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ABSTRACT. In this paper, we establish the core of singular integral theory and
pseudodifferential calculus over the archetypal algebras of noncommutative
geometry: quantum forms of Euclidean spaces and tori. Our results go beyond
Connes’ pseudodifferential calculus for rotation algebras, thanks to a new form
of Calderén-Zygmund theory over these spaces which crucially incorporates
nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates
for regular, exotic and forbidden symbols in the expected ranks. In the Lo level
both Calderén-Vaillancourt and Bourdaud theorems for exotic and forbidden
symbols are also generalized to the quantum setting. As a basic application of
our methods, we prove Ly-regularity of solutions for elliptic PDEs.

CONTENTS

Introduction

1. Quantum Euclidean spaces

1.1. Crossed product form

1.2.  Metrics and derivations

1.3. Quantum Euclidean variables

2. Calderén-Zygmund L, theory

2.1. Kernels and symbols

2.2. (CZ extrapolation: Model case

2.3. (CZ extrapolation: General case

3. Pseudodifferential L, calculus

3.1. Adjoint and product formulae

3.2. Ls-boundedness: Sufficient conditions
3.3. L,-boundedness and Sobolev p-estimates
4. L, regularity for elliptic PDEs
Appendix A. Noncommutative tori
Appendix B. BMO space theory in Rg
References

E : QE S (&Y X EEEE
ERERERRIRIEIEEEEEE=

Introduction

Harmonic analysis and PDEs over Riemannian manifolds are paramount for the
solution of many important problems in differential geometry, fluid mechanics or
theoretical physics. In this paper, we establish the core of singular integral theory
and pseudodifferential calculus over the archetypal algebras of noncommutative
geometry. This includes the Heisenberg-Weyl algebra, quantum tori and other
noncommutative deformations of Euclidean spaces of great interest in quantum
field theory and quantum probability. Our approach crucially relies on a quantum
form of the fruitful interplay

KERNELS

SYMBOLS — OPERATORS
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at the interface of analysis and geometry. Strong reasons to develop such a program
over matrix algebras and other noncommutative manifolds are also in connection
to string theory, where several PDEs arise naturally over quantum spaces. We
obtain optimal smoothness conditions for L,-boundedness of singular integrals and
corresponding Sobolev p-estimates for pseudodifferential operators. This is crucial
for applications to PDEs, which we shall briefly discuss. In the line of the harmonic
analysis school, a key point has been a profound analysis of the associated kernels
which is specially challenging for noncommutative algebras.

Let © be an anti-symmetric real n x n matrix. Roughly speaking, the quantum
Euclidean space Rg is the von Neumann algebra generated by certain family of
unitaries {u;(s) : 1 < j <mn, s € R} satisfying

uj(s)u;(t) = u;(s +1),
wj(s)ug(t) = 2™ Oty (t)u,(s).

Set Ao (&) = ui(&1)uz(&a) - - un (&) for € € R™ and

Ao : Ce(R") 3 f — A f(©)Ae (&) dE € Re.

Consider the trace determined by 7g(Ae(f)) = f(0) and the corresponding L,
spaces L,(Re, 7o) [62]. Of course, © = 0 yields the Euclidean L,-space in R™ with
the Lebesgue measure and (Re, 7o) should be understood as a noncommutative
deformation of it. Section [1| includes a careful presentation of (Reg,Te) for those
potential readers not familiar with them. Our approach also contains a key Poincaré
type inequality and a few more crucial results, maybe some known to experts. The
lack of appropriate literature justifies a self-contained presentation.

The algebraic structure of these operator (type I) algebras is quite simple, but
the connection to Euclidean spaces make them indispensable in a great variety of
scenarios. If i stands for Planck’s constant, the choice

O = 2rh idy, ® (_(1) (1) )

yields the Heisenberg-Weyl algebra in quantum mechanics. Another description
arises from the unbounded generators zg ; of u; —a quantum analogue of the
Euclidean variables— which satisfy 27m'[x@,j,x@,k] = O, and provide additional
insight in our kernel manipulations below. Considering a Fock space representation
Reo becomes the CCR algebra associated to the symplectic form ©, thoroughly
studied in quantum probability and quantum field theory. In this setting, it is
simple to find a (nontracial) gaussian state with respect to which these zg ; admit
a gaussian distribution. In the physics literature, higher dimensional deformations
are usually referred to as Moyal deformations of R™. An important instance in
string theory is given by the noncommutative deformation of R* associated to an
invertible symbol ©, which leads to instantons on a noncommutative space in the
influential papers [211[55, 67]. In view of so many names for the same object, we have
decided to rebaptize these algebras as quantum FEuclidean spaces, in consonance
with quantum tori Ae —also known in the literature as noncommutative tori or
rotation algebras— which appear in turn as the subalgebra generated by A\g(€)
with ¢ running along Z™ or any other lattice of R™. Our main results in this paper
about pseudodifferential operators hold for Ag and Re.
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Calderon-Zygmund extrapolation

In harmonic analysis, integral kernel representations play a central role to study
the most relevant operators. In this particular form, pseudodifferential operators
become well-behaved singular integrals, which admit a fruitful L,-theory [66]. A
singular integral operator in a Riemannian manifold (X,d, ) admits the kernel
representation

Tyf () = /X k(e,9)f(y) du(y) for = ¢ suppf.

Namely, T}, is only assumed a priori to send test functions into distributions, so that
it admits a distributional kernel in X x X which coincides in turn with a locally
integrable function k away from the diagonal x = y, where the kernel presents
certain singularity. This already justifies the assumption x ¢ suppf in the kernel
representation. The paradigm of singular integral theory is the Hilbert transform
in R, paramount to study the convergence of Fourier series and integrals. The
challenge in higher dimensions required new real variable methods which culminated
in the celebrated theorem of Calderén and Zygmund [10], who established sufficient
conditions on a singular integral operator in R™ for its L,-boundedness:

i) Cancellation
| Tk : Lo(R™) — La(R™)|| < Ay

ii) Kernel smoothness

A
Ve e+ [V )| < o

The same holds in Riemannian manifolds with nonnegative Ricci curvature [3].

Noncommutative L, methods in harmonic analysis have gained a considerable
momentum in recent years. The fast development of Fourier L, multiplier theory on
group von Neumann algebras [111 [32] [42] [43] 47| 48] [57] has been possible in part due
to a deeper comprehension of the involved kernels. In spite of this, the validity of
Calderon-Zygmund extrapolation principle over noncommutative manifolds is still
widely open. Noncommutative martingale methods were used in [56] to establish
endpoint estimates for singular integrals over tensor product von Neumann algebras
with an Euclidean factor, which have been the key for the recent solution in [I2] of
the Nazarov-Peller conjecture. Other results in this direction include a CZ theory
for group algebras over orthogonal crossed products R™ x G, operator-valued kernels
acting by left/right or Schur multiplication, other BMO spaces in a new approach
towards nondoubling CZ theory, Littlewood-Paley estimates, Hormander-Mihlin
multipliers or directional Hilbert transforms [15] [16], 37, 42, [54].

The Calderén-Zygmund theory presented below is the first form over a ‘fully
noncommutative’ von Neumann algebra. In other words, the singular integral acts
on the whole algebra M, not just over copies of R™ as tensor or crossed product
factors in M. A major challenge for such a von Neumann algebra (M,7) is to
understand what it means to be a singular kernel. One has to identify the diagonal
where the kernel singularity should be located, the quantum metric which measures
the distance to it and its relation to the trace. A crucial point, undistinguishable
in abelian algebras or the work cited so far, is to define kernels over M®M,,, with
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the op-structure (reversed product law) in the second copy, see also [44]. In the
case of Reg, this is justified from the important map

7o : Loo(R") = Re®RE S

exp(2mi(§, -)) — Ao (§) @ e (§)",

which extends to a normal *-homomorphism, for which the op-structure is strictly
necessary. Note that mo(f)(z,y) = f(x — y) for © = 0. In particular, if | - | stands
for the Euclidean distance to 0, the operator

de =me(|-1)

is affiliated to Re®@Rg and implements the distance to the diagonal as an un-
bounded operator. Similarly, the diagonal bands be (R) = T (X|.|<r) or smoothings
of them will be indispensable to produce kernel truncations. An integral represen-
tation in Rg is formally given by

Tr(Me(f)) = (id® 70)(k(1 ® e (f)))
for some kernel k affiliated to Re®R ¢’ . We shall work with more general singular
kernels which lead to T} € L(Se,Sg), a map which sends the quantum Schwartz
class So = Ao (S(R™)) in Re into its tempered distribution class S;. We shall also
use the ‘free gradient’

Ve = Z 5;® aé)
j=1
associated to the partial derivatives 8%()\@(5)) = 2mi; o(€) and a free family
$1, 82, ..., Sy of semicircular random variables living in the free group algebra L(F,,).
Theorem A. Let T} € L(Se,Sg) and assume:
i) Cancellation
|T% : L2(Re) — La(Re)|| < As.
ii) Kernel smoothness
48 o (Vo @ id)(k) o 3| +
for (@, 8) = (n+1,0), (a, B) = (0,n + 1) and (o, B) = (*F+, "5+).
Then, Ty, : Ly(Re) — Lp(Re) is completely bounded for every 1 < p < oco.

2 e (id @ Vo)(k) e dg] < A,

A more general statement is proved in Theorem 2.I8] Our argument establishes
L., — BMO endpoint estimates for a suitable noncommutative BMO. Interpolation
with L, spaces is deduced in [41] from the theory of noncommutative martingales
with continuous index set and a theory of Markov dilations. The convolution kernel
case —in other words, quantum Fourier multipliers— is much easier to prove by
transference methods stablished in [I3}[63]. In the terminology of pseudodifferential
operators, Fourier multipliers correspond to differential operators with constant
coefficients. Of course, we aim to include nonconstant coefficients which leads to
the analysis of the harder nonconvolution quantum kernels. Our statement above is
very satisfactory and crucial for applications to pseudodifferential operator theory
below. We shall also use other methods to justify that every CZ operator differs
from its principal value by a left /right pointwise multiplier. This is fundamental in
classical CZ theory and therefore of independent interest.
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The L, pseudodifferential calculus

The theory of pseudodifferential operators goes back to the mid 1960s with the
work of Kohn, Nirenberg and Hormander. The basic idea is to exploit properties of
the Fourier transform to produce a suitable representation Wy, of partial differential
operators L = 37, <., @a(x)07 which can be inverted up to a controllable error
term. This representation looks like

Vo) = [ ae9)

for a smooth symbol a : R™ x R" — C satisfying

~

(€)e*™ € de

(S5s) [020¢ a2, )] < Cas(1+16)" " forall o, ez,

some m € R and some 0 < § < p < 1. The realization of ¥, as singular integral is
given by partial Fourier inversion k(z,y) = (id ® F~1)(a)(z,z — y), which opens a
door to CZ theory for Sobolev p-estimates of parametrices and error terms.

In the noncommutative setting, this line took off in 1980 with Connes’ work on
pseudodifferential calculus for C*-dynamical systems [19], originally conceived to
extend the Atiyah-Singer index theorem for Lie group actions on C*-algebras, see
also [I1 2, 50] for related results. Other applications in the context of quantum tori
include a well-established elliptic operator theory [I7], the Gauss-Bonnet theorem
for 2D quantum tori [23, 28] and recent results on the local differential geometry
of non-flat noncommutative tori [6, 22]. Unfortunately, the work of Connes and
his collaborators does not include L, estimates for parametrices and error terms,
which are paramount in harmonic analysis and partial differential equations. On
the other hand, the only approach [13] [63] [75] to harmonic L,-analysis in quantum
tori does not include pseudodifferential calculus, which requires Calderén-Zygmund
estimates in Rg. In comparison with Connes’ work —which focuses on the smallest
Hérmander class S5 with (p, ) = (1,0)—— our main contributions in this direction
include all classes of symbols and L,-estimates:

i) An Lo-theory for exotic and forbidden symbols 0 < § = p < 1.
ii) An L,-theory for arbitrary Hérmander classes and 1 < p < oo.

We refer to [66] [69] [70] for the applications of these results in the Euclidean context.

Pseudodifferential operators over quantum Euclidean spaces are easier to define
than Calderén-Zygmund operators. The symbol a(z,§) is now understood as an
smooth function a : R™ — Rg since £ is still (dual) Euclidean, while z becomes its
©O-deformed analog zo = (ve,1,%6,2,---,%0,n) as introduced above. We shall deal
in this paper with two quantum forms of the Hormander classes:

e We say that a € 5)'5(Re) when

m—pla|+4|5|
[060¢ a(§)] < Cap(1+ €)™ "
This is probably the most natural definition that comes to mind.
e We say that a € ¥]'5(Re) when

a1 na —plar+az|+6|6]
10808:022a(€)| < Cayans (1 + €)™ 7T



6 GONZALEZ-PEREZ, JUNGE, PARCET
Here Og ¢ is a ©-deformation of 0¢ by Og’s. More precisely, we have
0 cal§) = 0la(€) +2milze, a(f)]
= dlale) + 5= > 00ba(€)
k=1

= 2e() L {re(a(©)re (&) }re(©).

We clearly have X7';(Re) C S5)5(Re). It is very important to recall that both
classes collapse into Hormander classical set of symbols S5 when © = 0, so that
both definitions above are a priori valid to generalize the Euclidean theory. It turns
out that the Lo-theory holds for S7's(Re), while the more involved class ¥7";(Re)
makes the Lj-theory valid. The reason has to do with the link to CZ theory
and the two-sided nature of our Calderén-Zygmund conditions. Indeed, in all our
past experiences with noncommutative Calderén-Zygmund theory certain amount
of modularity is required. In this case, the bilateral form of our kernel conditions
in Theorem A ultimately imposes the mixed quantum-classical derivatives Jg ¢.

The pseudodifferential operator associated to a : R™ — Rg has the form

W06 = [ a©f©re(e)ds
— (wra)[( [ (al6) 9 10O © Aa(e) )¢ ) (19 2o(5)]-

The kernel k

The algebra of pseudodifferential operators is formally generated by the derivatives
9% and the left multiplication maps Ae(f) — ze,jAe(f). The kernels affiliated to
To(Loo(R™)) C Re®RG implement Fourier multipliers Ag (§) — m(£)Ae(§) in this
setting, which correspond to the closure of pseudodifferential operators ) a,0*
with constant coefficients a,. A very subtle transference method —which avoids
properly supported symbols— is required to obtain adjoint and product formulae
in Section Our main L, results are collected in the following statement.

Theorem B. Leta:R” - Rg and 1 < p < oco:

) Ifae S, (Ro) with0 < p<1, W, : Ly(Re) — La(Re).
i) Ifae S, (Ro)NSY, (Re)*, then U, : Ly(Re) — La(Re).
i) If a € £9,(Re) N XY 1 (Re)*, then ¥, : Ly(Re) = Ly(Re).

Using S7'5(Re) C S§5(Re) N S}, (Re) for 0 < < p < 1 —same inclusions for
Y-classes— we get Lp-estimates for regular, exotic and forbidden symbols in the
expected ranks and Theorem B opens the core of the pseudodifferential L,-calculus

[66) [69] to the context of quantum Euclidean spaces:

e Theorem B i). Calderén-Vaillancourt theorem [9] on Ls-boundedness for
exotic symbols quickly obtained a spectacular application [4] for p = 1/2.
Our proof of its quantum form for p = 0 requires a careful approach due
to the presence of a ©-phase. The case p > 0 also imposes an unexpected
dilation argument among different deformed algebras Re.
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e Theorem B ii). Bourdaud’s theorem [7] yields a form of the T'(1)-theorem
for pseudodifferential operators when p = § = 1: ¥, is Ls-bounded iff
the symbol a} of U¥ remains in the same Hormander class. Our proof
follows the classical one by showing that ¥, is bounded in the Sobolev
space Wy s(Re) under a minimal amount of regularity s > 0.

e Theorem B iii). Our L,-results follow by showing that any such symbol is
a Calderéon-Zygmund operator which fulfills all the hypotheses of Theorem
A, the Lo-boundedness being assured by Theorem B ii). It is our CZ kernel
condition what imposes the mixed quantum-classical derivatives Jg ¢ and
the corresponding “forbidden” Hormander symbol classes ¥7'5(Re).

e Related estimates. Our L,-inequalities give rise to Sobolev p-estimates
for symbols of arbitrary order m, we shall recollect these estimates in the
body of the paper. On the other hand, the L,-theory for symbols with
p < 1requires a negative degree to compensate lack of regularity. Fefferman
proved in [29] the L,-bounds for the critical index m = —(1—p)%. We shall
obtain nonoptimal L,-estimates of this kind in Re. Interpolatlon yields
even finer results for intermediate values of m.

The analogue of Theorem B for quantum tori Ae is proved by transference
in Appendix A. The Hérmander classes S';(Ae) and X7'5(Ae) involve discrete
derivations over Z" in the dual variable. In the line of Connes definition, we could
also proceed by restriction to Z™ of symbols R —+ Ag C Re in the corresponding
Hormander classes. As in T™ both definitions turn out to be equivalent and this
will be the source of our transference approach. The discrete form of difference
operators has the advantage of being easier to be calculated with computers.

An illustration for elliptic PDFEs

Pseudodifferential operators are a very powerful tool for linear and nonlinear
partial differential equations [69] [70]. The existence, uniqueness and qualitative
behavior of solutions for many PDEs are frequently understood by application of
these methods. After the announced results so far, the potential applications for
PDEs over quantum Euclidean spaces and tori are vast and beyond the scope of
this paper. As a small but basic illustration, we prove in Theorem the L,
regularity for solutions of elliptic PDEs over quantum Euclidean spaces. We do
not include this statement in the Introduction to avoid more terminology at this
point. A profound analysis of partial differential equations over quantum spaces
—Ao, Re or even more general noncommutative manifolds— constitutes a long
term program with conceivable implications for the geometry of such objects.

1. Quantum Euclidean spaces

Given an integer n > 1, fix an anti-symmetric R-valued n x n matrix ©. Let
us write A,(R) to denote this class of matrices. We define Ag as the universal
C*-algebra generated by a family u;(s), ua(s),...,u,(s) of one-parameter unitary
groups in s € R™ which are strongly continuous and satisfy the ©-commutation
relations below

w;(s)up(t) = Oy (t)uy(s).
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If © = 0 and by Stone’s theorem we may take u,;(s) = exp(2wis{e;,-)) and Ag is the
space of bounded continuous functions R™ — C. Moreover, since R" is amenable
Ao may be described as an spatial crossed product C xg R™ C B(L2(R™)) twisted
by the 2-cocycle determined by O, as introduced by Zeller-Meier [76]. In general
given & € R™ we shall extensively use the unitaries Ag(§) = u1(&§1)u2(€2) - - un(&n)
and we define Eg as the closure in Ag of Ag(L1(R™)) with

Yolf) = [ FlEele)d

If © =0, we find Eg = Co(R™). Given any O, we easily see that
) = 2™ Lo Oikbilh \g (=),

§)he(n) = e™EOM Ao ()Xo (€),

Ao (1) = €27 25z OEM NG (€ 417),

f1)e(f2) = Ae(f1 *o f2) with ©-convolution given by

fixe f2(€) = /Rn fi(§— U)fz(n)€2”2j>k Ok (&5 —m5)m dn.

)\@(
Ae(
)\@(
Ae(

Note that > .., O;x&;m = (§,0,n) for the lower triangular truncation ©, of ©.

i>k
1.1. Crossed product form. Let

ro(e () =ro( | F(€)e(€)de) = £(0)

for f : R™ — C smooth and integrable. As we shall see, ¢ extends to a normal
faithful semifinite trace on Eg. Let Rg = A = EJ be the von Neumann algebra
generated by Eg in the GNS representation of 7¢. We obtain Rg = Lo (R™) for
© = 0. In general, we call the ©-deformation Reg a quantum Euclidean space.

1.1.1. Crossed products and trace. A C*-dynamical system is a triple formed by a
C*-algebra A, a locally compact group G and a continuous action 5 : G — Aut(A)
by s-automorphisms. The reduced crossed product A xg ;cq G is the norm closure in
A®B(L2(G)) of the x-algebra generated by the representations p : A — Lo (G; A)
and A : G = U(Ly(G)), given by

p(a)(g) = By-1(a) and  [Mg)fI(h) = f(g™"h).
The full crossed product A xg s G is the C*-algebra generated by all covariant
representations v : A — B(H) and v : G — U(H) over some Hilbert space H:
u(g)v(a)u(g)* = v(Bq4(a)). Given f: G — A continuous and integrable

H/Gfg >4gdu(g)’ANMHG = wzgmH/Gv(fg)U(g) du(g)H

BH)

It is a very well-known result [§] that A X s G = A X g reqd G when G is amenable.

Given a pair (M, 7) formed by a von Neumann algebra M equipped with a
normal faithful semifinite trace 7 —noncommutative measure space— and a locally
compact unimodular group G acting on (M, 7) by trace preserving automorphisms
B : G — Aut(M, 1), the crossed product von Neumann algebra M xg G is the
von Neumann subalgebra of M®&B(L2(G)) generated by p(M) and A(G), defined
as above. In other words, M x5 G is the weak-x closure of M g3 1eq G.
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Given f: G — M continuous and integrable, set

([ 2 Mo duta)) = (1)

where u and e stand for the Haar measure and the identity in the unimodular group
G. This determines a normal faithful semifinite trace which extends to the crossed
product von Neumann algebra M xgG, see Takesaki [68]. In the following result, we
provide an iterated crossed product characterization of quantum Euclidean spaces
and construct a normal faithful semifinite trace on them.

Proposition 1.1. The following results hold:
i) If n =2 and © # 0, we have
Eo ~ Co(R) x R.

In this case, the crossed product action is given by R-translations.
i) If n > 2, let us define

ree() =1o( [ flE)ra(€)de) = F(0)

for f : R® — C smooth and integrable. Then, To extends to a normal
faithful semifinite trace on Eg. Moreover, let 2 denote the (n—1) X (n—1)
upper left corner of © € A,(R). Then there exists a continuous group
action Bn_1 : R — Aut(Ez) satisfying

E@ >~ EE Xg,_1 R.

R

ili) Let Re = E§ be the von Neumann algebra generated by Eg in the GNS
representation determined by To. We have Re ~ Loo(R) X R =~ B(Ly(R))
when n = 2 and © # 0, with X-action given by R-translations. Moreover
To extends to a n.f.s. trace on Rg, and the action B,_1 is trace preserving
on (Rz,7=). Induction on n and iteration give

R@ ~ RE )ng_l R,
Ro == ((Loo(R) %3, R) -+ 24, , R).

Proof. Given © € A,(R) and a Hilbert space H,, every set of one-parameter
unitary groups {ur;(s) : 1 < j < n,s € R} in B(H,) satisfying the O-relations
yields a s-representation 7 : Eg — B(H,). In order to work with a concrete set
of unitary groups u;(s), we consider the universal representation in the direct sum
.. Hr over the set of all cyclic representations 7 as above. We shall use in what
follows —with no further reference— that Co(R) is the closure of F(L1(R)), which
can also be understood replacing the characters exp, = exp(27(s,-)) in the Fourier
transform F by w;(s) for any fixed 1 < j < n, since {u;(s) : s € R} forms a
non-trivial one-parameter group of unitaries.

i) If n =2 and © # 0, there must exist § # 0 with © = §(e12 — e21). We may
rescale uq (s), uz(t) and assume without loss of generality that § = 1. Now, consider
the map

Ee3z= /R2 z(s, t)ur(s)ua(t) dsdt — /th xtdt=feCy(R) xR
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with f; € Co(R) given by

fe= / 2(s,1)e*™ ds ~ / z(s,t)u1(s) ds.
R R
IfH =& H, define u: R — U(H) and 7 : Co(R) — B(H) by

u(t) = us(t) and ~( /R ()" ds) = /R a(s)ur(s) ds.

The pair (v, u) forms a covariant representation since we have
u(t)y(a)u(t)* = /E(s)uQ(t)ul(s)uQ(ft) ds
R
= [ae s ds = o [ a0 ds) = (6ia)
R R

where f;(a) = A\(t)[a] is the left regular representation at t acting on a. This gives

> tdtH :H/ t tddtH .
fllewarnn > | [ sttoutrar, = [ sts.tmraasa], = 1ele.

The reverse inequality is proved similarly. Indeed, let us consider the following map
CoOR)xR> f= / fextdt— z(s,t)ur(s)us(t) dsdt = z € Eg
R R2

with z(s,t) = ﬁ(s) Fix a Hilbert space K., and a covariant representation (v, u)
of the pair (Co(R),R) in B(K,,). Define wy(s) = v(e*™**") and wq(t) = u(t). This
shows that covariant representations of (Co(R), R) with action given by translations
are in one-to-one correspondence with x-representations of Eg for the deformation
© = e12 — e91. Indeed, wy(s) and wy(t) are one-parameter groups of unitaries since
~ is a *-representation and u a unitary representation. Moreover, the commutation
relations hold as a consequence of the covariant property

wy(s)wa(t) = y(exp,)u(t) = u(t)y(B-t(exp,)) = €™ wy(t)w: (s)

for exp(s) = exp(2mis-). In particular

[ H/R z(s,t)wl(s)wz(t)dsdtHB(’CW) = H/Rv(ft)u(t) dtHB(KW

Taking the supremum over (v, u) covariant, we see that ||z||ge > || fllc,®)xr-

ii) When n > 2 we proceed by induction. To prove ii) for n = 2, it suffices
from i) to justify that 7¢ extends to a n.s.f. trace on Eg. Note that Co(R) x R
is generated by exp77 xA(C) for (n ,C) € R x R where exp, () = exp(2mizn) and
AQ) f(x) = f(x — ¢). According to i), this gives

/f E)ho(E) de = //fn(expndn]NA(C)dC

This means that the crossed product trace

([ eeenrac) = [ at@rae= [ [ [ 1.0 exp, (@) dnds = 0)

coincides with 7¢ in Eg. Since Cp(R) x R embeds faithfully in Lo (R) xR, it turns
out that 7¢ is a n.f.s. trace and completes the argument for the case n = 2. Once
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this is settled, consider © € A, (R) whose upper left (n — 1) x (n — 1) corner is
denoted by E. Assume ii) holds for any dimension smaller than n, and set

s [ porsriz) = [ pe T enns)

Then, f§,_; trivially yields a 7=-preserving action on (Ez, 7=). Moreover, the map
Xo(€) = Az=(&1,&2,...,&n—1) X (&) also gives rise to Eg ~ Ez xg,_, R and
To = Tx|Ee Dy arguing as above for n = 2, details are left to the reader.

iii) Now, for n = 2 and © # 0 we get
Ro = Ed = (Co(R) x R)” = Co(R)” ¥ R = Loo(R) x R,

To = Tx on Rg and Eg sits faithfully in Rg. Moreover, Lo (R) x R C B(L2(R))
acts on Ly(R) by modulation and translation, which implies Re ~ B(L2(R)) since
only constant multiples of the identity map commute with all modulations and
translations. When n > 2 we proceed by induction one more time to conclude that
Bn-1 is T=-preserving, Re ~ Rz xg, , R, 76 = 7 and Eg C Re faithfully. The
last assertion follows trivially by iteration. This completes the proof. O

Remark 1.2. The map
)\@ : LQ(R”) — LQ(R@,T@)

is an isometric isomorphism, extending Plancherel theorem for © = 0. Indeed, once
we know 7g is a trace, it follows from the density of the quantum Schwartz class
Se = Ao(S(R")) in L2(Re) and the identity Ao (f1)Ae(f2) = e (f1 *e f2)-

Remark 1.3. When n =1, Rg = Loo(R) generated by u(s) = exp(2mis-). In the
2D case, we find one more time Re = Lo (R?) for © = 0. Otherwise, there exists
d # 0 such that © = §(e12 — e21). Rescaling § = 1 and arguing as in Proposition
iii) gives
0 1
0= ( o ) = Ro = B(Ls(R)) =~ Lo.(R) x R

generated by modulations exp, x1 and translations 1 x A(Q) for n,¢ € R. These
are the standard time/frequency unitaries in Fourier analysis. If we set = to be the
n X n matrix with all its entries equal to 1, then the analogous space in dimension
2n is given by © = E® (e12 — e21) with Reg =~ B(La(R™)) ~ Lo (R™) xR™. The 3D
case admits other models. By Proposition iii)

o IfO =0, then Ro = Loo(R?) ~ Lo (R)@Loo (R)&Luo (R),

0 0 0
o I[fO = 0 0 « = Re zLOO(R)Q_b(LOO(R) ><1R),
0—a O
00 8
o [fO= 0 0 « = Ro ~ (Lo(R)®Ls(R)) x R,
—B—a 0
0 v B
e IfO=|—-—v 0 «a = Ro =~ (Lx(R) xR) xR,
—B—a 0
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for o, B, # 0. Higher dimensions are treated similarly. When o # 0 = 8 = ~, the
x-action is t - f(s) = f(s — at). In the second case «, 8 # 0 = 7, the x-action in
Loo(R?)ist- f(x,y) = f(x — Bt,y — at). In the third case «, 3,7 # 0, both actions
yield t exe (s ine f)(r)) = ((s — at) ing [)(r — Bt) = f(r —vs + (ay — B)t). In
the particular case @« = § = v = 1, we have full symmetry under the action of the
permutation group. In this case, the time/frequency dichotomy described above
for n = 2 is replaced by three indistinguishable sets of unitaries.

1.1.2. The corepresentation map. Let us now recall a very useful consequence of
the crossed product characterization of Rg given above, the normality (weak-x
continuity) of the corepresentation map oe : Ae(§) — exp, ®Ae (), where exp
stands for the character x — exp(2mi(z,&)) in Lo (R™). This will be the source of
several metric and differentiability considerations over quantum Euclidean spaces.

Corollary 1.4. 0o : Ro — Loo(R")®Re is a normal injective x-homomorphism.
Proof. The assertion is a simple exercise in the C*-algebra level, so that we shall

only justify normality. We proceed by induction on n, the case n = 1 is nothing
but comultiplication in L, (R™). In higher dimensions, og factorizes as follows

RC—) = RE Nﬂn71 R
ig(—) lag—dgxidn@
Loo(RM)ERe Lo(®" &Rz x5 R

\ |

Lo (R)®((Loo(R*)&Rz) x5 | R)

where Bn_l = idgn-1 ® Bp—1 and the map € is given by
MxgR > /RfS X A(s)ds LN /Rexps®(fs 3 A(s)) ds € Loo(R)&(M x4 R).
By such factorization, it suffices to justify the normality of o=z and :
e The map o= is equivariant
0= (Ba-1(s)(@)) = Ba-1(s)(0=(a)).

Let j =pxA: Rz xR — Re®B(Lz(R)) be the natural injection. By the
above equivariance, j intertwines o= X ¢d and oz ® id

0z =0z Xid = (Z‘dLOQ(Rnfl) ®j)_1 o (O'E & idB(Lg(R))) oj.
Since o= ® id is normal by induction hypothesis, the same holds for o=.
e The fundamental unitary on R?
Wiz,y) = f(z+y,y)

satisfies W*(1 @ A(s))W = A(s) ® A(s). Using the isometric isomorphism
A L(R) 3 A(s) — exp, € Loo(R), we get

af) = /R exp, &(fs % Als)) ds
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= (A®idM><1R)(1 X W*)(/]Rl ® (fs A /\(S)) dS)(l X W)
Thus Q(f) = (A @ idpmxr)(1 x W*)(1® f)(1 x W) and 2 is normal. O

1.2. Metrics and derivations. In this paragraph, we exploit the corepresentation
0o to introduce some other auxiliary operators which will help us to equip Re with
an induced metric, a natural BMO space and a differential structure.

1.2.1. A metric in Rg and BMO. Given a von Neumann algebra M, its opposite
algebra M, is obtained by preserving linear and adjoint structures but reversing
the product ay - ag = asa;. Several reasons justify why noncommutative singular
integral operators require to understand the singular kernels as operators affiliated
to M®M,p, see [44] and Section below. We shall use from now on - for the
Mp-product, as well as e for the product in M®M,p, so that

(a1 ® az) ® () ® ay) = (a1a}) ® (az - a3) = (ara}) @ (ahas).
Let us consider the linear map mg, determined by
expe =2 Ao (€) @ Ao (€)*

where, as usual, we write exp, for the Fourier characters exp(2mi(¢,-)) in R". As
an illustration, recall that for ©® = 0 we may expect to get the following identity
for any (say) Schwartz function f:R"™ — C

mo(f)(w) =m( | F©ewpcds)@y)= | F&) ewele—y)ds = flz — )

Rn
Of course, this requires to justify the continuity properties of the map mg which we
shall do in Lemma below. The quantum analogue of this map is particularly
useful to identify the diagonal in Re®@Rg , where the kernel singularities of our
operators are expected to live. Of particular relevance is the induced metric which
we define by
de =7e(|- )

for the Euclidean norm | - | or the bands around the diagonal bg(R) = me(X|.|<r)-
It is worth recalling that both cg and mg take Lo(R™) into Loo(R™; Lo(R™))
when © = 0. The quantum analogue for © # 0 requires noncommutative forms of

mixed-norm L, (L2)-spaces, whose construction we briefly recall. Given a Hilbert
space H and x = Zj m; ® hj € M ®a1s H, we define

1 1
lelvere = @ahli, = || D mimit b
Jsk .
[zl mene = |[(@2)e|2, = HZm;thj,hm jw
gk

Given t € {r,c}, the space M@HT —also denoted by HI@M or Lo, (M;HT)— is
defined as the closure of M ®a1, H with respect to the weak topology generated by
the functionals )

Pu(x) = w((m,x)f) for every w € M,
Alternatively, M®H' is the weak-* closed tensor product of the dual operator
spaces M and H', the latter space representing the row or column operator space
structure on H. Indeed, if X and Y are dual operator spaces, there are completely
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isometric and weak-* continuous injections wx : X — B(Hx), 7y : Y — B(Hy) and
we define X®QY as

mx[X] Ralg my [Y]V" C B(Hx ®2 Hx).
It is well-known that such construction is representation-independent and when one
of the tensor components is a von Neumann algebra, the predual is given by the
projective tensor product X,®Y,, see [26] [60] for further details. Noncommutative
mixed-norm spaces have also been studied in [45] [59].

Lemma 1.5. wg extends to a normal x-homomorphism
To : Lo (Rn) — R@@R%p satisfying (CT@ X idR?_)p) o = (ian ® 71'@) o Agn

where Arn (expg) = expg ®expg is the comultiplication map in R". This shows in
particular that de = me(| - |) is a well-defined operator affiliated to Re@Rg as an
increasing limit of the bounded operators de(R) = me(x|.|<rl| - |). Moreover, the
map e also extends to a complete isometry mg : L5(R™) — L§(Re)ORG -

Proof. That me : expg = Ao () ® e (£)* extends to a *-homomorphism is a simple
consequence of the product in Re®@Rg, details are left to the reader. Let us then
prove that mg is weak-* continuous. It is tedious but straightforward to check that

Ao :h S h(&1,&2) e (1) Ao (&2) @ Ae(&1)" dérdEs

yields an isometry Lo(R™) ®2 Lo(R™) — La(Re) ®2 L2(Rg). Indeed, by density
it suffices to expand 7¢ ® 1o (Ao (h)*Ae(h)) for h smooth, then calculate the trace
applying twice the simple identity 76 (Ao (f)Ae(£)*) = f(§) for a smooth integrable
function f in R™. Moreover, given any z = Ag(h) € L2(Re) ®2 L2(Rg) it turns
out that

W@(GXPE)(«Z) = /Rn . h(fl,fg) )\@(f))\@(€1>)\@(§2) ® )‘@(6)*)\®(€1>*d§1d€2
= /Rn o h(&1,82) Ao (&1 + &) Ae(&2) ® Ao (&1 +£)" dE1dEs
- /R” R" h(&1 = & &2) Ao (E1)Ae(&2) ® Ao (&1)” dErdEs

= (A@ ] ()\Rn(§) ®Zd]Rw) OA61>(Z),

where Ag» denotes the left regular representation on R™. This shows that g is
weak-# continuous and satisfies the identity 7o (f) = Ae o (f ® idgn) o Ag' for
all f € Loo(R™), after identifying exp, with Ag«(£). Once we have justified the
weak-* continuity, the relation (oo ® idR(oap) omg = (idgn ® o) 0 Agn follows since
it trivially holds when acting on exp, for any § € R™. Also, it implies that dg is
affiliated to Re®R¢ and arises as an increasing limit of bounded operators de(R)
for R > 0. It remains to show that mg : L§(R™) — L§(Re)Q®Rg . Recall that the
norm in L§(M)RM,p, is given by

1
2

ar H (T ® idMop)(a*a)

When M = Rg and f € Ly(R"™) is smooth we find

-~

(ro @ idrgy)(ro(() = (r0 Didny) ([ F€) hol€) @ Aale)" ) = FO)1rr
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Therefore, taking f = >, fir ® ejx € M, (L5(R")) smooth, we obtain

2

||(W@(fjk))jkszzn(Lg(R@)Q@R@) = H((Te@idR‘;‘))(W@(f*f)D

= ([ o nu©d)

By density, we see that mg : L§(R™) — L§(Re)®RJ is a complete isometry. O

3k My @ min REP

1
2
v I £l a2, (g @nY)-
Let

Sif(w) = | J(ee el e2mi®) g

R‘n
denote the heat semigroup acting on f : R” — C. Consider the induced semigroup
So = (Se.t)t>0 on Re determined by g 0 So; = (S; @ idre) © 0e. This yields a
Markov semigroup which formally acts as

Saie() = | F©)e 1M Aa(©) de.

Consider the corresponding column BMO norm

1
2

lallyio. ey = sup | (Sela’a) = So.i(a)*So.(a))
t>0

€]

1
~ sup H (][ loo(a) — a@(a)Q‘Q d,u) 3
QeQ Q

where Q denotes the set of all Euclidean balls in R™, p stands for the Lebesgue
measure and og(a)q is the average of og(a) over the ball Q. The norm equivalence
above —which holds up to constants depending on the dimension n— is a simple
consequence of the intertwining identity og o Sg: = (S; ® idry) © 0o and the
equivalence between the BMO norms respectively associated to the heat semigroup
and the Euclidean metric in R", see [42] Section 1.2] for further details. The space
BMO.(Qg) is an illustration of the operator-valued spaces BMO.(R"; B(#)) which
were extensively studied by Tao Mei in his PhD Thesis [51].

Re = loe(a)llzmo.(0e)

We may use these latter spaces to properly define the column space BMO.(Rg).
Indeed, we know from Corollary that 0o (Re) is a subalgebra of Lo (R")®Re,
which in turn is included in BMO.(Qg). Since we know from [51] that BMO.(Qe)
admits a predual H$(Qg), we may define

BMOC(R@) =0e (’R@)W*

where the weak-* closure is taken with respect to the pair (H{(Qg), BMO.(Qg)).
This kind of BMO spaces over Markov semigroups have been deeply investigated
in [41] for finite von Neumann algebras. The semifinite case is more subtle and we
shall give in Appendix B a self-contained argument for Re.

1.2.2. A Poincaré type inequality. Let
So = {/\@( f) : f € S(R") = R"-Schwartz Class}.

Define 8% as the linear extension of the map

95 (e (€)) = 2mig; e (€)
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over the quantum Schwartz class Sg for 1 < j < n. Recall that Sg is an *-algebra
since Ao (f1)Ae(f2) = Aa(f1 *o f2) and Ae(f)* = Ae(f§) are stable in Se. In
what follows, we shall be working with this and other natural differential operators
in Rg. The following one is a free analogue of the gradient operator associated to
the partial derivatives considered above. Let L(F,) denote the group von Neumann
algebra associated to the free group over n generators F,,. It is well-known from
(say) [72] that L(FF,,) is generated by n semicircular random variables s1, s2, . .., Sy.
Let us consider the map s : R™ — L(F,,) given by

n

s(§) = Z(ﬁa%)s(ey’) = ij%v
=1

j=1
Then we introduce the ©-deformed free gradient
Ve = Z Sk & 3@ :So = L(F,)®Re.

k=1
If V denotes the free gradient for © = 0, is easily checked that

(idﬁ(]}rn) ® U@)OV@ = Zsk ® (erag) = Zsk ® (8k OO’@) = (V ® idR@)OU@.
k=1 k=1

Moreover, let us recall that Vg (Ae(§)) = Zk sk @ 2mil Ao (§) = 2mis(§) ® Ao (§).

Proposition 1.6. Let Bg and gr stand for any ball of radius R in R™ and the
characteristic function of it. Given a noncommutative measure space (M, T) and
¢ : Bp = M smooth with Br-average denoted by py, the following inequality
holds for the free gradient V in R™

2 3
- d H <9 2RH 1 1)V ®id H .
H]{BRW #on|dn M VIR|(1® gr ® 1)(V © ida) () L(Fn)BLoo(RM)OM

Proof. Counsider the derivation map 6(f) = f® 1 —1® f. We shall use the
following straightforward algebraic identity, which is valid for any normal state ¢
on any von Neumann algebra

B((f 9N (F — 0) = 56 6(5()"5(1).
Applying it for ¢ = >, f; ® y; we obtain

. . 2 1 . , 2
(¢ @idu)(Jo = (¢ @ idrm)(@)]") = 56 ¢ @ ida) (|6 @ idan) (0)]°)-
If cr denotes the center of Br, we observe that

(6 @idm)(p) = (¢ — p(cr)) @ Irn — 1rn @ (¢ — p(cr))-

Then, letting ¢ be the average over Bg we deduce the following inequality
2 . ) 2
H]{3 | — wBg| du (¢®¢®sz)(|(5®sz)(s@)| )
R

1
2

M

Sl Sl Sl

1
2
M

1
2

IN

(¢ ® idgrn @ ida) (|(<p —¢(cr)) ® 1gn |2)

[N §

(idrn @ ¢ @ idpq) (|1Rn ® (p — ‘P(CR))|2)

M
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1
2
™

= V2|(@@idu) (e - elen)])

In order to estimate the latter term, we use integration by parts to obtain

1 n
e(x) —p(cr) = /o Z O (t(x — cr) + cr){(z — cr,ex)dt

k=1

/ (T2(r,) ® idrn) (qr(2)Ve(t(z — cr) + cr) qr(z)s(z — cr) ) dt
’ Ern A() B

for 2 € Br. By the operator-convexity of | - |2, we find the inequality below

[ 1o omelan}, < Va( [ 160 it (Bxe (AR )’

1 1
< \@(/0 HA(t)”%(]F")@LQO(R")@Mdt) 1Bl 2(F,)&Loo (R7)-

Now we observe that ||A(t)]] < ||A(1)] for all 0 <t <1, so we conclude that

2. |2
|£ lo-voifau], < VEIBlc,
Br M

Finally, Voiculescu’s inequality [72] claims

ls(W)ll e,y = 2llAlen,
so that || B|lzr,) <2 sup |z — cr| = 2R and the proof is complete. O
r€EBR

19 ®1)(Void H .
(1®gr®1)( M) (©) LB (B EM

Remark 1.7. Recall that

lallBmo.(re) ~  lloe(a)llBmo. (o)

T oweo H (]éR |06 (a) — o6(a)s, | du)%

Re’
According to Proposition [I.6] for M = Re, we deduce
s swR|a 1)(V ®id |
lallevocme) = supR|(1@ g ® (V@ idro)ooola)| o o) amare
= su RH1® ®1)(id ®oe)o Vel(a .
R>13 (1®qr ® 1)(idgr,) e)oVe(a) LED)DL o (R ERe

Remark 1.8. Given 2 < p < oo, we have

1
HV@ ||L,,(L(IF )®Re) H( 8@a 8@a) )2 Ly(Re)

- (S etaroga)’

L:D(R('))

from the operator-valued form of Voiculescu’s inequality [40] [71]. Let us recall
in passing that this norm equivalence holds in the category of operator spaces and
moreover, the constants do not depend on the dimension n. This justifies our choice
of free generators in the definition of Vg. An alternative choice would have been
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to work with Rademacher variables or matrix units, but the former does not lead
to the same norm equivalences for p = co. If © = 0 we get

1Yoy ~ | (kzn:_l |a§f|2)%

Lp(R™)

1.3. Quantum Euclidean variables. We consider other characterizations of Rg
in terms of the infinitesimal generators of u;(s). These unbounded operators play
the role in Re of the Euclidean variables z; in R". We will use them to study the
quantum analogue of the Schwartz class, to give an intrinsic characterization of the
quantum distance dg and to deduce the algebraic structure of Reg.

1.3.1. Another approach towards Reg. Define

1
T = 5 % s:O(Uj(S)) for 1<j<n,

with w;(s) the generating unitaries of the quantum Euclidean space Re. These are
the (self-adjoint) infinitesimal generators of the one-parameter groups of unitaries
(u;j(s))ser given by Stone’s theorem and may be regarded as quantum forms of the
Euclidean variables. Namely, when © = 0 the one-parameter unitary group u;(s)
is composed of multiplication operators by the Fourier characters x — exp(2misz;)
and

2misT )

2mix; = Os(e Lo

The operators xg ; enjoy some fundamental properties of the Euclidean variables.
Proposition 1.9. The following results hold:

i) The generators xg ; satisfy for 1 < j,k <n

5 Ok & uj(s)ur(t) = 62”i@j’“3tuk(t)uj(s).

ii) Recall the definition of the quantum Schwartz class

So={do(f): f € SEM}.

The infinitesimal generators xe ; are densely defined unbounded operators
affiliated to Re. Moreover, in the GNS representation on La(Re) we find
So C dom(ze ;) and ze ;Se,Sere,; C Se. More precisely

[xe,j, x@,k] =

J—1

1 .

zore(f) =Ao(D6 ,;f) where D§ ;= Y ©;,Me, — %ag,
k=1

No(f)re ;= Ae(Do ;f) where Dg ;= > @ingﬁﬁag,
i=j+1

for f € S(R™) and My, f(§) = & f(§). In addition we get [Déyj, Dg ] =0.

iii) Let (zo,;); and (ye,;); be the infinitesimal generators associated to Re ®1
and 1 ® R respectively. Then, we may relate the quantum distance dg
with these quantum variables as follows

de = (an (e, — ye,j)Q)%-

Jj=1
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Proof. All the assertions are quite standard. Assume [zg ;,ze k] = (;);’: and define
the maps ¢;(s)[X] = exp(2misze ;)X exp(—2misre ;) = u;(s)Xu;(—s). Recalling
that ¢;(0) is the identity map and noticing that

d .
7 ($i(9)) = 2mi (x@,j%'(S) - %‘(S)x@,j)a

we deduce ¢;(s)[X] = exp (27isd;(X)) for the derivation 6;(X) = [ze ;, X], so that

(2ris)™
uj (s)u(Buj(—s) = Y =0} (un(1)).
n>0
Consider the map given by O,z = 2mize i, so that 0;(zjk) = [re,, 2k =1

and J;(h(zjx)) = h'(2k). Since uy(t) = exp(2mitze i) = exp(tO;rz;x) = h(zjr) we
deduce the identity

7 (uk(t)) = b (zj) = (tO5) ur(t)

which yields wu;(s)ug(t) = €2™®ikstyy (t)u;(s) as desired. Reciprocally, assuming
this commutation relation we express the commutator of zg ; and xg . as follows

1 d?
[ze,j,To k] = ar® dodt | e—es (uj(s)up(t) — u(t)u;(s))
1 & 2mi0 st 2me O,k
— 472 dsdt s=t=0(e _1)uk(t)uj(5) = Ty ik T 5o
Regarding the second assertion ii), the first identity can be justified as follows
1 d
zo, e(f) = i ds S:O(Uj(s))Ae(f)
1 d
= 5D (s)A d
271 dsls=0 Jgn F(&)u;(s)Ae(§)dg
1 d T . O..s
= Tm% s:o/ f(f)eQ k< Oik 5’“/\@(€+sej)d§
L d T . O..s
= 37 d5 oo - f(&—- Sej)e2 k< Ok €k)\®(§)d§
1 : ,
= gml [ CriXena) rene@ds - [ alrore]
" k<j

The second identity is proved similarly. This shows that Sg is a common core of
the zg; for 1 < j < n. Thus, it just remains to show that [Dé,j’Dg),k} =0 to
complete the proof of ii). This is clear for j < k, as for j > k
O. ,
’ . k k
Db Doxl = —52v (104 Me)) + (M, 08]) = 0.

Finally, since dg = mo(| - |) and g is a *-homomorphism, assertion iii) reduces to
show that me(z;) = e, — Yo, for 1 < j < n. This can be proved again with a
differentiation argument as follows

_ 1 d 2mis(-,e;)
mo(rj) = gogil, el )
- 14 (Mo (sej) ® Ao(se;)*)
T 2rmidsls—o\ OV oL
1 d 1 d
= (grisli®) @1+1e (go o] wi9) = ves —ves,
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according to our definition of z¢ ; and ye ; in Re ®1 and 1 ® R’ respectively. O
Remark 1.10. A few comments are in order:

® Re is generated by the spectral projections of the quantum variables zg ;.

e The Euclidean Schwartz S(R™) class is the space of infinitely differentiable
functions f : R™ — C which satisfy that f and its derivatives decay at
infinity faster than polynomials. In Re, we find

( ﬁ me,jr)ag(/\e(f))( ﬁ I@,ks)

1<r<mg 1<s<m,

— —
= A@[( H Dé),ﬁ)( H Dg),ks)M(%rif)ﬁf} € Se,

1<r<my 1<s<m,

which admits other representations since Dé,jr and Dg , commute. It
shows that the quantum Schwartz class is also closed under differentiation
and left /right multiplication by quantum polynomials.

e Proposition iii) establishes a canonical Pythagorean formula for the
quantum Euclidean distance dg in terms of quantum variables. This shows
that the metric dg that we shall be using along the rest of the paper is not
induced but somehow intrinsic to Rg. This gives some evidence that our
main results in this paper are formulated in their most natural way.

e We also note in passing that the quantum variables zg ; = zo, ; —yo,; from
Proposition [1.9]iii) are pairwise commuting for different values of 1 < j <n
since

[z0,5,70,k] = z0,j®zek— 20k ® 20,
[ze,j,TokRe ® 1+ 1® [yo,,¥0.klry = 0.

1.3.2. On the quantum Schwartz class. Using quantum variables, we are ready to
prove some fundamental properties of the quantum Schwartz class. The analogues
in the commutative case © = 0 are rather easy to prove. Let us consider the map
jo : S(R™) — Se given by

jo [ Fe)em 9 ag) = [ fe)re(€)ds,
R® R®
so that jo(f) = /\@(f). By Remark and Plancherel theorem, jg extends to
an isometric isomorphism Lo(R™) — L2(Re). We shall also need the space Sg
of continuous linear functionals on Sg, tempered quantum distributions. Finally
recalling that the quantum variables xg ; are affiliated to Re, we set for 1 < j <n

"
Re,; = <spectral projections of x@,j> C Re.
We write R; for Rg ; with © = 0. We begin with an elementary auxiliary result.

Lemma 1.11. We have:

i) je(zj) = x’éd in the sense of distributions.

ii) jo : Rj = Re,; is a normal x-homomorphism.
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Proof. Every element in Sg may be represented in the form jo(f) for some f in
the Schwartz class of R™. On the other hand, since jo : La(R™) — L2(Re) is an
isometric isomorphism, we define j@(x;?) € S5 by

o(eh)udo(N) = [ ahf(@)do.
Thus, it suffices to see that this quantity coincides with
Te (-Tl(i),J]@(f» =T (Ig’j)\@(f)) =To ()\@(<Dg’j)kf )) — (Dé’j)k'f(())

for Dé’j = qu O;sMe, — ﬁ&f, by Proposition A simple computation
shows that this is indeed the case. Next, assertion ii) follows from the fact that
Re,; ~ Lo(R) for 1 < j < n no matter which is the deformation ©. Indeed,
in order to use the same terminology as in the proof of Proposition we shall
assume for convenience that j = n. Then, we may identify Rg , with the subalgebra
1 %3, , R of the von Neumann algebra Rz xg,_, R, which in turn is isomorphic to

Reo. Then, it is a well-known fact that we have 1 x5, _, R~ L (R). O

Proposition 1.12. If© € A,(R) and v > %, we find

—

H (1 + |$®,j|’y)_1 € Ly(Ro).

1<j<n

In particular, the quantum Schwartz class Se C L,(Re) for allp > 0.

Proof. According to Lemma
-1 1
1 Mo ( )
( +|x®7]| ) Je 1+|m‘7|v

Let us proceed by induction on n, the case n = 1 being trivial. According to
Proposition To coincides with the crossed product trace 74 in Rz x R which
in turn factorizes for operators with separated variables. This means that

T@(’ ﬁ (1+ |m(—),j|7)71’2)

1<j<n
o
12 dz
C (T e ) [t
1<j1:£1( ") r (14 [x]7)?

and we conclude by induction. To prove the last assertion, since Sg C Rg it clearly
suffices to show that S¢ C L,(Re) for p small. Assume p = 1/m for m € Z; and
let

1<j<n

According to Holder’s inequality, we find for f € S(R"™)
e, < llQ7M,[lRre ()l
—

= TeH H (1+ |ze,

1<j<n

Sl

D77 e @iob 10
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where Q[Dé, ;] is the differential operator associated to () according to the second

point of Remark Since Q[Déyj]f € S(R™), the finiteness of the quantity in
the right hand side is guaranteed by the first assertion in the statement. (]

Proposition 1.13. We have:

i) Se is weak-+ dense in Re.
ii) Se is dense in L,(Re) for all p > 0.

In particular, the same density results hold for Ao (L1(R™)) C Re.

Proof. Since finite sums of the elementary frequencies Ag (&) are weak-* dense
in Re by construction, it suffices to approximate Ag(£) by elements of Sg in the
weak-* topology. In other words, we need to find a family of functions ¢, . € S(R")
so that

giir%)T@((A@(ng,g) —Xe(§)a) =0 forall a€ Li(Re).

If B.(€) denotes the Euclidean ball around ¢ of radius €, let ¢¢ . be a smoothing
of the function |B.(£)|™' xB.(¢), so that Lebesgue differentiation theorem holds for
the family {¢¢. : ¢ > 0}. Now, since Sg is dense in Ly(Re), the same holds
for SoSe C L2(Re)L2(Re) = L1(Re) and we may approximate a by a sequence
Xe(f;) € Se. Recall that

Ao(6ee) = Ao, <1+ [ dec(Odc =2
Given ¢ > 0, there exists js > 1 so that |la — Ae(fjs)[l1 < /2. Thus
lim 76 (Ao (¢6,) — Ao(€))a)| < &+ | lim 76 (e (de.<) — Mo (€)e (i) |
On the other hand, since \g(£)* = e?™{&018) \g(—¢) we find
7o ((Ae(e.c) — Ao (€))Ne(fj5))
= ¢ e [5,(0) — e TTHEOE £ ()
= [ Qe f (O — 0 (),

where O, is the lower triangular part of ©. The expression above converges to 0
as € — 0. Letting 6 — 0 we conclude that Sg is weak-x dense in Rg. Let us now
prove that Sg is norm dense in L,(Re) for all p > 0. Since SeSe C Se, it suffices
from Hélder inequality to prove norm density in the case p > 2. Given a € L,(Re)
for some p > 2, we may approximate it in the L,-norm by another element in Rg
which is left /right supported by a finite projection. In other words, we may assume
that a itself belongs to Re and a = gagq for some projection g satisfying 7¢(q) < co.
Pick two sequences f;, gr € S(R™) satisfying that

w'-limAe(f;) =a and w*-limAe(gr) = ¢.
Jj—o0 k—oo
By Kaplanski density theorem, we may also assume that

sup ([Xe(f)lre + Mo (gr)lire ) <1+ flallrg < o0
3.k>
and both convergences hold strongly. Therefore, since a € Ly(Rg), given § > 0

there must exists ks satisfying [la(g — e (gk;))||l2 < . Moreover, once the index
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ks is fixed and since Ao (gk;) € L2(Re) there must exists an index js satisfying the
inequality ||(a — Ae(fj;)) e (gk,)|l2 < 3. Combining these estimates

|la = Ao (fis)re (grs) ||, < llala — Ao (gr,))||, + || (@ — Ao (fis)) A (gk,)|], < 6.
On the other hand, by the three lines lemma

_2 2
la=Re(fiNelgr)ll, < lla=Are(fi)relom)|l " o — Ao (iAo (gr,)]3
2 2 _2 9
< drfla- /\e(fjs))‘G(gks)Hio P < (2||a||1z@)1 P

Taking § — 0 we see that Sg is norm dense in L,(Rg) for p > 2. |

1.3.3. Structure of Re. We start by showing the very simple algebraic structure
of quantum Euclidean spaces Rg. Indeed, given © € A, (R) and according to the
spectral theorem, there exist di,ds € Z4 with di + 2dy = n and k1, K2, ... K4, €
R\ {0} satisfying the following relation for some orthogonal matrix B € SO(n) and
for ® the d; x d; 0-matrix

Z 0 1
o=8leo@n(, ,)|B=BaB"
Jj=1
A
Arguing as in Proposition iii) for n = 2, we find that
da
Ra = Lo(®)E(@BL(R)) ~ Loo(RY; B(Ls(R")))
j=1
da

1R
h
g
s
&
&
—~
h
8
7
X
e
=

~ Lo (R™; Loo(R%) x R?%)

is a type I von Neumann algebra. Since the commutation relations are determined
by Ao (€)Ae(n) = exp(2i(€, On)) Ao (n)Ae (€) it is tempting to set Aa(€) = Ao (BE)
to conclude that Reg ~ Ra is also a type I von Neumann algebra. This choice of
unitaries do not arise however from a family of one-parameter groups of unitaries
as expected. The right change of variables is z¢ — Bzg, where zg stands for
(zo.1,%0,2, ..., To,n), at the level of infinitesimal generators. If we want to take
exponentials to generate one-parameter groups of unitaries s — exp(2mis(Bzg);)
new extra terms appear due to nonvanishing commutators.

Proposition 1.14. The unitaries
Aa(§) = exp <7Ti > (G — (B§)j(B§)k@jk)>>\@(B§)
i<k
generate Ra. In particular, Re =~ Ra so that quantum FEuclidean spaces Reo
are always type 1 von Neumann algebras which are invariant under conjugation

by SO(n). Moreover, the traces coincide To = Ta and the one-parameter unitary
groups w;(s) = exp(2misza ;) = Aa(se;) have the form

w;(s) = exp ( — mis? Z B;fa@aﬁBﬁj>/\@(sBej).
a<f
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Proof. Consider the self-adjoint operators

n n
wa; =) Bizer =) BrTos
k=1 k=1

It follows from Proposition that the quantum Schwartz class Sg is a common
core for the family za ; with 1 < j < n. In particular, these operators are densely
defined in the Hilbert space Lo(Rg) =~ La(R™) =~ Ly(Ra). On the other hand, the
commutators are

1 1
[agwarl= Y Bialtea zes/Bsk = o > BjuOapBar = 57 ik
1<a,B<n 1<a,8<n

Therefore, Proposition [1.9 implies that R is the weak-* closure of the C*-algebra
generated by the one-parameter unitary groups w;(s) = exp(2misza ;) for j <n
or equivalently by the products

wi(&)wa () wa(én) = ] exp(@rigjza).

1<j<n

Consequently, if we can justify the equality

N
[T exp@rigson,) = exp (70 (&A% — (BE);(BEKO) ) Ao (BE)
1<j<n j<k

it will follow automatically that Reg >~ Ra as expected. The identity 7¢ = 7a and
the expression given for w;(s) also follow easily from the above equality. This is
proved from the Baker-Campbell-Hausdorff formula. Namely, since we know that
(A, TA k] = ﬁAjk we may use the simple identity below for operators X, Y with
vanishing iterated brackets

1
log (expXexpY) =X+Y + i[X,Y}.
Taking X; = 27mi€;xa ; we have [X;, Xy] = 27i€;£,A ji, so that

— —
H exp(2miza ) = H exp X;

1<j<n 1<j<n

— exp (% Z[Xj,Xk]) exp (iXJ)

j<k

= exp (mejkajk> exp (27ri zn:ﬁij,j)
j=1

i<k
= exp (Wiijkajk> exp (27Ti Z(Bﬁ)kx@,k)
i<k k=1

Using the same formula for the family Z; = 27i(B¢)ze,; we may conclude. O

1.3.4. A ©-deformation of 0. We finish this section with another local operator
acting on a given symbol a : R" — Rg. It plays a crucial role in the Hérmander
classes Z;’fé(R@) from the Introduction. The mized classical-quantized derivative
is given by

D%, cal€) = Ao (€)* 2 { Mo (E)a(E)Ae (&) Ao (€).
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Lemma 1.15. We have
0 cal€) = 0la(§) + 2mi[we 5, a(8)].

Proof. Note that

a N A —2rmis(e.6,e) ,
ds s:0>\®(£ + Sej) o Ae(f)(ds 3:06 A®($€])> ’
d

e ko i 2mis(€,0 e;) Cem. *
| Delg+se) = (] e No(—se;) ) Aa(€)".

A simple calculation then yields that

04 al§) = 2o(e)" (5] _ ho(€ + ss)ale + sepra(e + 5e5)" Aa(®)

= (2mize,; — 2mi(¢, 0 ¢;))a(§) + (9%(1(5) + a(&)(2mi(€, O e;) — 2mize ;).

Eliminating vanishing terms and rearranging gives the desired identity. (]

s=0

The commutator vanishes in the Euclidean setting © = 0. Therefore, we should
understand de ¢ as a ©-deformation of the classical derivative J¢ which —as it is
indicated by the result below— is also very much related to the quantum derivatives
Oo. Thus, we get a ©-deformation of J¢ by Je.

Lemma 1.16. Given ¢ € Sg C Ro we have
1< k
[z, ¢] = i kz_l 01 0g -
In particular, we obtain the following estimate

IR 3
|| [.T@,j, 90] ||Re < %(Z |@jk‘2) 2
k=1

Proof. Observe that

[re] = [ FOres (@] ds= [ FO)5-7

2w ds

Using [Me(sej), Ao (€)] = e(se;) o (€)(1 — e2™5(6:9¢)) and applying the Leibniz
rule, we easily deduce the first assertion. The second one is straightforward. ([l

(3 iokek)’
k=1

Re

[Ne(se)), Ao (£)] dé.

s=0

The last estimate above provides a uniform and linear bound that explicitly
gives the convergence 8{_)’5 — 82 in the point-operator norm when © — 0. We
also recall that the assumption ¢ € Sg is just needed a priori and can be extended
to any ¢ in the weak-* closed domain of Vg.

2. Calderén-Zygmund L, theory

We now introduce kernel representations of linear operators acting on a von
Neumann algebra and develop a very satisfactory Calderén-Zygmund theory over
quantum Euclidean spaces. We shall prove L,-boundedness from Ly-boundedness
and Calderén-Zygmund conditions for the kernel. Ls-boundedness will be analyzed
below in this paper for pseudodifferential operators. Our kernel conditions are given
in terms of the intrinsic metric and gradient introduced above and resemble very
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neatly the classical conditions. This is the first form of Calderén-Zygmund theory
over a fully noncommutative von Neumann algebra. We refer to [42] [56] for related
results over tensor product and crossed product algebras containing an abelian
factor. An algebraic/probabilistic approach —lacking the geometric aspects of the
present one— will be presented in [44] for more general von Neumann algebras.

2.1. Kernels and symbols. Given a measure space ({2, ) and a linear map T'
acting on certain function space X over €2, a kernel representation has the following
form for functions f living in some dense domain in X

ﬂﬂ@=l}@wﬁ@mmm

where the kernel k : Q x Q@ — C is only assumed a priori to be defined almost
everywhere and measurable. Now, given a noncommutative measure space (M, 7)
composed by a semifinite von Neumann algebra M and normal faithful semifinite
trace 7, the kernel representation takes the analogous form

Trp = (ido7)(k(1®¢)) = (id2 7) (1 @ 9)k)

with the only difference that k is now an operator affiliated to M®&M,p, instead
of M®M as one could have expected. This novelty —undistinguishable in the
abelian case, where M = M,,— is crucial to develop a consistent theory. Let us
begin by showing the fundamental properties of these kernel representations. This
will simplify the task of justifying our choice of M&M,,. Recall the products -
and e in M, and M®M,,, respectively from Section above.

Remark 2.1. Rigorously speaking, the map T} so defined should send operators
¢ affiliated to M, to another operator T} affiliated to M. Of course, this is not
an obstruction since the set of affiliated operators coincides for M and Mg, and
TM = TM,,- We will regard ¢ as affiliated to M, so that T}, becomes a linear map
over the noncommutative measure space (M, 7).

Lemma 2.2. The following properties hold:
i) Adjoints and composition
Ty = Thipry-  with flipla®b) =b® a,
Ty 0T =T with k= (ido7@id)((lho1)(1ok)).
ii) Schur lemma and factorization
Tinerse = (d®7)(ka(1®¢)ks),
[Tnonn = L2(M) = La(M)| < [[(id @ 7) (eakid) 34| 7 @ i) k)|
[ Thnoks : Loo(M) = Loo(M)|| < ||(id @ 7)(knk)|1Z, || (id @ 7) (ki) |12,

ili) T s completely positive if and only if k is positive as affiliated to MOM,p,.

IN

IN

Proof. We have
(Teprw2) = r((id27)(k(1® 1)) 02)

- T((T ®id)((1 @ )k (p2 @ 1)))
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= (el (Hipk) (1o e)) = (o1, Tivz),
which proves the kernel formula for the adjoint. Regarding the composition
T, (Tiyp) = (id®T) (k1 (1@ (ide7)(k(1® @)))
= (deren(ke)lek)(1eley)
— (id® T)([(@d ®7@id)(k ©1)(1® k)] (1@ <p)).

In both cases —adjoints and compositions— we have regarded one more time the
involved operators as affiliated to M or M, according to the context, as we explain
in Remark Next, the factorization identity in ii) uses in a fundamental way the
product e in MM,

Tipokny = (id@7)(ka o ks(1® ¢)) = (id@ 1) (ka(1 @ ¢)kp).
Namely, in the last identity above the first coordinate remains unchanged since
1 ® ¢ does not affect the product in M ® 1, whereas the second coordinate in
1 ® M,y is explained using its product - as follows

T(a-B-@)=1(a-pf) =T1(ap).
Let us now prove the announced inequalities. By the Cauchy-Schwarz inequality
for the operator-valued inner product (z,y) = (id® 7)(z*y) over the von Neumann
algebra M®M,, we note that
. BN , X . *
|(id@7)(a"y)|" < [|(id @ r)(z )|, (id @ 7)(y"y),
see for instance [49, Proposition 1.1]. In particular

’ 2

(id® 1) (ka(1® @)kp)

I(id @ ) (kaki)| o (id @ 7) (K (1 @ " @)k

The Loo-estimate announced for T%, o ¢ follows immediately from the inequality
above. In order to prove the Lo-estimate, pick a unit vector ¢ € Lo(M). We just
need to take the trace and apply Fubini

T(|TkA.kBg0’2) < H(zd ® T)(kAkl*\)HM (T ® T) (kg ekp(l® @*gp))
[(id © 7) (kak) | o, T((T @ id)(k e kB)cp*go)
= ([ @ ) kaki)||y((r © id) (kikis )0

[(id @ T)(kakd)|| o[l (7 © i) (kkis) |-

It remains to prove the last assertion iii). As an operator affiliated to M®M,,,, the
kernel k is positive iff there exists x also affiliated to M®&M,p, so that k = k* e K
and the factorization identity above gives in that case

Tef = (ido 1) (" (1 ® ¢)K)

which is clearly a completely positive map. Reciprocally, let Ty be completely
positive. Assume for simplicity that T} is well-defined over projections in M.

|TkAokBSﬁ’2 =

IN

IN
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Then, given any pair of projections p,q € M we know from positivity of T} that
7(Tr(¢)p) > 0. However

m(Ti(g)p) = T((id 1) (k1 ® Q))P)
= r(Gaer)(ke(1@q)p)
= r(@den)(kepoq)) = ror(kepeq).
The positivity of the last term for arbitrary projections implies the assertion. [

Remark 2.3. Lemma [2.2]i) also holds for kernels affiliated to M®M, contrary to
points ii) and iii). On the other hand, recall that the norm of a completely positive
map is determined by its value at 1. The Loo-estimate in Lemma ii) rephrases
it in terms of kernels when k > 0 and ks = kg = vk, so this estimate provides a
generalization for nonpositive maps. Also, the Lo-estimate generalizes a classical
result for integral kernels known as Schur lemma [66, Lemma in page 284]. Finally,
the use of kernels k affiliated to M®M,,, —essential for the properties in Lemma
ii) and iii) above— is consistent with the duality

L1 (M)* == Mop
via the pairing (x,y) = 7(xy), we refer to Pisier’s book [60] for further details.

Remark 2.4. Ignoring for the moment more general kernels which will arise as
tempered distributions, let us assume that k is affiliated to Re®@Rg and admits
an expression

k= / F(Em)ro(€) @ Ao ()" dulé,n)
Rn xR™

for some measure p on R”xR™. Noticing that 7¢ (Ao (f)Ae(§)*) = f(§) for f smooth
we may interpret the kernel k as a bilinear form where —regardless Ao (&), Ao (n)
are not in Ly (Re)— we put Ao (§) @ Ao (n)* ~ |Ae(£)){Ao(n)| following the bra-ket
notation. This is easily checked for Dirac measures u = d¢, n,

(Tr(No(f1)): Ao (f2)) = 7o (Tu(Xa(f1)) Xe(f2)) = E(&0,7m0) f1(n0) f2(€o)-

We will approximate general measures as limits of finite sums of Dirac measures.

This paper is devoted to investigate singular integral operators over quantum
FEuclidean spaces, both in terms of Calderén-Zygmund conditions for the kernel and
Hoérmander smoothness for the associated symbol. Let us therefore briefly describe
the kernels and symbols we will be working with. There exists a very well-known
relation between kernels and symbols of classical pseudodifferential operators, the
reader can look for instance in [66 [69] or almost any textbook on pseudodifferential
operators. Indeed, given

Vo) = [ ale.F© e,

it turns out that U, f = T f for

k= (id® FY)(a)(z,z — y) = / oz, €)e2mile=1E) ge.
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Given n > 2, let us know consider a n x n deformation ©. As explained in the
Introduction, noncommutative symbols over quantum Euclidean spaces are smooth
functions a : R™ — Sg and pseudodifferential operators look like

W06 = [ a©f€e()de

/ “a(©)7e (Ae(NAe(§))Ne (€) d
= (idere)[( [ @9 ® 106 ®ra(e))dt ) (15 re ()],

The kernel k
Thus, we find formally that ¥, (Ao (f)) = Tk (Ao (f)) for

kZ/Rn o k(& m)Ae(€) ® Ao (n)* (&, m) =/ a(€)he(£) @ e (€)*de.

n

Reciprocally, we also have the following expression for a

a©) = [ FEm (1 o) Ao (€))dn

when p is the Lebesgue measure in R™ x R™. The algebra of pseudodifferential
operators is formally generated by the derivatives 9, and the left multiplication
maps Ae(f) = ze ;e (f).

Remark 2.5. Given a : R" — Rg define

T (N (f) = [ f(©)Ne(©)al(é)dE.

R‘IL
Both theories for right and left pseudodifferential operators are analogous. In fact,
if we denote by S the bounded operator in L,(Re) given by extension of S(z) = z*
we have that
Swleft — @rieht s where  b(¢) = a(—£)*.

The proof of such intertwining identity amounts to a straightforward calculation.

2.2. CZ extrapolation: Model case. We are ready to prove L,-boundedness of
operators associated to elementary kernels satisfying cancellation and smoothness
conditions of Calderén-Zygmund type. Our kernels will belong along this paragraph
to So ®alg Sg , so that

b= [ [ wi@mssmra(e) @ No(n) ddn,

where the sum above is finite and k;; € S(R™). We will temporarily refer to
these kernels as algebraic kernels. Of course, in this case T} is L,-bounded for
1 < p < oo with constants a priori depending on the family x;;. Our goal is to
provide Lo, — BMO estimates with constants which only depend on structural
properties of the whose k since this will allow us to include general singular kernels
below. The following result is the basic core of this paper. We shall use the quantum
metric dg defined in Section [[.2.1} the notation Vegk to denote the operator

(Vo @ idrer) (k) € L(F,)@ReORY

for k € So ®az Sg and the dimensional constant K,, = %(n +1).
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Theorem 2.6. Let k € Sg ®aig Sg and assume:

i) Cancellation
HTk : LQ(R@) — LQ(R@)H < Al.

ii) Kernel smoothness. There exists

1 1
<K,—=<p8<K,+ =
@ 5 </ *3

satisfying the gradient conditions below for p = «, 8
A5 @ (Vo @ idry ) (k) 0 4571 77| < Az,
Then, we find the following Lo, — BMO, estimate
| Tk - Loo(Re) — BMOc(Re)|,, < Cula, B) (A1 + Az).

Proof. Since k is an algebraic kernel, T}, is bounded on Rg. Moreover, 17 is also
bounded on L;(Rg’) and T}, is a normal operator. On the other hand, the weak-*
topology in Rg is stronger than the inherited one from the weak-* topology in
BMO.(Re). Therefore, by Kaplansky density theorem, it suffices to estimate the
norm of T} on the weak-* dense subalgebra Sg. Given ¢ = Ag(f) € So

(f loattieo) - oeriom an)| .

where the second supremum runs over the set Qr of Euclidean balls B of radius
R and center cp,. Recall that og(Tkyp) = Tk, ¢ for k, = (0o ® id)(k). Now let
¥ : R™ — [0,1] be a Schwartz function which is identically 1 over the unit ball
B;(0) and identically 0 outside its concentric 2-dilation B5(0). Define

Yr(z) = 1#(96 ;P(;BR)

to decompose the kernel k, = (0o ® id)(k) as follows
ke = ks o 77@(¢R) +ko o (1 - W@(wR)) .
ko1(R) ko2 (R)

Note here that 7o (¢r) ~ 1 ® Te(¢r) is an element of Re®R¢ and only k, has a
component in Lo, (R™). We claim that the following inequality for k,1(R) holds up
to constants independent of the ball Br € Qr and the radius R

1
2 2
(2.1) H(][ Ty (r) 2 — (T, y (r)) B | d#) H < CoAdllellre -
Br Re

ITkpllBMO. (Re) ~ SUP SUp
R>0BreQr

Before proving this first claim, let us continue with the argument. Of course, it
would suffice to give a similar estimate for k,2(R). To do so and according to the
Poincaré type inequality in Proposition [L.6|and its relation to BMO.(Re) outlined
in Remark [T.7] it suffices to estimate
R[| (1@ r @ 1)(V @ idro) (T, ,009) |
Tk ()

for gr = 1p, with constants independent of R. Since

(V ® ZdR(_)) 0o = (Z‘d[{(ﬁrn) X O’@) oVe

L(Fn)®Loo(R")®Re
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we may rewrite Tk () as follows
Tilg) = (1©4a ® (Y ®id)((id% @ 70) (ke (R)1 © )
= (1®we1)(id” 7o) ((V ®id®*) (0o @id)[k] e (1 — Vg)(1%* © so))

= (id** ® 7o) ( (1®qr ®1%%)(id ® 0 ®id)[Vek] e (1 — UR)(1%°* ® <p)>
K

with K € L(F,,)®Lo(R")@Re®@Rg and Ui = me(¢r). For simplicity, we shall
use a more compact terminology and write K = ggV3k o (1 — Ur). We may now
decompose K as follows

K=qrUreVgke(1—-VUgr)+qr(l—VYr)eVike(1l—UR).

K, K>

We claim that the following inequality holds for j = 1,2

A,
& e,

(2.2) HTKj(@)|‘L(Fn)®Lw(Rn)®R@ < (e, B)
Our discussion so far has reduced the proof to justifying (2.1) and (2.2):
Proof of (2.1). It is clear that
2 .\
(/ e du)
Rn

On the other hand, given T': S¢ — L5(R")®Re we need to introduce its module
extension 7" : So®Re 2 Ao (f) @ p — T(Ao(f))(1®@¢) € L§(R")@Re. Recall the
following (elementary) algebraic identity

(id® 7o) (ks @ (a®b) @ (L@ ¢)) =Tk, (¢b)(1®a) = T; ((¢ @ Dflip(a ®b)).

Then, noticing that k is assumed to be an algebraic kernel in Sg ®aig Sgp7 it is not
difficult to check that the above formula extends from elementary tensors a ® b to
arbitrary elements in Re®Rg . This yields

Ty (R)® = Thyewr e = i, ((¢ @ Dflip(me (Yr))).

In particular, we easily obtain the following estimate

1
T, 2d)2
H(/Rn!kﬂ(w! 1) s

< |7, s 15(Re)ERe — L5®"ERs || [fiip(re ()

2 3 _n
H(]f Tk (R)® = (Thy (R) %) Bt | dl‘)ZHR <ChR72 .
Br <) =)

Ls(Re)@Re ¥R
According to Lemma
Hﬂip(ﬂ'@ (¢R))|

since the argument given there for mg also holds for flipomg. Therefore, it remains
to estimate the cb-norm of T[CU. We claim that it is bounded by Aj, the La-norm
of Ty. To justify it, we introduce the map

LE(R(—))@R(—) S HwRH[Q(Rn) S CnR%

W L§(R")®@Re > /Rn expe ®a(§) d§ — . expe ® Ao (§)a(§) d€ € L3(R")@Re.
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It is straightforward to show that W extends to an isometry. On the other hand,
letting jo : expe — Ae(§) be the La-isometry introduced in Section we
observe that

W(is ©id)e(f)@a) = W( [ f(E)expc@ads)

= f(&) expe @ Ao (§)ads = oco(Ae(f))(1®a).

RN
Identifying Ty with Ag(f) for some smooth f : R™ — C we obtain the identity
W(j&Tk ®id)(p ® a) =T}, (¢ ®a). This a fortiori implies that the cb-norm of the
map Ty : L5(Re)®Re — L5(R")®@Re is dominated by the La(Re) — La2(Re)
norm of T}, as desired. This completes the proof of claim .
Proof of . Let

De = (J@ X id)(d@)
and decompose the kernels K; for j = 1,2 as follows

K, = (qR Uy oDC:)O‘) . ( 2 e VI .Dg’) . (D(ga' o(1- \IJR)qR),

K; = (qR (1—-UgR)e Déﬁ) . (Dg oeVike Dg) . (Déﬁl o (1— \IIR)qR),
with o’ =n+1—a and f/ =n+1— . Using the terminology K; = A;eB; e C;
for the brackets above and according to the operator-valued (trivial) extension of
Lemma we find for Bg = L(F,,)®L(R")@Re that

1 1
Ik, : Re = Bo|| < [[(id @ 7o) (A; A7)l 5, 1By 5, 0 e I56-

(id ® 70)(C5C;) | 2

Since B = (0o ®id)(d e Vekedyt' ™#) for p = a, f and ge is a *-homomorphism
we deduce from the hypotheses that ||B1| + ||Bz|| < As. Therefore, recalling that
we have a + o/ = f+ 8’ = n + 1, it suffices to prove the following inequalities for
the terms associated to A; and C;

| (id ® 7o) (A1 A*) e < Cn(a)RZ™,
| (id ® 70)(C} Cl)HBo < Cu(a)RZ™,
H(id@T@)(AgA*)HB < Cu(B)REA,
| (id @ r0)(C5Ca)|l5, < CalBIRE,

for any a < K,, — % < B <K,+ % We will justify the above estimates for A;
and Cq, the proof of the others is very similar. Let Agn f(z,y) = f(x + y) be the
comultiplication map on R™. According to Lemma

(U@ ® id) o = (id@ 7T@) o Agn.
In particular, A} = (id @ 7o) (Arn (| - |7*)gr(1 ® ¥r)) and we find

|(id ® 7o) (A1A})]| 2

s = [lAd

Loo(R™)@Re®L5 (R
|}id®7r@” (R L TIC L U] PRyt

where id®7g : Loo (R™)QLS(R™) — (R”)@’R@@LC(’RO ). Its norm is dominated
by the cb-norm of e : L§(R™) = Re®L5(RY ). We already proved in Lemma
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the cb-contractivity of g : L§(R™) = L§(Re)®@Rg and the exact same argument
can be trivially adapted to show that ||id ® mg|| < 1 in the right hand side of the
above inequality. It then remains to estimate

sup QR(z)(/ |z + y| 23 (y) dy)2 < (/B o \y|*2ady>2 <RE @
n 5R

reRn

for < Z. In the case of Cy = (id ® Te) (Arn (| - = Ygr ® (1 — Yr)) we get

sup QR(QJ)(/” |z + y| 72 (1 — ¢r(y))? dy)é < (/B

1
IyI‘Q"‘/dy) TSRETY
zeR™

®(0)
for o' > %. The same argument applies for Ay and Cs. This proves claim (2.2)).

Conclusion. The argument above proves that Ty : Loo(Re) — BMO.(Re) defines
a bounded operator with norm dominated by C,,(«, 3)(A; + Az). The exact same
argument can be used after matrix amplification to prove that the cb-norm of T}
satisfies the same upper bound. This completes the proof of the theorem. (I

Remark 2.7. Our kernel conditions in Theorem [2.6] are natural extensions of the
classical ones [34], 66]. The price for noncommutativity is a concrete and balanced
left /right location of the exponents «, 3, which of course is meaningless in the
commutative setting. These surprisingly transparent Calderén-Zygmund kernel
conditions are possible due to the very precise geometric information on Reg that we
collected in Section [1} Our results below for pseudodifferential operators crucially
rely on these conditions. For more general von Neumann algebras, the resulting
conditions are necessarily less transparent [44].

2.3. CZ extrapolation: General case. If Sy denotes the space of continuous
linear functionals on Sg —tempered distributions— the aim of this section is to
generalize our Lo, — BMO, estimate in Theorem for continuous linear maps
T € L(Se,Sg) to incorporate actual Calderén-Zygmund kernels. This imposes a
careful analysis of tempered O-distributions and how this affects our former kernel
manipulations. By symmetrization, interpolation and duality, we shall conclude by
proving the L,-boundedness of quantum Calderén-Zygmund operators.

2.3.1. Tempered distributions. The Schwartz class S(R™) comes equipped with the
locally convex topology determined by the seminorms po g(f) = sup,cgn [2%05 f(z)|
for f: R™ — C and all «, 8 € N*. The quantum analogue for ¢ = Ag(f) in Sg was
described in Remark In particular, a sequence ¢; = Ag(f;) converges to 0 in
Seo as j — oo when

]151010 HP(xe)ag()\e(fj))Q(@”@)HRe =0

for all 8 € N™ and all quantum monomials

— —
P@e)= [ wey and Qe)= [[ wenr.-
1<r<mg 1<s<m,.

By Remark [I.10] this holds iff

le% ‘)\@K ﬁ Déd’r)( ﬁ D(TB,kS)M(ng)ﬁfj]HRe:O.

1<r<my 1<s<m,



34 GONZALEZ-PEREZ, JUNGE, PARCET

Lemma 2.8. If 01,0, € A,(R) we find that

llim )\@1 (fj) =01 891 ~ Alim )\@2 (fj) =01n 8@2.
j*}OO ‘]*)OO

Proof. Let us set
PP.a.5(Ne(f) = ||P(xe)dd (Mo (£)Qwo)| 5,

and assume that lim;_, p%l 01 .51 (A(_)l(fj)) = 0 for all 81 € N™ and all quantum
©1-monomials Py, ;. Given 5 € N™ and quantum Os-monomials Ps, ()2 it then
suffices to show that

lim p1(2227Q2752 ()\@2 (fj)) =0.

Jj—o00
According to Remark , we may find two commuting operators P [Dé% ;] and
Q> [Déb j] —sums of modulations and derivations— satisfying the following identity

P22 @ (Mes (1)) = | e (P2ID, Q2108 1M (aricyss )|
Applying Riemann-Lebesgue and Cauchy-Schwartz with B(§) = 1+|¢|™ and B~1(&)
P2 0um0en) < |PoID6, JQulDE, 1 Mmier |,
HMB(g)P2 [DéQ,j]Q2[D(Ta2,j]M(2m§)5z fj HLZ(R")

= H)\e)l (Mpe) Ps [Dézﬂ-]Qg[DE)QJ]M@Mg)ﬁ2 )

R,

A

‘Lz(Rel )

By Proposition there exists a quantum O;-polynomial Ry (ze, ), whose inverse
lives in L2(Re,). Therefore, multiplying and dividing by it on the left hand side
yields

p%,QQ,ﬁQ (Ao, (f5))

A

|Ri(@on)r6, (Mb Do, (P)De,(Q2) Merers: )]
©1

H)\Gl ( Ry [Dél,j]MB(E)PQ [DéQ,j]Q2[Dég,j]M(zmg)ﬁz fj ) H
A(f5)
Using standard commutation relations, A(f;) may be written as
A(fj) = Zk Plk[Dél,j]Qlk[Dg)l,j]M(2m’£)51k fj

for finitely many £1x € N and quantum ©;-monomials P;; and Q1. O

Re,

A linear functional L : Sg — C is in S when it satisfies that lim;_, o (L, ;) =0
for any sequence ¢; € Se converging to 0. Using the unitaries jo : exp; = Ao (§)
we construct je,e, = jo, ©J§, : Ae,(§) = Ae,(§). According to Lemma and
given L € Sg , this means that (jo,e,L, e, (f)) := (L, Xe, (f)) defines a tempered
distribution in Séz. Since this process is invertible, it turns out that the theory of
tempered distributions in Rg is formally equivalent to the classical theory.

Let us now consider continuous linear operators T' € L(Se, Sg). Of course, since
the topology in Sg is that of pointwise convergence, a linear map T : Sg — S§
is continuous whenever lim;(T'(Ae(f;)), Ae(g)) = 0 for any family Ae(f;) which
converges to 0 in Sg and any Ag(g) € Se. To identify the kernel of T' € £(Se, Sg)
consider j&§Tjo € L(S(R™), S(R™)’) where jg : S(R™) — Se and j§ : S — S(R™)
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by our discussion above. Then, by a well-known result of Schwartz, there exists a
unique kernel m € §'(R?") = (S(R") ®@, S(R™))’ satisfying

(j5Tief,g) = (mg® f) forall f.geSER").
Therefore, given T' € L(Se, Sg) we find its associated kernel
k=jo ®jo(m) € Sé_)@@ ~ (So ®x S@)/
such that

(T(Xe (), 2e(9))

(36Tje(Ma(f)): Xo(9))
{m, Ao(9) @ Xo(f)) = (k. Ae(g9) ® Xa(f)).

Now, according to the density of the quantum Schwartz class Sege in Sgqq —since
the same result also holds in the commutative case— we easily conclude the density
of the algebraic tensor product Sg ®alg Se in Sggg. This proves that the family of
algebraic kernels we considered for the proof of Theorem are dense in the space
Soge of arbitrary kernels for maps in £(Se, Sg). Moreover, by the weak-+ density
of trigonometric polynomials in Rege, we may also approximate Sgqe by finite
sums of the form

k= Z w(&5,m5)Ae (&) ® e (n;)"
According to our expression above —Section 2.1} for kernels affiliated to Re @R

k= E(E,mAe(€) ® No(n)* du(€, n),

R7 xR
this result amounts to say (not surprising) that kernels associated to finite sums of
Dirac deltas are dense. Note that identity (T'(Ae(f)), Ao (g)) = (k, de(g9) ®Xe(f))
takes the following form for finite sums of Dirac deltas

(T (1) Ae(9)) = > w(&m)f(13)9(&) = (k- Ae(g) @ No(f))-

2.3.2. Kernel manipulations and derivations. In the model case treated previously
we decomposed the kernel k, = (0o ® id)(k) as k, @ mo(¥r) + ks ® (1 — mo(¥R))
and, after applying our Poincaré type inequality to the second term, we further
decomposed the resulting kernel K as mg(¢r) e K+ (1 — mo(¢r)) K. This leads
us to understand the same operation for general kernels in S'@@@. To that end, we
introduce the following operations for L € Sg

(Ae(€)L,¢) = (L, pre(€)) and (LAe(§),¢) = (L, Ae(§)®)-
Lemma 2.9. Gwen e S(R") and T € L(Se,Sg), the maps
M{T)Oe(f) = | HEAOTOe(&) No(/))de,

MiT)Oe(f) = | HOTOe(Ne())e(e)ds,
belong to L(Se,S) and their kernels extend mg (1) @ k and k @ mg(v)) respectively.

Proof. We shall prove the assertion only for Mi (T), since both operators can be
handled similarly. In order to prove continuity, assume that Ag(f;) — 0 in Se as
j — co. Then we need to show that

lim (M (T)(Xe(f;)): Aelg)) = lim DTN (€)* Na (), A (g)Ae () )dE

j—oo j—oo Jrn
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= lim [ 9(E)(k le(9)he(E) ® Ao (€)*Na(f;))de

Jj—roo Rn

vanishes for all g € S(R™). We first note that
i, (T(Re(&)"Ne(f1)): Aa(9)Xe(€)) =0

for all £ € R”, since Ag(§)*Ao(f;) — 0 in Se as j — oo. Indeed, we have
Ao (€)*Na(fj) = Ae(fie) for fie(n) = fi(n+&)e > &O and we then use Lemma
with (01, 02) = (0,0). Once this is known, we use the dominated convergence
theorem, for which we need an integrable upper bound of

q><£>=§gg|w €)(k, Ao (9)Ae(€) ® Ao (6) Ao ().

Since Ao (g)re (&) = Xo(ge) for ge(n) = g(n — §)e*™ 1=5919)  we have

(k. Ao (9)Ae (&) ® Ao () Na(fi)) = (i © j& (k). Ge ® Fje)

with j§ ® j&(k) € S(R?™)'. According to [33, Proposition 2.3.4], there exists an
absolute constant C' and positive integers k,m such that the following inequality
holds

() < C(e) |sup Z Pas (G ® Fie)
\a|<k
181<m

o~

< Clp(©P( )Isup Z Pas(@@F;) S [P € SR
\(x|<k
[B|<m

for certain polynomial P. On the other hand, for integrable kernels

M{(T)(xe(f) = O)(id® 70) (1 ® Ao (£)* Na(f)) o k) dé

_ / £)(id @ 70)((1® Xo(f)) » (Ao () ® Ao (£)*) o k) dt

(id®70) (1@ Xo(f)) e mo(1h) o k) = Trywyer(Xe(f))-

Interchanging trace and integral is justified for finite tensors by evaluation against
a test function, and a fortiori by density of these kernels in £L(Se, Sg) ~ Sgge- O

Remark 2.10. Given } € {{,r}, it is also clear that
IMI(T) : Lo(Re) — La(Ro)|| < (/Rn DO dg) T s L2(Ro) = La(Re)]
Remark 2.11. It will also be relevant to observe that
(MM Aol) = (K (olg) @ No(f) e To(¥)),
(MyT) o () Ne9)) = (ko) (Mels) @ o(F)),

for the kernel k € Sgg g associated to 7' and any ¢ € S(R™). Indeed, we have

~

(METIe()ANel9)) = [ TEO(TOR(E) o) Aalhro(©) de

n

= [ 3Ok re(re(€) = Ae(©) o)) de
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= [ 9Ok (el9) © 2a() » (Ne(O) @ Aale)")) de

which gives the desired identity. Moreover, these identities hold for any function
for which both (Ae(g9) @ Ae(f)) eme () and me () @ (Ae(g) ® A (f)) stay in Sege.

Again as we did in the model case above, we shall need to operate with module
extensions. Given a linear map T : Sg — (S(R") ®, So)’ we will use its module
extension 7" : Sg ®, So — (S(R™) ®, Se)’ given by

T": Xe(f) @ Aa(g) = T(Nea(f))(1® Ne(g)),
where (T (Ao (f))(1® Xe(9)), (a®b)) = (T(Nea(f)),(1® le(g))(a®Db)).

Lemma 2.12. There exists a continuous map og : S — (S(R™) ®x Se)’ which
extends the corepresentation ge : Re 2 Ae(§) + expe ®@Aa(§) € Lo(R")@Re. In
particular, given Ty, € L(Se, Sg) with kernel k € Sgge the composition Ty, = oeT},
belongs to L(Se, (S(R™) @x Se)’) with kernel k, = (0o ® id)k. Moreover, Ty
extends to a continuous right modular map Se @, So — (S(R™) @, Se)’ with

T;, (Mo (f) @ Dfiip(te (v))) = My (Tk,) (A (f))-

Proof. The map q(f, g) = E arises as the conjugation of the multiplication map
(f,g9) — fg by the Fourier transform. It thus follows from the Leibniz rule that it
defines a continuous map S(R") ®, S(R") — S(R™). Letting go = joogo (id® j§)
we define for L € S

(oeL, o(f) @ Xe(9)) = (L,qe(Mo(f) ® Xe(9)))-

It is clear that g : S = (S(R™) ®, Se)’ is continuous and we find

{t6(Xe(©)), () ®Xe(9)) = To(le(@)*e(fg)) = f(E)g(&)
= {exp_¢ ®Na(6)", Mo(f) @ No(9))

and thus og so defined extends the corepresentation og introduced in Section|1.1.2)
This immediately implies that Ty = o0gT) belongs to L(Se, (S(R") ®, Se)’) and
its kernel k, = (0o ® id)(k). Let us now justify the continuity of the module
extension T,go. Indeed, the module extension of ogje, defines a continuous linear
map

W: SR ®Se — (S(R") ® Se)’

satisfying W (exp; ® e (1)) = exp, ®Ae(§) Ao (). Its continuity follows easily from
the continuity of 0g. Next, observe that T = W o (j§Ty ® id) since it trivially
holds for the dense class of finite sums k = >, w(&;,nj) e (&))" ® Ae(n;)*. This
automatically implies the continuity of the module extension T,ég. It remains to
justify the given identity for T},

T, (Qe(H @ Diip(re()) = | DO, (Re(fAe©) ©Ae(0)) d

(€T, Mo ()N (€)) (1@ Aa(€)) de,

R’Vl
which is the definition of My (Tk,)(Ae(f)). This completes the proof. O
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Our next goal is to generalize the Poincaré type inequality in Proposition [I.6]
to the context of tempered distributions. Of course, the free ©-gradient can be
understood as a map Ve : 8§ — L(F,) ® S in the canonical way

Vel = Zsk ® 8gL for L e Sg,
k=1

where (9L, Mo (f)) = —(L, 9§ e(f)) = —2mi(L, Xe(fi))) and fiy(€) = & f ().
Now, given a R"-ball Bg of radius R with characteristic function ggr, Proposition
gives an upper bound for

1
2

e H <]{3R (¢ —¢Bg) (¢ — wBR)du) .

in terms of the operator norm of the gradient of ¢ localized at Br. Let us recall
that the predual of Re®L5(¢) with respect to the linear bracket is given by the
space Ao (Br) = L1(RZ)®L5(¢), whose norm is

- wBRHLl(R%p)@LQ(@ - H (]iR (¥ = ¥Ba) (¥ = ¢BR)*d#>%‘

It is a simple exercise to show that S(R™) ®, Se is norm dense in Li (R )&L5(¢).
In particular, the following result gives an extension of our Poincaré type inequality.

Li(Re)

Proposition 2.13. Given L € (S(R™) ®, Se)’, assume
(6k (%9 idne) (L) € Lo (BR)®R9
for 1 <k <n. Then, the following Poincaré type inequality holds

sup |(qrL, ¥ — ¥py)|
PESR™)®~Se
lb—vBR lagBr)<1

< 22 H 1 1 dre (L H '
< 2v2R 1®qr®1)(V®idrs)(L) L(Fp)®L o (RM)ERe

Proof. Assume for clarity that Bgr is centered at the origin, see Proposition [I.6
for the standard modifications in the general case. Since OxL € Lo (R")&Re, we
may define

i(2) /0 S 0L (t)ay dt

1
k=1
1

= [ (e © i) (00 VL) g (0)s(2))
0 —
Ern A(t) B
for ¢ € Bg. Now let ¢; € S(R") ®» Se be an approximating sequence for L and
define the functions ¢;(z) = ¢;(x) — ¢;(0) accordingly. In particular, the following
identity holds for every test function ¢ € S(R™) ®, So

/ 76 (35(@) () — ) de = / 7o (95 () () — ¥p,)) da.
Br B

R

By approximation we get

[arL,¥ — )| = |(arL,¥ — ¥ng)|
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= ‘ / ER” QZ} Q/JBR dt‘

/o ||ER" (A(t)B)||R@®Lg(¢) dt) H¢ — UBg ||A@(BR)'

Now we may complete the argument as we did in the proof of Proposition (Il

IN

2.3.3. A Calderdén-Zygmund extrapolation theorem. We are finally ready to prove
an estimate for general Calderén-Zygmund operators Tj,. According to the classical
theory, we impose cancellation and smoothness conditions on the kernel. To be more
precise, let T, € L(Se,Sg) admit a kernel k € Sg4¢ with gradient (Ve ®idger) (k)
affiliated to L(F,)®Re®R¢ . Then, we shall call Ty, a column Calderdn-Zygmund
operator with parameters (A;, o, 5;) when:

i) Cancellation
HTk : LQ(R@) — LQ(R@)H S Al.

ii) Kernel smoothness. If K,, = £(n + 1), there exists

1 1
<K,—=<p8<K,+ =
@ 5 </ *3

satisfying the gradient conditions below for p = a, 8
‘dg o (Ve @ idrr)(k) o dg“-f?‘ < As.
Remark 2.14. We implicitly use that
(4 e Vokedy,z) = (Vok,d} e zedy),

7 o = < b dl ezed) >

45 0 Voke dollmoony = oup - (Vekidoezeds
1=l (cenrere@roPy St

As explained in Remark this is justified for any tempered distribution when
7,1 € 2Z, but not for v,n < 2 since dJ, e zed(, does not stay in the test space Sege.
The necessity of using these values —only for n = 2 in the simpler statement of
Theorem A— forces us to impose that Vegk is, in addition, affiliated to the algebra.
Although our assumption is admissible in view of the classical theory we could
have alternatively used an approximation argument dg, = lim.(d% + £1)7/2 to
avoid it. On the other hand, the kernel k& —not its gradient— should be treated as
a distribution since this allows certain Dirac deltas which do appear in the classical
theory, see Paragraph below for further details.

Proposition 2.15. If T} is a column CZO and ¢ € So
HTk((mHBMOC(R@) < Cn(aa B) (Al + A2) ||<,0||R@-

Proof. We shall adapt our argument in the model case of Theorem Given
© = Xo(f) € Seo, this means that we need to control the operator-valued BMO norm
of 0o (Txp). According to Lemma we have 0gT), = Ty, for k, = (0o ® id)(k)
and we may decompose it as follows

ko = ko @ 1o (YR) + ko ® (1 — To(YR)),

ko1(R) ko2(R)
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where the decomposition uses Lemma [2.9] and Remark [2.11] Next, we need to
show the validity of (2.1). To that end we follow the argument in Theorem by
recalling the crucial identity

Ty, (Mo (f) ® Dflip(re (¥))) = My (Tk,)(Ae(f)),

which was justified in Lemma [2.12] for general kernels. This is the part of the
proof which requires Lo-boundedness of Ty. Once we have completed our argument
for k,, (R), we apply the Poincaré type inequality in Proposition to the term
associated to k,2(R). This gives

1
H (]{3 ‘Tkaz(R)‘P - (TkUZ(R)QD)BRFdM) ’
R

S R||18@we (Vi) (Th.me) |
Tk ()
As in Theorem the goal is to show that K is the distribution
K = qrVake (1—Ug) € L(F,)3(S(R") @ So @ So)’

with grVEk = (1 ® qr ® 19?)(id ® 0g ® id)(Ve ® id)[k] and ¥g = me(¢r). By
density, it suffices to justify it for elementary kernels k = A\g(£) ® Ag(n). This is
possible via the identity (V®idgr,)ooe = (idz(r,)®0e)o Ve due to our extensions
of the maps gg and Vg for tempered distributions above. We may now decompose
K by means of Lemma [2.9] as follows

K:qR\I/RQV%k.(]_—\I/R)—FQR(]_—\I’R)QV%]C.(]_—\I/R).

K1 K2

Re

(Fn)®Loo(R")@Re

At this point, the argument follows verbatim the proof of Theorem [2.6] Indeed, we
further decompose K; = A;jeB;eC; as we did there and apply Lemma [2.2]—valid
for affiliated kernels, as we assume for K;— to obtain

(23) |7k, : Re — Bel|
1 1
< |[(id @ To)(A; A7)]| 5, 1Bi | soare [ (id © 70)(CFC))| 5,
with Be = L(F,,)®L(R")®Re. The estimates for A, B;, C; also apply here. O

Remark 2.16. Alternatively, if we do not want to assume that Vgk is affiliated to
L(F,)®@Re®Rg and use the approximation argument indicated in Remark
we should be able to generalize the inequality for tempered distributions.
Recall that the norm of Tk, : Re — Be can be expressed as the supremum —over
Schwartz elements ¢, ¢ respectively in the unit ball of R and Ly (Be)— of the
linear brackets

(Tx,,¢)] = [(AjeB;jeCj02¢)

IN

HAj b Bj b Cj”B®®L1(Roep)H¢||L1(B(—))||()0||R(ép'
Now we use the following characterization of the norm in M®X

Ao =, s (@ ©DAGO DL, x:

which is due to Pisier [59] when M is hyperfinite and X is any operator space. It is
also well-known that Pisier’s identity still holds for non-hyperfinite von Neumann
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algebras —as in our case with M = Bg— as long as X is a noncommutative L,
space. In fact, Pisier’s identity generalizes to arbitrary mixed L,(L4)-norms. In
our case

HAJ‘ *Bje CJ’HB@®L1(R§’§)

= ®1)eA;,eB,eC,; ®1 = opy -

a,CEB?&pz(Be)) ||(a ) *Ae e (C )HLI(B@@R(—) )

In particular, we find
[a®1)eA;eB;eCye(col), < [lam1) e Ayll,[B; ;e (c@ D),

and the elementary inequalities below complete the proof of (2.3)
1
[aw1)eAjll, < [alaf(idero)(A,A7)]Z,

1
[CjecaD)], < lelfideo)(C;C)l5, -
Proposition 2.17. Every column CZO is normal. In particular
|7k : Re = BMO.(Ro)||, < Cnla,B)(A1 + As).

Proof. Let T} : Ly(Re) — L2(Re) denote the adjoint of T}, so that

176 (Tx (Ma(£))Xe(9)")| = |re(Xe(f)Tk(Ne(9)*)]
< Cn(O"ﬂ)(Al+A2>H)‘@(f)HHg(R@)H)‘@(Q)HR@

for all Ao (f), Ae(g9) € Se. Indeed, here H.(Rg) denotes the predual of BMO.(Re)
with respect to the antilinear duality bracket above, as described in Appendix B
below. In particular, this inequality directly follows from Proposition 2:15 Now
we claim that this implies

1T ), iry < ol B) (A1 + As) s (e
for all o = Ao (f) € So. Indeed, let us prove that
_ Ty (#)
Gl B) (A1 + As) @l (Re)
belongs to the unit ball of Li1(Rg). To that end, it clearly suffices to prove that
|Te(gzqa)] < 1 for every contraction @ in Reg and every To-finite projection g.

Since z € Ly(Re), we have zq € L1(Re) and Kaplansky density theorem provides
a sequence u; € Sg in the unit ball of Rg so that

|Te(gzqa)| = lim |Te(u;2q)|.
j—o0
Moreover, since u;z € L1(Rg), we also find v;, € Sg in the unit ball of Rg with
|Te(gzqa)| = lim |re(ujzq)| = lim lim |7e(u,zvg)l.
j—oo j—0o0 k—oo

Finally, since |7o(zw)| < 1 for every w € Sg in the unit ball of Rg —as we recalled
at the beginning of the proof— and the Schwartz class Sg is a *-algebra we obtain
that |7e(gzqa)| < 1 as expected. This proves our claim. Next, we use the norm
density of Sg in H!(Re) from Corollary in Appendix B below to conclude
that T} : H:(Re) — L1(Re) is bounded. The operator T} is the antilinear adjoint
corresponding to the duality

—_—x

Li(Re) =Re
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with respect to the antilinear duality bracket. Thus

—_x

Tk : R(_) — Hg(R@) ~ BMOC(R@)

with the same constants, see Appendix B for further details on the duality H; —BMO
in this setting. This proves the Lo, — BMO, boundedness of Tj. As in the model
case proved in Theorem [2.6] the cb-boundedness follows similarly and it just requires
a more involved notation to incorporate matrix amplifications. (Il

Once we have proved the complete Lo, — BMO, boundedness of column CZOs,
the general extrapolation theorem follows from additional assumptions of the same
kind on the kernel, which makes them more symmetric. More precisely, we know
that Ty : Re — BMO,.(Re) is cb-bounded iff the operator

i (Mo (f) = T(No(f)*)*

defines a completely bounded map from Rg — BMO.(Reg). When this is the case
we get a cb-map T}, : Re — BMO(Re). Of course, the same assumptions for the
adjoint T trivially imply that T} also defines a cb-map T : Hi(Re) — Li(Re)
and interpolation —see Appendix B for details— yields complete L,-boundedness
for 1 < p < oco. This means that we should impose that the maps T,I,T,j,T,:T
are column Calderén-Zygmund operators. It is clear that Lo-boundedness follows
automatically from Tj. Therefore, we just need to impose new kernel smoothness
conditions. We have

kernel(Tg) =k*, kernel(T}) = flip(k)*, kernel(T;T) = flip(k).
Therefore, the results so far imply the following extrapolation theorem for CZOs.
Theorem 2.18. Let Ty, € L(Se,Sg) and assume:
i) Cancellation
ITk : La(Re) — La(Re)| < Au.

ii) Kernel smoothness. There exists

1 1
a<Kn—§<6<Kn+§<7

satisfying the gradient conditions below for p = «, 5,7y
48, @ (Vo @ id)(k) o 5™ 7| +[d5 o (id & Vo) (k) o 45" 70| < A5,
Then, we find the following endpoint estimates for T},

[|Te : Hi(Re) = Li(Ro)|l, < Cula,B,7)(A1+Asz),

[Tk : Loo(Re) = BMO(Re)||,, < Cnla,B,7)(A1+Asz).
In particular, Ty, : L,(Re) = Lp(Re) is completely bounded for every 1 < p < oo.
In what follows, a Calderon-Zygmund operator over the quantum Euclidean space
Re associated to the parameters (A;, o, §;) will be any linear map T, € L(Se, Sg)
satisfying the hypotheses in Theorem[2.18] The kernel considerations for the adjoint

also appear in commutative Calderén-Zygmund theory, whereas the f-operation is
standard and arises from noncommutativity.
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2.3.4. The principal value of kernel truncations. As in classical Calderén-Zygmund
theory, we want to understand how far is an operator Ty, € B(L2(Re)) from the
principal value singular integral determined by its kernel truncations. Our aim is to
show that the difference is a left /right multiplier. Let us be more precise. Consider
a smooth function ¢ € S(R™) which is identically 1 over B1(0) and vanishes over
R”™\ By(0). Define
Ups =mo(Vas) with as(z) = 1/)(%) - w(%) = Pa(z) — s(x)

for 0 < << A < oco. We shall study the kernel truncations VA s ek and ke Wa 5
and how their limits are related to T;. To that end, we introduce the notion of
admissible projection. A projection p € Rg will be called admissible when the
function R™ — Proj(Re) defined as

s\ ad()

s€Bs(0)

is weak-* continuous around ¢ = 0. Here 0@ (Ao (&)) = exp(2mi(s,&)) Ao (£).

Remark 2.19. Even in the Euclidean setting with © = 0, not all projections are
admissible. In that case, the projection-valued function defined above associates a
measurable set A with Bs[A], the union of all the balls of radius § with center in
A. Tf we take, for instance, a dense open subset of [0, 1]" with measure strictly less
than 1, we will have that [0, 1] C Bs[A] for every § > 0, which poses an obstruction
to admissibility. This can be easily fixed in the Euclidean setting by considering
measurable sets which are closed up to a null set.

Lemma 2.20. The bicommutant of admissible projections is the whole algebra Re .

Proof. It suffices to observe that one-dimensional spectral projections of the form
Xa,b) (Zo,j) are admissible for each of the quantum variables zg ; by Remark
and also that this family trivially generates Rg. This completes the proof. ]

Remark 2.21. Let us define a closed projection p € Reg as those whose complement
1 —p is the left support of certain element ¢ € Eg as defined at beginning of Section
By the #-stability of Sg we could have replaced the left support ¢(¢) by the right
one 7(p) or even by the full support s(¢) of self-adjoint elements. We conjecture
that all closed projections so defined are indeed admissible. At the time of this
writing we have not been able to confirm this conjecture, but this will have no
consequence in Theorem [2.23] below.

Lemma 2.22. Given p € Rog, there exist projections ps, qs such that

To(Ys) e (L@yp) = mo(Ps)e (ps @ @),
To(Ys) e (p®@1) = 7o(Ps)e (v @ gs)-
If r(p) is admissible W*—%ii%p(; =r(p), if (p) is admissible W*—éi_r% a5 = L(p).

Proof. The assertions concerning ¢s follow from those for ps after applying the
map flip* : a ® b — b* ® a*, details are left to the reader. Now, let us recall that
the map T : Roe®Rg — CB(L1(Re), Re) sending a kernel k to the corresponding
map T}, is a complete isometry. Moreover, observe that

The(100)(9) = Ti(¢p) and  Tre(po1)(9) = Tk(®)e.
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Since we clearly have
7o (¥s)|lRoarer < ¥sllL, @) = ¥ |L,®n) < oo,
we know that Th (ys) is uniformly in CB(L1(Re), Re). Let us define
N5 = spanw*{wTﬁ@(%)(qﬁcp) 9 € L1(Re), w e R@} C Re.

Clearly N5 is a weak-* closed left module. In particular, there must exist certain
projection ps € Re satisfying N5 = Re ps and the following identity holds for
every element ¢ € L1(Re)

Tro(5)0(10¢) (®) = Trg(5) (29) = T (vs) (09) Ps = Trg (v5)e(ps i) (@)-

Since T is (completely) isometric, T (1s) @ (1 ® p) = 7o (Vs) @ (ps @ ¢). It remains
to show that the projections ps so defined converges weakly to r(¢) as § — 0F.
Given any ¢ € L1(Re), notice that

Teotun(09) = [ 55(€)70 (V0O 0p)he€)de = [ us(s)odlop)ds.

Bas(0)
Therefore, its right support satisfies

MTrowa(99) <\ 08(r(9) = < \/ 0&(r(p))

s€B25(0) s€B25(0)

Hence, since ps > (), we conclude by admissibility that w*- %in% ps = 1r(p). |
—

Given Ty, € B(L2(Re)) C L(Se,Sg), we truncate it as follows
Ths =My, ,(Tx) and Tx ;= Mg, (Tr).
According to Remark m both truncations TL s satisfy the Lo-estimate
7L 5 : L2(Re) = La(Re)|| < 29|, [|Tk : L2(Re) — L2(Re)| -

In particular, the Banach-Alaoglu theorem confirms that certain subfamily of our
truncations TL(; converges to some Ly-bounded operator S,JL : Ly(Re) — L2(Re)
for T € {¢,r}. We shall assume for simplicity of notation that the whole family of
truncations converges to S,i as A — oo and § — 0.

Theorem 2.23. There exist z € Rg such that
(Tp — S§)(a) = az and (T} — S§)(a) = z-a.
Proof. Given an admissible projection p and by Remark
(T s0e(P) e(9)) = (b, mo(Tas) o (Aol9) ® Ao () )-

Since me(XBg(0)) converges to 1 in the strong operator topology, we can safely
assume that Ao(g9) ® de(f)p = (Ne(g) @ p) e (1 @ A\o(f)) is left supported by
Te(XBr(0)) for R large enough. Then we have

(T = T2 Qe (Hp) Mo (9))
= <’fa To(1—¥as) e (lel(g) ® Ae(f)p)>
(k. 7o(¥s) e (Aol9) @ Aa(Fp) ) + (k. To(1 = 1a) ¢ (o (9) & Ao(1)) )-
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Since £(Ao(g9) ® Ao (f)p) < mo(wa) for large A, the second term vanishes when A
is large. The identity Ao(g) ® de(f)p = (1 @ p) e (Aa(g) @ Ao(f)) allows to apply
Lemma [2.22] to get

To(¥s) @ (Aa(g) ® Ao (f)p) = me(¥s) @ (psAe(g) ® Xe(f)p)

for some projection ps converging to p in the weak—x* topology. This gives

(T = TR ) e (P, Nol9))

= (k. 7o(ts) » (psro(9) © Ao (£)p) ) = {(Tk = Th 5) Ao (£P)ps: Ao (9) )-

Taking limits in A — oo and 6 — 0, we get (T, —S},) (Ao (f)p) = (Tx — Sp) (M (f))p
for any admissible projection p € Re. This readily implies that T}, — S}, commutes
with the von Neumann algebra generated by right multiplication with admissible
projections and, by Lemma we conclude that T}, —S}, belongs to the commutant
in B(L2(Re)) of Re acting by right multiplication. Such algebra is given by Re
acting on the left and so, there is a unique z, € Re such that (T — S;.)(a) = zra.
A symmetric argument works for Sﬁ, which also satisfies the assertion. ]

Remark 2.24. We may also consider two-sided principal values Tg_ sLAs 5. Taking
first a weak-* accumulation point in (A, §) and then another in (A’,¢’) gives an
element Sy, such that Sk (Ae(f)) = z-Ae(f) + Ao (f)ze, for certain z; € Re. This is
the quantum analogue of a basic result in Calderén-Zygmund theory, further details
can be found in [34, Proposition 8.1.11].

3. Pseudodifferential L, calculus

The aim of this section is to establish sufficient smoothness conditions on a given
symbol a : R* — Rg for the L,-boundedness of the pseudodifferential operator ¥,
associated to it. This is the content of Theorem B in the Introduction. Sobolev
p-estimates naturally follow from this analysis. Before that, subtle transference
methods will be needed to extend the classical composition and adjoint formulae to
the context of quantum Euclidean spaces. The proof of Theorem B is divided into
several blocks. We begin with an analysis of Ls-boundedness, which includes the
quantum forms of Calderén-Vaillancourt theorem and Bourdaud’s condition stated
in Theorem B i) and ii) respectively. Theorem B iii) follows from it and Theorem
A, once we prove that ¥, is a Calderén-Zygmund operator.

3.1. Adjoint and product formulae. Recall that a symbol over Rg must be
understood as a smooth function a : R®™ — Rg whose associated pseudodifferential
operator takes the form

T, (o(f) = / a(€)F(€) N (€) dE.

n

Given m € R and 0 < § < p < 1, the Hormander classes Z%(R@) are
™ (Re) = {a {R" = Ro |05 0¢a(€)| < Cagl€)™ 7198l for all a, 8 € zg}.

Here we follow standard notation (¢€) = (1 + |£|?)Y/2. Pseudodifferential operators
are formally generated by Fourier multipliers and left multiplication operators. It
is easy to see that these families of operators generate in turn the whole B(L2(Rg))
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as a von Neumann algebra. It is therefore reasonable to think that adjoints and
composition of pseudodifferential operators are pseudodifferential operators. Our
first goal is to develop asymptotic formulae for adjoints and compositions to justify
that the adjoint of a regular (§ < p) pseudodifferential operator of degree m is again
a pseudodifferential operator of degree m and that the composition of operators of
degrees m; and ms yields a pseudodifferential operator of degree mj 4+ mo.

We start by defining ¥, in the distributional sense. First, we have ¥, : Sg — Sg
continuously whenever a € S(R™; Sg) is a Schwartz function itself. Indeed, recall
that a € S(R™; Sg) means that

(3.1) a©) = [ 6ol ds

for some @ € S(R™ x R™). This immediately gives

// (z — & ) f(£)e™ 7898 d¢ N (2) d=

F(z)

with F' € S(R™), which implies the assertion. The following lemma refines it.
Lemma 3.1. Given any a € S;’}(;(R@), we have that ¥, : Sg — Se continuously.
Proof. Note that

[Ta(Ae(f))

| [ a7l g

sup {[6) " a(©) |, | € A ()]}

£eRn

The first term is bounded by the Hormander condition with « = 8 = 0 and the
second one since f € S(R™). According to Remark and Lemma it suffices
to see that the operators

I .

N

P(20)05%. (o (f))Q(ze)

satisfy similar inequalities for arbitrary monomials P, @ and 3 € Z’}. Recall that

O Va(Me(f) = Uy (Mo () + Val@S (e (£))),

but dLa € S’g?;“;(R@) and 95 (Mo (f)) = Ne(2mi€; f). In particular, Ggllla()\@(f))
behaves as ¥, (Ao (f)) and we may ignore §. Thus, it will be enough to illustrate
the argument for (P,Q,5) = (1,2e0,;,0) and (P,Q,8) = (ze,;,1,0). In the first
case, since our pseudodifferential operators act by left multiplication of the symbol
a, the exact same argument given in the proof of Proposition [1.9| gives the identity
below, even for a taking values in Rg as it is the case

Vo(e(f)ze,; = [ De;(af)(€)re(E)dE

Rn

= [ (0D, - g0l ©) hol6)

2mi

Clearly Dg ;f € S(R") and 8?@ € S5 "(Re), so we may proceed as above. We
need a similar expression when zg ; acts by left multiplication. In this second case
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we need to be a bit more careful
m@,jq}a(A@(f»

=70, / ([ Aot )dz)f<£>A@<5> e
s= o/n/n (©)Ae(sej)rea(2)ra(§) dzdE

27 ds
_ 1 d -~ 27is(e;,0z) 27is(e;,0 &)
= ol [t gem e zas] e o (¢ + se;)de.
ajs(€)
Equivalently, we may write it as follows

ro Va(o(f) = 4

L L e sep 6 = sep)ermien g e

27i ds
In particular, Leibniz rz:fe ;nd the argument in Proposition [I.9] give
voWale(N) = 5 [ | an©F©ele)de
+ % [ 2] (e = senp(e = seppemiser®id)ag e
=i .. {(Z ©,105a(€)) £(6) +2riDlb ;(af)(€) Ao ()dS.
Since the new terms dfa € S;’:‘(;r %(Re), we may proceed as above once more. [

Consider a pair of symbols a1,az : R" — Re. In order to properly identify ¥,
with a;, we need to confirm that ¥, = W¥,, implies that a; = ap. This is the
case when the symbols a; are of polynomial growth —there exists k£ > 0 such that
la;(&)] < Cj(€)*— and ¥, = ¥, holds as operators in B(Se,Se). This result will
be enough for our purposes and it follows by an elementary application of Fourier
inversion for distributions, which we omit.

Lemma 3.2. Given a,a1,as € S(R"; Re), we find:
i) W5 = Wa: where

ai(€) = / (€~ Do(2) dz.

i) Wy, 0¥y, = Uy, 04, where

(a1 0a2)(€) = / n(2)a(e — £z — ) da.

Proof. By Lemma i) Ui =Ty = Thip(k,)-- By .

fip(k,) = [ n/\e(£)®/\@(£)*a(€)*df
= [ [ aEgermeotig @ ral:+ " dade

_ / (/na(z7§—z))\@(z)dz>*>\@(§)®)\®(§)*d§:ka;,
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which implies ¥} = \I/a;. The composition formula is obtained similarly. ([

The formulas above are difficult to treat directly. Following the classical setting
we introduce double pseudodifferential operators. Namely, if A : R” — Re®R§ is
a double symbol, its associated operator is given by

Dale) = (ide o) { ([ A€ (ol 9206 dg) (100}

Observe that if the double symbol is of the form A({) = a({)®1 then Dy = ¥,. The
advantage of the above class of operators is that they admit simpler expressions
for adjoints Djgy = Dige+ and products Dy g1 © Diga, = Dayga,- We now
introduce extended Hormander classes for double symbols. To that end, we recall
the definition of the Haagerup tensor product. Given z € Re ®alz Re, let us define

B wt {3 i) |3, v >z
Z|1Re®@pRe — 111 LT YsY; Lz = Xy Yir-
o®Wrike JJJR@ JJJR@ JJ J

The Haagerup tensor product Re ®p Re is defined by completion and also admits a
natural operator space structure [60]. We will say that A : R” — Re®R{ belongs

to S0, 5,(Re) when

n

- 6 0
H(agl ® 852)8? < Cop ps &ym plal+61 81|+ 2|g2|’

o)
( ) Re®rRe
for all multindices «, 51, B2. Our next result provides a compression map

B: S(R"; So @ So) = S(R™; Se),

B(A)(§) = (id®Te)/ A(n) o (Ao (n) @ Xe(n)*) (Ao (§)” ® Ae(£)) dn,

which sends double symbols into symbols inducing the same operators. This map
involves in turn the map m : Sg ®; So¢ — Se defined by linear extension of
©1 ® o > p1p2. If © = 0, m is the restriction to the diagonal ¢(z,y) — ¢(z, x)
which extends to a positive preserving contraction with the C*-norm. This fails
in general for nonabelian algebras. Instead, the Haagerup tensor product can be
understood as the smallest (operator space) tensor product making the operation
m continuous. This justifies our use of the Haagerup tensor product in the above
definition of double Hérmander classes. Define

I ;
Log=cxp (5= Y 0 ®idrg ©0) ) € B(S(R"; So ©x So))-
j=1

Theorem 3.3. The compression map B : S(R™;Se @ So) — S(R™; Se) above
satisfies the identity Da = Ww(a) as operators in B(Se,Sg). In addition, the
following identities hold

B(A)(E) = Dare(f))re(E)”
= m(LecA(§)) ~ Z

veZi

m((0] @ idre ® 03)A(E))
(27i) Il

Moreover, given A € ST, 5, (Reo) with 63 < p and N € Z4 large we find

m((82®zd®3g))x4(f)) m4n—(p—382)N
(2mi) Iy HR@ < On g -

B -3

[vI<N
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In particular, B : S)'s 5 (Re) — S)'s(Re) for § = max{d1, 02} whenever 62 < p.

Proof. The proof is divided into three blocks:
A. Expressions for B(A). Clearly B(A)(§) = Da(Xo(§))Ao(£)*, so

Dae) =Da( [ B@e(O)d€) = [ FOBU©Ia(E)dt = Yain ()

n

for any ¢ € Sg. To prove the identity B(A)(§) = m(Le A()), we write

AE) = [ Auw)e?m O gy = / (

g(u, v) ® Ao (v) dv) 2T g,
Rﬂ,

R'n,
where A is the Euclidean Fourier transform of A4 : R® — Reg ® R and A is the
quantum (partial) Fourier transform of it in the second tensor. In other words, we
have

-~

Alu,v) = (id®T@)(A(u)o(1®>\@(v)*))

_ / (id @ 70) (A(s) # (1@ Ao (v)") e 27 ds,

Now, using the Taylor series expansion

oo . n k Js s
_ (2mi)* 9 . o7y
Loc=Y - > ([l55)@de (I153)
k=0 J1,J2yjk=1 s=1 s=1

we easily get the following identity for Le ¢ A
LecA= ( A(u,v) @ Ao (v) dv) 2T wER) gy,
Rn N JRn
Applying m to this expression and writing A in terms of A, we get

m(LecA) = (id® Te) / A(s) @ me(exp, ) 2™ ETV=9) dsdudu
R’IL XR’!L XR’!L
= (id® 7o) / A(s) e mg(exp,) 6¢(s — v) dsdv
R™ xR™

= (id® 7o) /n A(s) e To(exp,_¢) ds.
This proves B(A) = m(Le ¢A). On the other hand

ey o

Le§:: 2: €%<®Zdﬁ@f§8®
) . |
o (2m3) 171!

by standard modification of the Taylor series. This gives the formal series expansion.
B. Estimate for the remainder. Thus, our next goal is to justify the Taylor
remainder estimate in the statement. This requires yet another expression for B(A).
We begin by noticing that

BAYE) = m{(idore)( [ Am)emolep, ¢)dn)@1]

R

m{ /n /n(id@) Jé)(A(n) ° 7r@(expn7£)) dndz}
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= m{ /n /n(id@)aé)(A(n)) owe(expn_g)Q*QW'(Z»n*E) dndz}.

The first identity follows from A above. The second identity reduces to

| oae)dz=ra(e) 1 with o5(e(0)) = ha ()

and the last one since o is a *-homomorphism. Using m(A e mg(exp.)) = m(A)
we get

(3.2) B(A)(€) = / (/nm((id@aé)A(ﬁ+n))e‘2”<z’"> dz) dn.

Q,(&+m)

On the other hand, we use 9] 0¢, = 0404 to deduce

m((87 @ id © 9§)A(£))

- Qo] ’y:om((z‘d ® 0 A(€))

= 90]

y:()(/n /n m<(id®U(ZD)A(E))‘?QM@_Z’") dzdn)
= ag(/n / m((id @ 08)A(&))e™> =) (2in)" dzdy)
= 3 [ ou©miny an

This implies that

m((0 @ id® 0L)A
B - Y P EMO0)AE) [ onesn - X Baauen o

)11
=N (2m3) 17! St
Re(n)
By Taylor remainder formula
N 1
Re(n) = 7(/ 1- )10 0, (s dt) v,
=3 ([ -0 ausa)y

[v|=N

In particular, we obtain the following estimate

| [ reman] < sup | [ rens s i) an

Re [v|=N
Since 8g commutes with m, we get the identity

Re
0<t<1

978 (s) = / m((id ® gg)agA(S))e—sz,n) ds.

Next, we use the standard oscillatory integral trick

6727ri<z,77> _ (7A7])n 67271'1'(2,77)
(472|2[*)" ’
N
6727ri<z,77> _ (1 — Az) 2 6*27Ti<2,77>

N .
2

(1 +472[n[?)
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Taking M (&,n, z,t) = m((id ® 0§)97 A(n + t€)) and integrating by parts

/ 07 (0 + 1€) di

- 1_ 5 —2mi(z
/ / 77+47T2|n|2) ( (5777;27t)>€ 2 <177>dzd77

N
2

Y — .
= [ (R ()i g a
B1(0) MR (1+4m2[n[?)2

Sy ot [ s (G 0)] e an) o

Let us write II; and Il for the two terms in the right hand side. Then, we use
one more time the identity 970§ = 0§08 together with the contractivity of the
map m : Re ®, Re — Re and the 52?51,52* condition. This yields the following
inequality for any |y =Nand 0 <t <1

1 < d® (1-Ae)* )] A(n+1 d
IMlre < / |Gae @ —no)Noram+ie)| dn

s [ max{©. )" Ny £ g

Similarly, IT5 is dominated by

/Bf(o) xXR™

which is bounded by <§>m+”_("_52)N. This completes the estimate of the remainder.

dzdn
Re®nRe ‘Z|2n

oy (o) || g (1= a0 )0yt + 16)|

[v14va|=2n

C. B respects the Hormander classes. It remains to show that B(A) belongs
to the Hormander class 7% (Re) for 6 = max{d1,d2} whenever A € ST ; (Re)
and 0 < p. Since we have

Bl
aﬂom_ Z mO(a’Bl ®852)
oriams D152

it turns out that the following inequality holds for any v € Z7}

Haﬁagm((m@zd@m H
S D
B1+B2=p
Since the Hormander classes are nested in the degree m, this implies that

> m(@ widoay)A©) e |J sy (Re) = 575(Re)

[v[<N lv|<N

H 851 ® 8“/+52)8’Y+04A(£)‘

Re®rRe

as a consequence of A € S5 ; (Re), § = max{d,d2} and d2 < p. Therefore,
the inclusion B(A) € S)'5(Re) will follow if there exists a large enough N € Z,
satisfying the inequality

(9802 (B()(©) ~ Y m((@ @ide 0y)A©))))| Re

[v|<N

< CONa 5<§>m—p\a|+5\6\_
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Our estimate for the Taylor remainder above shows that this is indeed the case
when a = f = 0. Using d¢m = mdg and the commutation formula for 8g om
given above, the exact same argument applies for general «, 8. This gives that any
N > n/(p — 02) works, details are left to the reader. O

Corollary 3.4. The following stability results hold:
i) Ifa € S)'5(Re) and p <6, then ¥ = Uor with

9507 a*(§)

* ¢ m

CLT ~ Z B c p75(R@).
vezy (2md) iy

ii) Ifa; € Sm’5 , then Wy, oW, = W, o0, with

Nar(©0ar()
a; ¢ ag ~ Z W S SP’B(R@)

WEZ"

for m =mq 4+ ma, p=min{py, p2} and 6 = max{dy,d2} when ds < p.

Proof. Recall that
Vo =Dig1 = Digar = Ys(10a7)-
Ifa € S)'5(Re) then a®1 € S ((Re) and 1 ®a* € ST 5(Re). By Theorem

we have that a; = B(1®a*) € S)'5(Re). The second assertion follows similarly
by recalling that

\Ila10a2 = \Ilal © \I};: = \Ilth © ‘I’Z;*
= Da,81°Digay; = Pargas; = VB(a1®aat)-

Indeed, according to the first assertion, we know that a; ® ag € Sp 5100 (Ro)-
The asymptotic expansions also follow easily from Theorem [3.3] using the identities
ai = B(1®a") and a1 0 az = B(a1 ® ast), see e.g. [69] for a similar approach. [

Remark 3.5. A natural question is whether the classes ¥ 5(Re) are closed under
products and adjoints for § < p. This question is still open Indeed, proceeding
as for S7';(Re) we may define a new class ¥7's 5 (Re) of mixed double symbols
A:R" —> Ro ®p Re satisfying the condition

H(agl ®© 85)2) 06’ 83214(5)”7%@ Re < Clay iz 1,8, (€)™ PlortezlTo11Bi |01 Bol
©Wh /ve

where, abusing of notation, 6%75 acts on S(R™; S(Re) @~ S(Re)) as follows

(0L,cA)E) = OLAE) +2mi[A(€), de,]
= molexpe)” o 9] {mo(exp,) ® A(€) @ mo(exp;)*} @ mo(expy).

The operator dg ; is just xe ;@1 —-1®ze ;. We shall identify the first term with ze ;
and the second with yg ;. Of course, we expect that our contraction map satisfies
B Y 5, (Re) = X755, (Re) for 62 < p. Unfortunately, our argument above
does not admit a direct generalization. The problem arises since the automorphism
oo in the oscillatory integral for B does not commute with (’%75. We refer to
Lemmas[.1] and [£:2) and Remark [£:4] for the calculus of parametrices in this setting.
On the other hand, a minimum stability for products —necessary for our Sobolev
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p-estimates, see the proof of Corollary does hold. Namely, if a1 € ¥7"'((Re)
takes values in C1 or, more generally, in the center of Rg, we have that

mi1-+mso m2
a1 oag € Zpl/\p%é(R@) whenever ag € sz,a(RG)-

In particular, composition with polynomials of aé’s transforms degrees as expected.

3.2. Ly-boundedness: Sufficient conditions. We now explore Lo-boundedness
of pseudodifferential operators in S) 5(Re). Since S) ;(Re) C Sy 5(Re)NS) ,(Re)
it suffices to study Lo-boundedness for exotic 0 < § = p < 1 and forbiddend = p =1
symbols. The first case p < 1 requires a quantum analogue of the celebrated
Calderén-Vaillancourt theorem [9]. The second one also requires an additional
assumption extending Bourdaud’s condition [7], which can be regarded as a form
of the T'(1) theorem for pseudodifferential operators.

3.2.1. The Calderdon-Vaillancourt theorem in Re. As in the Euclidean setting, the
hardest part in proving a quantum form of Calderén-Vaillancourt theorem is still
the case p = 0. Our argument follows from a combination of [24 [69] adapted to
Reo which demands a careful argument due to the presence of a ©-phase. Given
a € 58,0(72@), the first step consists in decomposing the symbol as follows. The
double Fourier transform of @ in the quantum and classical variables (zg, £) is given

E(ZaC) = /Rn T@(a(g)/\@(z)*)efmfi({{)dé‘

(1 +4m2122)™ (1 + 4n2(¢1?) VA=, Q) (14 4n2)22) 7 (1 + 4n2(c2) 7

3(2,0) 9(2.0)

Here we fix N large enough. We shall also use the terminology

i(2,6) = 7o (a()Ae (2)") = / (e Qe

for a,b and ¢. In order to express ¥, in terms of b and g we need to introduce two
auxiliary maps. The first one is a left-module extension Ilg : Re®Rg — ReQ@Rg
of the x-homomorphism mg defined as follows

Ie (Ao (&) ® Ao (1) = Xe(£) @ Xe(§) Ae(n) = (1 ® Ae(n)) @ Te(exp;).

Iy (Me (§) @ Ae(n) = Ae(§) @ Xe(E)Ae(n) = (1 @ Ao (n)) ® (Ae(€) ® Ae(§)) gives
the adjoint with respect to the module bracket ({«, 5)) = (7o ® id)(c ® 5*). The
second one is the left-modulation map M,(¢1 ® v2) = Aa(n)p1 @ 2 with adjoint
My (p1® p2) = Ao (n)*¢1 @2 with respect to the same bracket above. In the next
result we shall use the following symbol

w© = [ B
_ / ?]\(Z,5)6727ri<§,@¢z)e27ri(@n,z))\6(z) dz.
Lemma 3.6. If ¢, = IIg o M, the following identity holds

U, (p) = (id® 70) / (1 ®b(n)) (<I>;"] o (\I/gn ® id) o (I)n) (p®1)dn.

n
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Proof. We first claim that
a§) = o re) [ @wbm)( [ 66— nrolew.)d=) dn

INCS))

Indeed, writing the symbol a in terms of b and g we obtain

0§ = [ [ 0 0@ N0 () dudc

= [ [ 5mitg - ire(e) dadn

Now the claim follows from the quantum form of convolution via the identity

| hEREe(R) de = id e 79){ (1 ® Nof fl)) ( F2(2)mo(exp,) dz) }

Next we use the claim to produce an expression for ¥,(¢). Namely, we have

W, () = (id © 7o) / (a(€) ® p)mo(expe) d

R

- zd®T@®To// (1 ®@b(n)l'(E - n)®so]7re(exp§)[13d£dn

= (id®T@)/n(1®b(n)){(id®id®T@)/ (I'(€ —n) ® p)me(expe)13) dé}dn

with (a ® b)j131 = a ® 1 ® b. The assertion reduces to prove the following identity

n

A= (id®id®79)/ (T(€—n)@p)me (expe )13 d€ = ((Pf]o(\llgn(@id)o@n)(go@l) =: B.

n

Expanding I'(§ — n) it is clear that

A= [ [ 5(096.¢ - mreole) © Ae(2)" dads

On the other hand, we have the identity

B = (o(n)@1)lle{ / (m(©(70 @ id) (@, (¢ @ 1) 6(&)” ®1)) ) Na(§)@1) ds }
B (&)

where it is easily checked that
Bype1) = To( [ FeMeln) Nels) @ 1ds)
= [ B D (s — 1) @ das — )
so that 3, (&) = @(& + n)e™ 2™ MO8 \g (¢). This yields
B = (o) @ Dllo{ [ (4,6 @5,(0) Ne(©) & 1) de)
= Qo e Dlla{ [ [ (3,606 © 5,(6)) Ne(O) © 1) dade}
— Qo @) [ [ OGNz +€) @ Aoz + €)' By(€) s
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= [ [ B+ et ro0g, oo (e +€) @ Aol + &) Nol€) dad

Rearranging and using g, (z,&) = §(z,&)e2m(6:0:2)e27i(On:2) vields A = B. O

Remark 3.7. The above lemma may be regarded as the quantum analogue of the
identity in [69, Lemma XIII.1.1], whose Euclidean proof is trivial. Unfortunately
the quantum analogue gives an extra ©-phase which vanishes for © = 0. It is this
phase what forces us to be very careful in adapting Cordes argument [24] below.

Lemma 3.8. ¥, admits the factorization

V,, =A,0BoA, with seu]é) | Ay : La(Re) — La(Re)|| HB||51(L2(R@)) < 00.
n n

Proof. Let w,(z,&) = e 27(6:012) 2miOn02) |56 that

v, (p) = /R ()€ Mo €) d

/n /n5(2’5)wn(zvf)@(§)/\e(z)x\@(g) dzd¢
— /n \/n /n 5(2,C)U}n(z,5)6271'1(5’09’5(5))\@(2)/\9(5) dZdCdf

Let us define j¢, : R® — C and my : R" — C as follows

. 53
Jen(2) = m,

(2milEQ) ~
mn(§) = /}R mdc = Jjoo(§),

where Jjoo stands for the Euclidean Fourier transform of Jen when (&,n) = (0,0).
Inserting our definition of g(z, ¢), we finally end up with the following factorization

V0 = [ [ dem e e dedg

/n (/n Jen(2)mn (€ — 2)P(€ — 2)e?™(=:04(E=2) dz) Ae(§)d€
/n (/n (]57}(5 . Z)eQTri(&—z,Ghz))mN(Z) @(2) dz) )\@(g) de.

kﬂ (f,Z)

This gives ¥, = AgoT}, o )\61, which reduces our goal to justify the assertion for
Ty, instead of Wy, . Indeed, assume Ty, = A} o B oA, with A, uniformly bounded
in B(L2(R™)) and B a trace class operator on the Hilbert space La(R™). Then we
consider the maps

A, =XooA,0)g" and B=XgoBolg',

which factorize ¥, and satisfy

1AsllBLaRe) = AnllBE.@n)),
[Bllsy(L(Re)) = IIBllsy(za®n))-

The kernel k,, can be written as follows

ke (2, y) = 2™H@=0:OMTOLYTOW) oo (2 — ) mn(y) = 2™HEYON (2, y).



56 GONZALEZ-PEREZ, JUNGE, PARCET

If A, f(z) = e 2m@OM f(z), we see that Ty, = A} oBoA, with B =T} and A,
unitaries. Thus, it suffices to show that B is trace class on Ly(R™). Composing it
with the Euclidean Fourier transform F = \;' as in the proof of [24, Lemma 1] we
end up with L = F o T}, whose kernel is given by

Uz, y) = e > a(z — Oy)mn(y),

where @ is the Euclidean Fourier transform of a(z) = joo(2)e 2™#012) = j 4(2).

This is very similar to the kernel in [24] Lemma 1 - (1.25)], in fact we recover the
same kernel for © = 0. Unfortunately, due to the ©-phase we are carrying, we
do not have separated variables as in [24]. However, a detailed analysis of Cordes
argument shows that what really matters is that the z-factor of the kernel —). ()
in [24]— yields a pointwise multiplier by my. We only have that in the y-variable.
Taking the adjoint L* =T} o F ~! we get the kernel

0 (z,y) = Uy, x) = 2" @V my(z)a(y — Ox).

Then, Cordes factorization my(z) = ((z)k(z) with {(z) = exp(—3(z)) implies in
turn that L* = Ro S where their respective kernels r(x, z) and s(z,y) are given by

() 2mi({r—2z,s)
r(r,z) = K(2) /R’ ( c ds,

(14 4m2|z|2)M 1+ 4m2|s|2)M

S(Z,y) — (1 + 47T2|Z|2)M(1 - AZ)M(C(Z)BQM(Z,Z;)a(y — @Z))

By [24], R is Hilbert-Schmidt for M large enough. Since & is as smooth as }007 it
is C*(R"™) for N > 1(n + k) and exponentially decreasing at co. In particular, S is
also Hilbert-Schmidt for N large enough. Thus B = F~1S*R* € S1(L2(R")). O

Theorem 3.9. Ifa € 5870(73@), then U,: Ly(Re) = L2(Re) is bounded.
Proof. According to Lemmas [3.6] and [3.§| we find

W, () = (id® T@)/ (1@ () (€ (4384, @ id)®, ) (p @ 1) dn.

A;BA,

n

Given @1, 2 in the unit ball of La(Re), it suffices to get a uniform bound for
(Walor)vz) = [ (700 o) {B,A1BAD (01 @ V(2 9 0(0)") } d

= [ (o @ o) {Bia, (01 © 1/BaA, @, (02 @ b))’ | di

where B = (u/B|2)|B|z = B;B; from polar decomposition. By Cauchy-Schwarz

(Walion). )| < ([ (0@ o) {IBilAs (01 © DA, (01 01} an)’

1

< ([ (0 0 70){IBalP Ay 2 b)) Ay 2 @ b))} i) =
Writing By = By ® id, we claim that the second term above 3 is dominated by

sup |[b(n) : L2(Re) — L2(Re)|| ||| B2

(12
nERN S1(L2(Re))’
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Note that the same estimate applies to the first term with () = 1 and (p2, Ba)
replaced by (¢1,B1). Moreover, since |B;|? < |B| + u|B|u* and B is trace class, it
suffices to check that b(¢) = (1 — Ag)N(1 — Ag)Na(€) is uniformly bounded in Re
which follows from the fact that a € SJ,(Re). Therefore, it only remains to justify
our claim above. Since |Bs|? is trace class, let s; denote its singular numbers and
consider the corresponding set u; of unit eigenvectors. This gives

Bof2(h) = Y (70 i) (A, © 1))y @ 1),

In particular, using the module bracket ((h1,ha)) = (1o ®id)(hy ® h}), we get
£ o= Y s / o |<<An<1>n<so2 @ b)), u; o 1) dn

Now, recalling that Af,(uj ® 1) = A5 (uj))®1=Xg oAy o Aot (uy) ® 1, we get

(M52 2 b(n)"), Mo A (u; ©1)) )

= (P w200, / O (o expe) de))
(/n —2miEON T () (10 @ id) ((A@(n)*sog ® l)ﬂe(expg)*) dﬁ) b(n)”
(/n ¢~ 2mHEO) (~2minOLOT ()5, (€ 1 17) Ao (€) dg)b(n)*.

Q’f;nj(f)
This gives
2
o< s g s [ o). i
< sup |[b(n ||R Z 53/ / §)p2 §+77| dndg,
nern
which is exactly the estimate we were looking for. This completes the proof. ([

Remark 3.10. A careful analysis of the function @ in the proof of Lemma could
lead as in [24] to the sharp condition N > n/4. This would imply that Theorem
[3:9 holds under the optimal assumption

0608a(€)| < Cug  for al,|8] < [ } +1.

Now we are ready to study the Ls-boundedness for exotic symbols in 527 »(Re)
with 0 < p < 1. A weak form of Cotlar’s almost orthogonality lemma naturally
plays a crucial role. Namely, given a family of operators (7}),;>0 C B(#H) and a
summable sequence (¢;);j>0 C Ry we find

|27 4y = X
;JB(H) j;ﬂ

provided that the following conditions hold for j # k

< cjcg.

?;113 HTJHB(H) < 00, HTJ'TI:HB(H) =0, HT;TkHB(”H)
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The other ingredient is a dilation argument among different deformations Rg.

Lemma 3.11. Given R > 0, the map
R :Re 3 Ae(f) = Ar2e (é) € Rr2e
R

is a *-homomorphism. Moreover, ¥, = D;{I\I'ERDR for

a:R" - Re and ar(§) = / a(z,RE)Ar2e(2/R) dz = Dr(a(RE€)) € Rr2o-

n

Proof. To prove that Dy is a *-homomorphism is straightforward. Now
DR () = | (WD) hne(€/R) de
= [ 7o{( [ atmDRTemNa(m dn) ho(6) Prne(€/R) de
= [ ro{([, [ atme IRt/ RINe () dedn) Aol6) Ane (€/R) de
= [ [ e nOmal — )R B0/ R) A (/1) dde
/ AR B0/ R A (6 R) A (/) i

Y

(] e RmAree(€/R) dg ) Bm)Anze () dn

R™

ar(n)P(mArze(n) dn = Vg (@) O

n

\\

Theorem 3.12. Ifa € Sg)p(R@) and p <1, U,: Ly(Re) = La(Re) is bounded.

Proof. Let ¢9 € C*°(R™) radial, identically 1 in B;(0) and zero outside B2(0).

Using the partition of unity ¢o+3_,5, ¢; = 1 with ¢;(§) = ¢o(277¢) — (27U D¢)
we decompose V¥, as follows a

(o] (o] o0
Vo = Z Vo, = Z Vo, + Z Was1 = Yeven + Yodd,
7=0 7=0 7=0

where a; (&) = a(§)¢;(£). We shall only bound the even part, since both are treated
in a similar way. To do so, we apply Cotlar’s lemma as stated above. Given j, k
distinct even numbers, we clearly have ¥, W7 = 0 since ¢; and ¢y have disjoint
supports. Therefore, it suffices to prove that

i) sup 1901l (2, ey < o2

) (|95, Ya, HB(L2(R@)) < €5Chs
for some summable sequence (¢;);>0 C Ry and any pair of distinct even integers
J, k. The first condition follows from our form of Calderén-Vaillancourt theorem in

S§y(Re) and Lemma Indeed, pick R; = 277 and let

ag = (‘I/\J'/)Rj = Dg, (aj(Rj ))
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Then

1%, y < ¥

HB(LZ(R@ 141 HB(LQ(R

R?G))

since ¥, = D;{jl\Ila[j]DRj and

D 1.

RJ-1||B(L2<RR§9),L2<R6))HDRJ‘ ||B(L2(Re),L2(RR§@)) -
The Ly-boundedness of ¥, follows from Theorem since ap;) € SSO(RR?@).
The proof of this fact follows essentially as in the Euclidean setting. Indeed, write
a;) in terms of @; —Lemma and use that Dg; is a x-homomorphism. In
conjunction with the &-localization of a; in the annulus of radii ~ 27, this easily
gives a; € SSO(RR?@), we leave details to the reader. It remains to estimate the
norm of W3 W, for even j # k. After a calculation we obtain that the kernel k;j
of such operator is given by

b = (dsrawid) [ [ (ro(ewp)®1) (19a€)"axln) 91) (1ma(exp,) déd

where, in an abuse of notation, the element 7o (exp,) = Ao (§) ® Ao (§)* is seen as
belonging to Re®@Re instead of Re®@R ¢ . We are also going to shorten a®b®1 by
(a ®b)12) where the leg numbers just mean that the tensor components are placed
in the first and second places respectively. Now, we use
(1-Ae)N
(1 +4n2l — nP)

1 n *
o <(1_|_4ﬂ_2d2)n> (1-A,)"Xe(n) @ Xe(n)

N Ae(MAe(§)” = re(m)re(§)”,

Ao (n) @ Xe(n)",

ﬂe((l—kéljr?dp)")(lAs)nAe(f)@Ae(f)* = Je(§) @re(8)",

where d(z) = |z| is the Euclidean distance. Integration by parts yields

ki = (id ® To ® id)/ / 7o (pe)n2 B(€,n)21me (@y)23) dndé,

where
(1-Ae)™
(14 472[n —&J?

and the function ¢ is given by exp, (14472d?)™". After expanding the derivatives
using the Leibniz rule, we obtain that B is a finite sum of simple terms of the form

1
_ o1 961 Q2 o1 * 02 no2
Bs(&vn) - 85 an ((1 —|—47T2|§ — 77|2)N) ag 8@ a](g) 817 8@ ak(n)7

Blem) = (1— A,)(1— Ao”{ )Naj@)*ak(n)}

b ()" by (n)

where o, B;, 07 € 27 satisfy |a1 + aa| < 2n, |81 + Ba] < 2n, |01 + 02| < 2N and
s is the combination of the involved multindices. We can bound each of the above
summands in s independently

||‘I’:J Vo, H < Zs /Rn /Rn T(id®76®id){7r@(ws)[m] Bs(im)[z]m(w)[zs]}dndgH = ZS As.
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Using |97 95 (€ —n)~*N| < (€ = n) >N we obtain

N
As S / A= Taro i) ime (ee) uapbs (b aymo (on)paa} || e

Tiern
Tjerry can be factorized as T(b;®1).,r(_)(¢£) o T(bz(n)®1)°7f<'—>(son)7 so that

1Tkl 5000 < 15 IRa 1B M R0 I Tro (o) (2o (R [ Tre o) 1520

Recall that || Ty (o) 1B(L2(Re)) < 0]z, @n) S 1. Moreover, using that £ ~ 27 and
n ~ 2% from the supports of a;(¢) and ay(n) as well as the Hérmander condition
for a, we deduce the following bound

/ / ||b ||Re I;S( )”Re dde] 5 272Nmax{j,k} 22Npmax{j,k} 2n(j+k:).

Summing all the terms mdexed by s we obtain

||\I/ < g4~ max{5k}((1=p)N=n) < 9=j((1=p)N=n)g—k((1-p)N-n) = ¢jcn,

ak HB(LZ(RO)) ~

which arises from (¢;) ;>0 summable for N large enough. The proof is complete. [
Remark 3.13. Let 0 < 6§ < p <1, since

Sp.s(Re) C 885(Re) NSy ,(Re),
we deduce ¥, : Lo(Ro) = La(Re) for a € 32,6(72@) as long as (p,d) # (1,1).

Remark 3.14. A standard (nonoptimal) proof of Calderén-Vaillancourt theorem
for S, in the Euclidean setting [66] follows from a suitable partition of unity in the
variables (z,£) € R™ x R™ with no known analogue for zg € Rg and £ € R". An
alternative way to proceed is the following. Given a € SJ,(Re), let

a(e,€) = o5a() = [ (50050l ds = [ a2 Ao (2)

Using the intertwining identity ¥, o 09 = 0g o ¥, and recalling from Appendix
B that og : L§(Re) — L5(R™)®Re is a complete isometry, it turns our that the
Lo-boundedness of W, is equivalent to the boundedness of the operator-valued map
U, @ L§(RM®Re — L5(R™")®Re. Now, since U, is a right Re-module map, it
follows from [42, Remark 2.4] that this will hold as long as ¥, is bounded over the
Hilbert space Lo(R™; La(Rg)). ¥, comes equipped with an operator-valued kernel
acting by left multiplication. This kind of maps are generally bad behaved [37] but
we know from our proof above that Ls-boundedness must hold in this case. Thus
this also opens the door to prove Calderén-Vaillancourt using a partition of unity
in the z-component, which mirrors the behavior of its quantum analogue zg.

3.2.2. Bourdaud’s condition for forbidden symbols in Reo. We have justified that
all symbols in Sg, 5(Re) yield Lo-bounded pseudodifferential operators except for
the class of so-called forbidden symbols with p = § = 1, which is known to fail it
even in the Euclidean setting. Bourdaud established a sufficient condition in [7]
playing the role of the T'(1)-theorem for pseudodifferential operators and which we
now study in Re. Given p > 1 and s € R, let Wy ,(Rg) be the Sobolev space
defined as the closure of Sg with respect to the norm

lellwa.re) = [[(1 = Ae) 2 ¢,
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Lemma 3.15. Let ¢ : R™ — Ry be a radial smooth function identically 1 in B1(0)
and vanishing outside Bo(0). Let ¥;(&) = ¢p(277€) — ¢(2791LE) for any integer
7 € Z. Then, we have a norm equivalence

PeNllss ~ D22 e (will; = D 27|95 fl5-
JEZ JEZ
In particular, the following properties hold:

i) W _s(Re)" = W2 4(Re) under the pairing (x,y) = 1o (z* y).
ii) [Wa,s(Re), Wa,—s(Re)] . = L2(Re) by complex interpolation.

The proofs of all assertions above are straightforward. Properties i) and ii) above
hold isomorphically from the first assertion, but also isometrically. We shall use
the following terminology for the rest of this section. Let us consider a function
¢ : R™ — R which is identically 1 in B;/5(0) and vanishing outside By /4(0). Set
1o = ¢ and construct ¥;(£) = ¢(279¢) — p(277T1E) for j > 1. We shall also use the
partition of unity pg = o + ¢1 and p; = ¥;_1 + ¥; + ;41 for j > 1, so that

o ) (¢ =

7>0

ZPJ ?(§),

. pg(ﬁ)%(f) = ;(§) for j > 0.
Lemma 3.16. Ifa € S7,(Re) and N > n, we have

a(§) = Z (k)™N ch7kpj (@e%i(zﬂf,k)

kezn j=>0

where the coefficients c; 1 € Re satisfy the following estimate
1

2) 720) < 0.
Proof. Let a;(¢) = a(&)y;(€) and b;(€) = a;(27€), so that

= a;(§) = ;27 = _b;(2778)p;(9)

=0 =0 =0

n
sup sup (||6j7k||7z@ + 27]”(
>0 kezn =

According to this and recalling that supp p;(27€) C [—%, %]” = (Q, it suffices to see
that b; (&) = Y pczn (k) "Ny pe?™ &R o (€) for some c; y, satisfying the estimates in
the statement. Now, since b; is also supported by @, we find that b;(£) = d;(£)xq(€)

where d; is the Z”—periodization of b;. This gives rise to the identity

bi(€) = D bi(R)eF R g (€)

kezZn
_ Z / —2m’(s,k)ds) e2mHER) v (€,
kezn "
Integrating by parts, we obtain
1

b, (k = — 1- A 2 (bi(s))e 25k gs = (k) Ne, 4.
) = s f 1291 () ) e
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To estimate (1 — A¢) 2 b;(€) we notice that |€] ~ 1, so
Ha?ba(f)HR@ = 9lal I|( O aj)( )(29¢€) ||R < oilal (9igy=lal < 1

by the Hérmander condition and therefore (1 — Ag)%bj (€) is uniformly bounded in
norm. The second inequality uses a similar calculation for Vg (1 — Ag)gb(f). O

Lemma 3.17. We have
Po@iNllr, S 277||(3 10526 (NI")”
k=1
Proof. Given g € S(R"™)

(Ga(alN) +9)(@) = [ o5 (a()a(w)dy = 5 (e (ar).

for 7 >0.

We also have [|A6 (15 f)||,, = llooro (/) |z o1 @ny 20d
cede(Vif) = cede(f)*;
= [ o5 DelN)Ewdy
| (o5 (Ae(f)) — o5 (% () )i (y) dy

/| ([ oo (0bro(r) de) (o) dy
0

k=1

We have used that the integral of 1/)j is 0 for any j > 0. Taking norms gives

HJ@)‘@ (i f H’RO®LOC(]R")

“J.

(. 'y"m‘dy)H(Z|agA@<f>f)%
/|y||¢ |dyH( |6®>\6 )|>%

Theorem 3.18. Ifa € Sl,l(R@)
U, : Was(Ro) = Was(Re) is bounded for 0<s<1.

(9826 ()] 175l dy

N

Re

<2 (Sern)

k=1

O
Re

2/\

Proof. By Lemma [3.16 we have that

a(€) = Z ZCJ w0 (€)e2mi2 k)

kezn 7>0

ar(§)

By taking N > n we obtain that the symbol a is just a summable combination of
terms ay and we can concentrate on studying such terms. If Ag(f) € W2 s(Ro),
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we have that

Vo, (Mo (f) =D cindo(pjexpa-sy f) = Y ¢j kb

Jj=20 j=20

Taking another partition of unity (1¢)e>0 we get

Gr=3 | e©)Er©Ne€)de ="ty

>0 /R" >0

and Lemmas and give ||c§7k|\R@ < 29=* for £ > 0. Now decompose

U, (Ae(f)) = Z C?}kbj)k + Z Cﬁ’kbj’k + Z C?)kbj,k =L+D+0U.
1<j—4 jod<f<j+d £>j+4

Let us begin with the estimate of the upper term U. The Fourier support of
Ao(f)Ae(g) = Ae(f *o g) is contained in the sum of the Fourier supports of Ag(f)
and Ag(g) respectively. In particular, the Fourier support of c?kbj,k is contained
in supp ¢y + supp p; C [Bae—2(0) \ Bae-4(0)] + Baj-1(0) C Bye-1(0) \ Bye-5(0). Now
we apply Lemma to obtain

2 2
101y, rey S D222 2 habia], 22220 N alimallbsnlz)
>4 j<e—4 >4 j<e—4
. 2 . 2
S D3 2 iels) S 3022V 2 bsale)
>4 j<6—4 >4 j<e—4

On the other hand, given 0 < § < 1 — s we have that
) 2 .
(3 2lbsells) < €2 37 HOyul3,
Jj<t—4 j<t—4

In particular, we finally obtain the expected estimate

Uy, rey S Do D 22C7HF0W0D 3

>0 j<t—4
_ Z( Z 22@(3—1+5)> 4j(1—5)Hbjk”§
>0 £>j+4
S D AT p 13 S [ he ()R, (Re)-
3>0

For the lower part L, a similar argument yields that the Fourier support of cé{ 60j.k
is contained inside Ba;(0) \ Byij—¢(0). Then we can apply the same principle so that

2
j 0
Iy mey S 20227 2 i,
>4 (<j—4
< 2| 3 | B
> 3.k R@H ],k“Q

>4 e<j—4

S22 bl S Ao (v, ro)-
j=4

A
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In the third inequality we have used that ), c§ © = Cj,k and therefore

o
|3l =flen— 3 chull, =llemslra + 3 lebulira 51

0<j—4 1=5-3 (=5-3

The diagonal part D is easier to bound. Assume for simplicity that j = ¢. The
Fourier support of c;-’ xbjk is comparable this time to a fixed dilation of By (0), not
an annulus. Nevertheless, although we do not have a norm equivalence, the norm
in Wy s(Re) is still dominated by the corresponding weighted Lo-sum, and we get

IDIy, . rey < D 271 ibiells S 3 22 bskl3 ~ Ao (A, ey O
j>0 j=>0

Theorem 3.19. Ifa,a} € 5?1 (Re), then ¥, : Ly(Re) — La(Re) is bounded.

Proof. By Theorem [3.18, ¥, and its adjoint are bounded in W3 (Re). By
Lemma, taking duals gives ¥, : Wo _4(Re) — W2 _s(Re) and interpolating
both inequalities for ¥, yields the assertion. O

Remark 3.20. A careful examination yields that
10608a(9)]| g S (©71*FP for Jo| <n+1 and |8 <1

for a and its dual symbol a;’: suffices to deduce the Ly-boundedness of ¥,,.

3.3. L,-boundedness and Sobolev p-estimates. The Lo-boundedness results
above together with our Calderén-Zygmund theory for Rg are the tools to find
sufficient smoothness conditions on a given symbol for the L,-boundedness of its
pseudodifferential operator. As pointed in the Introduction, this naturally requires
to work with a different quantum form of the Hérmander classes, which is more
demanding, but still recovers the classical definition for ® = 0. Given a : R® — Rg
we say that it belongs to X7";(Re) when

|06 08 922a(€)] < Cayaz, 5 (€)™ Fler HozlH18]
for all a1, a0, 8 € Z"y. Here are some trivial, albeit important, properties:
+
i) 7'5(Re) C S)'5(Re) since one condition reduces to the other when a; = 0.

ii) All of the three derivatives involved in the definition of X7";(Re) commute
with each other. In particular, the order considered is completely irrelevant.

iii) Fix (p,6,m) and set |al] 5 and |a|% ,, 5 for the seminorms given by the
optimal constant in the defining inequalities of S7";(Re) with parameters
(a, B) or E;%(R@) with parameters (a1, ag, 8) respectively. Then, we have

élglo |a|0¢17042;5 - élglo |a|0é1+a2,,3

Given a € X9 ,(Re) C S (Re), we will now prove that the integral kernel k,
associated with ¥, satisfies the Calderén-Zygmund kernel conditions in Theorem
A. In conjunction with our Bourdaud type condition in Theorem [3.19] it will give
the complete L,-boundedness of ¥, stated in Theorem B iii). Composition results
further yield Sobolev p-estimates

[Wa : Wps(Re) = Wy em(Re)|, < o0,
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for many symbols of degree m, with 1 < p < 0o and |¢||,.s = |[[(1 — Ae)*%¢||,.
Lemma 3.21. Given a € X7';(Re), let
k= (Vo ®id)(ks) and ks = (id ® Ve)(ka).

Then, there exist by, by € EZ?;'I(R@) satisfying that ky, = k1 and kp, = ks.

Proof. It is easily checked that
(Vo id)(h) =3 s(c) @ [ Bbla(eNo(€)] ® Ao(©)" de = b,
= n

where b1 (§) = Vg(a)+2mis(€) ® a(§) takes values in L(F,,)®Re, we omit the extra
tensor component just to simplify our notation. A simple calculation also gives
that b2(&) = —2mis(§) ® a(§). It is clear that Veo(a) € E:;J(R@) C E;rf;l(R@)

while the inclusion for s(£) ® a(§) follows by Leibniz rule and 8{;),55 = 825 . d

Lemma 3.22. Given a € S(R"™;So), let k, be the kernel of ¥,. Recall that mo(P)
is a distribution in Sege for any polynomial P in &1, ...,&,. Then, the following
identities hold in the sense of distributions for all o € 27}

ka @ mo((2mi2)%) = koga,

To((2miz)*) o ky = kg ca-
Proof. Note that
ka L] w(_)(expg) = (/ (a(&) & 1) L] 7r@(exp£+<) df) = ka( =0

Taking derivatives formally gives

) d
ko @ mo(2mizj) = ko @ o

This symbolic calculation can be justified in the distributional sense. For the second

identity, we recall the identity (92 .a)(¢) = Ao (£)IL{ o (&) a(¢) o (&) } Ao (€)* and
notice that

| (@@ @) emoespds = [ malexpe) s (o€ a(MNa(6) 9 1) de

s:Oﬂ-@ (expsej) = kaga‘

Therefore, arguing as above, we obtain the identity for left multiplication. ([

Lemma 3.23. Let ¢;(§) = ¢(277€) — p(277T1E) be a standard partition of unity in
R™ from a smooth, radial and compactly supported ¢. If we let a;(§) = a(§)y;(€)
forae Z;%(R@) and 01,02 > 0, we have

< Cy, 1, 9i(ntm—p(Li+£2))

o b,

Ro@RP
Proof. It is clear that
08ea;= > a(@70;)+ (9 ca)y.

Bty=a
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Since |8§77/1j(§)| < 27918l when (€) ~ 27, the a;’s are in ¥0'5(Re) with constants
independent of j. Assume first that ¢1, ¢ are even numbers, £, = 2N;. Then the
{-th power of |z| is a polynomial of the form

|Z|Zk: Z ZZa

[a|=Ny
Applying Lemma gives that
o

g E k 2 2
966 9 "2

Re®RY  (27) Zl”? Ro@RYP
© © |041‘ N1 \a2| Ng
and for each of the terms we have the estimate
k. 201 o200 N = H 820‘182“2 ® 1) e me(ex d H
H @ gaé a; HR@@R@p 0,¢ (5) ) 6( pE g 'R@@Rz)p

< 2j" ‘fs‘lgj I ahlaéag a; §Hn@ < gilntm—p(ti+6z)),

For general (noneven) ¢1, ¢y we proceed by interpolation. Note that the norm of k,
is not altered under left/right multiplication by d¥ for any s € R. Therefore we
have a bounded and holomorphic function ¢ + mg(|z[212¢) e k, e 1o (|2|%2) defined
in the band 0 < R(¢) < 1. An application of the three lines lemma gives the bound
for any ¢, the same follows for ¢5. This completes the proof. O

Proposition 3.24. Given a € X} (R@) and my, mo > 0

<1

d3* ek, @ d?
H © MU0 lrearey

provided p(my +mg) >n+m for p <1 or p(my +ma) >n+m for p=1.

Proof. Let _ _
pi(€) = ¢(277€) — p(27711¢)
be another partition of unity —this time for j € Z— and set b; = mg(p;). Then
dg' ek, edg? = Z + Z + Z (bj odl! ek, edl? obk) =A,+A_+ AL,
Jk>0  jk<0  j-k<O
Estimate of A, . Letting a; = ayy as in Lemma [3.23
s lraary < 30 D [breds eky edgzob| =37 S ALG k0.
§,k>0 £>0 o¥Re 0150
Pick ¢; and {5 large enough (see below) and use Lemma to estimate A4 (4, k, £)

A+(j7ka€) S ||d€~)1 .kaé .dé;”R@@R(O_)p

X

mi—~¢ mo—~
e (psl] ™ 1))HR@®R‘(§HW@(pk|Z‘( ’ 2))HR@®R;§°
< 2@(n+m—p(@1+€2))2j(m1—€1)2k(m2—€2).
Taking ¢1 > mq, l2 > mg and p(¢y + £3) > n + m we may sum over j, k, £ > 0.
Estimate of A_. Letting ay = ay; once more, we get

= S TS e ek edgen) = X ALGR) 4 A2 G0

3k<0 N esj) e<ld] G k=0
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= > ALGR) + Y ALGER) + D AZGk) + > AR( k).

J<k<0 k<j<0 J<k<0 k<j<0

All Al2 A21 A22

First, we may bound A! (j,k) and A2 (j,k) in norm via Lemma

AL G Bl & 3 -ttt
£>1j]

HA2— (j’k)HR@@)Rg’ < Z 9d(m1—£1) 9l((n+m)—p(l1+£2)) gk(ma—L2)
£<]4]

A Taking p(¢1 +lo) >n+mand r =k — j > 0, we get

HA£ (J, < 9ilmi—1)9lil(ntm—p(lr+£2)) gk(ma—L2)

Mlroary =

gr(mz—_2) 9|jl(n+m+(1—p)(l1+€2)—(mi1+m2))

If p < 1, our condition p(mq+ms) > n+m allows us to pick £1, 5 satisfying
Uy 4+ 4y =my +mg and lp > my. If p=1 we pick £; > m; for j =1,2. In
both cases we get the inequalities n+m+ (1 —p)(¢1 +£€2) — (M1 +m2) <0

and mg — 5 > 0. This gives

E:HE:Ai@j+rwm@ng

r>0 <0

IN

145 g smey

IA

r>0 J= r>0

By almost orthogonality of b;’s the sum inside the norm is a 7-th diagonal

ergg HAl_(j,j + T)HR@@)R‘ép < ZTQT(mQ—Zz) < 1.
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operator, dominated by r times the supremum of the norms of its entries.

A% Letting r = k — j > 0, we get

142 G, )| g geer S 9 (m1—€1) 1o {1, 2|j\<n+m—p<el+e2>>}2k<mz—ez>

= gr(ma—ts) max{2|j|<<el+fz)—<m1+mz>>72\j|<n+m+<1—p>(el+ez>—<m1+mz))},

Then any choice with ¢; + f3 = m1 + mg and fo > my gives |42 < 1.

A'2) We may write

A2 = ST+ T e dn ek, edgt eby) = AP 4 412

k<j<0 ~ e>[k|  |j|<t<|K|

Then, A'?! is estimated exactly as A_11. On the other hand, the estimate

21

of A™2 is very much similar to that of A2, we leave the details to the

reader.

A?2) Interchanging roles of (j,k), A2? is estimated as A?! above (even simpler).

Estimate of A,. Since the conditions on mi, my are symmetric in the statement
kT2 k<0< it suffices to estimate one of
these two sums. Arguing as above, if we pick ¢1, s so that p(¢1 + £2) > n+m, the

and the sum ) splits into Y

i-j<0 j<0<

problem reduces to estimate

Z {Z+Z}2j(m1—Zl)2€(n+m—p(ll+€2))2k(m2—€2) — A+ B
j<0<k >k e<k
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Again as above, we pick r = k — j > 0 and obtain
A< ZZQ*T(ml*51)Qk(n+m*(1+0)(51+42)+m1+m2)’

>0 k>0
B 5> 27t max {2k<(m1+m2>—<el+z2))7 ok (n+m—(1+p)(€1+£2)+m1+mz) }

>0 k>0
Since n +m < p(my + me), it suffices to take ¢; > my and ¢1 + o > m1 +mo. O
Theorem 3.25. Ifa,af € %91 (Re), we have

¥, : Hi(Re) = L1(Ro)||,
H\Ila : Loo(Re) = BMO(Re) || o < 00

In particular, ¥, : L,(Re) = L,(Re) is completely bounded when 1 < p < oco.
Proof. According to our Calderén-Zygmund extrapolation in Theorem [2.18] it
suffices to see that ¥, is Lo-bounded and its kernel k, satisfies the CZ conditions
there. The La-boundedness follows from the quantum form of Bourdaud’s condition
in Theorem [3.19} On the other hand, according to Lemma[3.21] both (Ve ®id)(k,)

and (id ® Ve)(k,) belong to X} ;(Re). In particular, Proposition yields the
C7Z kernel conditions which we need for m; +m; =n + 1. O

Corollary 3.26. If a,a} € X7 (Re), we have
H\I/ W, s(Re) = Wy s—m(Re) || o, <00 forevery 1<p<oo.
Proof. We have that

T, (1-Ae) 2

Ly(Ro) S L,(Re)

(1k ,4’”

v,
Wp,s(R@) Wp,s—m (RG)

where (1 — Ag)%/? : W,.s(Re) = W, s—w(Re) are complete isometries. On the
other hand, the complete L,-boundedness of (1—A@)(‘9_7")/2\11,1(l—A@)_S/2 follows
from Theorem [3.25] once we observe that this pseudodifferential operator and its
adjoint are associated to symbols in 2971(72@), which in turn follows from the
composition rules for ¥75(Re) established in Remark O

Remark 3.27. The assertions in Theorem [3.25]and Corollary -remain valid for
symbols a € X (R@)Wlth0<(5<1lndeed§] 5(Re) C 57 5(Re) C 57 ,(Re)
and the middle class is stable under adjoints. Thus we may apply our Bourdaud’s
condition as we did in the proof of Theorem@ In addition, 2(1)75(72@) c 29,(Re)
so that Proposition [3:24] applies. The argument for Sobolev spaces is similar.

Remark 3.28. A careful analysis of our proof for Theorem [3.25]and Corollary [3.26]
yields that the condition 2(1) 1(Re) can be replaced by the weaker condition below
0608105 al€)| + 98981602701 (€)] < Can () o0+

for |a; + sl < n+2 and |5] < 1. Indeed, according to Remark Bourdaud’s
condition in Theorem can be weakened to |1 + az] < n+ 1 and |f] < 1.
Moreover, our proof of Proposition 3.24{for mi+mso = n+1 requires |ag +asg| < n+2.
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The L,-theory for exotic symbols X7 (Re) (p < 1) is only possible due to the
regularizing effect of a negative degree m. Fefferman proved in [29] the L, bounds
for the critical index m = —(1 — p)5. The noncritical range was obtained by
Hirschman and Wainger [36] [73] (constant coefficients) and Hérmander [38] (general
symbols). Standard interpolation arguments yield even more general statements
[66, VII 5.12]. Now we shall prove (non optimal) inequalities of this kind in Reg
with applications below for L,-regularity of elliptic PDEs. Namely, in what follows
we shall write N for the best possible constant in Remark [3.10] As explained there
we suspect that any N > n/4 is valid and this would be optimal, as it is the case
in the Euclidean theory. Consider the index

Apn = —(1— p)max {2N,n + 2}.
It follows from arguments in [69] that 2N is (at least) less or equal than 3n + 2.

Corollary 3.29. Let a € X! (Re) be a symbol satisfying m < A,, for some
p < 1. Then, the pseudodifferential operator ¥V, satisfies the following estimates
forl<p<oo

¥, : Hi(Re) = L1(Ro)||,,
[Wa : Lp(Re) = Ly(Re)||,, < oo,
[¥a : Loo(Re) = BMO(Re)||,,
Moreover, if m is any real number and { =m — A,

[Wa s Wpa(Re) = Wya—e(Ro)|,,, < oo

Proof. Since a € ¥, (Re) and m =L+ A, ,,
<£>m—p|a1+a2\+p|,ﬁ’\ — <§>m+(1—p)|(¥1+a2|—|O¢1+012\+ﬂ|/3‘

< (gymH(=p) max{2Nm+2) ~loa ozl +olf] < (¢yt=lortazltold]

as long as a1 + as| < max{2N,n + 2}. This means that a satisfies the Hérmander
condition ¥ (Re) for de ¢, dc of order up to |y + az| < max{2N,n + 2}. For
the first assertion we apply Theorem A. The Lo-boundedness is guaranteed by our
Calderén-Valillancourt theorem since X9 ,(Re) C S5 ,(Re) and 2N ¢-derivatives
suffice, according to Remark Next, inclusion X9 (Re) C X ;(Re) together
with the fact that Proposition only requires |a; + as| < n + 2 —see Remark
3.28— imply that the CZ kernel conditions also hold. This proves that the first
assertion follows from Theorem A. Then, the second assertion follows by adapting
the argument in the proof of Corollary Indeed, arguing as in Remark [3.5] we
deduce that

aeXt (Re) = (1-06)T Uu(1-Ae) # =10, forsome beX) (Re)

In fact, the same holds limiting the conditions above to a prescribed number of
derivatives dg ¢ and O¢. Hence, we apply Theorem A once more to conclude. [

Remark 3.30. It is very tempting to claim that Corollary [3.29] holds for the index
A, = —(1—p)(n+2) since it is reasonable to think that the above result follows
from a direct combination of Remarks and above. However, at the time
of this writing, we are not able to circumvent the adjoint stability used in Remark
[3:27] since we need it for Hérmander conditions limited to a prescribed number of
derivatives. The product stability used above is straightforward instead.
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Remark 3.31. L,-boundedness up to the critical index m=—(1—p)F is still open.

4. L, regularity for elliptic PDEs

In this section, we illustrate our results with a basic application to elliptic PDEs
in quantum Euclidean spaces. Given 0 < § < p < 1 and m € R, a symbol
a € S)'5(Re) is called elliptic of order m when there exist constants C, R > 0 for
Wthh the following inequality holds

la(€)] = Cl¢[™  for all [¢] > R.

A prototypical example of elliptic symbol of order 2 is given by a(£) = £*A¢ for
some uniformly positive definite A € M,,(Re). We shall be interested in the elliptic
PDE
Uo(u) =

with data ¢ in the Sobolev space W, s(Re) and a € X1";(Re). Ly-regularity means
that, no matter which a priori regularity do we have in a given solution wu, it must
belong at least to the Sobolev space W, s1m(Re). When the regularity gained
is smaller than m we speak about hypoellipticity. In the Euclidean case, elliptic
regularity arises naturally for (p,d) = (1,0) and still holds for p = 1, whereas the
case p < 1 leads to hypoelliptic scenarios [69]. As we shall see, this is also the case
in the quantum setting. Equipped with our results so far, the main obstruction
we shall need to overcome will be to construct suitable parametrices for symbols
in Y-classes, for which we can not use product stability in that class. Our first
step yields Sobolev p-estimates W, s(Re) = W, s—¢(Re) for symbols in S7'5(Re)
instead of X* ».6(Re), provided the order m is small enough.

Lemma 4.1. Given s, € R, we have
U, : Wp7s(R@) — Wp,s_g('R@)
provided a € S)'s(Re) with degree m + (1 + §) max {2N,n +2} < ¢.
Proof. Arguing as in the proof of Corollary it suffices to see that a satisfies the

%{ 5(Re)-condition for de ¢ and d; of order up to max{2N,n + 2}. Then recalling
that

. . 1 &
Y Y A L 9k
8@’5 = 65 + o kzﬂ (—)]k?a@)
we easily get the following estimate
1060802 0@, S 32 D0 119670 a(e) g,

altaiz=ar |[y|=|ai1|

Z Z <§>m—l)|a12+a2|+5\5+7\.

altaiz=a1 |[y|=|ai1|

A

When |a; 4+ as| < max{2N,n + 2}, we use
m — plaiz + as| + 6|8 + 1]
= m+(1=p)laaz +az|+ (1+0)|y] = [oa + 2] + 4[5
< m+ (14 0)|on + oo — |ar +az| +0[8] < £— |ag + az] + 6]
since m + max{2N,n + 2} < £ by hypothesis. This completes the proof. (]
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Lemma 4.2. Let a € ¥7'5(Re) be an elliptic symbol for some 0 <6 < p <1 and
degree m. Let £ = m + A, . Then, for every k € N, there exist symbols by, and cy
satisfying the following properties:

) \I/bk =id — \I/(,k,
i) ¢, € SP:Z;(R@) with y =6 — p <0,
iii) If p=1, then ¥y, : W, s(Re) = Wy stm(Re) for all s € R.
iv) If p < 1, then Uy, : Wy s(Re) = Wa, 510 (Ro) for all s € R.

In fact, the last assertion holds under the weaker assumption that a € 05 (Ro).

Proof. Let

bi(€) = (1= 6(§)a™"(€)
where ¢ is a smooth function which is identically 1 in Br(0) and vanishes outside
Br+1(0). Here R is determined by the ellipticity of a, so that |a(§)| > C|¢|™ for
|¢] > R. We claim that

A) b € E (R@)
B) ¥y, \Ila =id — U,, for some c; € 5;’15(73@).

Assuming the claim, let by and ¢i be determined by

=> W ¥, and U, =Uk.

) U, U pr 0y, U qu (id = U.,) = id — V¥ =id - V,,.
i) ¢ € Slm (R@) with v = § — p < 0 follows from Corollary . since § < p.

iii) We may not use our results directly since we ignore whether or not by
belongs to the right Y-class, due to the lack (so far) of stability results for
the product of symbols in these classes. However, when p = 1 we know
from claim A) above and Remark that

\Ijbl : Wp,s(RQ) — Wp,3+m (R@)

Let us note in passing that Corollary would also do the job here for
p < 1 and ¢ in place of m. Next, it suffices to show that W/ takes the
Sobolev space W, s1m(Re) to itself. This is clear for the identity map with
j = 0. On the other hand, the boundedness for j > 0 trivially follows from
the case j = 1. Since (a,b1) € X7’5(Re)x € ¥]§'(Re), the boundedness
of ¥, =id— ¥, ¥, follows again from Remark

iv) By the product stability of S-classes from Section and according to
claims A) and B) we know that b € S §"(Re) and the result follows from
the argument in Corollary [3.26} Indeed 1t works in Lo when X-classes are
replaced by S-classes since we just need to apply Calderén-Vaillancourt and
composition with the right powers of 1 — Ag in that case.

Once we have proved the assertion, it remains to justify our claim. Point A)
follows easily once we express the involved derivatives of a=!(¢) in terms of those
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for a. It is clear that 07 (a™1)(&) + a=1(§) ¥ (a)(§)a(§) = 0 for the derivations
0 € {0¢,00.¢,00}. By ellipticity we obtain the estimates below for |{| > R

[02(a™)(O)]lp, S (©",
1056 (©O)|lp, S ©F
100, (a™)O]p, S O

By Leibniz rule and induction we get b1 € X ¥"(Re) which proves A). Then B)
follows from the product stability in Corollary [3.4] as in [69, Theorem II1.1.3]. O

Remark 4.3. The above result for p = 2 is still open for 1 < p < co. According to
point ii) and Lemma we know that ¥/ is bounded on W), s ¢(Re) for j large
enough. It would be tempting to deduce the result by complex interpolation with
j = 0. However, imaginary powers of W., are generally unbounded in L, since the
same happens for U, due to Fefferman’s critical index —(1 — p)n/2. Indeed, ¥,
will not be bounded in L, or W, ; when |v| is small enough and p < 1.

Remark 4.4. In the absence of stability for products of symbols in X-classes —left
open in Section Lemmas [.1] and [£:2] give together a good substitute for many
applications. Lemma @ provides a parametrix W;,, which, despite we ignore for
the moment whether or not it lives in the right ¥-class, it does send W, ;(Re)
to the correct Sobolev space. Moreover, we know from Lemma that the same
holds for the error term V¥, provided k is large enough, since v < 0.

Theorem 4.5. Given 0 < § < p < 1, consider a € 22?5(7'\’,@) an elliptic symbol
for some m € R and let £ = m+ A,,. Givenl < p < oo andr,s € R, assume
v €W, s:(Re) and let u solve

o(u) =¢
for some u € Wy, .(Re). Then, the following estimates hold:

i) If p=1, we get |[ullw, ... (Re) S lullw, . (Ro) + [£llW, . (Re)-
ii) If p <1 andp =2, we get [ullw, ., ,(ro) S lullw,,(Re) + €llWa,. (Re)-
Proof. According to Lemma [4.2
L ‘;[jck (’LL) = \Ijbk\Ija(u) = \Pbk ((,0)
for any k£ > 0. This gives in particular
i) Ifp=1

1, () lp,s+m + [1Vey (W)lp,5+m

[ullpstm <

S llellp,s + 1%e, (w)lp,stm-

i) f p<land p=2

2500 < [ ()ll2,se + | Wer ()
S llelles + (e (@)l2,sre-

Next, Lemmagives that U, : W, .(Re) = W, s+¢(Re) for k large enough. O

[l

2,5+¢

Remark 4.6. As in the Euclidean setting [69], Theorem 4.5 above gives elliptic
L,-regularity in the Hormander class X" (Re) and hypoelliptic Lo-regularity in
¥7'5(Re) when p < 1. The latter result remains open for other values of p # 2.
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Compared to [69] our result for p = 2 quantifies the loss of regularity in terms of p
and it holds in the larger class S)'5(Ro).

Appendix A. Noncommutative tori

Given any n x n anti-symmetric R-matrix O, the subalgebra of Rg generated by
w; = u;(1) is the rotation algebra Ag —also known as quantum or noncommutative
torus— and we have

w;wg, = exp(2mi0 ji )wrw;.

Ag can also be described as the Z™-periodic subalgebra

Ao = (No(k) :kezZm) = {4,0672@}01(‘_)(@) — ¢ for allkeZ”}.

The extension of our results for pseudodifferential operators to noncommutative
tori Ag follows by a combination of well-known transference arguments, which we
recall now. Given a symbol a : Z™ — Ag we shall say that

e a € 5)5(Ae) when
060 a ()|
e a € X]';(Ae) when

IN

Co g (K)ym—rlal+ol8l,

08081002 a(k)| < Cayay,p (k) Plortezltol8l,
In the above definitions, Jg remains the same differential operator as in Rg whereas

Ok is the difference operator (8ﬂa)(k) = a(k + ¢;) — a(k). The mixed derivatives
0o x are again O-deformations of Ox by Jg’s

] , . ] 1 &
9% (k) = dLa(k) + 2mi[ze j,a(k)] = dla(k) + 9 Z 0,0 05a(k).
=1
The associated pseudodifferential operator is
Vo(p) = D a®@ke(k) for p= Y §ke(k).
kEZn kezZn

We say that a : R" — Ag is a Euclidean lifting of a when its restriction to Z"
coincides with the original symbol a : Z™ — Ag. Recall that we impose the lifting to
take values in the periodic subalgebra Ag, not just in Rg. The extension/restriction
theorem below provides a useful characterization of the quantum Hormander classes
in Ag defined above since it relates them with their siblings in Re.

Theorem A.1l. Assume p > 0:
i) a € 575 (Ae) iff it admits a lifting a € 575 (Re).
i) a € X7'5(Ae) iff it admits a lifting a € £7'5(Re).
In fact, the lifting a : R™ — Ag has the form

a) = Y ¢(¢—ka(k)

kezn
for certain Schwartz function ¢ : R™ — R satisfying ¢(k) = dx 0 fork € Z".
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The proof follows verbatim [64, Theorem 4.5.3] since the argument only affects
the classical variables k € Z™ and ¢ € R™. In particular, the exact same argument
applies when we take values in Ag. In fact, the same extension procedure applies
when the Hormander condition is only required for finitely many derivatives in
the line of Remark see [64, Corollary 4.5.7]. The equality of the associated
pseudodifferential operators is also proved in [64, Theorem 4.6.12 and Corollary
4.6.13). Namely, the class of pseudodifferential operators associated to ;’}5(.,4@)
or X75(Ae) can be identified with the corresponding Hérmander classes in Re for
periodic symbols —that is, taking values in Ag— when acting on periodic elements
= 09( ) for k € Z™. Finally, it is also worth mentioning that the extension above
also respects ellipticity, as shown in [64, Theorem 4.9.15].

Theorem A.2. Leta:Z" — Ao and 1 < p < 00:

i) Ifa € Sg’p(.A@) with 0 < p <1, ¥, : Ly(Ae) = La(Aoe).
ii) If a € SY, (Ae) N ST (Ae)*, then ¥, : Ly(Ae) — La(Ae).
i) If a € £9,(Ae) NXY 1 (Ae)*, then W, : Ly(Ae) = Ly(Ae).

Proof of Theorem [A.2]i) and ii). Let b; = B,;(0) and

1
hj |b | and Aj : )\(_)(k) — )\@(k)h]
j
Observe that A; : 2(.,4@) — Ly(Re) is an isometry for all j > 1. Indeed
5 2
A = H K)ol
|| j((p)HLQ(R@) ‘b‘ kzz:n @( b) Ls(Re)
_ K1 1)e2misOLE-k) ) o (£) ¢ ‘
|b; ‘H/n k%" b (€= KJe o(6)dt L2(Re)

By Plancherel theorem and using that b; + k are pairwise disjoint, we get

1 P wi(k,©, &— 2
15z = 1551 Ja > By, (€ — k)e?miOus k>‘ de
kezn
B |b; |/n Z [ ’ Iy, (§ = k) d§ = Z 20| = llell7, 40)-
kezZm kezn

Then, the assertion follows from the following claim
lim (A (Wa(9)) — Wa(45(9))]| =
Jim {145 (%a(e)) ~ Ya(85@)]|,
for any trigonometric polynomial ¢. In other words, for finite linear combinations
of the Ao(k)’s. Indeed, assume the limit above vanishes, then ¥, is Lo-bounded
since trigonometric polynomials are dense and

||‘I’a(90)||L2(,49) = jll?;oHA( ))HLz(Re)

4hm ||‘I’E (AJ (¢)

)||L2(R@)

IN

jlggoHA N ome) = lelLa(as):

The inequality above follows by application of Theorem in conjunction with
Theorems[3.9] [3:12] and [3:19] Let us then justify our claim above. It clearly suffices
to prove it with ¢ = Ag(k) for any k € Z". Given an arbitrary £ > 0, we shall
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prove that the quantity |A;(¥q(Ae(k)))—Pa(A;(Ae(k)))||2 < Ce for some absolute
constant C independent of (k,e) and j large enough. Let ¢ : R®* — R be the
function used in Theorem for the construction of the lifting. Since ¢ is a
Schwartz function and ¢(k) = 0y o for k € Z™, there must exists a § > 0 satisfying

€~k <o = max{[o(¢ — k) — 1], sup|o(¢ ) } < eR"
j#k

where R, is large enough to satisfy

1
Z W<€.

k> Re
Next, consider the Fourier multiplier My, ;(¢) = [gn Lo.s (§)P(§) Ao (£)dE where we
write bys for Bs(k). Then, we decompose the LQ -norm into three terms as follows
145 (Za (Ao (k) — Il
- ||a<k>Ae< > (Ae< ha)l
< lak) (Ao (K)hj — My, ; (Ao (k)hy)) |,
+ [Ja() My, (Ao ()hy) = Wa My, (Mo (k)hy)

+ H\IJE(Mbka()‘@( )h;)) _\DH()\@(k)hJ)"Q = A+B+C.

We recall one more time from Theorem [A 1] and Theorem B in the Introduction
that U5 : Lo(Re)) — La2(Re) is a bounded map. Moreover, we also know that
a € U (Z™; Ag) since it has degree 0. In particular

A+ (s a9llae + 19 1, o) racre ) [0 — Moy (Ao A7) |
The Ly-norm above can be estimated with Plancherel theorem
[Xe () — Mp,; (Mo (k)h;))

= || [ 0= 1@, (6 - e g0 e

il

1 3
_ (m k+b,’1_1bk5(£)|2d§) — 1= bs(®)] = 0

as j — oo. Therefore, it remains to estimate the term B. Letting

a(§) = (@) — ak)) Lo

= a(k) (¢(f - k) - 1) 1bk5(§)

+ Y al)o(E = i)lp e
j#k
li—k|<R.

+ Z a(jP(€ —Dlpse) = ax(§) +ax(§) + ask(§),

li—k|>R-

we clearly have

B = ||Ta, (Ao (k)hy)||, < ZH\I}aJk: 2(Re) — La(Re)|
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since Ag(k)h; is a unit vector in Lo(Re). This gives

B < (swlol)lac)( suwp |o¢—K) —1])
jezn |€—k| <5
+ (swlla()lae) (X sup fo(e-i)l)
jezn e le—kl<s
li—k|<R-.
. n 1
+ (s la@laa )o@l Y ) S 3
jeznr . |J k|
[i—=k|>R.
Then, letting € — 0% this completes the proof of the claim. O

Remark A.3. The above argument was inspired by the proof of [I1} Theorem A].

Proof of Theorem iii). The next ingredient we need is the natural BMO
space in Ag. Define BMO.(Ag) as the column BMO space associated to the
transferred heat semigroup ¢ — >, @(k)exp(—tk|?)Ao(k). As in Section m
it can be regarded as the weak-x closure of og(Ag) with respect to the pair
(H§(Qo), BMO.(Qp)). In other words, we find

1

2 2

llallBmo, (46) ~ SUP H(][ loo(a) — oe(a)g| du) ;
QeQ Q Ae

where Q is the set of all Euclidean cubes in R™ with sides parallel to the axes, u
stands for the Lebesgue measure and og(a)q is the average of og(a) over the cube
Q. Up to absolute constants, it is not difficult to recover an equivalent norm when
restricting to cubes @ of side length ¢(Q) € (0,1) UN. Moreover, since a is spanned
by Ao (k) for k € Z™, it is clear that og(a) is Z"-periodic. In particular, the quantity
above for £(Q) € N coincides with the same quantity for @ = [0,1] x ... x [0, 1], so
that we may assume in addition ¢(Q) < 1. We have proved
lallzmo. (4e) ~ sup

QeTn (]2 oo (a) - U@(G)Q|2 d,u)

In other words, BMO.(Ag) embeds into BMO.(T™; Ag) using Mei’s terminology
[61]. The interpolation behavior and other natural properties which we explore for
BMO(Re) in Appendix B are well-known in this case [41], due to the finiteness
of Ag. Note that, according to our definition of BMO(Ag), the natural inclusion
map Ao — Re extends to an embedding BMO(Ag) — BMO(Rg). In other
words, BMO(Ag) is the subspace of periodic elements in BMO(Rg). Now, recalling
that Uz sends periodic elements into periodic elements, this makes the following a
commutative diagram

1
2

Ao

id

LOO(-A(—)) LOO(R@)
BMO(Ao) “ BMO(Re)

The assertion follows from it and Theorem ii) by interpolation and duality. [

Remark A.4. Of course, our Lj-inequalities also hold in the category of operator
spaces and admit the endpoint estimates Hy — L; and L., — BMO, as in the
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quantum Euclidean setting. Besides, the natural analogues of Remarks [3.27] and
as well as Corollary concerning L,-estimates still apply. On the other
hand, the Sobolev p-estimates in Corollary and the Ly-regularity for elliptic
PDEs require in addition analogues of the product stability of Hormander classes in
Section [3.1] which seems to be straightforward but we shall not generalize it here.

Appendix B. BMO space theory in Rg

The theory of BMO spaces was developed as a natural endpoint class for singular
integral operators. In particular, the natural requirements for a reasonable BMO
space are:

1) Interpolation endpoint for the L,-scale.
2) John-Nirenberg inequalities and H; — BMO duality.
3) Lo, — BMO boundedness for Calderén-Zygmund operators.

BMO spaces over von Neumann algebras were introduced by Pisier and Xu in [61]
and have been investigated since then. The theory when averages over balls or
martingale filtrations are replaced by the action of a Markovian semigroup has
been addressed for finite von Neumann algebras in [41]. Interpolation requires a
different approach over Rg —less intricate than the general semifinite case— which
we present here. Duality was developed by Mei [51] [52] and endpoint estimates for
imaginary powers A% of infinitesimal generators, noncommutative Riesz transforms
or more general Fourier multipliers have been studied in [I3] [40} [41] [42] 63]. In the
setting of Ag and Rg, Theorems A and B include many more singular integrals.

B.1. Operator space structures on BMO and Hy. Let us recall the definitions of
several natural operator space structures —o.s.s. in short— for BMO(R"™) and its
predual. We define the column operator space structure by the family of matrix
norms on f = [f;;] € M,,[BMO.(R™)] given by

I £l a1, [BMO. (Rm)] = 5161% H]é(f —fQ)" (f = fQ)dMHim,

where fqg is the average of f over @) and Q stands for the set of all the Euclidean
balls. We will denote the resulting operator space by BMO.(R™). Similarly, we
can define the row o.s.s. by || flla,,;Bmo, @) = [|F* (a1, [BMO. (7). We shall also
denote by BMO(R™) —sometimes BMO,x.(R™) for convenience— the operator
space structure

I £z, BMoO(Rn)) = max { | £l 2, B7MO. )5 [ f | 1, (BMO, (R7) }

These are dual operator spaces, with preduals HI(R”)* = BMO;(R"™) given by

1y = H(/R+|S(V+8§)Psf|2f)% o
ey = [|(f s+ odps P,

where Py is the Poisson semigroup. The quantities above are just pseudonorms. A
natural way of turning them into norms is working with O-integral functions, in a
way dual to the quotient of constants taken in the definition of BMO. Comparable
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norms can be defined by removing the 92 inside the square function and by using
the semigroup analogue of Lusin area integral, given by

sy ~ ([ 107+ @2 s P s )"

Ll(Rn)’

where I';, = {(y,s) € R® xR, : |y — x| < s} is the cone centered at 2. The row case
can be expressed analogously. The o.s.s. of Hardy spaces can be easily described
by taking matrix-valued functions f = [f;;] in the expression above and taking
norms in SP*®L;(R") = L;(R™; S*). That will give a family of matrix norms
which describes the operator space structure. Indeed, using [59, Lemma 1.7] and
the well-known relation

M, [H} (R™)] = CB(ST", H] (R"))

see e.g. [60, Theorem 4.1], we can easily express the norm of M,,[H](R™)] in terms
of the known norms. The operator space predual Hy (R™) of BMO(R™) is given by
the sum H$(R™) + Hj(R™), whose norm is

||st;n®Hl(Rn) = inf {||g||s;n®H;(Rn) + HhHS{"@)Hf(]Rﬂ) f=9+ h}~

Let us note that, by computations in Section [[.2.1] we have that oe gives an
isomorphic embedding BMO;(Rg) — BMO;(R")®Re. In particular, since Reg
is hyperfinite, we may equip BMOt(Re) with an o.s.s. naturally inherited from
BMO;(R™). Following Mei [52) [53], the definition of H]; (Re) will be given by
completion on the 0-trace functions with respect to

1

L

lolls Ry = H(/IR So.|VeSe | dt)’
.

Li(Re)’

Li(Re)

1

*|2 2

lelarre)y = H(/R 5@,t|V@S@7t<p\ dt)2
N

The operator space structures of such spaces are defined in the same way as the
operator space structures of the classical ones, which could also have been defined
with this square function instead of the given one yielding an equivalent norm. Note
also that when © = 0, the semigroup Se; behaves (intuitively) like an average over
balls of radius v/t and a calculation gives that the quantities above are comparable
to the Lusin integral and therefore recover the classical Hy(R™). We will write
H;(Re) or H]T%(Rg) for the sum

Hi(Re) = Hi(Re) + Hi(Ro).
B.2. The H1-BMO duality. The von Neumann algebra analogue of the celebrated
H; — BMO duality [30] has been carefully studied in our semigroup setting by Tao
Mei. By [63, Theorem 0.2], the duality between H;(Reg) and BMO(Rg) can be

deduced after verifying that the associated heat semigroup (Se):>0 satisfies the
following conditions:

i) Bakry’s I's > 0 condition.
ii) For all e,¢ > 0 and ¢ € L1(Re)

[(Se.a+at = Y009, (re) < € I0llLi(Re)-
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iii) For every t > 0 and ¢ € L1(Re)

sup|](J68ts@£<Lse¢<w>F>ds)é

t>0

< .
L(Re) IellL: (Re)
Verifying such identities is relatively easy for the heat semigroup (Se:):>0 after
noting that it can be presented as an integrable convolution with respect to the
z-variable 0§ (¢) and using bounds in L;/3(Re). In particular, we obtain the
expected duality theorem.

Theorem B.1. We have
H|(Re)" = BMO4(Re)
in the category of operator spaces for 1 € {r,c}. Also Hi(Re)* = BMO(Rg).

B.3. Complex interpolation. We are now interested in proving the generalization of
the classical interpolation identities between L,, BMO and H;. According to Wolff’s
interpolation theorem [74], this can be easily reduced to justifying the complete
isomorphism [L2(Re), BMO(Re)]s = L,(Re) for p = ﬁ which in turn will be
reduced, via suitable complemented subspaces, to the same result in R™ but with
operator values in certain hyperfinite von Neumann algebra.

Let us recall a few standard definitions from interpolation theory. Given Xg, X3
Banach spaces, assume that they embed inside a topological vector space with dense
intersection, so that we can define Xg N X; and Xy + Xy with their natural norms.
Let us write F(Xq, X1) for the space of (Xg + X1 )-valued holomorphic functions in
the strip 0 < R(z) < 1 which admit a continuous extension to the boundary, with
X;-values at 0; for j = 1,2. Such space is a Banach space with respect to the norm
given by

1700,y = max { sup || £(is)llxqsup 1 (1 + is)1x, }-
seR seR
The interpolated space with parameter 0 < 6 < 1 is

[X07 Xl]e = ]:(X07 Xl)/meu

where Dy is the subspace of functions with f(6) = 0. We can also define a larger
interpolation functor [Xg,X;]? that contains [Xg,X;]y isometrically by changing
F(Xo,X1) by a la larger space F,(Xo,X;1) of holomorphic functions in which fla,
is a more general X;-valued distribution. These interpolation functors satisfy that
[Xo, X1]5 = [X,X7]? and both coincide if any of the spaces involved X, X is
reflexive [5], Corollary 4.5.2] and [60, Theorem 2.7.4]. If X; are operator spaces, the
o.s.s. of [Xg,X1]g is given by the identification

Mm([Xle]@) = [M’m(XO%Mm(Xl)}Q
We first need an auxiliary result concerning complex interpolation of tensor
products against hyperfinite von Neumann algebras. This result is a consequence

of the interpolation identity [./\/l*@Xo, M*®X1]9 = M., X, which can be found in
[59, page 40]. We prove it for completeness.

Lemma B.2. We have
[M&Xo, MEX1]” = ME[Xo, X’
for any hyperfinite algebra M and any pair of dual operator spaces Xo, X.
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Proof. According to [26] the spaces involved are dual operator spaces. Indeed,
von Neumann algebra preduals have the OAP so M&X* = (M,®X)*. Now, since
hyperfiniteness and semidiscreteness are equivalent id : M — M is approximable
in the pointwise weak-* topology by a net i, = Vo0, where ¢, : M — M, (C)
and ¢4 : My, (C) = M are ucp. We have

MEX? loGid [M&X, MEX, ]’

My (X0) —=— [Miy,, (X0), My, (X1)]"

a

a commutative diagram for X? = [Xg, X;]?. The maps i, approximate the identity
and taking a weak-* accumulation point in CB(M®X60, [M&Xy, M@X;]?), which
is a dual space since CB(X,Y*) = (X®Y)*, we obtain a complete isomorphism. [

A key point in our interpolation argument will be to show that the co-action
06 : Re — Loo(R")®Re also carries other Rg-spaces —L,;, and BMO— into their
Reo-valued Euclidean counterparts.

Proposition B.3. We have complete contractions:

i) 06 : Li(Re) — LL(RM@Re for t € {r,c},
ii) 0o : Ly(Re) — Ly(R™)@Re for any 2 < p < oo,
ili) oe : BMO4(Re) — BMO;(R™)®@Re for t € {r,c,r Ac}.

Proof. Let us recall the Fubini-type identity

1ra(e) = [ ob(e)de
In particular, given ¢ = [¢;;] € My,[L5(Re)| we obtain
el zsrey = @ T0)(0*0)],, =|(id® 17’@)(@*@)“]\41”[72@]

* 2
= || [ ostoros@raz],, = loe@lli, usanerar

The same follows in the row case. In fact, og is a complete isometry in case|i)| and
also in case [iii)| by construction of BMO(Rg). Assertionfollows by interpolation
from Lemm Indeed, since Lo(R™) = [L5(R™), L5(R™)]; /2 in the category of
operator spaces and all spaces involved are reflexive, we obtain from [i)| that og is
a complete contraction from La(Rg) to La(R™)®Re. The case p > 2 also follows
by complex interpolation, using the reflexivity of Ls, since the contractivity of the
other endpoint for p = co was already justified in Corollary g

Remark B.4. It is interesting to know whether an analogue of Proposition
holds for p = 1. Note that L;(R™) is not a dual space, so that we can not use
the weak-* closed tensor product. Instead, we shall consider the mixed-norm space
Lo (Re; L1(R™)) as introduced in [39] [45]

Lo (Re; L1(R™)) = (L3(R")®Re) (L5(R")@Re),
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where the operator space structure for w € M,, (Lo (Reo; L1 (R™))) is

inf H ap e H H we H }
{ 2@y emsrasnl 2 5 @l 1iemeraso

where the infimum runs over all possible factorizations w = ), axfr. Now, the
contractivity of og : L1(Rg) = Lo (Re; L1(R™)) follows easily from Proposition
Particular cases of this kind of spaces —over finite von Neumann algebras or
discrete ¢1 spaces— have been proved to interpolate in the expected way with the
corresponding L, scale [39) [45]. The lack of an available argument in the literature
for the general case has led us to avoid the case 1 < p < 2 in Proposition This
contractivity result is unnecessary for our goals.

Observe that
ce(Ae(f)) = - f(&) (expe ®Ae(§))dE for  f e SR™).

Clearly such element is invariant under the group of trace preserving automorphisms
B. given by B, = 0,% ® 0. Let us denote by (X&Re)? the S-invariant part of
the X®Rg with X any of the Euclidean function spaces in Proposition We
need to see that (X&Re)” coincides with the image of og and that the S-invariant
subspace is complemented. Let us start with the complementation.

Proposition B.5. The following subspaces

) (LY(R")ERe)? C LYR™)®Re for T € {r,c},
i) (L, (R")&Re)? C Ly(R")ERe for any 2 < p < o0,
iii) (BMO4(R")®@Re)”? C BMO;(R")@Re for t € {c,r,r Ac},

are completely complemented as operator spaces in the respective ambient spaces.

Proof. By amenability of R™, let m € Lo, (R™)* be an invariant mean and let m,,
be a sequence of probability measures in L;(R™) which approximate m. Given w
in L,(R")®Re, the function z — f,w sits in the space Lo (R™")QL,(R")®Re, so

P,(w) = (my ® id ®id)(B.w)
defines a family of completely positive operators
P, : Lo (R")QL,(R")®Re — L,(R")@Re.

Since the image is in a dual space, we use CB(X, Y*) = (X®Y)* and Banach-Alaoglu
theorem. Let P be an accumulation point of (P, o f3), in the weak-* topology. P
gives a cb-bounded projection into the g-invariant part. We have only used that
L,(R™) is a dual space for weak-* compactness. Therefore, the same proof applies
to BMO;(R™). The projections P : L,(R")®Re — L,(R")®Re form compatible
family: they are restrictions of a map defined in the sum of the above spaces. [

Proposition B.6. We have
i) 0o(L}(Re)) = (LY(R™@Re)? for t € {r,c},
it) oo(Ly(Re)) = (L,(R")@Re)? for any 2 < p < oo,
iii) 0o(BMOt(Re)) = (BMO(R");®@Re)? for t € {r,c,r Ac}.
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Proof. Since the spaces (L,(R")®Reg)? are complemented subspaces, it is enough
to prove the identity for p = 2 and p = oo and interpolation will yield the result
for 2 < p < oo since the maps og : L,(Re) = Lp(R")®Re are compatible. The
same argument gives that the Ly case follows by interpolation between L§5(Re)
and L5(Re). This reduces the proof to the row/column cases, the case p = co and
BMO(Re). We shall only prove it for columns and for p = oo, since the argument
is similar in BMO. Let us define the map W : L§(R")®Re — L5(R")®Re by
extension of exp; ®Aeg(n) — exp: ®Ae(§)Ae(n). A calculation easily yields that
W is a complete isometry. The same follows in the row case if one takes the map
expg @Ae (1) — expe ®Ae(1n)Ae(§) instead. We have that W gives an isomorphism
between L5(R"™) ® 1 and og[Ae[L2(R™)]]. We also have that W intertwines the
action (3, as follows

LE(RME@Re — ¥~ LS(R")@Re

- B
L§(RM@Re —— L§(R")@Re.

Therefore, the subspace fixed by 8 corresponds under W with the subspace fixed
by id ® 0. But evaluating such space against every ¢ ® id, with ¢ € L5(R™),
gives that the fixed subspace of id ® og is L§(R"™) tensored with the subspace fixed
by og. Such subspace is C1. Indeed, if ¢ € Rg is invariant under og we obtain
that ¢ = Ao (¥), where ¢ € S(R™)’ is a distribution supported on {0}. But such
distribution is a linear combination of distributions of the form (1, f) = f*)(0),
where f € S(R™). The derivatives with k& > 0 give rise to unbounded elements and
so we obtain that v has to be a multiple of dg or, equivalently, that ¢ € C1.

The case of p = 0o follows similarly. We first define a normal *-homomorphim
U: Lo(R")@Re — Loo(R™)@Re by extension of exp, ®Ae (1) + exp, . @Ae ().
To prove that such map is a x-homomorphism we can implement it spatially with
techniques analogous to that of Corollary We have that U carries 1 ® Reg in
co[Re] and that it intertwines the actions in the expected way. Proceeding like in
the case p = 2 we can conclude.

The case of BMO; can be deduced from a similar result for mixed spaces. First
we note that the result for BMO,. . follows from the corresponding ones for BMO,.
and BMO,, we shall only prove it for BMO,.. Fix a Euclidean ball B C R™ and
consider the following operator-valued inner product

(f, f)B :]{3|fs|2ds— ‘]éfsdsf for f € Loo(R™) ®ug Ro-

Let 1 (B) denote the corresponding Hilbert module over Re and let Hg be the
direct sum, in the {o.-sense, of Hg(B) over all balls B. Clearly BMO.(Rg) embeds
in Hg and we have that

. 1d®o ,
H, ° HE

BMO,(Re) 7° > BMO.(R")®&Re
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where = is the 2n x 2n-matrix Z = 0® ©. Now, we can define a map preserving the
operator-valued inner product (and thus an isometry) W, : HE — HE by extension
of exps, ®expg, ®Aa(n) + expg, ®expg, , ®Ae(n) for every ball B. Such map
carries the copy of H§ ® 1 that lives in the first and third tensor components into
oo[H§] and proceeding like in the previous cases we get that oo [H§)] coincides with
the subspace of Hg invariant under the group of automorphisms 3, = id®o, *®@0§.
That result restricts to BMO... O

Proposition B.7. We have complete isometries:
i) oo : L;('R@) — L;(R")@'R@ for t € {r,c},

ii) 06 : Lpy(Re) — Ly(R™")®Re for any 2 < p < oo,
ili) e : BMO{(Re) — BMO;(Re)®Re for t € {r,c,r Ac}.

Proof. Assertions|i)]and [iii)] were proved in the proof of Proposition[B.3} Assertion
for p = 0o was already justified in Corollary |1.4] . The rest of the cases trivially
follow by complementation and complex interpolation from our results above. [

Theorem B.8. We have
[Hi(Re),BMO(Re)], = [Li(Re),BMO(Re)],
= [Hl(R@)7LOO(R@)]9 = LP(RO)

forp= ﬁ, All isomorphisms above hold in the category of operator spaces.

Proof. Since Ly(Re) is reflexive

[L3(Re),BMO(Re)], = [L2(Re),BMO(Rs)]’
_ [a@L 6)):76(BMO(Re))]”
= [PLa®" @R@> P(BMO(R")&Re)]’

= P([L R")®Re, BMO(R")&Re]”)
= P([Ly(R"),BMO(R™)]’@Ro)
= P(L,,(R”)@R@) = oo(Lp(Re)) = Lp(Re)

for p = 1%9. Indeed, the second identity follows from Proposition which gives
X = 0e(X) completely isomorphic for X = Ly(Reg) and X = BMO(Rg). The third
and fourth identities follow from Proposition which shows that 0g(X) can be
identified with P(Z) where Z is the ambient space of operator-valued functions in
R™ associated to X. Moreover, since P is a bounded projection, it commutes with
the complex interpolation functor by complementation. The fifth identity follows
from Lemma [B.2)and the sixth one from Mei’s interpolation theorem [53]. The last
two identities apply from Propositions and again. Once this is known we
use the reflexivity of Ly(Re) and duality Hy(Re)* = BMO(Re) to obtain

* 0
[Hi(Re), L2(Re)], = [BMO(Re), L2(Re)]” = Ly (Re)
for ¢ = 325. This shows that [H;(Re), L2(Re)] must be reflexive and we get

[Hl(R@), Lz(RQ)] 0 — Lq(R@)~
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The interpolation results in the statement follow from Wolff’s theorem [74], which
states that if X, Xy, X3, X4 are spaces with X; N Xy dense inside both X5 and X3,
then

Xy = [X1,X3]g, and X3z = [Xo,X4ls, = Xo = [X1,Xyly, and X3 = [X;, X4y,
where ¥ = 6105/(1 — 01 4+ 0163) and 95 = 05/(1 — 61 + 6165). Taking

Xy = Hi(Re), X2 = Li(Re), X3 = L2(Re), X4 = L4(Re),
Z1 = Hi(Re), Zy = L2(Re), Zs = Li(Re), Zs = BMO(Re),

we first obtain, using X;-spaces and the interpolation of Hi(Re) with Ls(Re),
that Hy(Re) and L4(Re) interpolate in the expected way. Then, using the same
procedure with the Z;-spaces and the interpolation of Ly(Re) with BMO(Rg), we
finally get the expected result for the bracket

[Hi(Re), BMO(Re)],-
The other two brackets in the statement can be treated analogously. (I

Remark B.9. It is worth mentioning that our techniques have at least another
potential application in the abelian case. Let (X, 1) be a G-space with a G-invariant
measure. In that case, we can identify X and H x G/H as measure spaces, where
H is the stabilizer and we have the following Fubini-type identity

Lot e = [ [0t ) dun ) o),

see [3I], Chapter 2]. If the stabilizer is compact we can exchange integration in X
and integration in G in a way analogous to the Fubini-type identity which relates
Te and og. If there is a natural definition of BMO(G), either with averages over
the balls of an invariant measure or with translation-invariant semigroups, and that
BMO interpolates, then we can transfer the interpolation to BMO(X) provided that
G is amenable. This seems to be a very direct approach for proving interpolation
of G-invariant BMO-spaces over X = G/K, where G is a solvable and unimodular
Lie group and K is a compact subgroup.

B.4. An auziliary density result. Let us write in what follows S§ for the kernel
of the trace functional 7¢ : Sg¢ — C, which is of course continuous over Sg. It
is trivial that Sg C HJ{ (Ro). We are going to see that it is in fact dense. It will
be an easy consequence of the fact that oo : BMO;(Re) = BMO;(R")®Re, for
1 € {r,e,7 A ¢} are normal and complete isometries. Taking preduals we obtain a
complete and surjective projection

(06) : H{(R")E(Re). — H{(Reo).

for T € {r,c,r +c}. We are just going to need that such map carries S°(R") ®, Se
into S§ but indeed much more is true and the map (og ). can be explicitly described
as a diagonal restriction multiplier. That is, it satisfies the following commutative
diagram, where Sy(R™) is the subclass of Schwartz functions with f(0) =0

(o)«

H{(R")®(Re). ———— H|(Re)

So(R™)

>\0®A(—)T

S()(Rn) R S(Rn) f=fla



SINGULAR INTEGRALS IN QUANTUM EUCLIDEAN SPACES 85

Now, the proof of the density is immediate.

Corollary B.10. S is dense inside H}(Re) for T € {r,c,r + ¢}.

Proof. We just have to use that S°(R")®,Se C HI (R™)&(Re). is a dense subset.
Since (0g)«(S°(R™)) C 8§ and the image under a projection of a dense set is a
dense set we conclude. 0
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