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Abstract. Calderón-Zygmund operators with noncommuting kernels may
fail to be Lp-bounded for p 6= 2, even for kernels with good size and smooth-
ness properties. Matrix-valued paraproducts, Fourier multipliers on group
vNa’s or noncommutative martingale transforms are frameworks where we
find such difficulties. We obtain weak type estimates for perfect dyadic CZO’s
and cancellative Haar shifts associated to noncommuting kernels in terms of a
row/column decomposition of the function. Arbitrary CZO’s satisfy H1 → L1

type estimates. In conjunction with L∞ → BMO, we get certain row/column
Lp estimates. Our approach also applies to noncommutative paraproducts or
martingale transforms with noncommuting symbols/coefficients. Our results
complement recent results of Junge, Mei, Parcet and Randrianantoanina.

Introduction

A semicommutative CZO has the formal expression

Tf(x) ∼
∫

Rn
k(x, y)(f(y)) dy,

where the kernel acts linearly on the matrix-valued function f = (fij) and satisfies
standard size/smoothness Calderón-Zygmund type conditions. This is the operator
model for quite a number of problems which have attracted some attention in recent
years, including matrix-valued paraproducts, operator-valued Calderón-Zygmund
theory or Fourier multipliers on group von Neumann algebras, see [9, 10, 21, 25, 27]
and the references therein. To be more precise, let B(`2) stand for the matrix algebra
of bounded linear operators on `2. Consider the algebra formed by essentially
bounded functions f : Rn → B(`2). Its weak operator closure is a von Neumann
algebra A and as such we may construct noncommutative Lp spaces over it. Let us
highlight a few significant examples:

• Scalar kernels. k(x, y) ∈ C and

k(x, y)(f(y)) =
(
k(x, y)fij(y)

)
.

• Schur product actions. k(x, y) ∈ B(`2) and

k(x, y)(f(y)) =
(
kij(x, y)fij(y)

)
.

• Fully noncommutative model. k(x, y) ∈ B(`2)⊗̄B(`2) and

k(x, y)(f(y)) =
(∑

m
tr
(
k′′m(y)f(y)

)
k′m(x)ij

)
.

• Partial traces, noncommuting kernels. k(x, y) ∈ B(`2) and

k(x, y)(f(y)) =


(∑

s kis(x, y)fsj(y)
)
,(∑

s fis(y)ksj(x, y)
)
.
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Scalar kernels required in [27] a matrix-valued Calderón-Zygmund decomposi-
tion in terms of noncommutative martingales and a pseudo-localization principle
to control the tails of Tf in the L2-metric. Hilbert space valued kernels were later
considered in [23], see also [20, 31, 34] for previous related results. The second
case refers to the Schur matrix product k(x, y) • f(y), considered for the first time
in [10] to analyze cross product extensions of classical CZO’s. It is instrumental
for Hörmander-Mihlin type theorems on Fourier multipliers associated to discrete
groups and for Schur multipliers with a Calderón-Zygmund behavior [10, 11]. In
the fully noncommutative model, we approximate k(x, y) by a sum of elementary
tensors

∑
m k
′
m(x)⊗ k′′m(y) and the action is given by

Tf(x) ∼
∫

Rn
(id⊗ tr)

[
k(x, y)

(
1⊗ f(y)

)]
dy.

In this case, we regard the space Lp(A) = Lp(Rn;Lp(B(`2))) as a whole. In other
words, the noncommutative nature of Lp(A) predominates and the presence of a
Euclidean subspace is ignored. That is what happens for purely noncommutative
CZO’s [12] and justifies the presence of id⊗ tr, to integrate over the full algebra A
and not just over the Euclidean part. The last case refers to matrix-valued kernels
acting on f by left/right multiplication, k(x, y)f(y) and f(y)k(x, y). Matrix-valued
paraproducts are prominent examples [17, 21, 22, 25, 33]. This is the only case in
which the kernel does not commute with f , since the Schur product is abelian and
we find (id⊗ tr)[k(x, y)(1⊗ f(y))] = (id⊗ tr)[(1⊗ f(y))k(x, y)] by traciality.

Our main goal is to obtain endpoint estimates for CZO’s with noncommuting
kernels, motivated by a recent estimate from [10] for semicommutative CZO’s. If
k(x, y) acts linearly on B(`2) and satisfies the Hörmander smoothness condition in
the norm of bounded linear maps on B(`2), the content of [10, Lemma 1.3] can be
summarized as follows

• If T is L∞(B(`2);Lr2(Rn))-bounded, then T : L∞(A)→ BMOr(A),
• If T is L∞(B(`2);Lc2(Rn))-bounded, then T : L∞(A)→ BMOc(A).

Here, the L∞(Lc2)-boundedness assumption refers to∥∥∥(∫
Rn
Tf(x)∗Tf(x) dx

) 1
2
∥∥∥
B(`2)

.
∥∥∥(∫

Rn
f(x)∗f(x) dx

) 1
2
∥∥∥
B(`2)

,

while the column-BMO norm of a matrix-valued function g is given by

sup
Q cube

∥∥∥(−∫
Q

(
g(x)− gQ

)∗(
g(x)− gQ

)
dx
) 1

2
∥∥∥
B(`2)

.

Taking adjoints —so that the ∗ switches everywhere from left to right— we find
L∞(Lr2)-boundedness and the row-BMO norm. The noncommutative BMO space
BMO(A) = BMOr(A)∩BMOc(A) was introduced in [31]. According to [24] it has
the expected interpolation behavior in the Lp scale. Thus, standard interpolation
and duality arguments show that T : Lp(A) → Lp(A) for 1 < p < ∞ provided
the kernel is smooth enough in both variables and T is a normal self-adjoint map
satisfying the L∞(Lr2) and L∞(Lc2) boundedness assumptions. In other words, the
row/column boundedness conditions essentially play the role of the L2-boundedness
assumption in classical Calderón-Zygmund theory.
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Although this certainly works for non-scalar kernels —Schur product actions
were used e.g. in [10, Theorem B]— the boundedness assumptions impose nearly
commuting conditions on the kernel which are too strong for CZO’s associated to
noncommuting kernels. Namely, given k : R2n \ ∆ → B(`2) smooth and given
x /∈ suppRnf , let us set formally the row/column CZO’s

Tcf(x) =
∫

Rn
k(x, y)f(y) dy and Trf(x) =

∫
Rn
f(y)k(x, y) dy.

It is not difficult to construct noncommuting kernels with

i) Tr and Tc are L2(A)-bounded,
ii) Tr and Tc are not Lp(A)-bounded for 1 < p 6= 2 <∞,

see e.g. [27, Section 6.1] for specific examples. Therefore, the L∞(Lr2) and L∞(Lc2)
boundedness assumption is in general too restrictive when kernel and function do
not commute. Assume for what follows that Tr and Tc are L2(A)-bounded. We
are interested in weakened forms of Lp boundedness and endpoint estimates for
these CZO’s. A dyadic noncommuting CZO will be a L2(A)-bounded pair (Tr, Tc)
associated to a noncommuting kernel satisfying one of the following conditions:

a) Perfect dyadic kernels∥∥k(x, y)− k(z, y)
∥∥
B(`2)

+
∥∥k(y, x)− k(y, z)

∥∥
B(`2)

= 0

whenever x, z ∈ Q and y ∈ R for some disjoint dyadic cubes Q,R.

b) Cancellative Haar shift operators

k(x, y) =
∑

Q dyadic

∑
R,S dyadic⊂Q
`(R)=2−r`(Q)

`(S)=2−s`(S)

αQRShR(x)hS(y),

for some fixed r, s ∈ Z+ where the αQRS ∈ B(`2) with ‖αQRS‖B(`2) ≤
√
|R||S|
|Q| .

Here hQ refers to any of the 2n − 1 Haar functions related to the cube Q.

Perfect dyadic kernels were introduced in [1] and include Haar multipliers, as well
as paraproducts and their adjoints. If J− and J+ denote the left/right halves of
a dyadic interval in R, the standard model for Haar shifts is the dyadic Hilbert
transform with kernel

∑
J(hJ−(y) − hJ+(y))hJ(x). It appeared after Petermichl’s

crucial result [30], showing the classical Hilbert transform as a certain average of
dyadic Hilbert transforms. Hytönen’s representation theorem [7] extends this result
to arbitrary CZO’s. We will write generic noncommuting CZO for L2(A)-bounded
pairs (Tr, Tc) with a noncommuting kernel satisfying the standard smoothness. Our
first significant result is the following.

Theorem A. The following inequalities hold :

i) Dyadic noncommuting CZO’s. Given f ∈ L1(A)

inf
f=fr+fc

∥∥Trfr∥∥1,∞ +
∥∥Tcfc∥∥1,∞ . ‖f‖1.

ii) Generic noncommuting CZO’s. Given f ∈ H1(A)

inf
f=fr+fc

∥∥Trfr∥∥1
+
∥∥Tcfc∥∥1

. ‖f‖H1(A).
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The noncommutative forms of L1,∞ and the Hardy space H1 are well-known
in the subject. Nevertheless, they will also be properly defined in the body of
the paper. Our main result is the inequality given in Theorem A i) and their
noncommutative generalizations in Theorem C below. As we shall explain in the
Appendix, the left/right modular nature of Tr/Tc is essential for the weak type (1, 1)
estimates, see also Remark 2.5. The following result easily follows from Theorem
A by interpolation/duality and it can also be derived from [10]. Nevertheless, it is
worth mentioning the Lp inequalities that we find.

Theorem B. The following inequalities hold for generic noncommuting CZO’s :

i) If 1 < p < 2 and f ∈ Lp(A)

inf
f=fr+fc

∥∥Trfr∥∥p +
∥∥Tcfc∥∥p . ‖f‖p.

ii) If 2 < p <∞ and f ∈ Lp(A)∥∥Trf∥∥Hrp(A)
+
∥∥Tcf∥∥Hcp(A)

. ‖f‖p.

iii) Given f ∈ L∞(A), we also have ‖Trf‖BMOr(A) + ‖Tcf‖BMOc(A) . ‖f‖∞.

Theorems A and B also hold for other operator-valued functions, replacing B(`2)
by any semifinite von Neumann algebra M. Our proof will be written in this
framework. Let us now consider a weak-∗ dense filtration ΣA = (An)n≥1 of von
Neumann subalgebras of an arbitrary semifinite von Neumann algebra A. In the
following result, we will consider two kind of operators in Lp(A):

a) Noncommuting martingale transforms

Mr
ξ f =

∑
k≥1

∆k(f)ξk−1 and M c
ξ f =

∑
k≥1

ξk−1∆k(f).

b) Paraproducts with noncommuting symbol

Πr
ρ(f) =

∑
k≥1

Ek−1(f)∆k(ρ) and Πc
ρ(f) =

∑
k≥1

∆k(ρ)Ek−1(f).

Here ∆k denotes the martingale difference operator Ek − Ek−1 and ξk ∈ Ak is an
adapted sequence. Of course, the symbols ξ and ρ do not necessarily commute with
the function. Randrianantoanina considered in [34] noncommutative martingale
transforms with commuting coefficients. As for paraproducts with noncommuting
symbols, Mei studied the Lp-boundedness for p > 2 and regular filtrations in [21]
and also analyzed in [22] the case p < 2 in the dyadic matrix-valued case under
a strong BMO condition of the symbol. Our theorem below goes beyond these
results, see also [23] for related results.

Theorem C. Consider the pairs :

i) Martingale transforms (Mr
ξ ,M

c
ξ ), with supk ‖ξk‖M <∞.

ii) Martingale paraproducts (Πr
ρ,Π

c
ρ), with Πr/c

ρ L2(A)-bounded.

If ΣA is regular, we obtain weak type (1, 1) inequalities like in Theorem Ai) for
martingale transforms and paraproducts . The estimates in Theorems Aii) and B
also hold for both families and for arbitrary filtrations ΣA. Moreover, the martingale
paraproducts Πr

ρ and Πc
ρ are Lp-bounded for 2 < p <∞ and L∞ → BMO.
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In the case of martingale transforms, there are also examples of noncommuting
kernels failing Lp-boundedness for p 6= 2. Hence, our results recover those in [34, 35]
and are in some sense sharp, providing appropriate substitutes for noncommuting
coefficients. Our result for paraproducts goes beyond [21, Theorem 1.2] in two
aspects. First, our estimates for p > 2 hold for arbitrary martingales, not just
for regular ones. Second, we give a partial answer to Mei’s question in [21] after
the proof of Theorem 1.2 for the case p < 2 and also for the weak type (1, 1)
estimates. The paper is organized following the order in the Introduction. We
include an Appendix at the end with further comments and open problems. Along
the paper we shall assume some familiarity with basic notions from noncommutative
integration. The content of [27, Section 1] is enough for our purposes, more can be
found in [16, 32, 37].

1. Calderón-Zygmund decomposition

LetM be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace τ . Consider the algebra of essentially bounded functions Rn → M
equipped with the n.s.f. trace

ϕ(f) =
∫

Rn
τ(f(x)) dx.

Its weak-operator closure is a von Neumann algebra A. If 1 ≤ p ≤ ∞, we write
Lp(M) and Lp(A) for the noncommutative Lp spaces associated to the pairs (M, τ)
and (A, ϕ). The lattices of projections are writtenMπ and Aπ, while 1M and 1A
stand for the unit elements. The set of dyadic cubes in Rn is denoted by Q and we
use Qk for the k-th generation, formed by cubes Q with side length `(Q) = 2−k. If
f : Rn →M is integrable on Q ∈ Q, we set the average

fQ =
1
|Q|

∫
Q

f(y) dy.

Let us write (Ek)k∈Z for the family of conditional expectations associated to the
classical dyadic filtration on Rn. Ek will also stand for the tensor product Ek⊗ idM
acting on A. If 1 ≤ p ≤ ∞ and f ∈ Lp(A)

Ek(f) = fk =
∑
Q∈Qk

fQ1Q,

∆k(f) = dfk =
∑
Q∈Qk

(
fQ − f bQ)1Q,

where Q̂ denotes the dyadic parent of Q. We will write (Ak)k∈Z for the filtration
Ak = Ek(A). The noncommutative weak L1-space, denoted by L1,∞(A), is the set
of all ϕ-measurable operators f for which ‖f‖1,∞ = supλ>0 λϕ{|f | > λ} <∞, see
[5] for a more in depth discussion. In this case, we write ϕ{|f | > λ} to denote the
trace of the spectral projection of |f | associated to the interval (λ,∞). We find this
terminology more intuitive, since it is reminiscent of the classical one. The space
L1,∞(A) is a quasi-Banach space and satisfies the quasi-triangle inequality below
which will be used with no further reference

λϕ
{
|f1 + f2| > λ

}
≤ λϕ

{
|f1| > λ/2

}
+ λϕ

{
|f2| > λ/2

}
.
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Let us consider the dense subspace

Ac,+ = L1(A) ∩
{
f : Rn →M

∣∣ f ∈ A+, suppRn f is compact
}
⊂ L+

1 (A).

Here suppRn means the support of f as a vector-valued function in Rn. In other
words, we have suppRn f = supp‖f‖M. We employ this terminology to distinguish
from supp f , the support of f as an operator in A. Any function f ∈ Ac,+ gives rise
to a martingale (fk)k∈Z with respect to the dyadic filtration. Moreover, it is clear
that given f ∈ Ac,+ and λ > 0, there must exist mλ(f) ∈ Z so that 0 ≤ fk ≤ λ for
all k ≤ mλ(f). The noncommutative analogue of the weak type (1, 1) boundedness
of Doob’s maximal function is due to Cuculescu. Here we state it in the context of
operator-valued functions from A.

Cuculescu’s construction [4] . Let f ∈ Ac,+ and consider the corresponding
martingale (fk)k∈Z relative to the filtration (Ak)k∈Z. Given λ ∈ R+, there exists a
decreasing sequence of projections (qk(λ))k∈Z in A satisfying

i) qk(λ) commutes with qk−1(λ)fkqk−1(λ) for each k,
ii) qk(λ) belongs to Ak for each k and qk(λ)fkqk(λ) ≤ λqk(λ),
iii) The following estimate holds

ϕ
(
1A −

∧
k∈Z

qk(λ)
)
≤ 1

λ
sup
k∈Z
‖fk‖1 =

1
λ
‖f‖1.

Explicitly, take qk(λ) = χ(0,λ](qk−1(λ)fkqk−1(λ)) with qk(λ) = 1A for k ≤ mλ(f).

Given f ∈ Ac,+, consider the Cuculescu’s sequence (qk(λ))k∈Z associated to
(f, λ) for a given λ > 0. Since λ will be fixed most of the time, we will shorten the
notation by qk and only write qk(λ) when needed. Define the sequence (pk)k∈Z of
disjoint projections pk = qk−1 − qk, so that∑

k∈Z
pk = 1A − q with q =

∧
k∈Z

qk.

Calderón-Zygmund decomposition [27]. Given f ∈ Ac,+ and λ > 0, we may
decompose f = gd + goff + bd + boff as the sum of four operators defined in terms
of the Cuculescu’s construction as follows

gd = qfq +
∑
k∈Z

pkfkpk,

bd =
∑
k∈Z

pk (f − fk)pk,

boff =
∑
i 6=j

pi(f − fi∨j)pj ,

goff =
∑
i 6=j

pifi∨jpj + qf(1A − q) + (1A − q)fq.

Moreover, we have the diagonal estimates∥∥∥qfq +
∑
k∈Z

pkfkpk

∥∥∥2

2
≤ 2nλ ‖f‖1 and

∑
k∈Z

∥∥pk(f − fk)pk
∥∥

1
≤ 2 ‖f‖1.



CZO’S WITH MATRIX-VALUED KERNELS 7

The expression below for goff will be also instrumental

goff =
∞∑
s=1

∞∑
k=mλ+1

pkdfk+sqk+s−1 + qk+s−1dfk+spk =
∞∑
s=1

∞∑
k=mλ+1

gk,s =
∞∑
s=1

g(s).

2. Proof of Theorems A and B

The key result of this paper is Theorem A, since the remaining theorems follow
from it or by using analog ideas. We begin with the proof of the weak type estimates
for perfect dyadic CZO’s and then make the necessary adjustments to make it work
for Haar shift operators. The proof of Theorem Aii) will require to recall some
recent results on square function and atomic Hardy spaces.

2.1. Perfect dyadic CZO’s. To the best of our knowledge, the notion of perfect
dyadic Calderón-Zygmund operator was rigorously defined for the first time in [1]
by Auscher, Hofmann, Muscalu, Tao and Thiele. Accordingly, we define a perfect
dyadic CZO with noncommuting kernel as a pair (Tr, Tc) formally given by

Trf(x) ∼
∫

Rn
k(x, y)f(y) dy,

Tcf(x) ∼
∫

Rn
f(y)k(x, y) dy,

with anM-valued kernel satisfying the perfect dyadic conditions∥∥k(x, y)− k(z, y)
∥∥
M +

∥∥k(y, x)− k(y, z)
∥∥
M = 0

whenever x, z ∈ Q and y ∈ R for some disjoint dyadic cubes Q,R. Alternatively, we
may think of perfect dyadic kernels k : R2n \∆→M as those which are constant
on 2n-cubes of the form Q × R, where Q,R are distinct dyadic cubes in Rn with
the same side length and sharing the same dyadic parent. Classical perfect dyadic
CZO’s include Haar multipliers/martingale transforms and dyadic paraproducts.
In other words, operators of the following form

Hξf(x) =
∫

Rn

( ∑
Q∈Q

ξ(Q̂)
|Q|

1Q(x)(1Q − 2−n1 bQ)(y)
)
f(y) dy,

Πρf(x) =
∫

Rn

( ∑
Q∈Q

1
|Q|

(ρQ − ρ bQ)1Q(x)2−n1 bQ(y)
)
f(y) dy,

with supQ |ξ(Q)| < ∞ and ρ : Rn → C in dyadic BMO. Adjoints of paraproducts
are also perfect dyadic. In the noncommuting setting, the coefficients ξ(Q) and the
symbol ρ become operators inM and anM-valued function respectively which do
not commute a priori with f ∈ Lp(A). Nevertheless, the perfect dyadic condition
for the kernel is still satisfied in these cases.

Proof of Theorem Ai) — Perfect dyadic CZO’s. Splitting f as a sum of
four positive operators and by density of Ac,+ in the positive cone of L1(A), we
may clearly assume that f ∈ Ac,+. A well-known lack of Cuculescu’s construction
is that we do not necessarily have qk(λ1) ≤ qk(λ2) for λ1 ≤ λ2. This is typically
solved restricting our attention to lacunary values for λ. Define

πj,k =
∧
s≥j

qk(2s)−
∧

s≥j−1

qk(2s) for j, k ∈ Z.
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We have
∑
j πj,k

SOT= 1A − ψk, where

ψk =
∧
s∈Z

qk(2s).

Observe that ψkdfk = dfkψk = 0 for k ∈ Z. Indeed, we have

‖ψkdfk‖A ≤ ‖ψkf
1
2
k ‖A‖fk‖

1
2
A + ‖ψkf

1
2
k−1‖A‖fk−1‖

1
2
A

= ‖ψkfkψk‖
1
2
A‖fk‖

1
2
A + ‖ψkfk−1ψk‖

1
2
A‖fk−1‖

1
2
A ≤ lim

s→−∞
21+ s

2 ‖f‖
1
2
A.

In particular, we find f =
∑
k(1A−ψk−1)dfk(1A−ψk−1) and set f = fr + fc with

fr =
∑
k∈Z

LTk−1(dfk) =
∑
k∈Z

(∑
i>j

πi,k−1dfkπj,k−1

)
,

fc =
∑
k∈Z

UTk−1(dfk) =
∑
k∈Z

(∑
i≤j

πi,k−1dfkπj,k−1

)
.

This is the decomposition we will use for any perfect dyadic CZO. Given such an
operator T = (Tr, Tc) and λ > 0, the goal is to show that there exists an absolute
constant c0 so that λϕ{|Trfr| > λ} + λϕ{|Tcfc| > λ} ≤ c0‖f‖1 for any f ∈ Ac,+
and any λ > 0. By symmetry in the argument, we will just prove the inequality for
Tcfc. Moreover, replacing c0 by 2c0 we may also assume that λ = 2` for some ` ∈ Z.
Having fixed the value of λ, we may consider the Calderón-Zygmund decomposition
f = gd + goff + bd + boff and set

gcd =
∑
k∈Z

UTk−1

(
∆k(gd)

)
, gcoff =

∑
k∈Z

UTk−1

(
∆k(goff )

)
,

bcd =
∑
k∈Z

UTk−1

(
∆k(bd)

)
, bcoff =

∑
k∈Z

UTk−1

(
∆k(boff )

)
.

By the quasi-triangle inequality it suffices to show

λ
[
ϕ
{
|Tcgcd| > λ

}
+ ϕ

{
|Tcbcd| > λ

}
+ ϕ

{
|Tcgcoff | > λ

}
+ ϕ

{
|Tcbcoff | > λ

}]
. ‖f‖1.

The first term is first estimated by Chebychev’s inequality in A

λϕ
{
|Tcgcd| > λ

}
≤ 1

λ

∥∥Tcgcd∥∥2

2
.

1
λ
‖gcd‖22.

We use that UTk−1

(
∆k(gd)

)
are in fact martingale differences, so that

1
λ
‖gcd‖22 =

1
λ

∑
k∈Z

∥∥UTk−1

(
∆k(gd)

)∥∥2

2
≤ 1

λ

∑
k∈Z
‖∆k(gd)‖22

=
1
λ

∥∥∥∑
k∈Z

∆k(gd)
∥∥∥2

2
=

1
λ

∥∥∥qfq +
∑
k∈Z

pkfkpk

∥∥∥2

2
≤ 2n‖f‖1.

Indeed, the first inequality above follows from the fact that triangular truncations
are contractive in L2(A) while the last inequality arise from the diagonal estimates
in the noncommutative CZ decomposition stated above. To handle the remaining
terms, we introduce the projection

q̂ =
∧
s≥`

q(2s) =
∧
s≥`

∧
k∈Z

qk(2s).
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According to Cuculescu’s construction, we find

ϕ
(
1A − q̂

)
≤
∑
s≥`

ϕ
(
1A − q(2s)

)
≤
∑
s≥`

1
2s
‖f‖1 =

2
λ
‖f‖1.

This reduces our problem to show that

λ
[
ϕ
{∣∣Tc(bcd)q̂ ∣∣ > λ

}
+ ϕ

{∣∣Tc(gcoff )q̂
∣∣ > λ

}
+ ϕ

{∣∣Tc(bcoff )q̂
∣∣ > λ

}]
. ‖f‖1.

The perfect dyadic nature of Tc comes now into scene. Indeed, we claim that the
three terms Tc(bcd)q̂, Tc(g

c
off )q̂, Tc(bcoff )q̂ vanish whenever Tc is perfect dyadic. This

will be enough to conclude the proof. If Qk(x) is the only cube in Qk containing
x, we find a.e. x

Tc(bcd)(x)q̂(x) =
∑
k∈Z

Tc
(
UTk−1(∆k(bd))

)
(x) q̂(x)

=
∑
k∈Z

Tc

(
UTk−1(∆k(bd))1Qk−1(x)

)
(x) q̂(x)

+
∑
k∈Z

∑
Q∈Qk−1
x/∈Q

(∫
Q

k(x, y)UTk−1(∆k(bd))(y) dy
)
q̂(x).

The last term on the right vanishes since the term UTk−1(∆k(bd)) has mean 0 in
any Q ∈ Qk−1, so that we may replace k(x, y) by k(x, y)−k(x, cQ), which is 0 when
x /∈ Q by the perfect dyadic cancellation of the kernel. On the other hand, if we
define the projection

q̂k−1 =
∧
s≥`

qk−1(2s),

we see that q̂(x) = q̂k−1(x)q̂(x) = q̂k−1(y)q̂(x) for any y ∈ Qk−1(x). This gives

Tc(bcd)(x)q̂(x) =
∑

k
Tc

(
UTk−1(∆k(bd))q̂k−11Qk−1(x)

)
(x) q̂(x).

The exact same argument applies for gcoff and bcoff , so that it suffices to prove

UTk−1(∆k(bd)) q̂k−1 = 0,
UTk−1(∆k(goff )) q̂k−1 = 0,
UTk−1(∆k(boff )) q̂k−1 = 0,

for all k ∈ Z. In all these cases we will be using the following two key identities

• q̂k−1πi,k−1 = πj,k−1q̂k−1 = 0 for i, j > ` and k ∈ Z,
• πi,k−1pk−s = pk−sπj,k−1 = 0 for s ≥ 1, i, j ≤ ` and k ∈ Z.

The proof is straightforward and left to the reader. It only requires to apply the
monotonicity properties of

∧
s≥j qk(2s), which increases in j and decreases in k. If

we apply the first identity to UTk−1(∆k(γ)) q̂k−1 for any γ, we get

UTk−1(∆k(γ)) q̂k−1 =
∑
i≤j≤`

πi,k−1dγkπj,k−1q̂k−1.

Therefore, if we know that dγk = Ak + Bk where the left support of Ak and the
right support of Bk are dominated by

∑
s≥1 pk−s = 1A−qk−1, then we deduce that

UTk−1(∆k(γ)) q̂k−1 = 0. In other words, it suffices to prove that

qk−1∆k(γ)qk−1 = 0 for γ = bd, goff , boff .
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We have

∆k(bd) =
∑
j

∆k

(
pj(f − fj)pj

)
=

∑
j<k

pj(fk − fj)pj −
∑
j<k−1

pj(fk−1 − fj)pj

=
∑
j≤k−1

pjdfkpj = (1A − qk−1)∆k(bd)(1A − qk−1).

To calculate the martingale differences for goff , we invoke the formula

goff =
∞∑
s=1

∑
j∈Z

pjdfj+sqj+s−1 + qj+s−1dfj+spj

given in the statement of the Calderón-Zygmund decomposition. Then we find

∆k(goff ) =
∞∑
s=1

pk−sdfkqk−1 + qk−1dfkpk−s

= (1A − qk−1)dfkqk−1 + qk−1dfk(1A − qk−1).

Finally, it remains to consider the martingale differences of boff

∆k(boff ) =
∞∑
s=1

∑
j∈Z

∆k

(
pj(f − fj+s)pj+s + pj+s(f − fj+s)pj

)
=

∞∑
s=1

∑
j<k−s

pj(fk − fj+s)pj+s + pj+s(fk − fj+s)pj

−
∞∑
s=1

∑
j<k−s−1

pj(fk−1 − fj+s)pj+s + pj+s(fk−1 − fj+s)pj

=
∞∑
s=1

∑
j<k−s

pjdfkpj+s +
∞∑
s=1

∑
j<k−s

pj+sdfkpj = Ak +Bk.

So qk−1Ak =Bkqk−1 = 0 and qk−1∆k(γ)qk−1 = 0 for γ = bd, goff , boff as desired. �

2.2. Haar shift operators. The Haar system has the form

hεQ(x) =
1√
|Q|

n∏
j=1

(
1I−j (xj) + εj1I+j (xj)

)
where Q = I1 × I2 × · · · × In ∈ Q and ε = (ε1, ε2, . . . , εn) 6= (1, 1, . . . , 1) with
εj ∈ ±1. We are using I−j and I+

j for the left/right halves of the intervals Ij . It
yields an orthonormal system in L2(Rn) composed of mean zero functions. If we
write hQ for any Haar function of the form hεQ, a noncommuting dyadic shift with
complexity (r, s) has the form

Xαf(x) =
∑
Q∈Q

AQf =
∑
Q∈Q

∑
R,S dyadic⊂Q
`(R)=2−r`(Q)

`(S)=2−s`(Q)

αQRS
〈
f, hS

〉
hR(x),

where 〈f, hS〉 =
∫
fhS and αQRS are operators inM satisfying ‖αQRS‖M ≤

√
|R||S|
|Q| .
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Lemma 2.1. We have ‖Xαf‖2 ≤ ‖f‖2.

Proof. The argument is standard, observe that

‖Xαf‖22 =
∑
Q,Q′

∑
R,R′S,S′

τ
(
〈f, hS〉∗αQ∗RSα

Q′

R′S′〈f, hS′〉
) ∫

Rn
hR(y)hR′(y) dy.

The integral on the right imposes R = R′, which in turn gives Q = Q′ since Q is
the unique r-th ancestor of R and the same happens for (R′, Q′). Once we know
that Q = Q′, we may write

‖Xαf‖22 =
∑
Q∈Q
‖AQf‖22 =

∑
Q∈Q

∥∥∥AQ( ∑
S⊂Q

`(S)=2−s`(Q)

〈f, hS〉hS
)∥∥∥2

2
.

It is worth mentioning that the double use above of hS always refers to the same
choice of hεS in both instances. On the other hand, it is easily seen that AQ is a
contractive operator on L2(A). Indeed, we have

‖AQg‖22 ≤
∫

Rn

[∑
R,S

‖αQR,S‖M
( 1√
|S|

∫
S

‖g(y)‖L2(M)dy
) 1√
|R|

1R(x)
]2
dx

≤
∫
Q

(
−
∫
Q

‖g(y)‖L2(M) dy
)2

dx ≤ −
∫
Q

‖g‖2L2(A) dx = ‖g‖2L2(A).

This yields

‖Xαf‖22 ≤
∑
Q∈Q

∥∥∥ ∑
S⊂Q

`(S)=2−s`(Q)

〈f, hS〉hS
∥∥∥2

2
=
∥∥∥ ∑
Q∈Q
〈f, hQ〉hQ

∥∥∥2

2
= ‖f‖22. �

The next lemma is crucial to analyze Haar shifts and general Calderón-Zygmund
operators with noncommuting kernels. We take here the opportunity to slightly
modify the argument in [27, Lemma 4.2], which was not entirely correct.

Lemma 2.2. Given s ∈ Z+, there exists ζ ∈ Aπ such that :

i) λϕ(1A − ζ) ≤ 2sn‖f‖1,
ii) If Q0 ∈ Qk0 and x ∈ Q̂s0, then ζ(x) ≤ q̂k0(y) for all y ∈ Q0.

In the second property, we write Q̂s0 for the unique s-th dyadic ancestor of Q0.

Proof. We have

1A − q̂k =
∑
j≤k

(
q̂j−1 − q̂j

)
=
∑
j≤k

∑
Q∈Qj

ρQ ⊗ 1Q =
∑
Q∈Qk

[ ∑
R⊃Q

ρR

]
⊗ 1Q

for some family of projections ρQ ∈Mπ. Define

ζ =
∧
k∈Z

ζk with ζk = 1A −
∨
j≤k

∨
Q∈Qj

ρQ1 bQs .
It is clear that the ζk’s are decreasing in k and we find

λϕ(1A − ζ) = λ lim
k→∞

ϕ(1A − ζk)

≤ λ lim
k→∞

∑
j≤k

∑
Q∈Qj

τ(ρQ)|Q̂s|
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= 2sn lim
k→∞

λ
∑
j≤k

∑
Q∈Qj

ϕ(ρQ ⊗ 1Q)

= 2snλϕ
(
1A − q̂

)
= 2snλ

∑
m≥`

ϕ
(
1A − q(2m)

)
. 2sn‖f‖1.

To prove the second property, it will be useful to observe that Q1 ( Q2 implies
that ρQ1 ⊥ ρQ2 are orthogonal projections. Indeed, according to the definition of
ρQ above, we have ρQ1ρQ21Q1 = (q̂j1−1− q̂j1)(q̂j2−1− q̂j2)1Q1 = 0 for `(Q1) = 2−j1
and `(Q2) = 2−j2 . Then, we find

ζ(x) ≤ ζk0(x)

= 1M −
∨
j≤k0

∨
Q∈Qj

ρQ1 bQs(x)

≤ 1M −
∨

R⊃Q0

ρR = 1M −
∑
R⊃Q0

ρR

=
(
1A −

∑
Q∈Qk0

[ ∑
R⊃Q

ρR

]
⊗ 1Q

)
(y) = q̂k0(y). �

Proof of Theorem Ai) — Haar shift operators. As in the perfect dyadic case,
we assume f ∈ Ac,+ and decompose f = fr + fc in the same way. Once more the
argument is row/column symmetric, and we just consider the column part. After
fixing λ = 2` for some ` ∈ Z, we construct the corresponding Calderón-Zygmund
decomposition for fc = gcd + gcoff + bcd + bcoff . According to Lemma 2.1, we may
control the term Xα(gcd) in the usual way. Given γ ∈ {bd, goff , boff }, the other
terms can be decomposed as follows

Xα(γc) =
∑
k∈Z

Xα

(
UTk−1(∆k(γ))

)

=
∑
k∈Z

∑
Q∈Q

∑
R,S⊂Q

`(R)=2−r`(Q)

`(S)=2−s`(Q)

αQRS

(∫
Rn

UTk−1(∆k(γ))hS dy
)
hR(x)

=
∑
k∈Z

[ ∑
Q∈Q

`(Q)≤2−k+1

+
∑
Q∈Q

`(Q)>2−k+1

`(Q)≤2s−k+1

+
∑
Q∈Q

`(Q)>2s−k+1

]
= Aγ +Bγ + Cγ .

We claim that Cγ = 0. Namely, we have `(S) = 2−s`(Q) > 2−k+1. This means
that Ek−1(hS) = hS since the Haar functions hS are constant in the dyadic children
of S, whose length sides are greater or equal than 2−(k−1). This yields∫

Rn
UTk−1(∆k(γ))hS dy =

∫
Rn

Ek−1

(
UTk−1(∆k(γ))hS

)
dy

=
∫

Rn
Ek−1

(
UTk−1(∆k(γ))

)
hS dy

=
∫

Rn

(
UTk−1(Ek−1∆k(γ))hS dy = 0.
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In order to deal with the remaining terms Aγ and Bγ , we invoke the identity
qk−1∆k(γ)qk−1 = 0 which was already justified in the perfect dyadic case whenever
γ = bd, goff , boff . Namely, since πi,k−1(1A − qk−1) = (1A − qk−1)πj,k−1 = 0 for
i, j ≤ `, we find

UTk−1(∆k(γ)) =
∑
i≤j

πi,k−1∆k(γ)πj,k−1 =
∑
i≤j
j>`

πi,k−1∆k(γ)πj,k−1.

Let us now consider the term Aγ , we have

λϕ
{
|Aγ | > λ

}
≤ λϕ

(
1A − q̂

)
+ λϕ

{∣∣Aγ q̂ ∣∣ > λ

2

}
.

We already know that the first term on the right is dominated by ‖f‖1 and

Aγ q̂ =
∑
k∈Z

∑
Q∈Q

`(Q)≤2−k+1

∑
R,S⊂Q

`(R)=2−r`(Q)

`(S)=2−s`(Q)

αQRS

(∫
Rn

UTk−1(∆k(γ))hS dy
)
hR(x) q̂(x).

Given Q ∈ Q with `(Q) ≤ 2−k+1 let

kQ ≥ k − 1 determined by `(Q) = 2−kQ .

It is clear that q̂(x) = q̂kQ(x)q̂(x) = q̂kQ(y)q̂(x) = q̂k−1(y)q̂(x) whenever x, y belong
to Q. However, the presence of hR(x), hS(y) implies (unless the corresponding term
is 0) that the pair (x, y) ∈ R× S ⊂ Q×Q so that we may write

Aγ q̂ =
∑
k∈Z

∑
Q∈Q

`(Q)≤2−k+1

∑
R,S⊂Q

`(R)=2−r`(Q)

`(S)=2−s`(Q)

αQRS

(∫
Rn

UTk−1(∆k(γ))q̂k−1hS dy
)
hR(x) q̂(x).

Therefore, we conclude

UTk−1(∆k(γ))q̂k−1 =
∑
i≤j
j>`

πi,k−1∆k(γ)πj,k−1q̂k−1 = 0

since πj,k−1q̂k−1 = 0 when j > `. This shows that Aγ q̂ = 0. Let us finally consider
the term Bγ . We will follow a similar argument with the projection ζ from Lemma
2.2 instead. Namely, we have

λϕ
{
|Bγ | > λ

}
≤ λϕ

(
1A − ζ

)
+ λϕ

{∣∣Bγζ ∣∣ > λ

2

}
.

According to property i) of Lemma 2.2, it suffices to show that Bγζ = 0. Now
we know that `(Q) ≤ 2s−k+1, so that kQ ≥ k − s − 1. Let us now consider the
2ns dyadic cubes Tj having Q as their s-th dyadic ancestor. This gives rise to the
identities

ζ(x) = ζkQ+s(x)ζ(x) = ζkQ+s(y)ζ(x) = q̂kQ+s(z)ζ(x) = q̂k−1(z)ζ(x)

for (x, y, z) ∈ Q × Q × Tj . Indeed, the second identity follows from the fact that
EkQ(ζkQ+s) = ζkQ+s, the third one from the second property in Lemma 2.2 and the
last one from the inequality kQ ≥ k − s − 1. Hence, given y ∈ S ⊂ Q we pick the
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unique j for which S = Tj and deduce that ζ(x) = q̂k−1(y)ζ(x). Then it yields the
identity

Bγζ =
∑
k∈Z

∑
Q∈Q

`(Q)>2−k+1

`(Q)≤2s−k+1

∑
R,S⊂Q

`(R)=2−r`(Q)

`(S)=2−s`(Q)

αQRS

(∫
Rn

UTk−1(∆k(γ))q̂k−1hS dy
)
hR(x) ζ(x).

The integrand UTk−1(∆k(γ))q̂k−1 vanishes for the same reason as it did above. �

Remark 2.3. Our constants are ∼ 2sn and seem far to be sharp. Unfortunately,
the classical argument leading to constants ∼ s encounters a major obstacle due to
the presence —in the noncommutative setting— of triangular truncations, which
are not bounded in L1. The Appendix below contains more details on this topic.

2.3. Noncommuting CZO’s. The proofs of Theorems Aii), B and C arise from
a careful combination of recent results in the theory of noncommutative Hardy
spaces. Let us begin introducing Mei’s notion [20] of row and column Hardy spaces
for our algebra of operator-valued functions A. In order to distinguish from order
Hardy spaces to be introduced below, let us follows Mei’s notation and define

H1(Rn;M) = Hr
1(Rn;M) + Hc

1(Rn;M)

as the space of functions f ∈ L1(A) for which we have

‖f‖H1(Rn;M) = inf
f=g+h

‖g‖Hr1(Rn;M) + ‖h‖Hc1(Rn;M) <∞,

where the row/column norms are given by

‖g‖Hr1(Rn;M) =
∥∥∥(∫

Γ

[∂ĝ
∂t

∂ĝ∗

∂t
+
∑

j

∂ĝ

∂xj

∂ĝ∗

∂xj

]
(x+ ·, t) dxdt

tn−1

) 1
2
∥∥∥

1
,

‖h‖Hc1(Rn;M) =
∥∥∥(∫

Γ

[∂ĥ∗
∂t

∂ĥ

∂t
+
∑

j

∂ĥ∗

∂xj

∂ĥ

∂xj

]
(x+ ·, t) dxdt

tn−1

) 1
2
∥∥∥

1
,

with Γ = {(x, t) ∈ Rn+1
+ | |x| < y} and f̂(x, t) = Ptf(x) for the Poisson semigroup

(Pt)t≥0. In other words, operator-valued forms of Lusin’s square function. We say
that a ∈ L1(M;Lc2(Rn)) is a column atom if there exists a cube Q so that

• suppRn a = Q,

•
∫
Q

a(y) dy = 0,

• ‖a‖L1(M;Lc2(Rn)) = τ
[( ∫

Q

|a(y)|2 dy
) 1

2
]
≤ 1√

|Q|
.

According to [20, Theorem 2.8], we have

‖f‖Hc1(Rn;M) ∼ inf
{∑

k
|λk|

∣∣ f =
∑

k
λkak with ak column atoms

}
.

On the other hand, we have already settled a dyadic filtration (Ak)k∈Z for our
algebra of operator-valued functions A. Then, we may follow [31] to define the
corresponding noncommutative Hardy space H1(A) as the completion of the space
of finite martingales in L1(A) with respect to the norm

‖f‖H1(A) = inf
f=g+h

g,h martingales

∥∥∥(∑
k∈Z

dgkdg
∗
k

) 1
2
∥∥∥

1
+
∥∥∥(∑

k∈Z
dh∗kdhk

) 1
2
∥∥∥

1
.
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In other words, H1(A) = Hr
1(A) + Hc

1(A) where the spaces on the right are the
completions of the spaces of finite L1-martingales with respect to the norms in L1

of the corresponding row/column square functions given above. By the use of a
dyadic covering [3, 20], it can be shown that there exists n + 1 dyadic filtrations
ΣjA (0 ≤ j ≤ n) in Rn so that

H1(Rn;M) '
n∑
j=0

H1(A,ΣjA),

where the latter spaces are defined as H1(A) after replacing the standard filtration
Σ0
A by any other dyadic filtration in our family. Moreover, this isomorphism also

holds independently for row/column Hardy spaces.

Proof of Theorem Aii). It suffices to show

Tr : Hr
1(A)→ L1(A) and Tc : Hc

1(A)→ L1(A),

for any generic noncommuting CZO (Tr, Tc). Indeed, in that case we decompose
f = fr + fc ∈ H1(A), so that ‖f‖H1(A) ∼ ‖fr‖Hr1(A) + ‖fc‖Hc1(A) and we deduce
that

‖Trfr‖1 + ‖Tcfc‖1 . ‖fr‖Hr1(A) + ‖fc‖Hc1(A) ∼ ‖f‖H1(A).

According to our observation above, H1(A) embeds isomorphically into H1(Rn;M)
by means of a suitably choice of dyadic coverings of Rn, and the same holds for row
and column spaces isolatedly. Therefore, it also suffices to show that

Tr : Hr
1(Rn;M)→ L1(A),

Tc : Hc
1(Rn;M)→ L1(A).

Both estimates are identical, let us prove the column case. According to the atomic
decomposition of Hc

1(Rn;M) we just find a uniform upper estimate for the L1 norm
of Tc(a) valid for an arbitrary column atom

‖Tc(a)‖1 ≤
∥∥Tc(a)12Q

∥∥
1

+
∥∥Tc(a)1Rn\2Q

∥∥
1
.

The second term is dominated by∥∥Tc(a)1Rn\2Q
∥∥

1
= τ

∫
Rn\2Q

∣∣∣ ∫
Q

k(x, y)a(y) dy
∣∣∣ dx

≤
∫
Q

(∫
Rn\2Q

∥∥k(x, y)− k(x, cQ)
∥∥
M dx

)
τ |a(y)| dy

. τ
(∫

Q

|a(y)| dy
)
≤
√
|Q|τ

[( ∫
Q

|a(y)|2 dy
) 1

2
]
≤ 1,

where the next to last estimate follows from Hansen’s inequality or as a consequence
of the operator-convexity of the function a 7→ |a|2. As for the first term, it suffices
to show that Tc : L1(M;Lc2(Rn))→ L1(M;Lc2(Rn)), since then we find again∥∥Tc(a)12Q

∥∥
1

= τ
(∫

2Q

|Tc(a)(x)| dx
)

≤
√
|2Q| τ

[( ∫
2Q

|Tc(a)(x)|2 dx
) 1

2
]

.
√
|2Q| τ

[( ∫
Q

|a(x)|2 dx
) 1

2
]
. 1.
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The L1(M;Lc2(Rn))-boundedness of Tc follows from anti-linear duality∥∥Tc(f)
∥∥
L1(M;Lc2(Rn))

≤
(

sup
‖g‖L∞(Lc2)≤1

∥∥T ∗c (g)
∥∥
L∞(M;Lc2(Rn))

)
‖f‖L1(M;Lc2(Rn)).

It is easily checked that the adjoint T ∗c (g) has the form T ∗c g(x) ∼
∫

Rn k(y, x)∗g(y) dy
when we construct it with respect to the anti-linear bracket 〈f, g〉 = ϕ(f ∗ g). This
means in particular that T ∗c is still an L2-bounded column CZO associated to a
kernel satisfying Hörmander smoothness. This gives rise to∥∥T ∗c (g)

∥∥
L∞(M;Lc2(Rn))

=
∥∥∥(∫

Rn
|T ∗c (g)(x)|2 dx

) 1
2
∥∥∥
M

= sup
‖u‖L2(M)≤1

(∫
Rn

〈
|T ∗c (g)(x)|2u, u

〉
L2(M)

dx
) 1

2

= sup
‖u‖L2(M)≤1

(∫
Rn

∥∥T ∗c (gu)(x)
∥∥2

L2(M)
dx
) 1

2

. sup
‖u‖L2(M)≤1

(∫
Rn

∥∥g(x)u
∥∥2

L2(M)
dx
) 1

2

=
∥∥∥(∫

Rn
|g(x)|2 dx

) 1
2
∥∥∥
M
.

The third identity above uses the rightM-module nature of column CZO’s. �

Remark 2.4. Theorem Aii) could have also been derived from the L∞ → BMO
type estimates in [10]. We have preferred to include this alternative argument using
atomic decompositions. Still a third approach is possible using more recent atomic
decompositions from [2, 6]. This will be needed below for martingale transforms
and paraproducts. The proof goes in fact a little further than the statement, since
it emphasizes row/column H1 → L1 type estimates for Tr/Tc respectively. This
also works for arbitrary semicommutative CZO’s under suitable assumptions, see
[10] for details.

Remark 2.5. The proof above also shows that L1(L†2) and L∞(L†2) boundedness
of T† for † ∈ {r, c} follow from the corresponding L2 boundedness of the same
operator. As noticed in [10], this is very specific of CZO’s with noncommuting
kernels since other semicommutative CZO’s fail to satisfy this implication. The key
property here is left/rightM-modularity, so that

uTr(f) = Tr(uf) and Tc(f)u = Tc(fu).

This also explains our approach through weak type estimates, see the Appendix.

2.4. Row/column Lp estimates. Theorem B follows as an easy consequence of
Theorem A after applying suitable interpolation/duality results. Thus, we will only
outline the definition of the involved spaces and the necessary results to deduce
Theorem B from Theorem A. Given 1 < p <∞, the noncommutative Hardy space
Hp(A) is defined as

Hp(A) =

{
Hr
p(A) + Hc

p(A) if 1 < p ≤ 2,
Hr
p(A) ∩Hc

p(A) if 2 ≤ p <∞,
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where the corresponding row/column Hardy spaces arise as the completion of the
subspace of finite martingales in Lp(A) with respect to the norms given by the row
and column square functions

‖f‖Hrp(A) =
∥∥∥(∑

k∈Z
dfkdf

∗
k

) 1
2
∥∥∥
p
,

‖f‖Hcp(A) =
∥∥∥(∑

k∈Z
df∗kdfk

) 1
2
∥∥∥
p
.

Pisier/Xu obtained in [31] the noncommutative Burkholder-Gundy inequalities
which can be formulated as Lp(A) ' Hp(A) for 1 < p <∞. On the other hand, we
know from [8, 15] that H†p(A)∗ ' H†p′(A) for † ∈ {r, c} and 1 < p <∞. Regarding
interpolation, we know from Musat [24] that

H†p(A) '
[
H†p0(A),H†p1(A)

]
θ
,

where † ∈ {r, c} and 1
p = 1−θ

p0
+ θ
p1
. The proof of Theorem B is now straightforward.

Proof of Theorem B. We know that

Tr : Hr
1(A)→ L1(A) and Tc : Hc

1(A)→ L1(A).

If 1 < p < 2, we find Tr : Hr
p(A)→ Lp(A) and Tc : Hc

p(A)→ Lp(A) by interpolation
with L2(A) = Hr

2(A) = Hc
2(A). Hence, taking a decomposition f = fr+fc satisfying

‖f‖p ∼ ‖f‖Hp(A) ∼ ‖fr‖Hrp(A) + ‖fc‖Hcp(A) we get ‖Trfr‖p + ‖Tcfc‖p . ‖f‖p. Now
if 2 < p < ∞, recalling that T ∗r , T ∗c are again row/column CZO’s with the same
properties, duality gives Tr : Lp(A) → Hr

p(A) and Tc : Lp(A) → Hc
p(A). This

immediately yields the inequality in Theorem Bii). The L∞ → BMO type estimates
were originally proved in [10], these also follows by duality from Theorem A. �

Remark 2.6. Alternatively, it can be proved that the row/column Lp estimates
in Theorem Bi) for 1 < p < 2 also follow by real interpolation from the weak type
estimates in Theorem Ai). Moreover, since Mei’s spaces Hp(Rn;M) also behave
well for interpolation and duality, the statement of Theorem B could have been
done in terms of these other Hardy spaces.

3. Proof of Theorem C

In this section we turn our attention to noncommutative martingale transforms
and paraproducts. In particular, the former pair (A, ϕ) will refer in what follows
to an arbitrary semifinite von Neumann algebra equipped with a normal faithful
semifinite trace. Our filtration ΣA = (Ak)k≥1 will be any increasing family of von
Neumann subalgebras, whose union is weak-∗ dense in A. The operators Ek and ∆k

still denote the corresponding conditional expectations and martingale difference
operators. As mentioned in the Introduction, we will deal with

a) Noncommuting martingale transforms

Mr
ξ f =

∑
k≥1

∆k(f)ξk−1 and M c
ξ f =

∑
k≥1

ξk−1∆k(f).
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b) Paraproducts with noncommuting symbol

Πr
ρ(f) =

∑
k≥1

Ek−1(f)∆k(ρ) and Πc
ρ(f) =

∑
k≥1

∆k(ρ)Ek−1(f).

The martingale coefficients ξk ∈ Ak form an adapted sequence and it is easy to
show that L2-boundedness of Mr

ξ and M c
ξ holds iff the ξk’s are uniformly bounded

in the norm of A. On the other hand, the classical characterization Πρ : L2 → L2

iff ρ ∈ BMO was disproved by Nazarov, Pisier, Treil and Volberg [25], see also
Mei’s paper [21]. Hence, the L2-boundedness of Πr

ρ and Πc
ρ will be simply assumed

in what follows. Regarding Cuculescu’s construction and CZ decomposition, no
essential changes are needed. Namely, given f ∈ L+

1 (A) (the former space Ac,+
is unnecessary since our filtration starts now at k = 1) and λ ∈ R+, Cuculescu’s
construction is verbatim the same. The only difference is on the diagonal estimate∥∥∥qfq +

∞∑
k=1

pkfkpk

∥∥∥2

2
. λ‖f‖1.

This inequality requires to work with regular filtrations, which are defined through
the additional condition Ek(f) ≤ cEk−1(f) for some absolute constant c > 0 and
every pair (f, k) ∈ A+ × Z+. Of course, the reader might think that it is more
appropriate to use in this case the noncommutative form of Gundy’s decomposition
[28], which does not require any regularity assumption on the martingale. This leads
unfortunately to some problems related to our triangular truncations which will be
explained in the Appendix below.

Proof of Theorem C — Weak type inequalities. The argument is essentially
the same as in the perfect dyadic case. Given f ∈ L+

1 (A), we construct the same
decomposition f = fr + fc via the projections πj,k and fix λ = 2` for some ` ∈ Z.
A further CZ decomposition gives fc = gcd + gcoff + bcd + bcoff as usual. According to
our regularity assumption, we still have

max
{
‖grd‖22, ‖gcd‖22

}
≤ ‖gd‖22 =

∥∥∥qfq +
∑
k≥1

pkfkpk

∥∥∥2

2
. λ‖f‖1.

Thus, arguing as in the proof of Theorem A it suffices to show that

q̂Mr
ξ (γr) = M c

ξ (γc) q̂ = q̂Πr
ρ(γ

r) = Πc
ρ(γ

c) q̂ = 0

for any γ ∈ {goff , bd, boff }. As usual, we just consider the column case by symmetry.
Let us begin with martingale transforms. Since γc =

∑
j UTj−1(∆j(γ)) and the

triangular truncation UTj−1 is built with j-predictable projections, we see that
UTj−1(∆j(γ)) is a j-th martingale difference, so that

∆k(γc) = UTk−1(∆k(γ)).

By the proof of Theorem A, we know UTk−1(∆k(γ)) q̂k−1 = 0 and

M c
ξ (γc) q̂ =

∞∑
k=1

ξk−1∆k(γc) q̂ =
∞∑
k=1

ξk−1UTk−1(∆k(γ)) q̂k−1 q̂ = 0.

For martingale paraproducts, we observe that Ek−1(γc) =
∑
j<k UTj−1(∆j(γ)) and

Πc
ρ(γ

c) q̂ =
∞∑
k=1

∆k(ρ)
∑
j<k

UTj−1(∆j(γ)) q̂j−1 q̂ = 0. �
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Remark 3.1. Adjoints of martingale paraproducts have the form[
Πc
ρ

]∗
f =

∑
k≥1

Ek−1

(
∆k(ρ∗)∆k(f)

)
and

[
Πr
ρ

]∗
f =

∑
k≥1

Ek−1

(
∆k(f)∆k(ρ∗)

)
when using the anti-linear duality bracket. It is easy to adapt the argument above
for these maps, to obtain weak type inequalities for adjoints of noncommutative
paraproducts associated to regular filtrations

inf
f=fr+fc

∥∥[Πr
ρ

]∗
fr
∥∥

1,∞ +
∥∥[Πc

ρ

]∗
fc
∥∥

1,∞ ≤ ‖f‖1.

We defined above the noncommutative Hardy spaces H1(A). Alternatively, we
may also consider the noncommutative form h1(A) = hr1(A) + hc1(A) + hd1(A) of
the conditional Hardy space h1, where the norms are given by

‖f‖hr1(A) =
∥∥∥(∑

k≥1

Ek−1

(
dfkdf

∗
k

)) 1
2
∥∥∥

1
,

‖f‖hc1(A) =
∥∥∥(∑

k≥1

Ek−1

(
df∗kdfk

)) 1
2
∥∥∥

1
,

‖f‖hd1(A) =
∥∥∥∑
k≥1

|dfk|
∥∥∥

1
=
∑
k≥1

‖dfk‖1.

The space h1(A) was studied in [9, 29], it was independently proved that

Hr
1(A) ' hr1(A) + hd1(A),

Hc
1(A) ' hc1(A) + hd1(A).

In conjunction, these isomorphisms could be regarded as a noncommutative form of
Davis’ decomposition for martingales. Shortly after, it was found in [2] an atomic
decomposition for the spaces hr1(A) and hc1(A). More precisely, an element a in
L1(A) ∩ L2(A) is called a column atom with respect to the filtration (Ak)k≥1 if
there exists k0 ∈ Z+ and a finite projection e ∈ Ak0 such that

• a = ae,
• Ek0(a) = 0,
• ‖a‖2 ≤ ϕ(e)−

1
2 .

An element a ∈ L1(A) is called a c− atom if it is a column atom or a ∈ A1

with ‖a‖1 ≤ 1. Row atoms are defined to satisfy a = ea instead and r− atoms are
defined similarly. We also refer to [6] for q-analogs of these notions. In the following
result, we collect some norm equivalences coming from atomic decompositions and
John-Nirenberg type inequalities. Recall that

‖f‖BMOc(A) = sup
k≥1

∥∥∥Ek[(f − fk−1)∗(f − fk−1)
]∥∥∥ 1

2

A
,

‖f‖bmoc(A) = max
{∥∥E1(f)

∥∥
1
, sup
k≥1

∥∥∥Ek[(f − fk)∗(f − fk)
]∥∥∥ 1

2

A

}
.

As usual, the corresponding row norms of f arise as the column norms of f∗. If we
also define ‖f‖bmod(A) = supk ‖dfk‖A, then we can define the spaces BMO(A) and
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bmo(A) as follows

‖f‖BMO(A) = max
{
‖f‖BMOr(A), ‖f‖BMOc(A)

}
,

‖f‖bmo(A) = max
{
‖f‖bmor(A), ‖f‖bmoc(A), ‖f‖bmod(A)

}
.

The isomorphism BMO(A) ' bmo(A) was independently proved in [9, 29].

Atoms and John-Nirenberg inequality [2, 6]. We have

‖f‖hr1 ∼ inf
{∑

k
|λk|

∣∣ f =
∑

k
λkak and ak r− atom

}
,

‖f‖hc1 ∼ inf
{∑

k
|λk|

∣∣ f =
∑

k
λkak and ak c− atom

}
,

‖f‖bmo(A) ∼ sup
k≥1

[
‖dfk‖∞ ∨ sup

β∈Ak
‖β‖1≤1

∥∥β(f − fk)
∥∥

1
∨ sup

β∈Ak
‖β‖1≤1

∥∥(f − fk)β
∥∥

1

]
.

The last equivalence is a John-Nirenberg type inequality, which differs from [13].

Proof of Theorem C — Hp/Lp type inequalities. Let us begin with H1 → L1

type inequalities. As pointed out in the proof of Theorem Aii), it suffices to show
that T† : H†1(A) → L1(A) with † ∈ {r, c} and for both martingale transforms and
paraproducts. Since we have

H†1(A) ' h†1(A) + hd1(A),

it suffices to show that T† : X→ L1(A) with X any of the two spaces appearing on
the right. Once more, the argument is row/column symmetric and we just consider
columns. To see that Tc : hc1(A) → L1(A) we may use the atomic decomposition
above, so that it suffices to find a uniform upper bound for ‖Tc(a)‖1 with a being
a c− atom. If a ∈ A1 with ‖a‖1 ≤ 1, then we see that

M c
ξ (a) = ξ0a1 and Πc

ρ(a) = ba = Πc
ρ(u|a|

1
2 )|a| 12 for a = u|a|.

In particular, ‖M c
ξ (a)‖1 + ‖Πc

ρ(a)‖1 . ‖a‖1 ≤ 1. If a is a column atom, we find

M c
ξ (a) =

∑
k>k0

ξk−1∆k(a) =
∑
k>k0

ξk−1∆k(a)e = M c
ξ (a)e,

Πc
ρ(a) =

∑
k>k0+1

∆k(ρ)Ek−1(a) =
∑

k>k0+1

∆k(ρ)Ek−1(a)e = Πc
ρ(a)e.

This gives rise to ‖Tc(a)‖1 = ‖Tc(a)e‖1 ≤ ‖Tc(a)‖2‖e‖2 . ‖a‖2‖e‖2 ≤ 1 for both
martingale transforms and paraproducts. We have already justified the hc1 → L1

boundedness. Let us now look at hd1

‖M c
ξ (f)‖1 ≤

∑
k≥1

‖ξk‖∞‖∆k(f)‖1 ≤
(

sup
k≥1
‖ξk‖∞

)
‖f‖hd1(A)

As for the paraproduct, we use the John-Nirenberg inequality above

‖Πc
ρ(f)‖1 =

∥∥∥∑
k≥1

∆k(ρ)
∑
j<k

∆j(f)
∥∥∥

1

=
∥∥∥∑
k≥1

(
ρ− ρk

)
∆k(f)

∥∥∥
1
. ‖ρ‖bmo(A)‖f‖hd1(A).



CZO’S WITH MATRIX-VALUED KERNELS 21

According to [9, 29] and [21, 25], we have

‖ρ‖bmo(A) ∼ ‖ρ‖BMO(A) . max
{∥∥Πr

ρ : L2 → L2

∥∥,∥∥Πc
ρ : L2 → L2

∥∥}.
All together gives that M c

ξ and Πc
ρ take Hc

1(A) into L1(A) as we claimed. In fact
slight modifications of the given argument yield the same result for [Πc

ρ]
∗, details

are left to he reader. This is all what is needed to produce analog inequalities in
this setting to those in Theorems A and B, we just need to follow the arguments
verbatim. It remains to show that Πc

ρ : Lp(A) → Lp(A) for p > 2, for which
it will be enough to prove L∞ → BMO boundedness and use interpolation. The
L∞ → BMOc boundedness follows by duality from the Hc

1 → L1 boundedness of
[Πc
ρ]
∗. On the other hand, the L∞ → BMOr boundedness is very simple

‖Πc
ρf‖BMOr(A) = sup

k≥1

∥∥∥Ek(∑
j≥k

∆j(Πc
ρ(f))∆j(Πc

ρ(f))∗
)∥∥∥ 1

2

A

= sup
k≥1

∥∥∥Ek(∑
j≥k

∆j(ρ)Ej−1(f)Ej−1(f)∗∆j(ρ)∗
)∥∥∥ 1

2

A

≤ sup
k≥1

∥∥∥Ek(∑
j≥k

∆j(ρ)∆j(ρ)∗
)∥∥∥ 1

2

A
‖f‖∞ ≤ ‖ρ‖BMOr(A)‖f‖∞.

Now we majorize ‖ρ‖BMOr(A) by the L2 → L2 norm of Πρ as we did above. �

Observe that we have not needed to assume regularity of our martingale filtration
and we find that [Πr

ρ]
∗, [Πc

ρ]
∗ take H1 → L1 and Lp → Lp for 1 < p < 2 by duality. In

some sense, row/column noncommutative paraproducts present a similar behavior
as row/column square functions in the noncommutative Burkholder-Gundy and
Khintchine inequalities [18, 19, 31]. On the other hand, [35, Theorem 5.7] yields
L logL → L1 type estimates for a finite von Neumann algebra A with (Tr, Tc) a
martingale transform/paraproduct with noncommuting coefficients/symbol

inf
f=fr+fc

∥∥Trfr∥∥1
+
∥∥Tcfc∥∥1

. ‖f‖L logL(A).

Appendix. Open problems

A.1. CZO’s with noncommuting kernels. Our proof of Theorem Ai) is not
entirely satisfactory, since it does not include arbitrary CZO’s with noncommuting
kernels. In the general case, we can not expect to annihilate the terms associated to
goff , bd, boff . If the reader considers the simplest term bd, a difficulty with triangular
truncations in L1 will be immediately recognized. In fact, our proof for Haar shifts
operators does not provide sharp constants for the same reason.

Problem 1. Extend Theorem Ai) to arbitrary CZO’s with noncommuting kernels.

Here is a possible alternative argument. Once we have f = fr + fc, the same
decomposition constructed in the proof of the perfect dyadic case, we could consider
a left CZ decomposition for fr and a right CZ decomposition for fc as follows. Given
λ ∈ R+ we let fr = gr + br and fc = gc + bc with

gr = q̂ fr +
∑
k∈Z

p̂kEk(fr) and br =
∑
k∈Z

p̂k
(
fr − Ek(fr)

)
,
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where p̂k = q̂k−1 − q̂k. The column decomposition just requires to put p̂k and q̂ on
the right. The advantage of this approach is that we do not find off-diagonal terms
which were much harder to deal in [27]. Moreover, it is not very difficult to show
that

max
{
‖gr‖22, ‖gc‖22

}
. λ‖f‖1

as expected. Problem 1 would be solved if we knew that∑
k∈Z

∥∥p̂k(fr − Ek(fr)
)∥∥

1
+
∥∥(fc − Ek(fc)

)
p̂k
∥∥

1
. ‖f‖1.

It is perhaps too optimistic to expect that the inequality above holds, since the
triangular truncations LTk and UTk appear to be incomparable for different values
of k. We wonder whether some noncommutative form of Davis’ decomposition in the
sense of [36] could be useful to modify our row/column decomposition f = fr + fc
before performing the CZ decomposition, see also [26] for related ideas. Note that
such a row/column CZ decomposition would provide in particular a much simpler
proof of the main result in [27], since off diagonal terms would disappear.

Problem 2. Find a row/column CZ decomposition of f in the line explained above.

A.2. CZO’s on general von Neumann algebras. As explained in [27], a key
ingredient for a successful application of the noncommutative CZ decomposition is
to use it on M-bimoludar maps. In this paper, our decomposition f = fr + fc
has allowed us to make it work for either left or rightM-module maps. There are
however many other semicommutative CZO’s, some of which were mentioned in the
Introduction. We know from [10] that a semicommutative CZO satisfying L∞(Lr2)
and L∞(Lc2) boundedness also satisfies T : L∞(A)→ BMO(A).

Problem 3. Do we have T : L1(A)→ L1,∞(A) under the same assumptions?

According to [10], solving Problem 3 for CZO’s associated to a kernel acting by
Schur multiplication would provide weak type (1, 1) inequalities for crossed product
extensions of classical CZO’s

Tf(x) ∼
∑
g∈G

∫
Rn
k(x, y)fg(y) oγ λ(g) dy

on A = L∞(Rn) oγ G. This in turn is closely related to weak type estimates for
Fourier multipliers on group von Neumann algebras, see [10] for further details. On
the other hand, consider CZO’s of the form

Tf(x) ∼
∫

Rn
(id⊗ tr)

[
k(x, y)

(
1⊗ f(y)

)]
dy.

As we have seen along this paper and in [27], weak type inequalities require to find
vanishing products q1(y)q2(x) with q1, q2 certain projections in A, see e.g. Lemma
2.2. However, we find T (fq1)(x)q2(x) ∼

∫
Rn(id ⊗ tr)[k(x, y)(q2(x) ⊗ fq1(y))]dy in

the model above and no interaction between q1 and q2 takes place. This is due to
the lack of right M-modularity for T . In fact, solving Problem 3 for this kind of
CZO’s is very much related to the CZ theory for von Neumann algebras developed
in [12]. Namely, the projection in Lemma 2.2 is a dyadic dilation on Rn of q̂ not
affecting itsM ‘structure’ because the CZO is given as a partial trace on Rn, but
not onM. The idea in the model above is to dilate both in Rn andM. Dilating
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in M has to do with finding a suitable ‘metric’ in M to work with. This is what
is done in [12] in terms of diffusion semigroups on the given algebra. Under this
point of view, we could relate CZO’s on (A, ϕ) with those in [27] when ϕ is tracial
and with the ones considered in this paper when ϕ is a nontracial weight.

Problem 4. Prove a CZ decomposition/weak type inequalities for CZO’s in [12].

A.3. Gundy’s decomposition vs triangular truncations. It is a little bit
unsatisfactory to require regular filtrations to provide weak type inequalities for
martingales transforms/paraproducts with noncommuting coefficients/symbols. It
is well-known that these estimates hold in the classical setting for any filtration
by means of Gundy’s decomposition. The noncommutative extension of Gundy’s
decomposition was constructed in [28]. Given a positive martingale f = (f1, f2, . . .)
in L1(A), we may decompose it as f = α+ β + γ with

dαk = qkdfkqk − Ek−1

(
qkdfkqk

)
,

dβk = qk−1dfkqk−1 − qkdfkqk + Ek−1

(
qkdfkqk

)
,

dγk = dfk − qk−1dfkqk−1.

It was proved in [28] that

max
{ 1
λ
‖α‖22,

∑
k≥1

‖dβk‖1, λϕ
( ∨
k≥1

supp∗dγk
)}
. ‖f‖1,

where supp∗a = 1A − q with q the greatest projection satisfying qaq = 0. If we try
to prove Theorem C using Gundy’s decomposition instead of Calderón-Zygmund
decomposition, we will not find any trouble controlling the terms associated to α
and γ. The term β presents however a significant difficulty due to the presence of
triangular truncations LTk and UTk in L1(A). This difficulty can be summarized
as follows. Consider a family Trk of upper triangular truncations and assume that
(αk, βk) ∈ L∞(A)× L1(A), do we have∥∥∥∑

k≥1

αkTrk(βk)
∥∥∥

1
.
∑
k≥1

‖αkβk‖1?

Or at least ∥∥∥∑
k≥1

αkTrk(βk)
∥∥∥

1
.
(

sup
k≥1
‖αk‖∞

) ∑
k≥1

‖βk‖1?

The first condition suffices to manage paraproducts with noncommuting symbols,
the second one is weaker but sufficient to deal with martingale transforms having
noncommuting coefficients. When dealing with lower triangular truncations, we
should have Trk(βk)αk on the left and βkαk on the right hand side.

Problem 5. Does any of these inequalities hold?

Problem 6. Can we eliminate the regularity assumption from Theorem C?
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