
ROSENTHAL’S THEOREM
FOR SUBSPACES OF NONCOMMUTATIVE Lp

MARIUS JUNGE AND JAVIER PARCET

Abstract. We show that a reflexive subspace of the predual of a von Neumann algebra
embeds into a noncommutative Lp space for some p > 1. This is a noncommutative
version of Rosenthal’s result for commutative Lp spaces. Similarly for 1 ≤ q < 2, an
infinite dimensional subspace X of a noncommutative Lq space either contains `q or
embeds in Lp for some q < p < 2. The novelty in the noncommutative setting is a double
sided change of density.

Introduction

The theory of noncommutative Lp spaces has a long tradition in Banach space theory

and the theory of operator algebras [GK69, Haa79, Hil81, TJ84, Fac87] and provides the

background for recent progress in noncommutative analysis and probability [PX97, JLX03,

JX03]. In the commutative setting, the work of Kadec-Pelczyński [KP62] and Rosenthal

[Ros73] on subspaces of Lp are corner stones for the understanding of general Banach space

properties. In this paper we prove the noncommutative version of Rosenthal’s result.

Theorem (Rosenthal ’73). A reflexive subspace of L1 embeds into Lp for some p > 1.

The problem of generalizing Rosenthal theorem to the noncommutative setting is open

for at least 20 years. This problem has an interesting history. In his seminal paper

[Pis86b] on factorization properties, Pisier described a new approach to some factorization

results by Maurey obtained from Nikishin’s theorem. In this paper Pisier comes very close

to proving the noncommutative version of Rosenthal’s result. Indeed, he shows that a

reflexive subspace of a von Neumann algebra predual embeds into an interpolation space

between an L1 space and certain (unusual) L2 space (see below). Since then it has been

a mystery how to modify the argument and to obtain a subspace of a noncommutative

Lp space. Noncommutative Lp spaces have been defined by Dixmier, Kunze and Segal in

the semifinite setting (see also Nelson [Nel74]) and by Haagerup [Haa79] in the non-tracial

case (see also [Hil81] for Connes’ approach). Randrianantoanina [Ran02] has an argument

in the semifinite setting which is different from ours and does not provide a good control

of the constants. In this paper we use modular theory of operator algebras in conjunction

with a noncommutative version of the Peter Jones theorem due to Pisier [Pis92] (related

to estimates of Kaftal, Larsen and Weiss [KLW92] for triangular matrices) to solve the

problem:
1
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Theorem A. Let N be a von Neumann algebra. A reflexive subspace of L1(N) embeds

into Lp(N) for some p > 1.

The new interesting point in our proof is the natural change of density argument. We

show that there exists a positive density d ∈ L1(N) such that tr(d) = 1 and a mapping

u : X → Lp(N) such that

x = d1− 1
pu(x) + u(x)d1− 1

p .

In the σ-finite case this completely determines u. For simplicity let us assume that N is

finite and d =
∑

j djej has a countable spectrum. Then the map u is given by the following

relation

u(x) =
∑
i,j

(d
1− 1

p

i + d
1− 1

p

j )−1 eixej .

Pisier’s approach to this result [Pis86b] is used as a starting point in our proof. For

subspaces of Lq(N) with q > 1 we have a similar result, which extends the most general

form of Rosenthal’s theorem [Ros73, Theorem 8] to the noncommutative setting.

Theorem B. Let N be a von Neumann algebra and fix 1 ≤ q < 2. Given a subspace X

of Lq(N) not containing `q, there exists a positive density d ∈ L1(N) with tr(d) = 1 and

a map u : X → Lp(N) for some index q < p < 2 such that

x = d
1
q
− 1

pu(x) + u(x)d
1
q
− 1

p .

In particular, the space X embeds isomorphically into Lp(N).

This result, which also works for linear maps, is closely related to Grothendieck type

inequalities by Lust-Piquard, see [LP92] and [LPX]. One of the main obstacles in our

approach to Theorem B is that the technique of noncommutative maximal functions is

not well-enough understood for proving Nikishin type results. Therefore we have to work

in the dual setting. Pisier’s arguments for q > 1 are genuinely very different from the case

q = 1 which, by duality, leads to linear maps on C∗-algebras. A common characteristic of

Pisier’s factorization results in [Pis86b] is a certain differentiation argument. This is our

motivation for the following new inequality. Let 2 ≤ p <∞ and a, x be positive elements

in Lp(N). Then we have

(1) ‖a+ x‖pp ≤ ‖a‖pp + p 2p−1 max
{
‖ap−1x‖1, ‖x‖pp

}
.

In the commutative case the triangle inequality in Lp−1 provides a similar estimate with

2p − 1 instead of p2p−1. For 2 ≤ p ≤ 3 operator convexity of t 7→ tp−1 provides an even

better estimate. Combined with ultraproduct techniques, the differential inequality (1) is

a substitute for some of Pisier’s arguments in [Pis86b].
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Another technical difficulty concerns complex interpolation of intersections. We refer

to [JP05] for many results in this direction. For a long time, our hope has been to use

free probability to show that interpolation and intersection commute in this particular

setting. However, at the time of this writing some aspects of harmonic analysis are yet to

be discovered before this approach might be successful. In the Banach space setting of this

paper, we may use different tools from harmonic analysis. Let us be more specific. We

consider a normal faithful state φ(·) = tr(d ·) on a von Neumann algebra N and Pisier’s

symmetric norm

‖x‖∆2(φ) =
(
φ(xx∗) + φ(x∗x)

) 1
2 ∼ max

{
‖d

1
2x‖2, ‖xd

1
2‖2

}
.

We will show that

(2) ‖x‖[N,∆2(φ)] 2
p

≤ c(p) max
{
‖d

1
px‖p, ‖xd

1
p‖p

}
holds for all x ∈ N and 2 ≤ p < ∞. We can show that the orthogonal projection from

L2(N ⊕N) to ∆2(φ) extends to a bounded operator for other values of p. This allows us

to construct the map u in Theorem A.

In combination with the results from [JR], we obtain some applications to the theory of

subsymmetric sequences. A sequence (xn) in a Banach space X is called subsymmetric if

there exists a constant c such that∥∥∥∑
n
anxn

∥∥∥
X
∼c

∥∥∥∑
n
anxkn

∥∥∥
X

holds for every strictly increasing sequence (kn) and arbitrary coefficients (an). We refer to

the work of Aldous [Ald81] and Krivine-Maurey [KM81] for the fact that commutative Lp
spaces are stable. This implies in particular that subsymmetric sequences are symmetric,

i.e. we may replace subsequences (kn) by arbitrary permutation (σ(n)). However, due to

a result by Marcolino Nhany [MN97], noncommutative Lp spaces are in general not stable.

Corollary C. If (xn) ⊂ N∗ is a subsymmetric sequence, then (xn) is either symmetric

or the space X = span
{
xn |n ≥ 1

}
contains `1. In particular, X always contains a

symmetric subspace.

The paper is organized as follows. In section 1 we prove (2) and the interpolation results

for intersections based on the Peter Jones theorem. This allows us to prove Theorem

A and Corollary C in section 2. Inequality (1) and Theorem B are proved in the last

section of the paper. We use standard notation from the theory of operator algebras

[Tak79, KR97a, KR97b] and the theory of noncommutative Lp spaces [Ter81] (see also

[Ter82]). The reader is assumed to be familiar with basic ingredients of modular theory

and the definition of Haagerup’s noncommutative Lp spaces, see [JX03, PX03] for relevant

definitions. However, the main ideas can be understood by ‘thinking semifinite’.
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1. An interpolation result

In this section we provide the main new interpolation results on intersections and, in

particular, the key inequality (2) will be obtained. In this paper we will use Haagerup’s

definition of noncommutative Lp spaces. Indeed, one first considers the crossed product

M = N oσφ
t

R with respect to a normal semifinite faithful weight φ on N . Then M is

semifinite and there exists a unique normal semifinite faithful trace τ on M such that the

dual action θs : M →M satisfies τ(θs(d)) = e−sτ(d) for all s ∈ R. Haagerup’s Lp space is

defined as follows

Lp(N) =
{
x ∈ L0(M, τ)

∣∣ θs(x) = e−
s
px

}
,

where L0(M, τ) stands for the space of τ -measurable operators affiliated to M . For p = ∞
we see that L∞(N) = N is the set of θs-invariant operators. Let us note that the polar

decomposition x = u|x| for x ∈ Lp(N) satisfies u ∈ N and |x| ∈ Lp(N). We refer to

[Ter81] for more details, see also [JX03, PX03, Tak03a, Tak03b]. An important feature of

the Haagerup L1(N) space is the distinguished linear functional tr : L1(N) → C. This

linear map implements the isomorphism between L1(N) and N∗. More precisely, for every

normal functional φ ∈ N∗ there exists a unique density dφ with φ(x) = tr(dφx). Moreover,

given 1 ≤ p < ∞, the trace functional tr also implements the duality between Lp(N)

and Lp′(N). That is, Lp(N)∗ is exactly the space of linear functionals φ(x) = tr(dx) with

d ∈ Lp′(N) and 1
p

+ 1
p′

= 1. The norm in Lp(N) is given by

‖x‖p = tr(|x|p)
1
p .

We also have Hölder’s inequality ‖xy‖p ≤ ‖x‖q‖y‖r whenever 1
p

= 1
q

+ 1
r
.

The drawback of Haagerup’s construction is the unfamiliar situation that for p 6= q

we have Lp(N) ∩ Lq(N) = {0}. In particular, this implies that Haagerup Lp spaces

do not form an interpolation scale. However, in this paper interpolation techniques are

important. We shall assume that the reader is familiar with the complex interpolation

method. Let us briefly review Kosaki’s results [Kos84a] on interpolation of Lp spaces

which are crucial in our paper. Once and for all in the sequel, let us fix a von Neumann

algebra N equipped with a normal faithful state φ so that φ(x) = tr(dx) is given by a

positive density d ∈ L1(N). Then we may consider the injective maps

ιη : x ∈ N 7→ d1−ηxdη ∈ L1(N) for 0 ≤ η ≤ 1 .

A little bit of modular theory is required to show that these maps are indeed injective, see

[Kos84a, Jun04]. Thus, for fixed 0 ≤ η ≤ 1, (A0, A1) = (ιη(N), L1(N)) is an interpolation

couple embedded in L1(N) as a topological vector space. To be very precise, we recall

that ‖x‖A0 = ‖ι−1
η (x)‖N and ‖x‖A1 = ‖x‖L1(N). In the literature, the choices η = 0, 1

2
, 1
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are the most important ones. Kosaki showed that[
ιη(N), L1(N)

]
1
p

= d
1−η
p′ Lp(N)d

η
p′

holds isometrically. This means exactly that

‖x‖p =
∥∥d 1−η

p′ xd
η
p′

∥∥
[ιη(N),L1(N)] 1

p

for all x ∈ Lp(N) .

If 1 ≤ q < p ≤ ∞ and 1
s

= 1
q
− 1

p
, we may also consider the embedding

ιp,q,η : x ∈ Lp(N) 7→ d
1−η

s xd
η
s ∈ Lq(N) .

Then, the reiteration theorem for complex interpolation immediately gives

[ιp,q,η(Lp(N)), Lq(N)]θ = ιr,q,η(Lr(N))

for 1
r

= 1−θ
p

+ θ
q
. These interpolation results from [Kos84a] will be used freely in this text.

Our aim in this section is to prove a similar result for a double sided embedding with

respect to a fixed density d of a normal faithful state φ. For 1 ≤ q < p ≤ ∞ we define the

following norms

‖x‖Lr
p,q(φ) = ‖d

1
q
− 1

px‖q and ‖x‖Lc
p,q(φ) = ‖xd

1
q
− 1

p‖q .

Let us write Lrp,q(φ) and Lcp,q(φ) for the respective closures of Lp(N) with respect to the

norms above. Here r, c are chosen because similar expressions appear for square function

inequalities in noncommutative martingale theory. They correspond to η = 0 and η = 1

in the context of Kosaki’s embedding. We will work with the intersection

∆p,q(φ) = Lrp,q(φ) ∩ Lcp,q(φ) ,

defined as the completion of Lp(N) with respect to the norm

‖x‖∆p,q(φ) = max
{
‖x‖Lr

p,q(φ), ‖x‖Lc
p,q(φ)

}
.

Of course, up to an absolute constant, we may replace the maximum above by the sum or

any other p-sum. We might use this equivalence below. We also have a natural embedding

jp,q : ∆p,q(φ) → Lq(N)⊕ Lq(N) , jp,q(x) = (d
1
q
− 1

px, xd
1
q
− 1

p ) .

According to Hölder’s inequality we have a contractive inclusion Lp(N) ⊂ ∆p,q(φ) given

by the identity map. Therefore (Lp(N),∆p,q(φ)) is an interpolation couple with dense

intersection. When p = ∞ we shall write ∆q(φ) for ∆∞,q(φ). Thus, for (p, q) = (∞, 2) we

find the well-known Hilbert space already mentioned in the Introduction

‖x‖∆2(φ) ∼
(
‖d

1
2x‖2

2 + ‖xd
1
2‖2

2

) 1
2

= φ(xx∗ + x∗x)
1
2 =

√
2 φ(|x|2s)

1
2 .
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Here we followed Pisier’s notation

|x|s =

√
x∗x+ xx∗

2
.

Our main result in this section is the following.

Theorem 1.1. Let 1 ≤ q < p ≤ ∞ and 1
r

= 1−θ
p

+ θ
q

for 0 < θ < 1. Then

a) We have an isomorphism

∆p,r(φ) = [Lp(N),∆p,q(φ)]θ .

b) We may construct a bounded linear map

Qr : Lr(N ⊕N) → ∆p,r(φ)

such that

Qr(d
1
r
− 1

px, xd
1
r
− 1

p ) = x for all x ∈ Lp(N) .

In particular, jp,rQr is a projection from Lr(N ⊕N) onto jp,r(∆p,r(φ)).

The relevant constants can be estimated as functions of p, q, r in both cases.

We refer the reader to the end of this section for a more general form of Theorem 1.1.

Remark 1.2. The isomorphism in a) satisfies(
‖d

1
r
− 1

px‖rr + ‖xd
1
r
− 1

p‖rr
) 1

r ∼ ‖x‖[Lp(N),∆p,q(φ)]θ for all x ∈ Lp(N) .

Remark 1.3. As we shall justify below, the adjoint mapping Q∗
r : ∆p,r(φ)∗ → Lr′(N⊕N)

has the form Q∗
r(ξ) = (u(ξ), u(ξ)) for some bounded linear map u : ∆p,r(φ)∗ → Lr′(N).

Equivalently, we have Qr(y,−y) = 0 for all y.

It is not very convenient to prove the result for an arbitrary density d. We will apply

a well-known construction of Haagerup and reduce the problem to the case where N is a

finite von Neumann algebra and d, d−1 are bounded. Moreover, by elementary functional

calculus, we may then assume that

(1.1) d =
n∑
k=1

dk ek

where the ek are disjoint projections with
∑

k ek = 1 and dk are strictly positive numbers

such that d1 ≤ d2 ≤ · · · ≤ dn, see below for justifying this simplification. Therefore, we

will assume in what follows (unless stated otherwise) that N is finite and that d satisfies

(1.1). We note nevertheless that Theorem 1.1 is formulated for Haagerup Lp spaces and

hence valid for arbitrary states. For the moment, we work with a finite von Neumann
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algebra and thus we can work with the usual definition of noncommutative Lp spaces. In

particular, all Lp spaces are contained in the space of τ -measurable operators, see [Nel74]

for further definitions.

In order to sketch our strategy for the proof of part a) in Theorem 1.1, we need to

introduce a more convenient terminology which will be instrumental in the sequel. Let d

be a density in L1(N) satisfying (1.1) and let us write L0(N) for the space of τ -measurable

operators affiliated to N . Then, given α ∈ R and 1 ≤ q ≤ ∞, we define the spaces

Lrq(N, d
α) =

{
x ∈ L0(N)

∣∣ dαx ∈ Lq(N)
}
,

Lcq(N, d
α) =

{
x ∈ L0(N)

∣∣ xdα ∈ Lq(N)
}
,

equipped with the following norms

‖x‖Lr
q(N,dα) = ‖dαx‖q and ‖x‖Lc

q(N,dα) = ‖xdα‖q .

Then, we consider the intersection spaces

∆q(N, d
α) = Lrq(N, d

α) ∩ Lcq(N, dα)

so that we can recover ∆p,q(φ) with d as in (1.1) as follows

∆p,q(φ) = ∆q(N, d
1
q
− 1

p ) .

The isomorphism in Theorem 1.1 a) is equivalent to

(1.2) ∆qθ(N, d
αθ) = [∆q0(N, d

α0),∆q1(N, d
α1)]θ

where (q0, q1, qθ) = (p, q, r) and (α0, α1, αθ) = (0, 1/q − 1/p, θα1). As usual we may and

will understand intersections as the diagonal subspaces of the corresponding direct sum

spaces. That is, we have

∆qj(N, d
αj) ⊂ Lrqj(N, d

αj)⊕ Lcqj(N, d
αj) , for j = 0, 1 .

By Kosaki’s theorem, the components in the direct sum interpolate isometrically. The

easiest way to show that these intersections commute with interpolation is to show that

there is one projection acting on both spaces Lrqj(N, d
αj)⊕ Lcqj(N, d

αj) for j = 0, 1 which

projects onto the intersection ∆qj(N, d
αj). The projection will not be constructed on

Lrqj(N, d
αj)⊕ Lcqj(N, d

αj) but on spaces of upper and lower triangular elements.

The core of our argument relies on Schur multipliers. This will be made possible by the

canonical embedding π : N →Mn(N) given by

π(x) =
n∑

i,j=1

eij ⊗ eixej .
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Let us write τ to denote the trace functional on N . This will allow us to distinguish it

from the standard trace tr on Mn. Note that π is a normal (not unital) ∗-homomorphism

and we have (tr ⊗ τ) ◦ π = τ . Moreover, the mapping E : Mn(N) → π(N) given by

E(z) = π(1)zπ(1) defines a normal conditional expectation. For the Lp-version of the

map π, we first introduce the normal faithful state ψ(x) =
∑

k dkτ(xkk) on Mn(N) with

associated density

δ =
( n∑
k=1

dkekk
)
⊗ 1 .

With this choice, the map πp : Lp(N) → Lp(Mn(N))

(1.3) πp(d
1−η

p xd
η
p ) = δ

1−η
p π(x)δ

η
p

becomes an isometric embedding and E : Lp(Mn(N)) → πp(Lp(N)) still defines a positive

contraction, see [JX03] for further details. Note that π∗p takes
(
xij

)
∈ Lp′(Mn(N)) to∑

ij eixijej ∈ Lp′(N), so that π∗p′πp = idLp(N) and πpπ
∗
p′ = E. Our main tool are the spaces

of lower and upper triangular matrices in Mn(N) defined as follows

UTp =
{(
xij

)
∈ Lp(Mn(N))

∣∣ xij = 0 for i > j
}
,

LTp =
{(
xij

)
∈ Lp(Mn(N))

∣∣ xij = 0 for i ≤ j
}
.

We shall use the fact that UTp and LTp are interpolation scales. This result was proved

by Pisier in [Pis92, Pis93] and provides a noncommutative analogue of the Peter Jones

theorem on interpolation of Hardy spaces. We will use the version given in [PX03].

Theorem 1.4 (Pisier/Xu). If 1 ≤ p, q ≤ ∞ and 1
r

= 1−θ
p

+ θ
q

UTr = [UTp, UTq]θ and LTr = [LTp, LTq]θ

hold with equivalent norms. The constants are uniformly bounded in n.

Let us note that for 1 < q, p < ∞ this result follows immediately from the well-known

fact that UTp and LTp are complemented subspaces of Lp(Mn(N)). Indeed, the triangular

projection T(xij ⊗ eij) = δi≤j (xij ⊗ eij) defines a bounded operator on Lp(Mn(N)) with

norm controlled by cmax{p, p′}. Using T and 1−T for p and q, the interpolation result

follows immediately. The whole point of Pisier’s argument is to extend this result to the

non-trivial borderline cases q = 1 and p = ∞.

In our result we are interested in subspaces of Lp(N) which have upper or lower diagonal

form. Moreover, we have to take different powers of the density d into account. This leads

to consider the following four norms

‖x‖UT r
q (N,dα) =

∥∥∥∑
i≤j

dαi eixej

∥∥∥
q
, ‖x‖UT c

q (N,dα) =
∥∥∥∑
i≤j

eixejd
α
j

∥∥∥
q
,
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‖x‖LT r
q (N,dα) =

∥∥∥∑
i>j

dαi eixej

∥∥∥
q
, ‖x‖LT c

q (N,dα) =
∥∥∥∑
i>j

eixejd
α
j

∥∥∥
q
.

Then we define the associated spaces

UT rq (N, d
α) =

{
x ∈ L0(N)

∣∣ eixej = 0 for i > j , ‖x‖UT r
q (N,dα) <∞

}
,

LT rq (N, d
α) =

{
x ∈ L0(N)

∣∣ eixej = 0 for i ≤ j , ‖x‖LT r
q (N,dα) <∞

}
,

UT cq (N, d
α) =

{
x ∈ L0(N)

∣∣ eixej = 0 for i > j , ‖x‖UT c
q (N,dα) <∞

}
,

LT cq (N, d
α) =

{
x ∈ L0(N)

∣∣ eixej = 0 for i ≤ j , ‖x‖LT c
q (N,dα) <∞

}
.

We shall also need to use the spaces

UT rq (Mn(N), δα) =
{(
xij

)
∈ L0(Mn(N))

∣∣ xij = 0 for i > j , ‖δα(xij)‖q <∞
}
,

LT rq (Mn(N), δα) =
{(
xij

)
∈ L0(Mn(N))

∣∣ xij = 0 for i ≤ j , ‖δα(xij)‖q <∞
}
,

UT cq (Mn(N), δα) =
{(
xij

)
∈ L0(Mn(N))

∣∣ xij = 0 for i > j , ‖(xij)δα‖q <∞
}
,

LT cq (Mn(N), δα) =
{(
xij

)
∈ L0(Mn(N))

∣∣ xij = 0 for i ≤ j , ‖(xij)δα‖q <∞
}
.

Let us observe that, if eixej = 0 for i > j, we have for α = 1
q
− 1

p

πq

( ∑
i≤j

dαi eixej

)
= πq(d

αx) = δαπp(x) .

In particular, it is easily seen that

(1.4) E : UT rq (Mn(N), δα) → πp
(
UT rq (N, d

α)
)

is still a contractive projection. This property (which extends automatically to the three

other spaces considered above) will be instrumental in the following result, where we

combine Kosaki’s embedding with interpolation of triangular matrices.

Lemma 1.5. If 1 ≤ q0, q1 ≤ ∞ and α0, α1 ∈ R, let us take 1/qθ = (1 − θ)/q0 + θ/q1
and αθ = (1− θ)α0 + θα1. Then, the following isomorphisms hold with relevant constants

depending only on q0, q1 and θ[
UT rq0(N, d

α0), UT rq1(N, d
α1)

]
θ

= UT rqθ(N, d
αθ) ,[

LT rq0(N, d
α0) , LT rq1(N, d

α1)
]
θ

= LT rqθ(N, d
αθ) ,[

UT cq0(N, d
α0), UT cq1(N, d

α1)
]
θ

= UT cqθ(N, d
αθ) ,[

LT cq0(N, d
α0) , LT cq1(N, d

α1)
]
θ

= LT cqθ(N, d
αθ) .
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Proof. Since the proof of the four isomorphisms is identical, we only consider the first one.

According to the boundedness of (1.4), it suffices to prove the analogous isomorphism on

the amplified algebra Mn(N)

(1.5)
[
UT rq0(Mn(N), δα0), UT rq1(Mn(N), δα1)

]
θ

= UT rqθ(Mn(N), δαθ) .

Indeed, Kosaki’s interpolation theorem tells us that[
Lrq0(Mn(N), δα0), Lrq1(Mn(N), δα1)

]
θ

= Lrqθ(Mn(N), δαθ)

holds isometrically. Thus, by our special choice of δ, we obtain a contractive inclusion[
UT rq0(Mn(N), δα0), UT rq1(Mn(N), δα1)

]
θ
⊂ UT rqθ(Mn(N), δαθ) .

For the converse, we assume that x ∈ UT rqθ(Mn(N), δαθ) has norm less than 1. That is,

x ∈ L0(Mn(N)) is an upper triangular matrix such that ‖δαθx‖qθ < 1. Let S stand for the

strip S =
{
z ∈ C

∣∣ 0 ≤ Re(z) ≤ 1
}

and denote by (∂0, ∂1) the left and right sides of its

boundary. According to Theorem 1.4, we may find an analytic function

f : S → UTq0 + UTq1

such that f(θ) = δαθx and

max
{

sup
z∈∂0

‖f(z)‖UTq0
, sup
z∈∂1

‖f(z)‖UTq1

}
≤ c(qθ)

holds for some universal constant c(qθ). Then we define g(z) = δ−(1−z)α0−zα1f(z). Note

that g is analytic and that g(z) is still an upper triangular matrix for any z ∈ S. For

z ∈ ∂0 we find

‖g(z)‖UT r
q0

(Mn(N),δα0 ) = ‖f(z)‖UTq0
≤ c(qθ) .

Similarly, if z ∈ ∂1 we have the estimate

‖g(z)‖UT r
q1

(Mn(N),δα1 ) = ‖f(z)‖UTq1
≤ c(qθ) .

Clearly we have g(θ) = x and (1.5) follows from the three lines lemma.

The next lemma is a very well-known classical result. We have decided to include the

proof for the convenience of the reader. The easy argument that we use here is due to

Burak Erdogan.

Lemma 1.6. Let f : R → R be an even integrable function whose restriction to R+ is

non-increasing and convex. Assume that f is differentiable almost everywhere and f ′ is

integrable. Then f is positive definite, i.e. its Fourier transform is positive.
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Proof. If ξ ∈ R+, we have

f̂(ξ) =

∫
R
f(x)e−ixξdx = 2

∫
R+

f(x) cos(xξ)dx

= −2

ξ

∫
R+

f ′(x) sin(xξ)dx = − 2

ξ2

∫
R+

f ′(
x

ξ
) sin(x)dx .

Here we used the fact that f is even, integration by parts and substitution. The function

g(x) = −f ′(x
ξ
) is positive, non-increasing and integrable on R+. In particular, we deduce

that

γk =

∫ 2π

0

g(x+ 2πk) sin(x)dx ≥ 0

for all integer k ≥ 0 and therefore

f̂(ξ) =
2

ξ2

∑
k≥0

γk ≥ 0 for all x ∈ R+ .

By symmetry, f̂(ξ) ≥ 0 for all ξ 6= 0. Moreover, since f is positive, we have

f̂(0) =

∫
R
f(x)dx ≥ 0.

This shows that f̂ : R → R+, so that f is positive definite and the proof is complete.

Lemma 1.7. Let a =
( ∑

k akekk
)
⊗1 be a positive density on Mn(N) with non-decreasing

entries a1 ≤ a2 ≤ · · · ≤ an. Let La(x) = ax and Ra(x) = xa be the left and right

multiplication maps. Then, the norm of the maps

LaηRa1−η(La +Ra)
−1 (0 ≤ η ≤ 1)

on the spaces UTp and LTp is bounded by 3
2

for all 1 ≤ p ≤ ∞. In particular, given

α, β ∈ R and d a density as in (1.1), the norm of the following maps is also bounded by 3
2

on UT
r/c
q (N, dα) and LT

r/c
q (N, dα) for all 1 ≤ q ≤ ∞ and all 0 ≤ η ≤ 1

Ld(1−η)βRdηβ(Ldβ +Rdβ)−1 .

Proof. Let x ∈ UTp be an upper triangular matrix. Then we observe that

La(La +Ra)
−1(xij) =

( ai
ai + aj

xij

)
=

(min(ai, aj)

ai + aj
xij

)
because for i > j we have xij = 0. Observe that the same argument shows that on LTp we

have to use max(ai, aj) instead of min(ai, aj). However, we have
max(ai,aj)

ai+aj
= 1− min(ai,aj)

ai+aj
.
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Therefore, the cases η = 0, 1 follow immediately once we have shown that

Ma(xij) =
(min(ai, aj)

ai + aj
xij

)
is bounded on Lp(Mn(N)) for all 1 ≤ p ≤ ∞. If s, t ∈ R+, we have

min(s, t)

s+ t
=

1

1 + max(s,t)
min(s,t)

=
1

1 + e| log(s)−log(t)| .

The Fourier inversion formula for f(x) = 1
1+e|x|

gives

min(s, t)

s+ t
=

1

1 + e| log(s)−log(t)| =
1

2π

∫
R
f̂(ξ)eiξ(log(s)−log(t))dξ .

According to Lemma 1.6, f is positive definite and we obtain

‖Ma(xij)‖p =
∥∥∥( 1

2π

∫
R
f̂(ξ)eiξ(log(ai)−log(aj))xij dξ

)∥∥∥
p

≤ 1

2π

∫
R
f̂(ξ)

∥∥∥(
eiξ log(ai)xije

−iξ log(aj)
)∥∥∥

p
dξ

≤ 1

2π

∫
R
f̂(ξ)dξ ‖(xij)‖p =

‖(xij)‖p
1 + e0

=
1

2
‖(xij)‖p .

Thus, Ma is bounded on Lp(Mn(N)) with norm 1
2

and the same holds for La(La +Ra)
−1

on the space UTp. Moreover, the same arguments show that Ra(La+Ra)
−1 is bounded on

LTp with norm 1
2
. On the other hand, recalling one more time that

max(ai,aj)

ai+aj
+

min(ai,aj)

ai+aj
= 1,

we deduce that La(La+Ra)
−1 on LTp and Ra(La+Ra)

−1 on UTp are respectively bounded

by 1 + 1
2
. It remains to prove the case 0 < η < 1. Let us consider x ∈ UTp and define the

complex function f(z) = La1−zRaz(La +Ra)
−1(x). Then it is easily seen that

max
{

sup
z∈∂0

‖f(z)‖p, sup
z∈∂1

‖f(z)‖p
}
≤ 3

2
‖x‖p .

Thus, we find that ‖f(η)‖p ≤ 3
2
‖x‖p. The argument for LTp is similar. Let us now

prove the second assertion. Since the left and right multiplication maps L and R clearly

commute with dα, it is no restriction to assume that α = 0 and q = p. On the other hand,

taking

zij = d
(1−η)β
i

eixej

dβi + dβj
dηβj ,

we clearly have

Lδ(1−η)βRδηβ(Lδβ +Rδβ)−1πp(x) =
∑

ij
eij ⊗ zij = πpLd(1−η)βRdηβ(Ldβ +Rdβ)−1(x) .

Therefore, the first assertion implies the second assertion and we are done.
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In the following we use the notations

UTq(N) = UT rq (N, d
0) = UT cq (N, d

0) ,

LTq(N) = LT rq (N, d
0) = LT cq (N, d

0) ,

∆UT
q (N, dα) = UT rq (N, d

α) ∩ UT cq (N, dα) ,
∆LT
q (N, dα) = LT rq (N, d

α) ∩ LT cq (N, d
α) ,

for spaces of upper and lower triangular elements.

Lemma 1.8. Let 1 ≤ q0, q1 ≤ ∞, α ∈ R and αθ = θα. Then the map

Λ : UT rqθ(N, d
αθ)⊕ UT cqθ(N, d

αθ) →
[
UTq0(N),∆UT

q1
(N, dα)

]
θ

defined by

Λ(y, z) = (Ldαθ +Rdαθ )−1(dαθy + zdαθ)

satisfies ‖Λ‖ ≤ c(qθ). The same holds for the space of lower triangular matrices.

Proof. According to Lemma 1.5, we know that

UT rqθ(N, d
αθ) =

[
UTq0(N), UT rq1(N, d

α)
]
θ
,

UT cqθ(N, d
αθ) =

[
UTq0(N), UT cq1(N, d

α)
]
θ
,

holds up to a constant c′(qθ). Obviously, we have Λ(x, x) = x. Therefore, it suffices to

show that Λ is bounded on UTq0(N)⊕UTq0(N) and on UT rq1(N, d
α)⊕UT cq1(N, d

α). Indeed,

we deduce from Lemma 1.7 that

‖Λ(y, z)‖UTq0 (N) =
∥∥Ldα(Ldα +Rdα)−1(y) +Rdα(Ldα +Rdα)−1(z)

∥∥
q0

≤ 3

2
‖y‖q0 +

3

2
‖z‖q0 ≤ 3 ‖(y, z)‖UTq0 (N)⊕UTq0 (N) .

On the other hand, we have

‖Λ(y, z)‖UT r
q1

(N,dα) =
∥∥Ldα(Ldα +Rdα)−1(dαy + zdα)

∥∥
q1
≤ 3

2

∥∥dαy + zdα
∥∥
q1

≤ 3 max
{
‖dαy‖q1 , ‖zdα‖q1

}
= 3 ‖(y, z)‖UT r

q1
(N,dα)⊕UT c

q1
(N,dα) .

The estimate for UT cq1(N, d
α) uses Rdα(Ldα + Rdα)−1 instead. On the other hand, the

proof for lower triangular matrices is verbatim the same. The proof is complete.

The next result is well-known. It can be proved using the fact that Lp(N) are UMD

spaces (see [BGM86] and [Bou86]) or applying the boundedness for the noncommutative

Hilbert transform in chapter 8 of [PX03], see also the earlier results in [GK69, KP70].
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Lemma 1.9. Let (ei) be a family of disjoint projections in a von Neumann algebra N and

let us consider the triangular projection Te(x) =
∑

i≤j eixej. Then, the mapping Te is

bounded on Lp(N) for 1 < p <∞.

Proof. It is well-known that the triangular projection T(a) =
∑

i≤j aijeij is completely

bounded on Sp, see the references above. Then, the bounded map π∗p′Tπp yields the

modified triangular projection Te used in the assertion.

Step 1 of the proof. We will prove Theorem 1.1 assuming (1.1). For the first assertion

a), we observe from Kosaki’s interpolation that the inclusion [Lp(N),∆p,q(φ)]θ ⊂ ∆p,r(φ)

is trivially contractive. For the converse we use the ∆q(N, d
α) terminology. In other words

we have to prove that

∆r(N, d
θ/s) ⊂

[
Lp(N),∆q(N, d

1/s)
]
θ

with
1

s
=

1

q
− 1

p
.

On the other hand, the inclusions UTp(N) ⊂ Lp(N) and ∆UT
q (N, d1/s) ⊂ ∆q(N, d

1/s) are

contractive and the same happens for the spaces of lower triangular matrices. Therefore,

considering the decomposition x = Te(x) + x − Te(x) for x ∈ ∆r(N, d
θ/s), it suffices to

show that

∆UT
r (N, dθ/s) ⊂

[
UTp(N),∆UT

q (N, d1/s)
]
θ
,

∆LT
r (N, dθ/s) ⊂

[
LTp(N) , ∆LT

q (N, d1/s)
]
θ
.

Note that 1 < r < ∞ because 0 < θ < 1. According to Lemma 1.9, this implies that

Te(x) belongs to ∆UT
r (N, dθ/s) and x − Te(x) ∈ ∆LT

r (N, dθ/s). Hence, applying Lemma

1.8 we deduce that

‖Te(x)‖[UTp(N),∆UT
q (N,d1/s)]θ

= ‖Λ(Te(x),Te(x))‖[UTp(N),∆UT
q (N,d1/s)]θ

≤ c(r)‖Te(x)‖∆UT
r (N,dθ/s) ≤ c(r)d(r)‖x‖∆r(N,dθ/s) .

The same argument with respect to lower triangular matrices gives

‖x−Te(x)‖[LTp(N),∆LT
q (N,d1/s)]θ

≤ c(r)d(r)‖x‖∆r(N,dθ/s) .

For the proof of part b) we construct

Qr : Lr(N ⊕N) → ∆p,r(φ)

as follows

(1.6) Qr(y, z) = (L
d

1
r−

1
p

+R
d

1
r−

1
p
)−1(y + z)
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for y, z ∈ Lr(N). Clearly, we have Qr(d
1
r
− 1

px, xd
1
r
− 1

p ) = x for all x ∈ Lp(N). For the norm

estimate, we use again the fact that the triangular map Te is bounded. For y, z ∈ Lr(N)

we deduce from Lemma 1.7 that∥∥Qr

(
Te(y),Te(z)

)∥∥
UT r

r (N,d
1
r−

1
p )

=
∥∥L

d
1
r−

1
p
(L

d
1
r−

1
p

+R
d

1
r−

1
p
)−1

(
Te(y) + Te(z)

)∥∥
r

≤ 3
∥∥(

Te(y),Te(z)
)∥∥

Lr(N⊕N)
≤ 3 d(r)‖(y, z)‖Lr(N⊕N) ,

where d(r) stands for the norm of the triangular projection on Lr(N). The same estimate

holds for UT cr (N, d
1
r
− 1

p ). We can also repeat the estimate for y−Te(y) and z−Te(z) with

respect to the spaces LT rr (N, d
1
r
− 1

p ) and LT cr (N, d
1
r
− 1

p ). This yields the norm estimate∥∥Qr : Lr(N ⊕N) → ∆p,r(φ)
∥∥ ≤ 6 d(r) .

Remark 1.10. In our applications we will combine a) and b) and deduce that

‖Qr : Lr(N ⊕N) → [Lp(N),∆p,q(φ)]θ‖ ≤ 6 c(r) d(r)2 .

Here we use the triangular projection twice. In the first version of this paper we directly

constructed a map Q̂r : Lr(N ⊕ N) → [Lp(N),∆p,q(φ)]θ projecting onto the canonical

image of ∆p,r(φ). Indeed, we consider upper triangular elements y = d
1
r
− 1

px1, z = x2d
1
r
− 1

p

with x1, x2 ∈ UTp(N). Then the “canonical” image in Lq(N ⊕N) is given by

(d
1
q
− 1

r y, zd
1
q
− 1

r ) = (d
1
q
− 1

px1, x2d
1
q
− 1

p ) .

We have seen in Lemma 1.8 that

‖Λ(x1, x2)‖∆UT
q (N,dα) ≤ 3

∥∥(d
1
q
− 1

r y, zd
1
q
− 1

r )
∥∥
Lq(N⊕N)

for α = 1/q − 1/p .

The same estimate holds with respect to LTp(N). By complex interpolation we deduce

‖Λ(x1, x2)‖
[UTp(N),∆UT

q (N,d
1
q−

1
p )]θ

≤ 3 ‖(x1, x2)‖
[UTp(N)⊕UTp(N),UT r

q (N,d
1
q−

1
p )⊕UT c

q (N,d
1
q−

1
p )]θ

≤ 3 c(r) ‖(x1, x2)‖
UT r

r (N,d
1
r−

1
p )⊕UT c

r (N,d
1
r−

1
p )

= 3 c(r) ‖(y, z)‖Lr(N⊕N) .

For y, z ∈ Lr(N) we consider ζ = d
1
q
− 1

r y + zd
1
q
− 1

r and the projection

Q̂r(y, z) =
(
d

1
q
− 1

p
(
(L

d
1
q−

1
p

+R
d

1
q−

1
p
)−1(ζ)

)
,
(
(L

d
1
q−

1
p

+R
d

1
q−

1
p
)−1(ζ)

)
d

1
q
− 1

p

)
.

Then we have ∥∥Q̂r : Lr(N ⊕N) → [Lp(N),∆p,q(φ)]θ
∥∥ ≤ 6 c(r)d(r) .

It is known that d(r) ≤ cmax{r, r′}. However, we have no explicit control on c(r).

It would be interesting to know whether the singularity for r → 1 is necessary when

interpolating [N,∆∞,1(φ)] 1
r
.



16 MARIUS JUNGE AND JAVIER PARCET

Remark 1.11. In contrast to Q̂r, the projection from part b) satisfies the condition

Qr(y,−y) = 0 mentioned in Remark 1.3. This follows immediately from (1.6) and is

important for our applications below. Let us reformulate this condition for the dual map.

Using Qr(y,−y) = 0 we see that Qr factors through

Lr(N) ' Lr(N ⊕N)/{(y,−y) | y ∈ Lr(N)} .

More explicitly, for ξ ∈ ∆p,r(φ)∗ we have〈
Q∗
r(ξ), (y, z)

〉
=

〈
ξ,Qr(y, z)

〉
=

〈
ξ, (L

d
1
r−

1
p

+R
d

1
r−

1
p
)−1(y + z)

〉
=

〈
ξ, (L

d
1
r−

1
p

+R
d

1
r−

1
p
)−1(y)

〉
+

〈
ξ, (L

d
1
r−

1
p

+R
d

1
r−

1
p
)−1(z)

〉
.

This allows us to define the bounded map u(ξ) by 〈u(ξ), y〉 = 1
2
〈Q∗

r(ξ), (y, y)〉. Clearly, we

have Q∗
r(ξ) = (u(ξ), u(ξ)). Assuming (1.1) the map (L

d
1
r−

1
p

+ R
d

1
r−

1
p
)−1 is bounded. In

the next steps of our proof this is not necessarily the case, but see Corollary 1.16 below.

Step 2 of the proof. We now study the case where N is finite and equipped with a

density d such that c11 ≤ d ≤ c21 for some constants 0 < c1 ≤ c2 < ∞, so that d and

d−1 are bounded. We claim that for any ε > 0 we may find a density dε of the form (1.1),

with τ(dε) = 1 and such that

(1 + ε)−1dε ≤ d ≤ (1 + ε)dε .

Indeed, let µ be the probability measure on the Borel σ-algebra over [c1, c2] determined

by µ(E) = τ(1E(d)), where 1E(d) denotes the corresponding spectral projection. This

provides isometric isomorphisms Lp(µ) = Lp(A, τ), where A is the (abelian) von Neumann

subalgebra of N given by

A =
{
f(d)

∣∣ f : [c1, c2] → C bounded and measurable
}
.

In particular, we may approximate d by dε of the form (1.1) just by approximating the

function f(x) = x by a suitable simple function. In particular, we may even assume that

dε commutes with d. Letting φε(x) = tr(dεx) be the state determined by dε and taking
1
s

= 1
q
− 1

p
, it is clear that

(1 + ε)
−1
s ‖x‖∆p,q(φε) ≤ ‖x‖∆p,q(φ) ≤ (1 + ε)

1
s ‖x‖∆p,q(φε) .

This gives an (1 + ε)
2
s -isomorphism

(1.7)
[
Lp(N),∆p,q(φ)

]
θ

=
[
Lp(N),∆p,q(φε)

]
θ
.

In addition, ∆p,r(φ) = ∆p,r(φε) are (1 + ε)
2
u -isomorphic with 1

u
= 1

r
− 1

p
and

∆p,r(φ) = ∆p,r(φε) =
[
Lp(N),∆p,q(φε)

]
θ

=
[
Lp(N),∆p,q(φ)

]
θ
.
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This proves the first assertion. Let us denote by Iε : ∆p,r(φε) → ∆p,r(φ) the formal

identity. Let Qr(ε) : Lr(N ⊕ N) → ∆p,r(φε) be the projection constructed above. Then

we denote by Qr : Lr(N ⊕N) → ∆p,r(φ) the densely defined map

Qr(d
1
uα, βd

1
u ) = IεQr(ε)(d

1
u
ε α, βd

1
u
ε ) .

Since we have ‖Qr‖ ≤ (1+ε)
1
r
− 1

p‖Qr(ε)‖, it turns out that Qr is the desired projection.

Remark 1.12. Let us explain how we may pass to the limit ε→ 0 for the definition of Qr.

We denote by B∞(R) the algebra of bounded measurable functions on R and find a normal

∗-representation π : B∞(R) ⊗min B∞(R) → B(L2(N)) given by π(f ⊗ g) = Lf(d)Rg(d).

This shows that

Ld1/u(Ld1/u +Rd1/u)−1 = SOT− lim
ε→0

L
d
1/u
ε

(L
d
1/u
ε

+R
d
1/u
ε

)−1 .

A similar statement holds for Rd1/u(Ld1/u +Rd1/u)−1. Therefore, for x ∈ Lr(N) the family

Tε(x) = L
d
1/u
ε

(L
d
1/u
ε

+R
d
1/u
ε

)−1(x) is uniformly bounded in Lr(N) and converges in L2(N).

It follows very easily from [FK86, Theorem 3.6] that Tε(x) converges in Lr(N). We recall

the canonical embedding jp,r : ∆p,r(φ) → Lr(N ⊕ N) given by jp,r(x) = (Ld1/ux,Rd1/ux)

and deduce that

jp,r(Ld1/u +Rd1/u)−1 : Lr(N ⊕N) → Lr(N ⊕N)

is a well-defined bounded map. Thus Qr = (Ld1/u +Rd1/u)−1 is a projection onto ∆p,r(φ)

and the pointwise limit of the Qr(ε)’s. In particular, the condition from Remark 1.3 is

satisfied. Indeed, using the Borel functional calculus for B∞(R)⊗B∞(R) we find

Qr(y, z) =

∫
R×R

(d(ω)1/u + d(ω′)1/u)−1dEω(y + z)dEω′ .

Let us note that in the semifinite case (without assuming c1 ≤ d ≤ c2 but still assuming

d is faithful), we may obtain the same formula by using an increasing net of spectral

projections of d.

The proof for the general case is based on Haagerup’s reduction theorem, see [JXb]. Let

us briefly explain how this construction works. Let us consider a von Neumann algebra

N equipped with a normal faithful state φ associated to a density d. Let us define the

discrete group

G =
⋃
n∈N

2−nZ.

Then we construct the crossed product M = N oσφ G. That is, if H is the Hilbert space

provided by the GNS construction applied to φ and σφ denotes the one parameter modular
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automorphism group on N associated to φ, then M is generated by the representations

π : N → B(L2(G;H)) and λ : G → B(L2(G;H)), where(
π(x)ξ

)
(g) = σφ−g(x)ξ(g) and

(
λ(h)ξ

)
(g) = ξ(g − h).

By the faithfulness of π we are allowed to identify N with its image π(N). Then, a generic

element in the crossed product M has the form
∑

g xgλ(g) with xg ∈ N and we have the

conditional expectation

EN
( ∑
g∈G

xgλ(g)
)

= x0 ∈ N .

The algebra M contains an increasing net (Mα)α∈Λ of finite von Neumann subalgebras

with normal conditional expectations Eα : M → Mα. One of the important properties of

Haagerup’s construction is that ψ = φ ◦EN is a normal faithful state such that ψ ◦ Eα = ψ

holds for each α ∈ Λ. Moreover, the restriction ψα of ψ to Mα has a density dα such that

c1(α)1Mα ≤ dα ≤ c2(α)1Mα

for some constants 0 < c1(α) ≤ c2(α) < ∞. If dψ denotes the density associated to the

state ψ, we consider the canonical conditional expectation Eα,p : Lp(M) → Lp(Mα) and

the canonical inclusion ια,p : Lp(Mα) → Lp(M) densely defined respectively by

Eα,p(xd
1
p

ψ) = Eα(x)d
1
p
α and ια,p(xd

1
p
α) = xd

1
p

ψ .

We refer to [JX03] for more information on these maps. It is shown in [JXb] that

(1.8) limα ια,pEα,p(x) = x for all x ∈ Lp(M) and 1 ≤ p <∞ .

We will also need the Lp version of EN : Lp(M) → Lp(N):

EN,p(xd
1
p

ψ) = EN(x)d
1
p .

This comes with the natural inclusion map jN,p : Lp(N) → Lp(M), jN,p(xd
1
p ) = xd

1
p

ψ ,

see again [JX03]. With this information we start our approximation procedure. Indeed,

the following mappings will be instrumental in our proof of Theorem 1.1 for general von

Neumann algebras

uα,p = EN,p ια,p : Lp(Mα) → Lp(N) and wα,p = Eα,pjN,p : Lp(N) → Lp(Mα) .

Lemma 1.13. The following properties hold:

i) If 1 ≤ p <∞, limα uα,pwα,p(x) = x for all x ∈ Lp(N).

ii) The mappings uα,p and wα,p induce contractions

uα,p :
[
Lp(Mα),∆p,q(ψα)

]
θ
→

[
Lp(N),∆p,q(φ)

]
θ
,

wα,p :
[
Lp(N),∆p,q(φ)

]
θ
→

[
Lp(Mα),∆p,q(ψα)

]
θ
.
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iii) If 1 ≤ q < p ≤ ∞ and 0 < θ < 1, we have

limα uα,pwα,p(x) = x for all x ∈
[
Lp(N),∆p,q(φ)

]
θ
.

Proof. Since EN,pjN,p(x) = x for all x ∈ Lp(N), we have

limα uα,pwα,p(x)− x = limα EN,p
(
ια,pEα,p

(
jN,p(x)

)
− jN,p(x)

)
= 0,

where the last identity follows from (1.8) and the contractivity of EN,p in Lp(M). This

proves the first assertion. Now let us identify ∆p,q with its image jp,q(∆p,q) in Lq(N ⊕N)

and also ∆p,q(ψα) with its image jp,q(∆p,q(ψα)) in Lq(Mα ⊕Mα). Then, to prove ii) we

will regard the mapping

wα,p : ∆p,q(φ) → ∆p,q(ψα)

as the restriction of wα,q ⊕ wα,q : Lq(N ⊕N) → Lq(Mα ⊕Mα) to the subspace{
(d

1
sx, xd

1
s )

∣∣ x ∈ Lp(N)
}

with 1/s = 1/q − 1/p .

If x = yd
1
p for y ∈ N , we have

wα,q(jp,q(x)) =
(
wα,q(d

1
sx), wα,q(xd

1
s )

)
(1.9)

=
(
d

1
s
αEα(y)d

1
p
α , Eα(y)d

1
q
α

)
= jp,q(Eα(y)d

1
p
α) = jp,q(wα,p(x)) .

Here we use the well-known fact that Eα,p(d
1−η

p

ψ xd
η
p

ψ ) = d
1−η

p
α Eα(x)d

η
p
α , which follows from our

definition of Eα,p and the identity Eασψ = σψαEα, see [JX03] for further details. Therefore

the map wα,p induces a compatible contraction on the interpolation couple (Lp(N),∆p,q(φ))

and hence on the complex interpolation space [Lp(N),∆p,q(φ)]θ. The argument for uα,p is

entirely similar. In the proof of iii) we first observe that it suffices to prove the assertion on

a dense subspace, because we already know from ii) that the maps uα,pwα,p are contractions.

If x ∈ Lp(N) (we remind the reader that p = ∞ is allowed and hence we may not assume

that limα uα,pwα,p(x) = x holds in norm), we set γα,p = uα,pwα,p and have

limα ‖γα,q(x)− x‖[Lp(N),∆p,q(φ)]θ

≤ limα ‖γα,p(x)− x‖1−θ
p

(∥∥d 1
s

(
γα,p(x)− x

)∥∥q
q
+

∥∥(
γα,p(x)− x

)
d

1
s

∥∥q
q

) θ
q

≤ (2‖x‖p)1−θ limα

(∥∥γα,q(d 1
sx)− d

1
sx

∥∥q
q
+

∥∥γα,q(xd 1
s )− xd

1
s

∥∥q
q

) θ
q

= 0 .

The first inequality uses the three lines lemma, the second applies i) and uses θ > 0.



20 MARIUS JUNGE AND JAVIER PARCET

Step 3 of the proof. We now conclude the proof of Theorem 1.1. For the assertion a) we

observe that the upper estimate in Remark 1.2 holds in general by the same argument used

in Step 1 above. For the lower estimate we observe that (Mα, dα) satisfies the hypotheses

of Step 2. Hence we have(∥∥d 1
r
− 1

p
α x

∥∥r
r
+

∥∥xd 1
r
− 1

p
α

∥∥r
r

) 1
r ∼ ‖x‖[Lp(Mα),∆p,q(ψα)]θ

for all x ∈ Lp(Mα) and α ∈ Λ. This implies that

‖x‖[Lp(N),∆p,q(φ)]θ ≤ lim supα ‖γα,p (x)‖[Lp(N),∆p,q(φ)]θ

≤ lim supα ‖wα,p(x)‖[Lp(Mα),∆p,q(ψα)]θ

. lim supα

(∥∥d 1
r
− 1

p
α Eα,p(x)

∥∥r
r
+

∥∥Eα,p(x)d 1
r
− 1

p
α

∥∥r
r

) 1
r

≤
(∥∥d 1

r
− 1

px
∥∥r
r
+

∥∥xd 1
r
− 1

p

∥∥r
r

) 1
r
.

We will now construct the projection as a suitable limit. Let

Qα,r : Lr(Mα ⊕Mα) → ∆p,r(ψα)

be the projection from Step 2 and let U be a free ultrafilter on Λ. Then we define〈
Qr(x, y), ξ

〉
= limα,U

〈
uα,pQα,r(wα,r(x), wα,r(y)), ξ

〉
for every ξ ∈ ∆p,r(φ)∗. Note that ∆p,r(φ) is a reflexive Banach space. Therefore, we deduce

that we have Qr(x, y) ∈ ∆p,r(φ) for all (x, y) ∈ Lr(N ⊕N). Since Qα,r is a projection, we

deduce

uα,pQα,r

(
wα,r(d

1
r
− 1

px), wα,r(xd
1
r
− 1

p )
)

= uα,pQα,r

(
d

1
r
− 1

p
α wα,p(x), wα,p(x)d

1
r
− 1

p
α

)
= γα,p(x) .

Thus Lemma 1.13 iii) and [Lp(N),∆p,q(φ)]θ = ∆p,r(φ) imply

Qr(d
1
r
− 1

px, xd
1
r
− 1

p ) = x

for all x ∈ Lp(N). Since Qr is continuous, we deduce the result by density.

Remark 1.14. Theorem 1.1 also holds in the category of operator spaces. That is, the map

Qr : Lr(N⊕N) → ∆p,r(φ) is completely bounded. This follows immediately from replacing

d by 1⊗ d in L1(Mm(N)). Moreover, in the semifinite setting the assumption τ(d) = 1 is

not really needed. Therefore, Theorem 1.1 also holds for τ -measurable operators d. More

generally, this can be extended to strictly semifinite weights. At the time of this writing

it is not clear whether there is a result in this direction for arbitrary weights. For two

densities d1 and d2 we can obtain results in this direction by considering (1, 2) entries in

the space ∆p,r(φ2), where φ2 is associated to the density d = d1⊗ e11 +d2⊗ e22 on M2(N).

We leave the details to the interested reader.
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Using the methods of our paper, the referee found a proof for the following interpolation

result which generalizes our Theorem 1.1. We are indebted to the referee for allowing us

to reproduce his argument.

Theorem 1.15. Let 1 ≤ q0, q1 ≤ ∞ and α0, α1 ≥ 0. Define 1/qθ = (1 − θ)/q0 + θ/q1
and αθ = (1 − θ)α0 + θα1 for 0 < θ < 1. Then, the following isomorphism holds for any

density d of a normal faithful state on N

∆qθ(N, d
αθ) =

[
∆q0(N, d

α0),∆q1(N, d
α1)

]
θ
.

Proof. Here we will prove the result assuming (1.1). The proof in the general case follows

by approximation in the semifinite case and an application of Haagerup’s decomposition,

as in Step 3 above. Using the triangular map, it suffices to prove

∆UT
qθ

(N, dαθ) =
[
∆UT
q0

(N, dα0),∆UT
q1

(N, dα1)
]
θ
.

According to Lemma 1.5, the direct sums UT rqθ(N, d
αθ)⊕UT cqθ(N, d

αθ) are an interpolation

scale. Thus, it suffices to find a common projection which is bounded for q0 and q1. Let

us show that the map

Q(y, z) = (x, x) where x = (Ldα0+α1 +Rdα0+α1 )
−1

(
Ldα0+α1 (y) +Rdα0+α1 (z)

)
is bounded in both spaces. Indeed, Lemma 1.7 gives∥∥(Ldα0+α1 +Rdα0+α1 )

−1Ldα0+α1 (y)
∥∥
UT r

qj
(N,dαj )

≤ 3

2
‖y‖UT r

qj
(N,dαj ) ,∥∥(Ldα0+α1 +Rdα0+α1 )

−1Rdα0+α1 (z)
∥∥
UT c

qj
(N,dαj )

≤ 3

2
‖z‖UT c

qj
(N,dαj ) ,

for j = 0, 1. Hence, it remains to see that∥∥(Ldα0+α1 +Rdα0+α1 )
−1Ldα0+α1 (y)

∥∥
UT c

qj
(N,dαj )

≤ 3

2
‖y‖UT r

qj
(N,dαj ) ,∥∥(Ldα0+α1 +Rdα0+α1 )

−1Rdα0+α1 (z)
∥∥
UT r

qj
(N,dαj )

≤ 3

2
‖z‖UT c

qj
(N,dαj ) .

Since all these cross estimates can be handled similarly, we only estimate the first one in

the case j = 0. Using η = α0/(α0 + α1) in conjunction with Lemma 1.7 one more time,

we obtain ∥∥(Ldα0+α1 +Rdα0+α1 )
−1Ldα0+α1 (y)

∥∥
UT c

q0
(N,dα0 )

=
∥∥Ldα1Rdα0 (Ldα0+α1 +Rdα0+α1 )

−1Ldα0 (y)
∥∥
UTq0 (N)

≤ 3

2
‖Ldα0 (y)‖UTq0 (N) =

3

2
‖dα0y‖UTq0 (N) =

3

2
‖y‖UT r

q0
(N,dα0 ) .

We apply the same arguments (and same “projection”) for lower triangular elements.
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The following byproduct of our arguments might be of independent interest.

Corollary 1.16. Let 1 < p <∞ and α > 0. Then the maps

Rd(1−η)αLdηα(Ldα +Rdα)−1 (0 ≤ η ≤ 1)

are bounded on Lp(N) for any density d of a normal faithful state on N .

Proof. For d =
∑n

k=1 dkek as in (1.1) this follows immediately from Lemma 1.7 and Lemma

1.9. Then we follow the same procedure as in the proof of Theorem 1.1 by first showing it

for finite von Neumman algebras with densities bounded above and below, and then apply

the Haagerup construction.

2. Subspaces of noncommutative L1

In this section we follow Pisier’s approach and prove Theorem A. Let us recall the

notions of type and cotype from Banach space theory. Given a probability space Ω, let

us consider a sequence (εk) of independent Bernoulli random variables equidistributed in

±1. A linear map T : X → Y has type p if there exists c1 > 0 such that the inequality

below holds for all finite sequences (xk) in X(
E

∥∥∑
k
εkT (xk)

∥∥2

Y

) 1
2 ≤ c1

( ∑
k
‖xk‖pX

) 1
p
.

Then tp(T ) = inf c1 satisfying the inequality above. A Banach space has type p if idX has

type p. We use the standard notation tp(X) = tp(idX). A linear map T : X → Y is said

to be of cotype q if ( ∑
k
‖T (xk)‖qY

) 1
q ≤ c2

(
E

∥∥∑
k
εkxk

∥∥2

X

) 1
2
.

We define cq(T ) = inf c2, where the infimum is taken over all c2 satisfying the inequality

above. Again cq(X) = cq(idX) for a Banach space X. Given a von Neumann algebra N , a

linear map T : Lp(N) → X is called (q,+)-summing if there exists a constant c > 0 such

that the inequality below holds for all finite sequence (xk) of positive elements xk ∈ Lp(N)

(2.1)
( ∑

k
‖T (xk)‖qX

) 1
q ≤ c

∥∥∥∑
k
xk

∥∥∥
p
.

We denote πq,+(T ) = inf c. Let us recall the well-known fact

(2.2) πq,+(T : Lp(N) → X) ≤ 2cq(T ) .

Indeed, for positive elements xk the order relation implies that∥∥∑
k

εkxk
∥∥
p
≤

∥∥ ∑
k,εk=1

xk
∥∥
p
+

∥∥ ∑
k,εk=−1

xk
∥∥
p
≤ 2

∥∥∑
k

xk
∥∥
p
.
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We shall also need the following well-known fact from interpolation [BL76, section 4.7].

Lemma 2.1. Let (A0, A1) be an interpolation couple of Banach spaces. Assume that A0

is contractively included in A1 and let 0 < η̃ < η < 1. Then, there exists some absolute

constant c(η, η̃) depending only on (η, η̃) such that the norm of the inclusion

[A0, A1]η̃ ⊂ [A0, A1]η,1 is controlled by c(η, η̃) .

Without assuming full support for d we keep the notation

(2.3) ‖x‖∆p,q(φ) = max
{
‖d

1
q
− 1

px‖q, ‖xd
1
q
− 1

p‖q
}
.

If we set supp d = e, the expression above vanishes on (1 − e)Lp(N)(1 − e). Relation

(2.3) defines a norm on eLp(N)+Lp(N)e, a complemented subspaces of the quasi-normed

space (Lp(N), ‖ ‖∆p,q). We will write ∆p,q(φ) for the completion of eLp(N) +Lp(N)e with

respect to this norm. The spaces e∆p,q(φ)e, e∆p,q(φ)(1 − e) and (1 − e)∆p,q(φ)e are the

complemented subspaces of ∆p,q(φ) obtained from the closure of eLp(N)e, eLp(N)(1− e)

and (1− e)Lp(N)e in ∆p,q(φ).

Lemma 2.2. Let d be the density of a normal state φ and let e be the support projection

of d, so that φ is faithful on eNe. If 1
r

= 1−θ
p

+ θ
q
, then [eLp(N) + Lp(N)e,∆p,q(φ)]θ is

isomorphic to the direct sum

e∆p,r(φ)e⊕ eLr(N)(1− e)⊕ (1− e)Lr(N)e .

The restriction of this isomorphism on eLp(N) + Lp(N)e is given by

x 7→
(
exe, d

1
r
− 1

px(1− e), (1− e)xd
1
r
− 1

p

)
.

Proof. By definition, we have

e∆p,q(φ)e = ∆p,q(φ|eNe
) .

Hence, we can apply Theorem 1.1 and find that

[eLp(N)e, e∆p,q(φ)e]θ ' e∆p,r(φ)e .

Now we discuss the off-diagonal parts in

[eLp(N) + Lp(N)e,∆p,q(φ)]θ ' [eLp(N)e, e∆p,q(φ)e]θ(2.4)

⊕ [eLp(N)(1− e), e∆p,q(φ)(1− e)]θ

⊕ [(1− e)Lp(N)e, (1− e)∆p,q(φ)e]θ .

However, for x = ex(1− e) we have that

(2.5) ‖ex(1−e)‖∆p,q(φ) = max
{
‖d

1
q
− 1

p ex(1−e)‖q, ‖ex(1−e)d
1
q
− 1

p‖q
}

= ‖d
1
q
− 1

px(1−e)‖q .
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A similar remark applies for x = (1 − e)xe. Therefore, the interpolation space simpli-

fies considerably in the off-diagonal terms. Applying Kosaki’s interpolation theorem we

formally obtain

(2.6)
[
d

1
q
− 1

p eLp(N)(1− e), eLq(N)(1− e)
]
θ

= d
1
q
− 1

rLr(N)(1− e) .

However, φ does not have full support and we can not apply Kosaki’s theorem directly.

Let ψ1−e = limj ψj be a strictly semifinite weight on (1− e)N(1− e). Then ψ = ψ1−e + φ

is a strictly semifinite weight on N . Let ej ≤ 1− e be the support of ψj (with associated

density dj) and fj = ej + e. We may apply Kosaki’s interpolation theorem for φj = ψj +φ

and the sum of the commuting densities dj + d. Then we obtain[
(d+ dj)

1
q
− 1

pLp(fjNfj), Lq(fjNfj)
]
θ

= (d+ dj)
1
q
− 1

rLr(fjNfj) .

Since the map W (y) = ey(1 − e) is a contraction on the spaces at both sides above, we

can replace N by eN(1 − e) in the isometric isomorphism since the resulting spaces are

contractively complemented. Thus we find[
d

1
q
− 1

pLp(N)ej, eLq(N)ej
]
θ

= d
1
q
− 1

rLr(N)ej .

Passing to the limit for j →∞ yields (2.6). Note that in (2.4) and (2.6) we used different

topological vector spaces for the interpolation couple (A0, A1). In (2.4), A0 + A1 = A1 is

the completion of eLp(N)(1− e) with respect to the norm in ∆p,q(φ). On the other hand,

in (2.6) we use eLq(N)(1− e) as the underlying vector space. Since d
1
q
− 1

pLp(N)(1− e) is

dense in eLq(N)(1− e), we have calculated the interpolation space. Thus (2.4), (2.5) and

(2.6) imply that

‖ex(1− e)‖[eLp(N)(1−e),e∆p,q(φ)(1−e)]θ = ‖d
1
r
− 1

px(1− e)‖Lr(N) .

Taking adjoints, we obtain the same conclusion for the space (1− e)Lp(N)e.

Theorem 2.3. Let X be a Banach space and T : X → L1(N) be a linear map such that

T ∗ has cotype q. Then, there exists a density d on N such that, for all 1 < p < q′, we may

construct a bounded linear map u : X → Lp(N) satisfying

T (x) = d1− 1
pu(x) + u(x)d1− 1

p for all x ∈ X .

If moreover X ⊂ L1(N) is a subspace, u is an isomorphic embedding of X into Lp(N).

Proof. We recall from (2.2) that T ∗ : N → X∗ is (q,+)-summing. Therefore, we deduce

from Pisier’s factorization theorem [Pis86b, Theorem 3.2] that there exists a state φ on N

such that

‖T ∗(y)‖X∗ ≤ c ‖y‖1− 2
q
(
φ(yy∗) + φ(y∗y)

) 1
q .



SUBSPACES OF NONCOMMUTATIVE Lp 25

We use a standard trick (see [Pis04]) to replace φ by its normal part. Let φn be the

normal part of φ. Let (sα) be a net of contractions in N such that limα sα = 1 in the

strong operator and the strong∗ topology and limα φ(sαysα) = φn(y). Let y ∈ N and

x ∈ X of norm 1 such that

‖T ∗(y)‖X∗ ≤ (1 + ε)|T ∗(y)(x)| = (1 + ε)|tr(yT (x))| .

We may write T (x) = a = a1a2 with ai ∈ L2(N). Note that

limα tr(sαysαa) = limα tr(ysαasα) = tr(ya)

because limα sαasα = limα sαa1a2sα = a1a2 = a. Therefore we find that

‖T ∗(y)‖X∗ ≤ (1 + ε) limα |tr(sαysαa)|

≤ c lim supα ‖sαysα‖
1− 2

q limα

(
φ(sαysαy

∗sα) + φ(sαy
∗sαysα)

) 1
q

≤ c lim supα ‖sαysα‖
1− 2

q limα

(
φ(sαyy

∗sα) + φ(sαy
∗ysα)

) 1
q

≤ c ‖y‖1− 2
q
(
φn(yy

∗) + φn(y
∗y)

) 1
q .

Therefore, we may assume with no loss of generality that the state φ is normal. This

means that it is given by φ(y) = tr(dy) for some density d ∈ L1(N). Let e be the support

of d, so that φ is faithful on eNe. We then have

(2.7) ‖T ∗(y)‖X∗ ≤ c ‖y‖
1− 2

q

N max
{
‖d

1
2y‖2, ‖yd

1
2‖2

}2/q

= c ‖y‖
1− 2

q

N ‖y‖2/q
∆2(φ) .

Note that T ∗((1− e)y(1− e)) = 0. According to a well-known result (cf. [BL76, p.49]) we

have

(2.8) ‖T ∗(y)‖X∗ ≤ c ‖y‖[eN+Ne,∆2(φ)] 2
q ,1

for all y ∈ N .

Recall that we write ∆q(φ) for ∆∞,q(φ). We consider (η, η̃) = (2/q, 2/p′) and observe that

0 < η̃ < η < 1 since 1 < p < q′ and 2 < q <∞ (if T ∗ has cotype 2 it also has cotype q for

all q > 2). According to Lemma 2.1 we deduce that

(2.9) ‖T ∗(y)‖X∗ ≤ c c(η, η̃) ‖y‖[eN+Ne,∆2(φ)] 2
p′

for all y ∈ N .

Therefore, the map T ∗ extends to a bounded map T ∗p′ : [eN + Ne,∆2(φ)]2/p′ → X∗. Let

us note that, in accordance with Lemma 2.2, the intersection in this interpolation space is

eNe+ eN(1− e) + (1− e)Ne while by (2.7) the map T ∗ vanishes on the remaining corner

(1− e)N(1− e). Let us recall the projection given by Theorem 1.1

Qp′ : Lp′(eNe⊕ eNe) → e∆p′(φ)e '
[
eNe, e∆2(φ)e

]
η̃
.

Using Lemma 2.2 we may define the map Q̃p′ : Lp′(N ⊕N) → ∆p′(φ) by

Q̃p′(y1, y2) = Qp′(ey1e, ey2e)⊕ ey1(1− e)⊕ (1− e)y2e .
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Thus by construction we have

(2.10) T ∗(y) = T ∗p′Q̃p′(d
1
p′ y, yd

1
p′ )

for all y ∈ N . Unfortunately, Q̃p′ does not vanish on vectors of the form (y,−y). Therefore

we need a slight modification of (Q̃p′)
∗ which allows us to construct one map u as asserted.

For this we define a map v : ∆p′(φ)∗ → Lp(N) as follows. According to Lemma 2.2 we

have ∆p′(φ)∗ = (e∆p′(φ)e)∗ ⊕ (eLp′(N)(1 − e))∗ ⊕ (1 − eLp′(N)e∗. Following Remark 1.3

we know that Q∗
p′(ξ) = (ve(ξ), ve(ξ)) holds for some bounded linear map

ve : (e∆p′(φ)e)∗ → Lp(eNe).

Thus we may define

v(ξ) = ve(ξe) + ξe,1−e + ξ1−e,e where ξ has the components ξ = (ξe, ξe,1−e, ξ1−e,e) .

Under the usual duality bracket 〈a, b〉 = tr(ab), we observe that(
eLp′(N)(1− e)

)∗
= (1− e)Lp(N)e and

(
(1− e)Lp′(N)e

)∗
= eLp(N)(1− e) .

Therefore, we may and will assume that ξe,1−e = (1− e)ξe,1−ee and ξ1−e,e = eξ1−e,e(1− e)

are elements in Lp(N). Then we observe that

d
1
p′ v(ξ) + v(ξ)d

1
p′ = d

1
p′ ve(ξe) + ve(ξe)d

1
p′ + d

1
p′ ξ1−e,e + ξe,1−ed

1
p′ .

This implies that, for all y ∈ N , we have

Q̃p′(d
1
p′ y, yd

1
p′ ), ξ〉

= 〈Q̃p′(d
1
p′ eye, eyed

1
p′ ), ξe〉+ 〈d

1
p′ y(1− e), ξe,1−e〉+ 〈(1− e)yd

1
p′ , ξ1−e,e〉

= tr(ve(ξe)(d
1
p′ eye+ eyed

1
p′ )) + tr(ξe,1−ed

1
p′ y(1− e)) + tr(ξ1−e,e(1− e)yd

1
p′ )

= tr((d
1
p′ v(ξ) + v(ξ)d

1
p′ )y).

This will allow us to conclude easily. Indeed, we define u = v(T ∗p′)
∗ : X → Lp(N). Then

we deduce from (2.10) that

tr((d
1
p′ u(x) + u(x)d

1
p′ )y) =

〈
Q̃p′(d

1
p′ y, yd

1
p′ ), (T ∗p′)

∗(x)
〉

=
〈
T ∗p′Q̃p′(d

1
p′ y, yd

1
p′ ), x

〉
=

〈
T ∗(y), x

〉
= tr(yT (x))

holds for all y. This means T (x) = d
1
p′ u(x) + u(x)d

1
p′ . Let us now consider the special

case T = ιX : X → L1(N) such that X∗ has cotype q. Then the left inverse for u is given

by v(x) = d
1
p′ x+ xd

1
p′ . Clearly, v is bounded and u becomes an isomorphism.
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Remark 2.4. The proof shows that we can construct the same u because we only care

about the restriction of Qp′ to elements of the form (d1/p′y, yd1/p′). If N is σ-finite and

semifinite, we may assume e = 1 and Remark 1.12 gives

u(x) =

∫
R×R

[d(s)1/p′ + d(t)1/p′ ]−1dEsT (x)dEt .

Proof of Theorem A. The type index of X is defined as

pX = inf
{
p |X has type p

}
.

According to the Krivine-Maurey-Pisier theorem (see e.g. [MS86] or [Pis86c]) we know

that for p = pX the spaces `p(n) are uniformly contained in X. If pX = 1, we know from

[RX03, Theorem 5.1] that X contains `1. However, this contradicts the reflexivity of X.

Hence, pX must be strictly bigger that 1. Let p0 > 1 such that X has type p0. This implies

that X∗ has (finite) cotype p′0 and therefore Theorem 2.3 applies.

Proof of Corollary C. Let (xn) be subsymmetric in N∗ and let

X = span
{
xn |n ≥ 1

}
.

According to (the proof of) Theorem A, if X does not contain `1 then X is isomorphic

to a subspace of Lp(N) for some 1 < p < 2. Since we know from [JR] that Lp(N) is

asymptotically symmetric, we deduce that (xn) is indeed symmetric.

Remark 2.5. Let (xn) be a subsymmetric sequence in L1(N). A close inspection of [RX03,

Proposition 5.3] shows that (xn) contains a subsequence equivalent to the unit vector basis

of `1 or (xn) is 1-equiintegrable (equivalently relatively weakly compact). However, a

subsymmetric sequence is equivalent to every subsequence. Thus either (xn) is equivalent

to the `1 basis (hence symmetric) or 1-equiintegrable. Therefore, the only possibility of a

subsymmetric, not symmetric sequence, occurs for 1-equiintegrable sequences where the

unit ball of span{xn : n ∈ N} is not 1-equiintegrable, see also [RX03, Theorem 5.1].

3. Nikishin-type results for p finite

In the commutative setting, Nikishin type results can be obtained from a careful analysis

of the maximal function. Although maximal functions have been recently introduced in

the noncommutative setting [Jun02, JXa], they seem not to be applicable for this type of

results. Our approach using duality in the noncommutative setting reduces the problem to

norm estimates for positive operators. In this section we prove the differential inequality

(1) and Theorem B. Let us start with an elementary observation. The result is known
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due to the work of Araki [Ara90] and Kosaki [Kos92]. We give a short proof to keep the

paper more self-contained.

Lemma 3.1. Let 1 ≤ q ≤ ∞ and α, β be positive. Then

‖αηβη‖ q
η
≤ ‖αβ‖ηq for all 0 < η < 1 .

Proof. Let us first show this for η = 1
2
. Indeed,

‖α
1
2β

1
2‖2

2q = ‖α
1
2βα

1
2‖q .

Define f(z) = α1−zβαz and fix λ = ‖αβ‖q. We clearly have

max
{

sup
z∈∂0

‖f(z)‖q, sup
z∈∂1

‖f(z)‖q
}
≤ λ .

Therefore, we have ‖f(1
2
)‖q ≤ λ and deduce the assertion for η = 1/2. Now we show

the inequality for all 1
2
< η < 1. Take c ∈ L( q

η
)′(N) of norm less than 1. We may write

η/q = (1− θ)/q + θ/2q for some 0 < θ < 1. Now we use interpolation and assume that N

is σ-finite. The general case follows from a well-known approximation argument. Using

Kosaki’s interpolation theorem, we find an analytic function g : S → L(2q)′(N) such that

g(θ) = c and

max
{

sup
z∈∂0

‖g(z)‖q′ , sup
z∈∂1

‖g(z)‖(2q)′

}
≤ 1 .

Therefore, the function

h(z) = tr
(
g(z)α1− z

2β1− z
2

)
is analytic. Here tr denotes the trace on the Haageup L1 space. By the three lines lemma,

we find

|tr(cαηβη)| = |h(θ)| ≤
(

sup
z∈∂0

|h(z)|
)1−θ(

sup
z∈∂1

|h(z)|
)θ
.

However, we have

sup
z∈∂0

|h(z)| ≤ sup
z∈∂0

‖g(z)‖q′‖α−z/2αββ−z/2‖q ≤ λ ,

and

sup
z∈∂1

|h(z)| ≤ sup
z∈∂1

‖g(z)‖(2q)′‖α−Im(z)/2α
1
2β

1
2β−Im(z)/2‖2q ≤

√
λ .

Hence |tr(cαηβη)| ≤ λ1−θλθ/2 = λη. Finally, we observe that our first argument for

η = 1/2 shows that if η satisfies the assertion, then so does η/2. Since the assertion holds

for 1/2 ≤ η ≤ 1, this completes the proof.

Theorem 3.2. If 2 < p <∞ and a, x ∈ Lp(N)+, we have

‖a+ x‖pp − ‖a‖pp ≤ p 2p−1 max
{
‖ap−1x‖1, ‖x‖pp

}
.
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Proof. We begin by recalling Lemma 3.1 (part 1) of [Kos84b]. In this paper Kosaki used the

uniform smoothness of Lp(N) to show that the function f(s) = tr((a+sx)p) is differentiable

with derivative

f ′(s) = p tr
(
(a+ sx)p−1x

)
.

This gives

(3.1) tr((a+ x)p)− tr(ap) = p

∫ 1

0

tr
(
(a+ sx)p−1x

)
ds .

We define k to be the natural number satisfying k ≤ p− 1 < k + 1 and define

θ =
p− 1− k

p− 1
and

(1

q
,
1

r

)
=

(k + 1− θ

p
,
p− k − 1 + θ

p

)
.

This implies 1/r = θ and 1/q = 1− θ. Then we may use Hölder’s inequality and find

tr
(
(a+ sx)p−1x

)
= tr

(
(a+ sx)kx1−θxθ(a+ sx)p−1−k)(3.2)

≤
∥∥(a+ sx)kx1−θ∥∥

q

∥∥xθ(a+ sx)p−1−k∥∥
r
.

By Lemma 3.1 for (α, β, η) = (x
1

p−1 , a+ sx, p− 1− k), we get∥∥xθ(a+ sx)p−1−k∥∥
r
≤

∥∥x 1
p−1 (a+ sx)

∥∥p−1−k
p−1

.

On the other hand, Lemma 3.1 for (α, β, η) = (x, ap−1, 1/(p− 1)) gives∥∥x 1
p−1 (a+ sx)

∥∥
p−1

≤ ‖x
1

p−1a‖p−1 + ‖x
p

p−1‖p−1

≤ ‖xap−1‖
1

p−1

1 + ‖x‖
p

p−1
p ≤ 2 max

{
‖ap−1x‖1, ‖x‖pp

} 1
p−1

.

Let us set

ξ = max
{
‖ap−1x‖1, ‖x‖pp

}
.

Then we find the following estimate for the second term on the right of (3.2)

(3.3)
∥∥xθ(a+ sx)p−1−k∥∥

r
≤ 2p−1−kξθ .

We now consider the first term. For a subset A ⊂ {1, 2, . . . , k} we use the notation

aAcxA = y1 · · · yk where yi = x if i ∈ A and yi = a if i ∈ Ac. Then we deduce from the

triangle inequality that∥∥(a+ sx)kx1−θ∥∥
q
≤

∑
A
s|A|‖aAcxAx

1−θ‖q ≤
∑

A
‖aAcxAx

1−θ‖q.

We claim that

(3.4) ‖aAcxAx
1−θ‖q ≤ ‖ap−1x‖

k−|A|
p−1

1 ‖x‖
1−θ+|A|− k−|A|

p−1
p .
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Before proving our claim, let us show how to finish the argument∑
A
‖aAcxAx

1−θ‖q =
k∑
j=0

(
k

j

)
‖ap−1x‖

k−j
p−1

1 ‖x‖
1−θ+j− k−j

p−1
p

≤
k∑
j=0

(
k

j

)
ξ

(k−j)
p−1

+ 1−θ
p

+ j
p
− k−j

p(p−1) =
k∑
j=0

(
k

j

)
ξ

k
p−1

+ 1−θ
p
− k

p(p−1) = 2k ξ
k+1−θ

p = 2kξ1−θ ,

where the last identity follows from 1 − θ = k
p−1

. The assertion then follows from the

combination of (3.1, 3.2, 3.3) with the estimate given above. Therefore, it remains to

prove our claim. We need to consider different cases. First assume that A = ∅, so that

we have to prove (recall that 1 − θ = k
p−1

) the inequality ‖akx1−θ‖q ≤ ‖ap−1x‖1−θ
1 . This

follows from Lemma 3.1 applied to (α, β, η) = (ap−1, x, 1− θ). Now assume |A| ≥ 1. Then

we may write

aAcxA = aα1xβ1aα2 · · ·xβraαr+1

where
∑

i αi +
∑

i βi = k ≤ p − 1. Since we have excluded the case A = ∅, all the

coefficients αi, βi are strictly positive, except possibly α1 and αr+1. Let us first consider

the case α1 > 0 = αr+1. We define qj for 1 ≤ j ≤ r by 1/qj = (1 + αj)/p. Note that

1 ≤ qj ≤ p for all j. Then we use Hölder’s inequality and get

‖aAcxAx
1−θ‖q ≤

( r∏
j=1

‖aαjx‖qj‖x‖βj−1
p

)
‖x‖1−θ

p .

By Kosaki’s interpolation theorem, we may estimate

‖aαjx‖qj ≤ ‖x‖1−θj
p ‖ap−1x‖θj

1

where 1
qj

=
1−θj

p
+

θj

1
. This means θj =

αj

p−1
. Therefore we find

‖aAcxAx
1−θ‖q ≤ ‖x‖1−θ

p

r∏
j=1

‖ap−1x‖
αj

p−1

1 ‖x‖
βj−

αj
p−1

p = ‖ap−1x‖
k−|A|
p−1

1 ‖x‖
1−θ+|A|− k−|A|

p−1
p .

This proves (3.4) for α1 > 0 = αr+1. Let us now also assume that α1 = 0. Then we define

the index q̃ by 1/q̃ = (β1 + α2 + β2)/p. This allows us to apply Hölder’s inequality as

above and obtain

‖aAcxAx
1−θ‖q ≤ ‖xβ1aα2xβ2‖q̃

( r∏
j=3

‖aαjx‖qj‖x‖βj−1
p

)
‖x‖1−θ

p .

We can assume without loss of generality (taking adjoints if necessary) that β1 ≤ β2.

Define the index q̂ by 1/q̂ = (2β1 + α2)/p. Then we deduce the following estimate from
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Hölder’s inequality and Lemma 3.1 applied to (α, β, η) = (x2β1 , aα2 , 1
2
)

‖xβ1aα2xβ2‖q̃ ≤ ‖xβ1aα2xβ1‖q̂ ‖x‖β2−β1
p = ‖xβ1a

α2
2 ‖2

2q̂ ‖x‖β2−β1
p

≤ ‖x2β1aα2‖q̂ ‖x‖β2−β1
p ≤ ‖xaα2‖q2 ‖x‖β2+β1−1

p =
∏

1≤j≤2

‖aαjx‖qj‖x‖βj−1
p .

Therefore, the argument from above yields (3.4) in this case. Thus we have treated the

cases α1 = 0 = αr+1 and α1 > 0 = αr+1. If α1 = 0 < αr+1, we can take adjoints and use

the same argument one more time. Let us now assume α1 > 0 and αr+1 > 0. If βr ≥ 2 the

argument above applies by splitting aαrxβraαr+1 = (aαrx)xβr−2(xaαr+1). Thus, the only

case not covered so far is βr = 1. Here we have to use a little trick

‖aαrxaαr+1‖q̌ ≤ ‖aαr+αr+1x‖q̌ for 1/q̌ = (αr + αr+1 + 1)/p .

Indeed, we define dr = aαr+αr+1 and γ = αr

αr+αr+1
. Then

‖aαrxaαr+1‖q̌ = ‖dγrxd1−γ
r ‖q̌ .

Since the index q̌ ≥ 1, we may use complex interpolation and define the analytic function

f(z) = dzrxd
1−z
r on the strip. Then, the three lines lemma combined with the fact that x

is self-adjoint implies that

‖f(γ)‖q̌ ≤ max
{

sup
z∈∂0

‖dzrxd1−z
r ‖q̌ , sup

z∈∂1
‖dzrxd1−z

r ‖q̌
}
≤ max

{
‖xdr‖q̌, ‖drx‖q̌

}
= ‖drx‖q̌ .

This allows us to repeat the same argument and thereby completes the proof of (3.4).

Remark 3.3. If N is commutative, the triangle inequality gives

‖a+ x‖pp − ‖a‖pp = p

∫ 1

0

tr
(
(a+ sx)p−1x

)
ds

≤ p

∫ 1

0

(
tr(ap−1x)

1
p−1 + str(xp)

1
p−1

)p−1

ds

≤ (2p − 1) max
{
tr(ap−1x), tr(xp)

}
.

However, in the noncommutative case it is known that the expression φ(|x|q)1/q does not

define a norm for arbitrary states. On the other hand, for 2 ≤ p ≤ 3 Theorem 3.2 follows

immediately from the fact that t 7→ tp−1 is operator convex. Indeed, we have

(a+ sx)p−1 = (1 + s)p−1
( 1

1 + s
a+

s

1 + s
x
)p−1

≤ (1 + s)p−2(ap−1 + sxp−1) .

This implies

p

∫ 1

0

tr
(
(a+ sx)p−1x

)
ds ≤ p(2p−1 − 1)

p− 1

(
tr(ap−1x) + tr(xp)

)
.



32 MARIUS JUNGE AND JAVIER PARCET

This is even better than our estimate.

Lemma 3.4. Let d be the density of a normal state and consider the norm

‖x‖p,t,d = max
{
t

1
p‖x‖p, t‖d

1
p′ x‖1, t‖xd

1
p′ ‖1

}
for 2 ≤ p ≤ ∞ and t > 0 .

Then there are positive elements x1, x2, x3, x4 with x =
∑

k i
kxk and ‖xk‖p,t,d ≤ ‖x‖p,t,d.

Proof. Since ‖x∗‖p,t,d = ‖x‖p,t,d, we may clearly assume x self-adjoint. For a self-adjoint

element x, let x+ = e+x and x− = e−x denote its positive and negative parts, where

e+ and e− stand for the corresponding spectral projections which commute with x. We

recall from [Ter81] that Lq(N) is a contractive N -bimodule for all 0 < q < ∞. Since e+
commutes with x, we obtain

‖e+x‖p,t,d ≤ ‖x‖p,t,d .
The same argument works for x− = e−x and the assertion follows.

At the beginning of section 2 we defined the notion of a (q,+)-summing linear map

T : Lp(N) → X. Let πq,+(T ) denote the infimum of all constants c for which (2.1) holds.

The following observation follows Pisier’s argument in [Pis86a].

Lemma 3.5. Let N be a von Neumann algebra. Let T : Lp(N) → X be a (q,+)-summing

map with (q,+)-summing constant πq,+(T ). Then, there exists a sequence (an) of positive

elements of norm 1 in Lp(N) such that

limn,U
(
1 + ‖ T (xn)

πq,+(T )
‖qX

) 1
q ≤ limn,U ‖an + xn‖p

holds for every bounded sequence (xn) in Lp(N)+ and every free ultrafilter U .

Proof. Let Cn be the smallest constant satisfying( n∑
k=1

‖T (xk)‖qX
) 1

q ≤ Cn

∥∥∥ n∑
k=1

xk

∥∥∥
p

for all families (x1, x2, . . . , xn) in Lp(N)+. In particular, we have πq,+(T ) = limnCn. Let

(δn) be a sequence converging to 0. Then we may find positive elements y1, y2, . . . , yn in

Lp(N) such that( n∑
k=1

‖T (yk)‖qX
) 1

q
= 1 and

∥∥∥ n∑
k=1

yk

∥∥∥
p
≤ C−1

n (1 + δn).

Let xn be a positive element and set yn+1 = xn, so that(
1 + ‖T (xn)‖qX

) 1
q =

( n+1∑
k=1

‖T (yk)‖qX
) 1

q ≤ Cn+1

∥∥∥( n∑
k=1

yk
)

+ xn

∥∥∥
p
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≤ Cn+1

Cn
(1 + δn)

∥∥∥Cn(1 + δn)
−1

( n∑
k=1

yk
)

+ πq,+(T )xn

∥∥∥
p
.

Let us note that ‖Cn(1 + δn)
−1

∑n
k=1 yk‖p ≤ 1. Therefore, if we take

an =
Cn(1 + δn)

−1
∑

k yk
‖Cn(1 + δn)−1

∑
k yk‖p

,

we obtain(
1 + ‖T (xn)‖qX

) 1
q ≤ (1 + δn)

Cn+1

Cn

∥∥an + πq,+(T )xn
∥∥
p

for all n ≥ 1 .

Taking the limit yields the assertion.

Proposition 3.6. Let us fix 2 ≤ q < p < ∞. Given a von Neumann algebra N and a

(q,+)-summing map T : Lp(N) → X, there exists a sequence of densities dn ∈ L1(N) with

tr(dn) = 1 such that

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) t−
1
q limn,U ‖xn‖p,t,dn .

holds for all t > 0 and bounded sequences (xn) in Lp(N). In particular, we deduce

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) limn,U

(
‖xn‖

p′
q′
p max

{
‖d

1
p′
n xn‖1, ‖xnd

1
p′
n ‖1

}1− p′
q′

)
.

Proof. According to Lemma 3.4 and the linearity of T , we may clearly assume that the

sequence (xn) lives in the positive cone Lp(N)+. In particular, according to Lemma 3.5

we can find a sequence (an) of norm 1 positive elements in Lp(N) satisfying

limn,U

(
1 +

∥∥ T (xn)

πq,+(T )

∥∥q
X

)p/q
≤ limn,U ‖an + xn‖pp .

Since 1 + αλ ≤ (1 + λ)α for λ > 0 and α > 1 , we deduce

1 +
p

q
limn,U

∥∥ T (xn)

πq,+(T )

∥∥q
X
≤ limn,U ‖an + xn‖pp .

Recalling that an is norm 1 in Lp(N), we obtain by Theorem 3.2

limn,U ‖T (xn)‖X ≤ limn,U πq,+(T )
(q
p

(
‖an + xn‖pp − ‖an‖pp

)) 1
q

(3.5)

≤ limn,U πq,+(T )
(
q 2p−1 max

{
‖ap−1

n xn‖1 , ‖xn‖pp
}) 1

q
.

We define dn = apn and assume that ‖xn‖p,t,dn ≤ 1. This implies that

max
{
‖ap−1

n xn‖1 , ‖xn‖pp
}

=
1

t
max

{(
t

1
p‖xn‖p

)p
, t‖d

1
p′
n xn‖1, t‖xnd

1
p′
n ‖1

}
≤ 1

t
.
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In conjunction with (3.5), this proves the first assertion for sequences (xn) of positive

operators. A further constant 4 comes from Lemma 3.4 in the general case. Let us prove the

second assertion. We define α = limn,U ‖xn‖p and β = limn,U max{‖d1/p′
n xn‖1, ‖xnd1/p′

n ‖1}.
By the first part we have

limn,U ‖T (xn)‖X ≤ 4c(p, q)πq,+(T ) inf
t>0

max
{
t

1
p
− 1

qα, t1−
1
qβ

}
.

The optimal choice is t = (α
β
)p

′
and the optimal value is then given by

max
{
t

1
p
− 1

qα, t1−
1
qβ

}
= α

1−1/q
1−1/pβ

1/q−1/p
1−1/p = αp

′/q′β1−p′/q′ .

Our next step through our Nikishin-type result requires some additional work and in

particular the theory of ultraproducts, see [Ray02, RX03] for some background. Let us

assume that N is a σ-finite von Neumann algebra and d0 is a density of a normal faithful

state φ0. We recall from [Ray02] that∏
U
Lp(N) = Lp

(
(
∏

U
N∗)

∗) .
In the following we shall use the notation (an)

• for the canonical image of (an) in the

algebra (
∏

U N∗)
∗. Note that

{
(an)

• | supn ‖an‖ < ∞
}

is dense in (
∏

U N∗)
∗ with respect

to the strong operator topology. Following [RX03], we use the support e of the ultraproduct

state

φU((an)
•) = limn,U tr(d0an) .

Let us use the notation NU = e(
∏

U N∗)
∗e. Clearly, the state φU is a normal faithful state

on NU and the space Lp(NU) is canonically isomorphic to e(
∏

U Lp(N))e, see [Ray02] for

further details. This means we can represent elements x in Lp(NU) by sequences of the

form e(xn)
•e. This applies in particular for p = 1 and the representing sequence for φU is

given by the constant sequence (d0)
•. Here and in the following we also use the notation

(xn)
• for the equivalence class in

∏
U Lp(N) of a bounded sequence (xn). Let us recall an

observation from [RX03]. If x ∈ Lp(N), then

(1− e)(x)• = 0 .

Indeed, we may approximate x by d
1
p

0 an with an ∈ N , so that

(1− e)(x)• = (1− e)(d
1
p

0 an)
• = 0

because e is the support of (d0)
• and hence the support of its p-th root, see again Raynaud’s

paper [Ray02] for more details on the Mazur map. Our aim is to replace the sequence of

densities (dn) obtained in Proposition 3.6 by a single density d.
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Proposition 3.7. Let 2 ≤ q < p < ∞ and θ = 1 − p′

q′
. Given a σ-finite von Neumann

algebra N and a (q,+)-summing map T : Lp(N) → X, there exists a density δ ∈ L1(NU)

of a normal faithful state φU on NU such that

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) ‖(xn)•‖[Lp(NU ),∆p,1(φU )]θ,1
.

Moreover, if 1 ≤ r < q and η = (1
q
− 1

p
)
/
(1
r
− 1

p
), we also have

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) ‖(xn)•‖[Lp(NU ),∆p,r(φU )]η,1 .

Proof. For the first assertion, it suffices to show that

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) ‖(xn)•‖1−θ
p ‖(xn)•‖θ∆p,1(φU )

for a suitable density δ of a normal faithful state φU in NU and (xn)
• in Lp(NU). Indeed,

this is a well-known property of the interpolation bracket [ , ]θ,1, see e.g. [BL76, p.49]. On

the other hand, according to Proposition 3.6 we have

limn,U ‖T (xn)‖X ≤ c(p, q)πq,+(T ) ‖(xn)•‖1−θ
p limn,U max

{
‖d

1
p′
n xn‖1, ‖xnd

1
p′
n ‖1

}θ

.

Therefore, it remains to find a normal faithful state φU for which

(3.6) limn,U max
{
‖d

1
p′
n xn‖1, ‖xnd

1
p′
n ‖1

}
≤ c(p) ‖(xn)•‖∆p,1(φU )

whenever (xn)
• belongs to Lp(NU). We deduce for (xn) ∈ Lp(NU) that

limn,U ‖d
1
p′
n xn‖1 =

∥∥(d
1
p′
n )•(xn)

•∥∥
1

=
∥∥(d

1
p′
n )•e(xn)

•∥∥
1

=
∥∥ |(d 1

p′
n )•e| (xn)•

∥∥
1
.

Here we use the partial isometry between (d
1
p′
n )•e and |(d

1
p′
n )•e|. Now, we define

δ0 =
(
|(d

1
p′
n )•e|2p′ + (d2

0)
•) 1

2 .

Note that

‖δ0‖1 = ‖δ2
0‖

1
2
1
2

≤
∥∥ |(d 1

p′
n )•e|2p′

∥∥ 1
2
1
2

+
∥∥(d2

0)
•∥∥ 1

2
1
2

=
∥∥ |(d 1

p′
n )•e|

∥∥p′
p′

+ 1 ≤ 2 .

Thus, if we set δ = δ0/‖δ0‖1, we obtain the density of a normal faithful state on NU given

by φU(·) = tr(δ ·). Indeed, the normality is clear while the faithfulness follows from the

fact that δ ≥ 1
2
(d0)

•, so that δ has full support. It is a state because ‖δ‖1 = 1. We have

|(d
1
p′
n )•e|2p′ ≤ δ2

0 ⇒ |(d
1
p′
n )•e| ≤ δ

1
p′
0 .

Hence we can find a contraction w in NU such that |(d
1
p′
n )•e| = wδ

1
p′
0 = δ

1
p′
0 w. This implies∥∥ |(d 1

p′
n )•e| (xn)•

∥∥
1

=
∥∥wδ 1

p′
0 (xn)

•∥∥
1
≤

∥∥δ 1
p′
0 (xn)

•∥∥
1
≤ 2

1
p′

∥∥δ 1
p′ (xn)

•∥∥
1
.
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Similarly, we have∥∥(xn)
•(d

1
p′
n )

∥∥
1

=
∥∥(xn)

•e(d
1
p′
n )

∥∥
1

=
∥∥(xn)

• |(d
1
p′
n )•e|

∥∥
1

=
∥∥(xn)

•δ
1
p′
0 w

∥∥
1
≤ 2

1
p′

∥∥(xn)
•δ

1
p′

∥∥
1

for all (xn) ∈ Lp(NU). Therefore, we obtain (3.6) and the first assertion is proved. The

second assertion is an immediate consequence of the first one and the reiteration theorem.

Indeed, according to Theorem 1.1 we have

∆p,r(φU) =
[
Lp(NU),∆p,1(φU)

]
ζ

where 1/r = ζ+(1− ζ)/p, so that ζ = 1− p′

r′
. The reiteration theorem for the real method

[BL76, Theorem 4.7.2] implies [Lp(NU),∆p,r(φU)]η,1 = [Lp(NU),∆p,1(φU)]θ,1 with θ = ηζ.

We find η = (1
q
− 1

p
)
/
(1
r
− 1

p
) as announced.

Corollary 3.8. Let 2 < q < p < ∞ and η = (1
q
− 1

p
)
/
(1

2
− 1

p
). Given any von Neumann

algebra N and a (q,+)-summing map T : Lp(N) → X, there exists a density d ∈ L1(N)

with tr(d) = 1 and support e such that

‖T (x)‖X ≤ c(p, q)πq,+(T ) ‖x‖[eLp(N)+Lp(N)e,∆p,2(φ)]η,1 .

Proof. Let us first assume that N is a σ-finite von Neumann algebra and set 1
r

= 1
2
− 1

p
. We

use the density δ = (δn)
• ∈ L1(NU) from Proposition 3.7 . Given x ∈ Lp(N) we observe

that we have

limn,U ‖δ
1
r
nx‖2

2 = limn,U tr
(
δ

1
r
nxx

∗δ
1
r
n

)
= limn,U tr

(
xx∗δ

2
r
n

)
.

This defines a positive element a = limn,U δ
2
r
n ∈ L r

2
(N). We take d = a

r
2 and recall that

limn,U ‖x‖1−η
p max

{
‖δ

1
r
nx‖2, ‖xδ

1
r
n ‖2

}η

= ‖x‖1−η
p max

{
‖d

1
rx‖2, ‖xd

1
r ‖2

}η

.

Thus Proposition 3.7 applied to the constant sequence (x)• yields the result, because

(x)• = e(x)•e. When N is an arbitrary von Neumann algebra, we choose a normal strictly

semifinite weight ψ = limi φi such that φi is a positive functional and the support ei of φi
satisfies σφi

t (ei) = ei. Then Ni = eiNei is σ-finite and we find a density di ∈ L1(Ni) with

tr(di) = 1 and such that

‖T (eixei)‖X ≤ c(p, q) πq,+(T ) ‖eixei‖1−η
p max

{
‖d

1
r
i x‖2, ‖xd

1
r
i ‖2

}η

.

As above we can pass to the limit d
2
r = limi d

2
r
i .
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Remark 3.9. It is tempting to use a weak limit d = limn,U d
1/p′
n ∈ Lp′(N) in Proposition

3.6. The problem we face is the equality

(3.7) ‖dx‖1
?
= limn,U ‖d1/p′

n x‖1 .

This equality does not hold in general. Indeed, assuming (3.7), we would deduce from

the polar decomposition that ‖w∗ − limn,U anx‖1 = limn,U ‖anx‖1 holds for all bounded

sequences an and x ∈ Sp = Lp(B(`2), tr). In Sp′ we may choose an = en,1. Then limn an = 0

weakly and limn ‖ane11‖1 = 1. We suspect that we need some equi-integrability for (3.7)

to hold. Our proof does not provide any equi-integrability condition.

We are ready for the main result.

Theorem 3.10. Let 2 ≤ q < p < ∞ and let N be any von Neumann algebra. Given

a (q,+)-summing map T : Lp(N) → X, there exists a density d ∈ L1(N) such that the

inequality below holds for any index q < r < p

‖T (x)‖X ≤ c(p, q, r) πq,+(T ) ‖x‖∆p,r(φ) .

Moreover, there exists a map T̃ : Lr(N ⊕N) → X such that

T (x) = T̃
(
d

1
r
− 1

px, xd
1
r
− 1

px
)

= T̃
(
jp,r(x)

)
and ‖T̃‖ ≤ c(p, q, r)πq,+(T ) .

Proof. According to Corollary 3.8, we may find d such that

‖T (x)‖X ≤ c(p, q) πq,+(T ) ‖x‖1−η
p max

{
‖d

1
2
− 1

px‖2, ‖xd
1
2
− 1

p‖2

}η

.

Let e denote the support of d and let φ(x) = tr(dx) be the associated state. Let us

decompose any element x in Lp(N) as x = exe+ ex(1− e) + (1− e)xe+ (1− e)x(1− e).

Then we note that T vanishes on the corner (1 − e)Lp(N)(1 − e). We apply Lemma 2.1

for η̃ < η and deduce

(3.8) ‖T (x)‖X ≤ c(p, q)c(η, η̃) πq,+(T ) ‖x‖[eLp(N)+Lp(N)e,∆p,2(φ)]η̃

for all x ∈ Lp(N) such that (1− e)x(1− e) = 0. We recall the isomorphism from Lemma

2.2:

(3.9) [eLp(N) + Lp(N)e,∆p,2(φ)]η̃ ' e∆p,r(φ)e⊕ eLr(N)(1− e)⊕ (1− e)Lr(N)e ,

where 1
r

= 1−η̃
p

+ η̃
2

= 1
p

+ η̃(1
2
− 1

p
) < 1

p
+ η(1

2
− 1

p
) = 1

q
. Thus for every q < r < p we can

find a suitable η̃. Note that η = 1 when q = 2, but then we may use that (2,+)-summing

implies (q,+)-summing for all q > 2. We denote by

Tη̃ : e∆p,r(φ)e⊕ eLr(N)(1− e)⊕ (1− e)Lr(N)e→ X
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the corresponding bounded map given by (3.8) and (3.9). Now we proceed as in Theorem

2.3 and define

Q̃r : Lr(N)⊕ Lr(N) → e∆p,r(φ)e⊕ eLr(N)(1− e)⊕ (1− e)Lr(N)e

by Q̃r(x, y) = Qr(exe, eye) ⊕ ex(1 − e) ⊕ (1 − e)ye, where Qr is the projection from

Theorem 1.1. This allows us to define T̃ (x, y) = Tη̃Q̃r so that

T̃ (d
1
r
− 1

px, xd
1
r
− 1

p ) = Tη̃
(
(exe, exe)⊕ d

1
r
− 1

px(1− e)⊕ (1− e)xd
1
r
− 1

p
)

= T (exe+ (1− e)x+ ex(1− e)) = T (x) .

The norm estimate follows from Theorem 1.1, (3.8) and (3.9) (see Lemma 2.2).

Remark 3.11. In the commutative analog of Theorem 3.10, the restriction p, q ≥ 2 is not

needed. It would be very interesting to know whether this restriction is necessary in the

noncommutative setting.

Remark 3.12. We know from Lust-Piquard work [LP92] that for q = 2 the situation

is much nicer. Let 1
q

+ 1
s

= 1
2
. Then, the noncommutative Khintchine inequality [LP86]

implies ∑
k
‖T (xk)‖2

X ≤ c2p c2(T ) sup
‖a‖s/2≤1

∑
k

tr
(
a(x∗kxk + xkx

∗
k)

)
.

Applying the standard separation argument one obtains a factorization T = vjp,2 through

the inclusion map id : Lp(N) → ∆p,2(φ). We refer to [LP92] for more details and to [LPX]

for further information.

Corollary 3.13. Let 1 < q < r ≤ 2 and T : X → Lq(N) be a linear map such that T ∗

has cotype r′. Then there exists a density d ∈ L1(N) with tr(d) = 1 such that for every

q < p < r there exists a map u : X → Lp(N) satisfying

T (x) = d
1
q
− 1

pu(x) + u(x)d
1
q
− 1

p for all x ∈ X .

Proof. By Theorem 3.10 we find a density d with tr(d) = 1 such that∥∥T ∗ : ∆q′,p′(φ) → X∗∥∥ ≤ c(p′, q′, r′) πr′,+(T ∗) ≤ 2 c(p′, q′, r′) cr′(T
∗)

for every r′ < p′ < q′. We write T ∗q′,p′ : ∆q′,p′(φ) → X∗ for the corresponding map. Let Q̃p′ :

Lp′(N) → ∆q′,p′(φ) be the projection from Theorem 3.10. We recall that Q∗
p′ = (ve, ve) has

two identical components. As in the proof of Theorem 2.3 we define v : ∆q′,p′(φ)∗ → Lp(N)

by v(ξe, ξ1−e,e, ξe,1−e) = ve(ξe) + ξ1−e,e + ξe,1−e. Following the argument from Theorem 2.3

we can check that u = v(T ∗q′,p′)
∗ : X → Lp(N) provides the corresponding decomposition.

Note that in the σ-finite case we may assume that d has full support. Then formally

u(x) = (L
d

1
q−

1
p

+R
d

1
q−

1
p
)−1T (x) .
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In full generality we have

u(x) = (L
d

1
q−

1
p

+R
d

1
q−

1
p
)−1eT (x)e+ d

1
p
− 1

qT (x)(1− e) + (1− e)T (x)d
1
p
− 1

q .

We should warn the reader that these multiplications are usually not well-defined, see

both Step 2 and Step 3 of the proof of Theorem 1.1 for a rigorous interpretation using

Haagerup’s construction.

Proof of Theorem B. Let 1 ≤ q < 2 and let X be an infinite-dimensional subspace of

Lq(N) not containing `q. According to Raynaud and Xu’s result [RX03, Theorem5.1] we

deduce that X does not contain `q(n)’s uniformly. By the Krivine-Maurey-Pisier theorem,

the type index of X satisfies pX > q. Let q < r < pX so that X∗ has cotype r′. Let

ι : X → Lq(N) be the inclusion map. Then T = ι∗ : Lq′(N) → X∗ has cotype r′ and the

assertion follows from Corollary 3.13.

We refer to [Ran02, RX03] for the definition of q-equiintegrable sets in Lq(N).

Corollary 3.14. If X ⊂ Lq(N) and 1 ≤ q < 2, the following are equivalent

i) The unit ball of X is q-equiintegrable.

ii) There exists a density d ∈ L1(N) such that

u : x ∈ X 7→
(
d

1
r
− 1

qx, xd
1
r
− 1

q
)
∈ Lr(N ⊕N)

is an isomorphic embedding for some (all) 0 < r < q.

iii) There exists q < p < 2 and a bounded linear map

u : X → Lp(N)

such that x = d
1
q
− 1

pu(x) + u(x)d
1
q
− 1

p for some positive density d ∈ L1(N).

Proof. According to [RX03, Theorem 5.1], the conditions i) and ii) are both equivalent to

the fact that X does not contain `q and hence imply iii) by means of Theorem B. On the

other hand, iii) implies that X has type p > q and hence can not contain `q.
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