>

The optimal choice is t = (%)p' and the optimal value is then given by

1-1/q 1/q—1/p

1 1 1
max {ﬁ_aa,tl_Eﬁ} = o p s = PP [ |

Our next step through our Nikishin-type result requires some additional work and in
particular the theory of ultraproducts, see [Ray02, RX03] for some background. Let us
assume that N is a o-finite von Neumann algebra and d; is a density of a normal faithful
state ¢o. We recall from [Ray02] that

Hu L,(N) = Lp((Hu N -

In the following we shall use the notation (a,)® for the canonical image of (a,) in the
algebra (IT,, N.)*. Note that {(a,)®| sup, [la.| < oo} is dense in (], N.)* with respect
to the strong operator topology. Following [RX03], we use the support e of the ultraproduct
state

ou((a,)®) = limy,y tr(doa,) .

Let us use the notation Ny = e(][,, Vi)*e. Clearly, the state ¢y, is a normal faithful state
on Ny and the space L,(Ny) is canonically isomorphic to e([[,, Ly(NN))e, see [Ray02] for
further details. This means we can represent elements = in L,(Ny) by sequences of the
form e(z,)%. This applies in particular for p = 1 and the representing sequence for ¢y, is
given by the constant sequence (dy)®. Here and in the following we also use the notation
(x,,)* for the equivalence class in [],, L,(/N) of a bounded sequence (x,). Let us recall an
observation from [RX03]. If x € L,(N), then

(1—e)(z)* =0.

Indeed, we may approximate x by dg a, with a,, € N, so that

1

(1—e)(@)* =1 -e)(dan)* = 0

because e is the support of (dy)® and hence the support of its p-th root, see again Raynaud’s
paper [Ray02] for more details on the Mazur map. Our aim is to replace the sequence of
densities (d,) obtained in Proposition 3.6 by a single density d.
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Proposition 3.7. Let 2 < g<p <ooand =1— fli:. Given a o-finite von Neumann
algebra N and a (q,+)-summing map T : L,(N) — X, there exists a density 6 € Li(Ny)
of a normal faithful state ¢y on Ny such that

limg g |7 () x < e(py @) T4 (1) 1(20) " £ (Ne). g1 (020001
Moreover, if 1 <r < q andn= (% - %)/(% - %), we also have

linp g [T (zn) || x < e(ps @) Tt (T) 1 (@n) " 120 (ve0). 20 (8000101 -
Proof. For the first assertion, it suffices to show that

limp g 1T (2a)llx < e(p, @) Tqs (T) 1) 11" (@)1, 4 000

for a suitable density § of a normal faithful state ¢ in Ny and (x,,)® in L,(Ny). Indeed,
this is a well-known property of the interpolation bracket [, Jg.1, see e.g. [BL76, p.49]. On
the other hand, according to Proposition 3.6 we have

1 R 6
lim g 7)< e(pya) gt (T) /@)1y itny gy max {2l a1}

Therefore, it remains to find a normal faithful state ¢, for which

(3.6) tim g max { |2 alls, zndi 1} < ep) @) a0
whenever (z,,)® belongs to L,(Ny). We deduce for (x,) € L,(Ny) that
1 1 1 1
a0 s = (@) @), = (@ e@n)?]l, = (|1 el @),
1 1
Here we use the partial isometry between (dJ )*e and |(d£/ )%e|. Now, we define
i’ ° / ° 1
do = (I(di)el™ + (d5)®)*
Note that
1 1 et 1 %
ldoll = 08313 < 1 el |1 + (@)l = 1 yeel [ +1 < 2.

Thus, if we set § = dy/||do||1, we obtain the density of a normal faithful state on Ny, given
by ¢u(-) = tr(é ). Indeed, the normality is clear while the faithfulness follows from the
fact that & > 1(do)*, so that 0 has full support. It is a state because [|d][; = 1. We have

|(d

1 1
Hence we can find a contraction w in Ny, such that |(d )*e| = wdf = 6¢ w. This implies

v (2,)°

1 1
el <6 = |(di)%el < oF

3 ’G\‘,_.

N el @)l = (g @)l < 167 @], < 27

1
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Similarly, we have
1 1 1
@) @], = ) e, = ) 1@ el |, = | )08 w], < 29[| (wa)07 |

for all (z,,) € L,(Ny). Therefore, we obtain (3.6) and the first assertion is proved. The
second assertion is an immediate consequence of the first one and the reiteration theorem.

SN =

1

Indeed, according to Theorem 1.1 we have

D) = [Lp(Vt). Ay ()]

where 1/r = (+(1—()/p, so that { =1— %. The reiteration theorem for the real method
[BL76, Theorem 4.7.2] implies [L,(Ny), Apr(¢u)lna = [Lp(Nu), Ap1(éu)]o1 with 6 = nC.
We find n = (% - }D)/(% - }D) as announced. u

Corollary 3.8. Let 2 < g<p < oo andn = (% - }D)/(% — %) Given any von Neumann

algebra N and a (q,+)-summing map T : L,(N) — X, there exists a density d € L(N)
with tr(d) =1 and support e such that

IT(x)lx < e(p, @) Tq e (T) 12| eLp (V)4 Lo (Ve Apa (@) -

Proof. Let us first assume that N is a o-finite von Neumann algebra and set % = %— %. We
use the density 0 = (0,,)* € L1(Ny) from Proposition 3.7 . Given x € L,(N) we observe
that we have

1 1 1 2
lim,, 4 ||5ﬁ:vH§ = lim, tr(éﬁxaz*éﬁ) = lim, tr(x:v*éﬁ) )
2 r
This defines a positive element a = lim,, ;07 € Lz (N). We take d = a> and recall that
X 1—n 1 1 n 1—n 1 1 n
lim g oy max {0525, adilla b = el max {|ld7alla, lod? |12}

Thus Proposition 3.7 applied to the constant sequence (x)* yields the result, because
(x)® = e(x)%e. When N is an arbitrary von Neumann algebra, we choose a normal strictly
semifinite weight ¢ = lim; ¢; such that ¢; is a positive functional and the support e; of ¢;
satisfies 0" (e;) = e;. Then N; = ¢;Ne; is o-finite and we find a density d; € Ly (1V;) with
tr(d;) = 1 and such that

1 1 n
IT(eszen)llx < c(p,a) mar (T) lesels " max { | alla, lod; |12}

2
As above we can pass to the limit d7 = lim, dr. [ |



SUBSPACES OF NONCOMMUTATIVE L, 37

Remark 3.9. It is tempting to use a weak limit d = lim,, 3 a7 e L, (N) in Proposition
3.6. The problem we face is the equality

(3.7) da||y = Timg [|dY7 2y .

This equality does not hold in general. Indeed, assuming (3.7), we would deduce from
the polar decomposition that ||w* — lim,y a,z||y = lim, g ||a,z||; holds for all bounded
sequences a, and x € S, = L,(B({3),tr). In S,y we may choose a,, = €,1. Then lim,, a,, =0
weakly and lim,, ||a,ei1|i = 1. We suspect that we need some equi-integrability for (3.7)
to hold. Our proof does not provide any equi-integrability condition.

We are ready for the main result.

Theorem 3.10. Let 2 < q < p < o0 and let N be any von Neumann algebra. Given
a (q,+)-summing map T : L,(N) — X, there exists a density d € Li(N) such that the
inequality below holds for any index g < r <p

IT@)x < elpg,r) 74 (T) 2]l a, 0 -
Moreover, there exists a map T : L,(N ® N) — X such that

T(z) = T(d?fix,xd?fﬁx) = f(jw(:v)) and |T|| < c(p,q,r) e+ (T) .

Proof. According to Corollary 3.8, we may find d such that
1_1 1_1 n
IT@)llx < o(p, ) m, s () ey max {42 5 ala, o>l }

Let e denote the support of d and let ¢(x) = tr(dzx) be the associated state. Let us
decompose any element x in L,(N) as v = exe+ex(l —e)+ (1 —e)re+ (1 —e)z(1l —e).
Then we note that 7" vanishes on the corner (1 —e)L,(N)(1 —e). We apply Lemma 2.1
for n < n and deduce

(3.8) |T(x)llx < e, @), 1) Tga(T) N2 feLp(3)+Lo(N)es2p ()],

for all x € L,(N) such that (1 —e)z(1 —e) = 0. We recall the isomorphism from Lemma
2.2:

(3.9) [eL,(N) + L,(N)e, Apa(¢)]5 =~ eAy (p)e @ eL,(N)(1—e) ® (1 —e)L,(N)e,

Where%:%%—g:%jtﬁ(%—;) < i—l—n(%—%) :%. Thus for every ¢ < r < p we can
find a suitable 7. Note that 7 = 1 when ¢ = 2, but then we may use that (2, +)-summing

implies (g, +)-summing for all ¢ > 2. We denote by
T;:eAp (p)e@el,(N)(1—e)@(1—e)L,(N)e— X
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the corresponding bounded map given by (3.8) and (3.9). Now we proceed as in Theorem
2.3 and define

Q, : Ly(N)® L.(N) — e, (¢)e @ eL (N)(1 —e) @ (1 —e)L.(N)e

by O,(z,y) = Q,(exe,eye) ® ex(l —e) @ (1 — e)ye, where Q, is the projection from
Theorem 1.1. This allows us to define T'(x,y) = T;Q, so that

T(d%_%m,md%_%) = T ((exe, exe) ® d%_%x(l —e)® (1— e)xd%_%)
=T(exe+ (1 —e)xt+ex(l—e€)) = T(z).
The norm estimate follows from Theorem 1.1, (3.8) and (3.9) (see Lemma 2.2). u

Remark 3.11. In the commutative analog of Theorem 3.10, the restriction p, g > 2 is not
needed. It would be very interesting to know whether this restriction is necessary in the
noncommutative setting.

Remark 3.12. We know from Lust-Piquard work [LP92] that for ¢ = 2 the situation

5. Then, the noncommutative Khintchine inequality [LP86]

is much nicer. Let é + % =
implies

Zk 1T ()% < ¢ eo(T) Haﬁlfq zk: tr(a(zjoy + zx2})) -
Applying the standard separation argument one obtains a factorization 7' = vjj, » through
the inclusion map id : L,(N) — A, 2(¢). We refer to [LP92] for more details and to [LPX]

for further information.

Corollary 3.13. Let 1 <g<r <2andT : X — Ly,N) be a linear map such that T*
has cotype v'. Then there exists a density d € Li(N) with tr(d) = 1 such that for every
q < p <r there exists a map u: X — L,(N) satisfying

T(r) = d%%u(ﬂﬁ) +u(m)d%*% forall zeX.

Proof. By Theorem 3.10 we find a density d with ¢r(d) = 1 such that
17 2 By(8) = X7 < ety dsr") o (T) < 25's's7") (T)

for every 1" < p’ < ¢'. Wewrite Ty, , : Ay y(¢) — X* for the corresponding map. Let ép/ :
Ly (N) — Ay () be the projection from Theorem 3.10. We recall that @, = (v, ve) has
two identical components. As in the proof of Theorem 2.3 we define v : Ay (¢)* — L,(N)
by v(&e,&1—cerEei—e) = Ve(&e) + E1—ce + &e1—e. Following the argument from Theorem 2.3
we can check that u = v(T}, ,)* : X — L,(N) provides the corresponding decomposition.

Note that in the o-finite case we may assume that d has full support. Then formally

u(z) = (/ld 1+ R )T () .

1_1
q p

1_1
q P
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In full generality we have
u() = (L, + Ry y) el (@)e+dv o T(@)(1 =) + (1= e)T(x)dv s

We should warn the reader that these multiplications are usually not well-defined, see
both Step 2 and Step 3 of the proof of Theorem 1.1 for a rigorous interpretation using
Haagerup’s construction. |

Proof of Theorem B. Let 1 < ¢ < 2 and let X be an infinite-dimensional subspace of
L,(N) not containing ¢,. According to Raynaud and Xu’s result [RX03, Theoremb5.1]| we
deduce that X does not contain £,(n)’s uniformly. By the Krivine-Maurey-Pisier theorem,
the type index of X satisfies px > ¢. Let ¢ < r < px so that X* has cotype r’. Let
t: X — L,(N) be the inclusion map. Then 7" = * : L, (N) — X* has cotype 7’ and the
assertion follows from Corollary 3.13. [ |

We refer to [Ran02, RX03] for the definition of g-equiintegrable sets in L,(N).
Corollary 3.14. If X C L,(N) and 1 < q < 2, the following are equivalent

i) The unit ball of X is q-equiintegrable.
ii) There ezists a density d € Li(N) such that

1_1 1_1
u:z € X (dr az,xd" 7)€ L,(N ®N)

is an isomorphic embedding for some (all) 0 <1 < q.
iii) There exists ¢ < p < 2 and a bounded linear map

u:X — Ly(N)
such that x = défiu(m) + u(:v)défi for some positive density d € Li(N).

Proof. According to [RX03, Theorem 5.1], the conditions i) and ii) are both equivalent to
the fact that X does not contain ¢, and hence imply iii) by means of Theorem B. On the
other hand, iii) implies that X has type p > ¢ and hence can not contain /. [ |
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