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Abstract. Let H be a subgroup of some locally compact group G. Assume

H is approximable by discrete subgroups and G admits neighborhood bases
which are ‘almost-invariant’ under conjugation by finite subsets of H. Let

m : G → C be a bounded continuous symbol giving rise to an Lp-bounded

Fourier multiplier (not necessarily cb-bounded) on the group von Neumann
algebra of G for some 1 ≤ p ≤ ∞. Then, m|H yields an Lp-bounded Fourier

multiplier on the group von Neumann algebra of H provided the modular
function ∆H coincides with ∆G over H. This is a noncommutative form of de

Leeuw’s restriction theorem for a large class of pairs (G,H), our assumptions

on H are quite natural and recover the classical result. The main difference
with de Leeuw’s original proof is that we replace dilations of gaussians by

other approximations of the identity for which certain new estimates on almost

multiplicative maps are crucial. Compactification via lattice approximation
and periodization theorems are also investigated.

Introduction

In 1965, Karel de Leeuw proved three fundamental theorems for Euclidean
Fourier multipliers. Given a bounded continuous symbol m : Rn → C, let us
consider the corresponding multiplier

T̂mf(ξ) = m(ξ)f̂(ξ),

Tmf(x) =

∫
Rn
m(ξ)f̂(ξ)e2πi〈x,ξ〉 dξ.

The main results in [13] may be stated as follows:

i) Restriction. If m is continuous and Tm is Lp(Rn)-bounded

Tm|H :

∫
H

f̂(h)χh dµ(h) 7→
∫

H

m(h)f̂(h)χh dµ(h)

extends to a Lp(Ĥ)-bounded multiplier for any subgroup H ⊂ Rn where the
χh’s stand for the characters on the dual group and µ is the Haar measure.

ii) Periodization. Given H ⊂ Rn any closed subgroup and mq : Rn/H→ C
bounded, let mπ : Rn → C denote its H-periodization which is defined by
mπ(ξ) = mq(ξ + H). Then we find∥∥Tmπ : Lp(Rn)→ Lp(Rn)

∥∥ =
∥∥Tmq : Lp(R̂n/H)→ Lp(R̂n/H)

∥∥.
iii) Compactification. Let Rnbohr be the Pontryagin dual of Rndisc equipped

with the discrete topology. Given m : Rn → C bounded and continuous, the
Lp(Rn)-boundedness of Tm is equivalent to the boundedness in Lp(Rnbohr)
of the multiplier with the same symbol

Tm :
∑

Rndisc

f̂(ξ)χξ 7→
∑

Rndisc

m(ξ)f̂(ξ)χξ.
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Together with Cotlar’s work [10], de Leeuw theorems may be regarded as the first
form of transference in harmonic analysis, prior to Calderón and Coifman/Weiss
contributions [6, 8]. The combination of the above-mentioned results produces
a large family of previously unknown Lp-bounded Fourier multipliers —a sample
of them will appear in Appendix A— and restriction/periodization are nowadays
very well-known properties of Euclidean Fourier multipliers. Although not so much
known, the compactification theorem was the core result of [13].

Our goal is to study these results within the context of general locally compact
groups. Shortly after de Leeuw, Saeki [48] extended these theorems to locally
compact abelian (LCA) groups with an approach which relies more on periodization
and the structure theorem of LCA groups. On the contrary, no analog transference
results in the frequency group seem to exist for nonabelian groups, see [14, 15, 26, 54]
for a dual approach. This gap is partly justified by the noncommutative nature
of the spaces involved. Namely, the action in de Leeuw theorems occurs in the
frequency groups and the Fourier multipliers must be defined in the corresponding
duals. The dual of a nonabelian locally compact group can only be understood
as a quantum group whose underlying space is a noncommutative von Neumann
algebra. If µG denotes the left Haar measure on a locally compact group G and
λG : G→ U(L2(G)) stands for the left regular representation on G, the group von
Neumann algebra LG is the weak-∗ closure in B(L2(G)) of operators of the form

f =

∫
G

f̂(g)λG(g) dµG(g) with f̂ ∈ Cc(G).

The Plancherel weight is determined by τG(f) = f̂(e) for f̂ in Cc(G) ∗ Cc(G) and

Lp(Ĝ) denotes the noncommutative Lp space on (LG, τG). Although very natural
in operator algebra and noncommutative geometry, group von Neumann algebras
are not yet standard spaces in harmonic analysis. The early remarkable work
of Cowling/Haagerup [12, 23] on approximation properties of these algebras was
perhaps the first contribution in the line of harmonic analysis. The Lp-theory was
not seriously considered until [25]. However, only during very recent years a prolific
series of results have appeared in the literature [7, 31, 32, 33, 36, 40, 42].

In contrast with [13, 48] where compactification and periodization took the lead
respectively, we will first put the emphasis on restriction. Assume in what follows
that our groups are second countable. We say that a locally compact group H
is approximable by discrete subgroups (H ∈ ADS) when there exists a family of
lattices (Γj)j≥1 in H and associated fundamental domains (Xj)j≥1 which form a
neighborhood basis of the identity. On the other hand, we say that G has small
almost-invariant neighborhoods with respect to H (G ∈ [SAIN]H) if for every F ⊂ H
finite, there is a basis (Vj)j≥1 of symmetric neighborhoods of the identity with

lim
j→∞

µG

(
(h−1Vjh)4Vj

)
µG(Vj)

= 0 for all h ∈ F.

Theorem A . Let H be a subgroup of some locally compact group G. Assume
H ∈ ADS and G ∈ [SAIN]H. Let m : G→ C be a bounded continuous symbol giving
rise to an Lp-bounded multiplier for some 1 ≤ p ≤ ∞. Then∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)

∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥

provided the modular function ∆H coincides with the restriction of ∆G to H.



NONCOMMUTATIVE DE LEEUW THEOREMS 3

A natural difficulty for the proof of Theorem A comes from the fact that we only
assume boundedness of our multipliers. Indeed, when G is amenable, cb-bounded
analogs easily follow from the recent transference results in [7, 40] between Fourier
and Schur multipliers. It should however be noted that, for Lp-bounded multipliers
or even for cb-bounded multipliers over nonamenable groups, our approach requires
a different strategy which does not rely on previously known techniques.

Pairs (G,H) satisfying Theorem A include restriction onto Heisenberg groups
and other classical nilpotent groups. In fact, amenable ADS subgroups of locally
compact groups with ∆H = ∆G|H

also fulfill the hypotheses. Other nonamenable
pairs will be considered in the paper. Our assumptions are indeed natural for
this degree of generality. The condition G ∈ [SAIN]H has its roots in de Leeuw’s
original argument. Although not explicitly mentioned, a key point in his proof
is the use of an approximate identity intertwining with the Fourier multiplier. In
the Euclidean setting of [13], this was naturally achieved by using dilations of the
gaussian, which is fixed by the Fourier transform. In our general setting, the heat
kernel must be replaced by other approximations and the SIN condition —small
invariant neighborhoods, which have been studied in the literature— yields certain
approximations intertwining with the Fourier multiplier. Our jump from SIN to
the more flexible almost-invariant class SAIN requires a more functional analytic
approach which circumvents the technicalities required for a heat kernel approach
in such a general setting. The crucial novelty are certain estimates for almost
multiplicative maps of independent interest. Surprisingly, our argument is equally
satisfactory and much cleaner. We will prove a limiting intertwining behavior of
our approximation of the identity as a consequence of the following result.

Theorem B. Let (M, τ) be a semifinite von Neumann algebra equipped with a
normal semifinite faithful trace. Let T :M→M be a subunital positive map with
τ ◦ T ≤ τ . Then, given any 1 ≤ p ≤ ∞ and x ∈ L+

2p(M)∥∥T (x)− T (
√
x)2
∥∥

2p
≤ 1

2

∥∥T (x2)− T (x)2
∥∥ 1

2

p
.

We will use Haagerup’s reduction method [24] to extend the implications of
Theorem B for type III von Neumann algebras. This will be the key subtle point in
proving Theorem A for nonunimodular G. Theorem B seems to provide new insight
even in the commutative setting. Namely, arguing as in the proof of Theorem A
we can use Theorem B to control the frequency support of a fractional power of a
function in terms of the frequency support of the original function, up to certain
small Lp correction terms, we refer to Remark 1.5 for further details.

Let us now go back to the other assumption in Theorem A. The ADS property
of H was implicitly used in de Leeuw’s original argument and could be a natural
limitation for restriction of Fourier multipliers in this general setting, perhaps more
powerful tools could be used for nice Lie groups [53]. In our case, we will just prove
the validity of Theorem A for discrete subgroups Γ of a locally compact group G
in the class [SAIN]Γ. Then, assuming H ∈ ADS is approximated by (Γj)j≥1, the
complete statement follows from the inclusion

[SAIN]H ⊂
⋂
j≥1

[SAIN]Γj ,

and the following noncommutative form of Igari’s lattice approximation [28, 29].
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Theorem C. If G ∈ ADS is approximated by (Γj)j≥1∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥ ≤ sup

j≥1

∥∥Tm|Γj : Lp(Γ̂j)→ Lp(Γ̂j)
∥∥

for any 1 ≤ p ≤ ∞ and any bounded symbol m : G→ C continuous µG–a.e.

Apart from arbitrary discrete groups and many LCA groups, other nontrivial
examples in the ADS class include again Heisenberg groups and other nilpotent
groups. Although Theorem C is not very surprising, its proof is certainly technical
and it becomes a key point in our compactification theorem. Let G be a locally
compact group and write Gdisc for the same group equipped with the discrete
topology. Our next goal is to determine under which conditions∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ ∼ ∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)
∥∥

for bounded continuous symbols. Of course, we may not expect that such an
equivalence holds for arbitrary locally compact groups, since this would mean that
Fourier multiplier Lp theory reduces to the class of discrete group von Neumann
algebras. Note also that restriction in the pair (G,H) always holds when both group
algebras admit Lp-compactification since restriction within the family of discrete
groups follows by taking conditional expectations. This gives another evidence
that compactification only holds under additional assumptions. We finally consider
the periodization problem. Let H be a normal closed subgroup of some locally
compact group G. Consider any bounded symbol mq : G/H → C (not necessarily
continuous) and construct the H-periodization given by mπ(g) = mq(gH). The
periodization problem consists in giving conditions under which∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)

∥∥
p
∼
∥∥Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H)

∥∥
p
.

Theorem D. Let G be a locally compact unimodular group and H a normal closed
subgroup of G. Let us consider a bounded continuous symbol m : G → C and
let mq : G/H → C be bounded with H-periodization mπ(g) = mq(gH). Then, the
following inequalities hold for 1 ≤ p ≤ ∞ :

i) If G is ADS∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥ ≤ ∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥.
ii) If Gdisc is amenable∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥.

iii) If G is LCA∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)
∥∥ ≤ ∥∥Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H)

∥∥.
iv) If H is compact∥∥Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H)

∥∥ ≤ ∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)
∥∥.

The unimodularity of G seems crucial for compactification, given the fact that
Gdisc is always unimodular. The ADS condition is certainly natural to control
Fourier multipliers on G by the same ones defined on Gdisc. It is an interesting
problem to decide whether this assumption is in fact necessary. As we will see the
amenability in ii) and the commutativity in iii) (which goes back to Saeki) are very
close to optimal. The inequality in iv) also holds for nonunimodular G.
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Our conditions above can be substantially relaxed for amenable groups in the
assumption that our multipliers are completely bounded. This follows from the
transference results in [7, 40] between Fourier and Schur multipliers —which work
in the cb-setting for amenable groups— together with an approximation result for
Schur multipliers from [36]. In particular, de Leeuw theorems hold in full generality
in this context as we shall prove in the last section. The validity of our results for
nonamenable groups is what forces us to find new arguments in this paper. We will
close this article with two appendices. In Appendix A we analyze a certain family of
idempotent Fourier multipliers in R. By using restriction and lattice approximation
we will relate these multipliers with Fefferman’s theorem for the ball [16] and solve
a question from [32]. Appendix B contains an overview of what is known in the
context of Jodeit’s multiplier theorem [29] for locally compact groups.

1. Almost multiplicative maps

In this section we shall prove Theorem B and some consequences of it which
will be crucial in our approach to noncommutative restrictions. Our results are of
independent interest in the context of almost multiplicative maps on Lp. Along
this section (M, τ) will be a semifinite von Neumann algebra with a given normal
semifinite faithful trace. We will need the following classical inequalities. They are
well known for Schatten classes and can be found in Bhatia’s book [4, Theorems
IX.4.5 and X.1.1]. The proofs given there can be generalized to any semifinite von
Neumann algebra, but we will provide more direct arguments. The second result
is a one-sided generalization of the Powers-Størmer inequality.

Lemma 1.1. Given 1 ≤ p ≤ ∞, the identity

α
1
2 γβ

1
2 =

1

2

∫
R
α−is(αγ + γβ)βis

ds

cosh(πs)

holds in Lp(M) for any α, β, γ in L2p(M) with α, β ≥ 0. In particular

i)
∥∥α 1

2 γβ
1
2

∥∥
p
≤ 1

2

∥∥αγ + γβ
∥∥
p
.

ii) If γ = γ∗,
∥∥α 1

2 γα
1
2

∥∥
p
≤
∥∥αγ∥∥

p
.

Proof. Inequalities i) and ii) follow from the first identity. By an approximation

argument we may assume that α
1
2 and β

1
2 have discrete spectrum, so that they

are linear combinations of pairwise disjoint projections. By direct substitution this
reduces the problem to α, β ∈ R+ and γ = 1. Since the map z 7→ α1−zβz is
holomorphic on the strip ∆ = {0 < Re z < 1} and continuous on its closure, its
value at z = 1

2 is given by the integral formula

α
1
2 β

1
2 =

∫
∂∆

α1−zβz dµ(z)

where µ is the harmonic measure on ∂∆ relative to the point z = 1/2. Now, since
this measure gives the probability for a random walk from the point 1

2 of hitting the
boundary ∂∆, it coincides at both components ∂j = {Rez = j} of the boundary
(j = 0, 1). This means that there is a probability measure ν on R satisfying the
identity

α
1
2 β

1
2 =

1

2

(∫
R
α1−isβisdν(s) +

∫
R
α−isβ1+is dν(s)

)
=

1

2

∫
R
α−is(α+ β)βis dν(s).
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An inspection of the harmonic measure in ∂∆ yields dν(s) = ds/ cosh(πs). Indeed,
this can be obtained from the harmonic measure on the unit circle by means of a
conformal map, see for instance [3, p. 93]. The proof is complete. �

Lemma 1.2. If p ≥ 1, 0 < θ ≤ 1 and x, y ∈ L+
θp(M)∥∥xθ − yθ∥∥

p
≤
∥∥x− y∥∥θ

θp
.

Proof. Cutting x and y by some of their spectral projections we may assume that
(M, τ) is finite and x, y ∈M. We may also reduce the above estimate to the case
x ≥ y ≥ 0. To that end, note that

‖a− b‖pp ≤ ‖a‖pp + ‖b‖pp
for a, b ≥ 0. Indeed, let q+ = 1a−b≥0 and q− = 1a−b<0 then

‖a− b‖pp = ‖q+(a− b)q+‖pp + ‖q−(b− a)q−‖pp
≤ ‖q+aq+‖pp + ‖q−bq−‖pp ≤ ‖a‖pp + ‖b‖pp

as 0 ≤ q+(a−b)q+ ≤ q+aq+ and similarly for the other term. Now let δ+, δ− be the
positive and negative parts of δ = x− y = δ+ − δ−. Let us consider the operators

a = (x+ δ−)θ − xθ and b = (y + δ+)θ − yθ.

Since y + δ+ = x + δ− we deduce that xθ − yθ = b − a. Moreover, by operator
monotonicity of s 7→ sθ, a and b are positive. Then the result for x + δ− ≥ x ≥ 0
and y + δ+ ≥ y ≥ 0 yields∥∥xθ − yθ∥∥p

p
= ‖a− b‖pp ≤ ‖a‖pp + ‖b‖pp ≤ ‖δ−‖

θp
θp + ‖δ+‖θpθp = ‖δ‖θpθp =

∥∥x− y∥∥θp
θp
.

Let us then prove the assertion when x ≥ y ≥ 0. We will also assume y ≥ ε1
to avoid unnecessary technical complications. Using the integral representation for
s ∈M invertible

sθ = cθ

∫
R+

tθs

s+ t

dt

t
with cθ =

(∫
R+

uθ

u(1 + u)
du
)−1

.

Differentiating the above integral formula and putting δ = x− y, we get

xθ − yθ = cθ

∫ 1

0

∫
R+

tθ(y + uδ + t)−1δ(y + uδ + t)−1 dt du.

Now, for a fixed u ∈ [0, 1], we consider the continuous function

t 7→ ut =
1√
θ

(y + uδ)
1−θ

2

(y + uδ + t)

with positive values in the commutative algebra generated by y + uδ. Moreover

cθ

∫
R+

tθu2
t dt =

cθ
θ

∫
R+

tθ
(y + uδ)1−θ

(y + uδ + t)2
dt =

cθ
θ

∫
R+

tθ

(1 + t)2
dt = 1.

Therefore, the map on M defined by

z 7→ cθ

∫
R+

tθutzut dt
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is unital, completely positive and trace preserving. In particular, it extends to a
contraction on Lp(M) for all 1 ≤ p ≤ ∞, see [24, Remark 5.6] for further details.
We deduce∥∥xθ − yθ∥∥

p
≤ θ

∫ 1

0

∥∥(y + uδ
) θ−1

2 δ(y + uδ
) θ−1

2
∥∥
p
du

= θ

∫ 1

0

∥∥δ 1
2 (y + uδ

)θ−1
δ

1
2

∥∥
p
du ≤ θ

∫ 1

0

uθ−1‖δθ‖p du = ‖δ‖θθp,

where the last inequality follows from the operator monotonicity of s 7→ s1−θ. �

Proof of Theorem B. Given 1 ≤ p ≤ ∞, we claim that

(1.1)
∥∥R(x)−R(

√
x)2
∥∥

2p
≤ 1

2

∥∥R(x2)−R(x)2
∥∥ 1

2

p

for any subunital positive map R : `n∞ → M with values in M∩ L1(M) and any
positive x ∈ `n∞. The assumption above about the range of R is to ensure that
R : `n∞ → Lp(M) is well-defined. Before proving this claim, let us show how this
implies the assertion. Indeed, if T : M → M is a subunital positive map with
τ ◦ T ≤ τ it follows from [24, Remark 5.6] that T extends to a positive contraction
on Lp(M). Now, when x ∈ L+

2p(M) has a finite spectrum x =
∑n
j=0 λjpj with

λ0 = 0 and pj spectral projections, then pj ∈ M ∩ L1(M) for j ≥ 1 and we may
define R : `n∞ →M by R(ej) = T (pj), where (ej)

n
j=1 denotes the canonical basis of

`n∞. The map R clearly satisfies the assumptions of our claim and R(zα) = T (xα)
for z =

∑n
j=1 λjej and any α > 0. Hence (1.1) gives∥∥T (x)− T (

√
x)2
∥∥

2p
≤ 1

2

∥∥T (x2)− T (x)2
∥∥ 1

2

p

as desired. The general case x ∈ L+
2p(M) follows by standard approximations. Let

xn =

n2∑
k=1

k

n
1[ kn ,

k+1
n )(x).

It is an exercise to show that for α ∈ {1, 2, 1
2}, x

α
n → xα in the appropriate Lq-space.

Let us now prove the claim (1.1). As usual, (eij)
n
i,j=1 will denote the canonical

basis of the matrix algebra Mn. We first use an explicit Stinespring’s decomposition
for R. Let π : `n∞ →Mn be the usual diagonal inclusion and put

u∗ =

n∑
j=1

ej1 ⊗R(ej)
1
2 ∈Mn,1(M),

so that we have R(x) = uπ(x)u∗. As R is subunital uu∗ ≤ 1M and u∗u ≤ 1Mn(M).
For any positive y ∈ `n∞, we get

R(y2)−R(y)2 = uπ(y)
(
1− u∗u

)
π(y)u∗ =

∣∣√1− u∗uπ(y)u∗
∣∣2.

Let us consider the following operators

a = R(
√
x) = uπ(

√
x)u∗ ∈ M,

b =
√

1− u∗uπ(
√
x)
√

1− u∗u ∈ Mn(M).
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Then we find z ∈ Mn,1(M) with ‖z‖∞ ≤ 1 so that
√

1− u∗uπ(
√
x)u∗ = b

1
2 za

1
2

and
√

1− u∗uπ(x)u∗ =
√

1− u∗uπ(
√
x)
(
(1−u∗u)+u∗u

)
π(
√
x)u∗ = b

3
2 za

1
2 +b

1
2 za

3
2 .

We apply Lemma 1.1 twice to conclude. First∥∥R(x)−R(
√
x)2
∥∥

2p
=
∥∥b 1

2 za
1
2

∥∥2

4p
=
∥∥a 1

2 z∗bza
1
2

∥∥
2p
≤
∥∥az∗bz∥∥

2p
≤
∥∥az∗b∥∥

2p
.

Then, taking (α, γ, β) = (a, a
1
2 z∗b

1
2 , b) we obtain∥∥az∗b∥∥

2p
≤ 1

2

∥∥a 3
2 z∗b

1
2 + a

1
2 z∗b

3
2

∥∥
2p

=
1

2

∥∥R(x2)−R(x)2
∥∥ 1

2

p
.

This completes the proof of our claim and also the proof of Theorem B. �

Corollary 1.3. Let T :M→M be a subunital positive map with τ ◦T ≤ τ . Then
there exists a universal constant C > 0 such that the following inequality holds for
any x ∈ L+

2 (M) and any 0 < θ ≤ 1∥∥T (xθ)− xθ
∥∥

2
θ

≤ C
∥∥T (x)− x

∥∥ θ2
2
‖x‖

θ
2
2 .

Proof. Given x ∈ L+
2 (M), note that

‖T (x)− x‖22 ≤ ‖Tx‖22 + ‖x‖22 ≤ τ(T (x2)) + ‖x‖22 ≤ 2 ‖x‖22
by Kadison’s inequality for T and τ ◦ T ≤ τ . In particular, the result is trivially
true for θ = 1 with constant 2

1
4 . We claim the assertion holds for θ = 2−n with

constant 3
2 . We will proceed by induction since we know it holds for n = 0. By

Lemma 1.2 and n+ 1 applications of Theorem B∥∥T (x2−(n+1)

)− x2−(n+1)∥∥2

2n+2

≤
∥∥T (x2−(n+1)

)2 − x2−n
∥∥

2n+1

≤
∥∥T (x2−(n+1)

)2 − T (x2−n)
∥∥

2n+1 +
∥∥T (x2−n)− x2−n

∥∥
2n+1

≤
n∏
j=0

2−2−j

︸ ︷︷ ︸
Cn=22−n−2

∥∥T (x2)− T (x)2
∥∥2−(n+1)

1
+
∥∥T (x2−n)− x2−n

∥∥
2n+1 .

On the other hand, Kadison’s inequality and τ ◦ T ≤ τ yield∥∥T (x2)− T (x)2
∥∥

1
= τ

(
T (x2)− T (x)2

)
≤ τ

(
x2 − T (x)2

)
≤

∥∥x2 − T (x)2
∥∥

1
≤ 2

∥∥T (x)− x
∥∥

2
‖x‖2

since T extends to a contraction on L2(M) by [24, Remark 5.6]. Combining the
above estimates with the induction hypothesis for θ = 2−n we finally deduce that∥∥T (x2−(n+1)

)− x2−(n+1)∥∥2

2n+2 ≤
[3

2
+ 22−(n+1)

Cn

]
‖x‖2

−(n+1)

2

∥∥T (x)− x
∥∥2−(n+1)

2
.

However, the constant in the right hand side is less than 9/4 and the result follows
for θ = 2−(n+1) which completes the induction argument. For other values of
0 < θ < 1 we write θ = α2−(n+1) for some α ∈ (1, 2). Recall that s 7→ sα is
operator convex and s 7→ s

α
2 is operator concave on R+, so that

T
(
x2−(n+1))α ≤ T

(
xθ
)
≤ T

(
x2−n

)α
2 .
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In conjunction with Lemma 1.2, Theorem B and our result for θ = 2−n, this yields∥∥T (xθ)− xθ
∥∥

2
θ

≤
∥∥T (xθ)− T (x2−n)

α
2

∥∥
2
θ

+
∥∥T (x2−n)

α
2 − xθ

∥∥
2
θ

≤
∥∥T (x2−n)

α
2 − T (x2−(n+1)

)α
∥∥

2
θ

+
∥∥T (x2−n)

α
2 − xθ

∥∥
2
θ

≤
∥∥T (x2−n)− T (x2−(n+1)

)2
∥∥α2

2n+1 +
∥∥T (x2−n)− x2−n

∥∥α2
2n+1

≤
[(

22−(n+1)

Cn

)α
2

+
(3

2

)α
2
]∥∥Tx− x∥∥ θ2

2
‖x‖

θ
2
2 .

Hence, a simple calculation shows that the result follows for some C ≤ 3+
√

2
2 . �

Corollary 1.4. Let T :M→M be a subunital positive map with τ ◦T ≤ τ . Then
there exists a universal constant C > 0 such that the following inequality holds for
any self-adjoint y ∈ L2(M) with polar decomposition y = u|y| and any 0 < θ ≤ 1∥∥T (u|y|θ)− u|y|θ

∥∥
2
θ

≤ C
∥∥T (y)− y

∥∥ θ4
2
‖y‖

3θ
4

2 .

Proof. Let us write y = y+ − y− for the decomposition of y into its positive and
negative parts, so that u|y|θ = yθ+ − yθ−. By positivity of the trace and T , we have

τ
(
T (y+)y+

)
+ τ
(
T (y−)y−

)
≥ τ

(
T (y)y

)
.

In particular∥∥T (y+)− y+

∥∥2

2
+
∥∥T (y−)− y−

∥∥2

2
≤ 2‖y‖22 − 2τ

(
T (y)y

)
≤ 2

∥∥T (y)− y
∥∥

2
‖y‖2.

Using this and Corollary 1.3 we deduce∥∥T (u|y|θ)− u|y|θ
∥∥ 4
θ
2
θ

≤
[∥∥T (yθ+)− yθ+

∥∥
2
θ

+
∥∥T (yθ−)− yθ−

∥∥
2
θ

] 4
θ

≤ 2
4
θ−1
[∥∥T (yθ+)− yθ+

∥∥ 4
θ
2
θ

+
∥∥T (yθ−)− yθ−

∥∥ 4
θ
2
θ

]
≤ (2C)

4
θ

2

[∥∥T (y+)− y+

∥∥2

2
‖y+‖22 +

∥∥T (y−)− y−
∥∥2

2
‖y−‖22

]
≤ (2C)

4
θ

2

[∥∥T (y+)− y+

∥∥2

2
+
∥∥T (y−)− y−

∥∥2

2

]
‖y‖22

≤ (2C)
4
θ

∥∥T (y)− y
∥∥

2
‖y‖32.

The assertion follows taking powers θ/4 at both sides of the above estimate. �

Remark 1.5. The above corollary will be useful to localize the frequency support

of square roots for elements in Lp(Ĝ). This is even interesting in the commutative
case where we may control the frequency support of a fractional power fθ in terms
of the frequency support of f , up to small Lp corrections. As an illustration, if
the Fourier transform of f ∈ L2(R) is supported by (−α, α), we may consider the
positive definite functions

ζβ(x) =
(

1− |x|
2β

)
+

for β > 0.
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The associated Fourier multipliers are positive, unital and trace preserving, so that
we are in position to apply our results above. When β = α/2ε, we obtain that
supp ζβ ⊂ 1

ε (−α, α) and 1− ζβ(x) ≤ ε for |x| ≤ α. This yields for p ≥ 2∥∥∥(ζβ(f
2
p )∧ − (f

2
p )∧
)∨∥∥∥p

p
≤ C

∥∥ζβ f̂ − f̂ ∥∥2
‖f‖2 . ε‖f‖22.

Remark 1.6. It is well known that if T :M→M satisfies the above hypothesis
and τ is finite, then its fixed points form a ∗-subalgebra. This is not true anymore
when τ is semifinite, take for instance the map x 7→ s∗xs on B(`2) where s is
a one-sided shift. Nevertheless, in general, it is not difficult to show using the
generalized singular value decomposition that if x ∈ L+

1 (M) ∪ L+
2 (M) satisfies

T (x) = x, then T (xθ) = xθ for θ ∈ [0, 1]. Hence one could think of an ultraproduct
argument to get perturbation results as given explicitly in Corollary 1.3, with an
upper bound of the form F (‖T (x)−x‖2) for certain continuous function F vanishing
at 0. Unfortunately, semifiniteness is not preserved by ultraproduct and one would
have to deal with type III von Neumann algebras. The situation is then much more
intricate (even to define T on Lp(M)), that is why we choose to deduce the type
III result from the semifinite one in Section 7.2. The fact that there exists a unital
completely positive map T : (M, ϕ) → (M, ϕ) with ϕ ◦ T = ϕ but T does not
commute with the modular group of ϕ (think of a right multiplier on a quantum
group with its left Haar measure) is an evidence that in the type III situation one
need extra arguments as those of Corollary 7.4.

2. Group algebras

Let G be a locally compact group equipped with its left Haar measure µG. Let
λG : G → B(L2(G)) be the left regular representation λG(g)(ξ)(h) = ξ(g−1h)
for any ξ ∈ L2(G). When no confusion can arise, we shall write µ, λ for the left
Haar measure and the left regular representation of G. Recall the definition of the
convolution in G

ξ ∗ η(g) =

∫
G

ξ(h)η(h−1g) dµ(h).

We say that ξ ∈ L2(G) is left bounded if the map η ∈ Cc(G) 7→ ξ ∗ η ∈ L2(G)
extends to a bounded operator on L2(G), denoted by λ(ξ). This operator defines
the Fourier transform of ξ. The weak operator closure of the linear span of λ(G)
defines the group von Neumann algebra LG. It can also be described as the weak
closure in B(L2(G)) of operators of the form

f =

∫
G

f̂(g)λ(g) dµ(g) = λ(f̂ ) with f̂ ∈ Cc(G).

The Plancherel weight τG : LG+ → [0,∞] is determined by the identity

τG(f∗f) =

∫
G

|f̂(g)|2 dµ(g)

when f = λ(f̂ ) for some left bounded f̂ ∈ L2(G) and τG(f∗f) = ∞ for any other
f ∈ LG. Again, we shall just write τ for τG when the underlying group is clear
from the context. After breaking into positive parts, this extends to a weight on
a weak-∗ dense domain within the algebra LG. It will be instrumental to observe
that the standard identity

τ(f) = f̂(e)
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applies for f = λ(f̂ ) ∈ λ(Cc(G)∗Cc(G)), see [44, Section 7.2] and [50, Section VII.3]
for a detailed construction of the Plancherel weight. Note that for G discrete, τ
coincides with the natural finite trace given by τ(f) = 〈fδe, δe〉. It is clear that
the Plancherel weight is tracial if and only if G is unimodular, which will be the
case until Section 7. In the unimodular case, (LG, τ) is a semifinite von Neumann
algebra and we may construct the noncommutative Lp-spaces

Lp(LG, τ) = Lp(Ĝ) =

{
λ(Cc(G) ∗ Cc(G))

‖ ‖p
for 1 ≤ p < 2

λ(Cc(G))
‖ ‖p

for 2 ≤ p <∞
,

where the norm is given by

‖f‖p = τ(|f |p)1/p

and the p-th power is calculated by functional calculus applied to the (possibly
unbounded) operator f , we refer to Pisier/Xu’s survey [47] for more details on
noncommutative Lp-spaces. On the other hand, since left bounded functions are
dense in L2(G), the map λ : ξ 7→ λ(ξ) extends to an isometry from L2(G) to

L2(Ĝ). We will refer to it as the Plancherel isometry and use it repeatedly in the
sequel with no further reference. Given a symbol m : G→ C, we may consider the
associated multiplier Tm defined by

Tm(f) =

∫
G

m(g)f̂(g)λ(g) dµ(g) for f̂ ∈ Cc(G) ∗ Cc(G).

Tm is called an Lp-Fourier multiplier if it extends to a bounded map on Lp(Ĝ).

The rest of this section will be devoted to collect some elementary results around
amenability and Fell absorption principles that will be used in the sequel. We will
also need the following result, which we prove for completeness.

Lemma 2.1. Let G be a second countable locally compact unimodular group. Then
the group von Neumann algebra LH is a von Neumann subalgebra of LG for any
closed unimodular subgroup H of G.

Proof. By the Effros-Mackey cross section theorem [49, Theorem 5.4.2], there
exists a Borel measurable map σ : H\G → G defined on the space of right cosets
of G. Hence, we have a Borel measurable correspondence between G and H\G×H
given by

Υ : G 3 g 7→ (Hg, h(g)) ∈ H\G×H,

where g = h(g)σ(Hg). According to [18, Theorem 2.49] for right cosets and since
both G and H are unimodular, we know that there exists a G-invariant Radon
measure on right cosets. Therefore, the map

ξ 7→ ξ ◦Υ−1

defines an isometry between L2(G) and L2(H\G × H). This allows us to identify
the algebras B(L2(G)) and B(L2(H\G)⊗2 L2(H)). Then, for any h ∈ H we get the
identity (

id⊗ λH(h)
)
(ξ ◦Υ−1)(Hg, h(g)) = ξ(h−1h(g)σ(Hg))

= ξ(h−1g) = λG(h)(ξ)(g)

for ξ ∈ L2(G) and g ∈ G, which proves that LH ' {λG(h) : h ∈ H}′′ ⊂ LG. �
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In the sequel, if no confusion is possible and when Lemma 2.1 applies, we might
use the notation λ(h) to denote both λG(h) and λH(h). Let us now recall some
well-known characterizations of amenability. Recall that amenability is stable under
closed subgroups, quotients, direct products and group extensions. After that, we
also give a formulation of Fell absorption principle in Lp from [41].

Lemma 2.2. TFAE for any locally compact group G:

i) G is amenable

ii) Følner condition. Given ε > 0 and F ⊂ G finite, there exists UF,ε ⊂ G of
finite positive measure such that µ(UF,εg4 UF,ε) < εµ(UF,ε) for all g ∈ F.

iii) Almost invariant vectors. Given ε > 0 and F ⊂ G finite, there exists a
norm one function ξ ∈ L2(G) such that ‖λ(g)ξ− ξ‖L2(G) < ε for all g ∈ F.

iv) The inequality∥∥∥∑
g∈F

ag

∥∥∥
M
≤
∥∥∥∑
g∈F

ag ⊗ λ(g)
∥∥∥
M⊗LG

holds for any finite F ⊂ G, any von Neumann algebraM and (ag)g∈F ⊂M.

Lemma 2.3. Given a discrete group G, we have:

i) If π : G→ U(H) is strongly continuous, then

λ⊗ π ' λ⊗ 1H

are unitarily equivalent with 1H the trivial representation on H.

ii) Let π : G→ U(H) be strongly continuous and assume N = π(G)′′ is finite.
Then, given 1 ≤ p ≤ ∞, any semifinite von Neumann algebra M and any
a : G→ Lp(M) continuous and compactly supported we have∥∥∥∫

G

a(g)⊗ λ(g)⊗ π(g) dµ(g)
∥∥∥
Lp(M⊗LG⊗N )

=
∥∥∥ ∫

G

a(g)⊗ λ(g) dµ(g)
∥∥∥
Lp(M⊗LG)

.

3. Lattice approximation

In this section, we want to deduce the boundedness of an Lp-Fourier multiplier
from the uniform boundedness of its restriction to certain families of lattices. As
stated in Theorem C, this will be possible if G is approximated by these lattices
in the sense G ∈ ADS defined in the Introduction. Observe that if G ∈ ADS
is approximated by (Γj)j≥1, then the union ∪jΓj of the approximating lattices is
dense in G. Indeed, let g ∈ G and V be an open neighborhood of g. Then V g−1

is an open neighborhood of e and for j large enough we have Xj ⊂ V g−1. Let gj
be the representant of g−1 in Xj . In other words, there exists γj ∈ Γj such that
gj = γjg

−1. This implies γj = gjg ∈ Xjg ⊂ V , so that Γj ∩ V 6= ∅ and we deduce
the density result mentioned above. In the proof of Theorem C we shall need a
couple of auxiliary results, which are stated below.

Lemma 3.1. If G admits a lattice Γ with ∆G|Γ
= ∆Γ, then G is unimodular.
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The result above implies that every ADS group is by definition unimodular. In
particular, our preliminaries on group von Neumann algebras from Section 2 suffice
for Theorem C. We need one more elementary result.

Lemma 3.2. Let G be a locally compact group and K ⊂ Ω ⊂ G with K compact
and Ω open. Let (Vj)j≥1 be a basis of neighborhoods of the identity. Then, there
exists an index j0 ≥ 1 such that for any j ≥ j0

K ⊂
⋃
g∈K

gVj ⊂ Ω.

Proof. Take a left invariant distance d on G, so that d(K,Ωc) = δ > 0. Since
diam(Vj)→ 0, any j0 with diam(Vj) < δ for j ≥ j0 satisfies the conclusion. �

Proof of Theorem C. The case p = 2 is straightforward since m is continuous
almost everywhere and the union of lattices Γj is dense in G, so that the L∞-norm
of m is determined by lattice approximation. On the other hand, by a standard
duality argument, we may assume that p < 2. Moreover, the case p = 1 follows
from the assertion for 1 < p < 2 and the three lines lemma

‖Tm‖1→1 ≤ lim
p→1
‖Tm‖p→p ≤ lim

p→1
sup
j≥1
‖Tm|Γj ‖p→p ≤ sup

j≥1
‖Tm|Γj ‖1→1.

Therefore, we may and will assume in what follows that 1 < p < 2. The strategy
will be to approximate Tmf weakly in Lp by a sequence Sjf constructed from a
family (Sj)j≥1 of uniformly bounded maps as follows. For each j ≥ 1 we first define
the map

Φj : LΓj 3 λ(γ) 7→ h∗jλ(γ)hj ∈ LG,

where hj = λ(1Xj ) ∈ LG. Since G is locally compact and (Xj)j≥1 is a basis of
neighborhoods of e, we may assume that Xj lies in a compact set. In particular we
have 0 < µ(Xj) <∞. It is clear that Φj is completely positive and we may define
the family of operators

Φpj = µ(Xj)
−2+ 1

pΦj .

Now we note the straightforward inequality

‖Φ∞j (1)‖LG = µ(Xj)
−2‖hj‖2LG ≤ µ(Xj)

−2‖1Xj‖2L1(G) = 1.

Moreover, since the sets (γXj)γ∈Γj are disjoint, we also have for γ ∈ Γj

τ
(
Φj(λ(γ))

)
= τ

(
h∗jλ(γ)hj

)
=
〈
λ(γ)hj , hj

〉
L2(Ĝ)

=
〈
1γXj ,1Xj

〉
L2(G)

= µ(Xj)δγ,e = µ(Xj)τ(λ(γ)).

By complete positivity of Φj , the first estimate implies that Φ∞j : LΓj → LG is

a contractive map. The second estimate implies that Φ1
j is trace preserving and

hence defines a contraction L1(LΓj) → L1(LG) by means of [24, Remark 5.6].
Using interpolation of analytic families of operators, we get∥∥Φpj : Lp(Γ̂j)→ Lp(Ĝ)

∥∥ ≤ 1 for 1 ≤ p ≤ ∞.

On the other hand, the L2-adjoints Ψj = Φ∗j are given by

Ψj(f) =
∑
γ∈Γj

τ
(
h∗jλ(γ−1)hjf

)
λ(γ)
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for f ∈ LG. Moreover, given 1 ≤ p ≤ ∞, consider the contractions

Ψp
j = (Φp

′

j )∗ = µ(Xj)
−1− 1

pΨj : Lp(Ĝ)→ Lp(Γ̂j),

where p′ denotes the conjugate of p. We are finally ready to introduce the maps

Sj = ΦpjTm|Γj
Ψp
j = µ(Xj)

−3ΦjTm|Γj
Ψj : Lp(Ĝ)→ Lp(Ĝ),

which are uniformly bounded by

Cp := sup
j≥1

∥∥Tm|Γj : Lp(Γ̂j)→ Lp(Γ̂j)
∥∥.

If we fix f ∈ λ(Cc(G)∗Cc(G)), the sequence (Sjf)j≥1 is uniformly bounded in Lp(Ĝ)
by Cp‖f‖p and it accumulates in the weak topology. We claim that Sjf weakly
converges to Tmf = w-Lp- limj Sjf . The theorem will follow by the Lp-density of
λ(Cc(G) ∗ Cc(G)). To prove it, we can reduce ourselves to show

(3.1) Tmf = L2- lim
j→∞

Sjf for any f ∈ λ(Cc(G) ∗ Cc(G)).

Indeed, if it holds true and q is any τ -finite projection

lim
j→∞

∥∥qTmf − qSjf∥∥p ≤ ‖q‖r lim
j→∞

‖Tmf − Sjf‖2 = 0,

where 1
p = 1

r + 1
2 . Hence

qTmf = Lp- lim
j→∞

(qSjf) = w-Lp- lim
j→∞

(qSjf) = q
(
w-Lp- lim

j→∞
Sjf

)
for any τ -finite projection q, which implies Tmf = w-Lp- limj Sjf . We now turn to
the proof of the key result (3.1). Let us introduce some notations. For j ≥ 1 define

Lj : L2(Ĝ) 3 f 7→ µ(Xj)
−1hjf ∈ L2(Ĝ)

and

Pj : L2(Ĝ) 3 f 7→ 1

µ(Xj)

∑
γ∈Γj

〈
f, λ(γ)hj

〉
L2(Ĝ)

λ(γ)hj ∈ L2(Ĝ).

Given g ∈ G and since (γXj)γ∈Γj forms a partition of G, there exists a unique
γ ∈ Γj such that g ∈ γXj . Let us write γj(g) for this element and consider the map
mj : G→ C given by mj(g) = m(γj(g)). We claim that

i) Sj = L∗jPjTmjLj on L2(Ĝ).

ii) Lj , L
∗
j , Pj : L2(Ĝ)→ L2(Ĝ) are contractive and∥∥Tmj : L2(Ĝ)→ L2(Ĝ)

∥∥ ≤ ‖m‖∞.
iii) Given f ∈ λ(Cc(G)), the following identity holds

lim
j→∞

∥∥Ljf − f∥∥2
+
∥∥L∗jf − f∥∥2

+
∥∥Pjf − f∥∥2

+
∥∥Tmjf − Tmf∥∥2

= 0.

In fact, the first three summands also converge to 0 for f ∈ L2(Ĝ).

The L2-convergence (3.1) follows from this. Indeed, i) gives for f ∈ λ(Cc(G))∥∥Tmf − Sjf∥∥2
≤

∥∥Tmf − L∗jTmf∥∥2

+
∥∥L∗jTmf − L∗jPjTmf∥∥2

+
∥∥L∗jPjTmf − L∗jPjTmjf∥∥2

+
∥∥L∗jPjTmjf − L∗jPjTmjLjf∥∥2

,
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which clearly tends to 0 as j → ∞ by ii) and iii). Therefore, it suffices to justify
the properties i), ii) and iii). Let us start by noticing the following identity which
follows from Plancherel’s isometry〈

Tmjf, λ(γ)hj
〉
L2(Ĝ)

=
〈
mj f̂ ,1γXj

〉
L2(G)

= m(γ)
〈
f, λ(γ)hj

〉
L2(Ĝ)

.

Applying this to hjf we get

Sjf = µ(Xj)
−3
∑
γ∈Γj

m(γ)
〈
f, h∗jλ(γ)hj

〉
L2(Ĝ)

h∗jλ(γ)hj

= µ(Xj)
−3
∑
γ∈Γj

〈
Tmj (hjf), λ(γ)hj

〉
L2(Ĝ)

h∗jλ(γ)hj = L∗jPjTmjLjf,

which proves i). Claim ii) for Lj follows from ‖µ(Xj)
−1hj‖∞ ≤ ‖µ(Xj)

−11Xj‖1 ≤ 1.
The boundedness for Pj is clear since it is the orthogonal projection onto the closed
linear span of (λ(γ)hj)γ∈Γj . The last assertion in ii) is trivial since ‖mj‖∞ ≤ ‖m‖∞.
Let us finally prove the convergence results in property iii). By [18, Proposition

2.42], the family ĥj = µ(Xj)
−11Xj forms an approximation of the identity, so that

lim
j→∞

∥∥ĥj ∗ ξ − ξ∥∥L2(G)
= 0 for ξ ∈ L2(G).

By Plancherel’s isometry, this yields vanishing limits for the first two terms in iii).
Moreover, the third term will converge to 0 if and only if the orthogonal projection

P̃j of L2(G) onto span{1γXj : γ ∈ Γj} satisfies

(3.2) lim
j→∞

∥∥P̃jξ − ξ∥∥2
= 0 for any ξ ∈ L2(G).

By the density of the simple functions in L2(G), we may assume that ξ = 1Ω for
a Borel subset Ω of G with finite measure. Moreover, since the Haar measure is
outer regular, Ω can be assumed to be open. On the other hand, given any ε > 0
and since µ is inner regular on open sets, there exists a compact set K ⊂ Ω such
that µ(Ω \ K) ≤ ε. By applying Lemma 3.2 to the basis of neighborhoods of the
identity given by (X−1

j Xj)j≥1, we obtain that there exists j0 ≥ 1 such that for any
j ≥ j0

K ⊂
⋃
g∈K

γj(g)Xj ⊂
⋃
g∈K

gX−1
j Xj ⊂ Ω.

The sets (γXj)γ∈Γj being disjoint, we can find a subset F ⊂ K satisfying

K ⊂
⊔
g∈F

γj(g)Xj ⊂ Ω.

Moreover, since the sets Ω and γj(g)Xj are of finite measure, the set F has to be
finite. Hence, the function η =

∑
g∈F 1γj(g)Xj satisfies ‖ξ − η‖22 ≤ µ(Ω \ K) ≤ ε

and the limit (3.2) is proved. It remains to consider the last term in iii). Let ε > 0
and f ∈ λ(Cc(G)) be frequency supported by a compact set K. Since γj(g)→ g as
j →∞ and m is continuous µ–a.e., we have mj → m µ-a.e. Moreover, by Egoroff’s
theorem [19, Theorem 2.33], there exists a set E ⊂ K with µ(E) < ε and such that
mj → m uniformly on K \ E. Pick j0 ≥ 1 satisfying

sup
g∈K\E

|mj(g)−m(g)| ≤ ε 1
2
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for all j ≥ j0. Then we get for j ≥ j0∥∥Tmjf − Tmf∥∥2

L2(Ĝ)
=
∥∥(mj −m)f̂

∥∥2

L2(G)

≤
∫

K\E
|f̂(g)|2

∣∣mj(g)−m(g)
∣∣2dµ(g) +

∫
E

|f̂(g)|2
∣∣mj(g)−m(g)

∣∣2dµ(g)

which is dominated by ε
(
‖f̂‖22 + 4‖m‖2∞‖f̂‖2∞

)
and proves iii) for the last term. �

Remark 3.3. Modifying the proof above, we may extend Theorem C. Namely, if
G ∈ ADS is approximated by (Γj)j≥1 and both m : G → C and m̃j : G → C are
a.e. continuous symbols such that m̃j → m uniformly, then∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ ≤ sup
j≥1

∥∥T(m̃j)|Γj
: Lp(Γ̂j)→ Lp(Γ̂j)

∥∥
for any 1 ≤ p ≤ ∞. Indeed, it suffices to define

Sj = µ(Xj)
−3ΦjT(m̃j)|Γj

Ψj

and consider mj(g) = m̃j(γj(g)) in the proof of Theorem C. Then the fourth
summand in iii) will follow by means of Plancherel’s isometry noticing that we
have |mj(g) −m(g)| ≤ ‖m̃j −m‖∞ + |m(γj(g)) −m(g)| and hence converges to 0
a.e. Then we conclude as in the proof of Theorem C.

Remark 3.4. We have not performed an extensive study of groups satisfying the
ADS condition. Apart from discrete groups and many LCA groups, of particular
interest to us is the Heisenberg group, defined as the set Hn = Rn × Rn × R with
inner law (a, b, c) · (a′, b′, c′) = (a + a′, b + b′, c + c′ + 1

2 (〈a, b′〉 − 〈a′, b〉)). It is a
simple example of ADS group. Namely, take for instance the family of lattices
Γj = 1

jZ
n× 1

jZ
n× 1

2j2Z which trivially satisfy the ADS condition. Other nilpotent

groups satisfying the ADS condition are the groups H(K, n) of upper triangular
matrices over the field K = R,C with 1’s on the diagonal. In this case, a simple
choice of lattices is Γj = Idn + 〈jr−sZ⊗ er,s : 1 ≤ r < s ≤ n〉.

4. The restriction theorem

In this section we prove Theorem A for unimodular groups. In other words, we
prove that under the SAIN condition, Lp-Fourier multipliers of a unimodular group
G restrict to multipliers of any ADS subgroup H, and this restriction map is norm
decreasing. All our work so far will be needed in the proof.

Proof of Theorem A: Unimodular case. Let us first reduce the proof to the
particular case of discrete subgroups. Indeed, let H ∈ ADS approximable by the
family (Γj)j≥1 and assume that G ∈ [SAIN]H. Since Γj ⊂ H ⊂ G and

[SAIN]H ⊂
⋂
j≥1

[SAIN]Γj ,

the pairs (G,Γj)j≥1 are under the hypotheses of Theorem A for discrete subgroups.
Moreover, since H is ADS, it follows from Lemma 3.1 that H must be unimodular.
Therefore, Theorem A for discrete subgroups in conjunction with Theorem C yields∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)

∥∥
≤ sup

j≥1

∥∥Tm|Γj : Lp(Γ̂j)→ Lp(Γ̂j)
∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥.
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Hence, we shall consider in what follows a discrete subgroup Γ of a locally compact
unimodular group G satisfying G ∈ [SAIN]Γ. Observe that by unimodularity of G
and discreteness of Γ our assumption ∆G|Γ = ∆Γ is superfluous. We have reduced
the proof of Theorem A for G unimodular to this particular case. Arguing as we
did at the beginning of the proof of Theorem C and using the continuity of the
symbol for p = 2, it suffices to consider 2 < p < ∞. Moreover, by density of the

trigonometric polynomials in Lp(Γ̂), it is enough to prove that

(4.1) ‖Tm|Γ f‖Lp(Γ̂) ≤
∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ ‖f‖Lp(Γ̂)

for any trigonometric polynomial f ∈ LΓ. As we explained in the Introduction, the
basic idea is to construct an approximation of the identity in G which intertwines
with the pair (Tm, Tm|Γ ) in the limit. Let us fix such a trigonometric polynomial
f0 ∈ LΓ and let F ⊂ Γ denote its frequency support

f0 =
∑
γ∈F

f̂0(γ)λ(γ).

Let (Vj)j≥1 be the symmetric neighborhood basis of the identity associated to F by
the SAIN condition. Moreover, since Γ is discrete, we may take j large enough and
assume that the sets (γVj)γ∈Γ are disjoint. Let us define the selfadjoint elements

hj = µ(Vj)
−1/2λ(1Vj ) with polar decomposition hj = uj |hj |, and set

Φqj : λ(γ) 7→ λ(γ)uj |hj |
2
q for γ ∈ Γ and 2 ≤ q ≤ ∞.

Then the proof will rely on the two following results.

Claim A. Given 2 ≤ q ≤ ∞, we have:

i) Φqj extends to a contraction Lq(Γ̂)→ Lq(Ĝ).

ii) Given any f ∈ LΓ frequency supported by F, we have

lim
j→∞

‖Φqjf‖Lq(Ĝ) = ‖f‖Lq(Γ̂).

Claim B. Given 2 ≤ q < p and any trigonometric polynomial f in LΓ

lim
j→∞

‖Φqj(Tm|Γ f)− Tm(Φqjf)‖Lq(Ĝ) = 0.

Let us finish the proof of Theorem A before proving these two claims. Let f0 be
the trigonometric polynomial in LΓ frequency supported by F that we have fixed
above. The algebra LΓ being finite, we have

‖Tm|Γ f0‖Lp(Γ̂) = lim
q↗p
‖Tm|Γ f0‖Lq(Γ̂).

Since Tm|Γ f0 is also frequency supported by F, Claims A and B yield

‖Tm|Γ f0‖Lp(Γ̂) = lim
q↗p

lim
j→∞

‖Φqj(Tm|Γ f0)‖Lq(Ĝ)

= lim
q↗p

lim
j→∞

‖Tm(Φqjf0)‖Lq(Ĝ)

≤ lim
q↗p

lim
j→∞

∥∥Tm : Lq(Ĝ)→ Lq(Ĝ)
∥∥‖Φqjf0‖Lq(Ĝ)

= lim
q↗p
‖Tm‖q→q‖f0‖Lq(Γ̂) ≤

∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥‖f0‖Lp(Γ̂).

The latter inequality follows by interpolation since

‖Tm‖q→q ≤ ‖Tm‖1−θ2→2‖Tm‖θp→p
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for 1
q = 1−θ

2 + θ
p , so that θ → 1 as q → p. This completes the proof of (4.1).

Proof of Claim A. Since the SAIN condition implies G second countable, we may
consider LΓ as a von Neumann subalgebra of LG by Lemma 2.1. Thus Claim A i)
is clear for q = ∞ by writing ‖Φ∞j f‖LG = ‖fuj‖LG ≤ ‖f‖LG = ‖f‖LΓ. Moreover,
by Plancherel’s isometry and disjointness of the sets (γVj)γ∈Γ we get

(4.2) ‖Φ2
jf‖2L2(Ĝ)

= ‖fhj‖2L2(Ĝ)
= µ(Vj)

−1
∥∥∥∑
γ∈Γ

f̂(γ)1γVj
∥∥∥2

L2(G)
= ‖f‖2

L2(Γ̂)
.

Claim A i) then follows using interpolation for analytic families of operators, we
leave the details to the reader. The upper estimate in Claim A ii) follows from i)
and it suffices to show that limj ‖Φqj(f)‖q ≥ ‖f‖q for trigonometric polynomials f
in LΓ frequency supported by F. Let q∗ be the L2-conjugate index of q, so that
1/q + 1/q∗ = 1/2. We have

‖f‖Lq(Γ̂) = ‖f∗‖Lq(Γ̂) = sup
‖k‖Lq∗ (Γ̂)≤1

k trigonometric polynomial

‖kf∗‖L2(Γ̂).

Fix such a polynomial k =
∑
γ∈M k̂(γ)λ(γ). Then, since Φ2

j is an isometry by (4.2)

‖kf∗‖L2(Γ̂) = ‖Φ2
j (kf

∗)‖L2(Ĝ) = ‖kf∗hj‖L2(Ĝ)

≤ ‖kf∗hj − Φq
∗

j (k)ujΦ
q
j(f)∗‖L2(Ĝ) + ‖Φq

∗

j (k)ujΦ
q
j(f)∗‖L2(Ĝ).

By Hölder’s inequality and Claim A i)

‖Φq
∗

j (k)ujΦ
q
j(f)∗‖L2(Ĝ) ≤ ‖Φ

q∗

j (k)‖Lq∗ (Ĝ)‖Φ
q
j(f)∗‖Lq(Ĝ) ≤ ‖Φ

q
j(f)‖Lq(Ĝ).

For the first summand, let us prove that

lim
j→∞

‖kf∗hj − Φq
∗

j (k)ujΦ
q
j(f)∗‖L2(Ĝ) = 0.

This will complete the proof of Claim A. Since hj is self-adjoint

Φq
∗

j (k)ujΦ
q
j(f)∗ = kuj |hj |2/q

∗
uj |hj |2/qu∗jf∗ = khjf

∗.

Then, by Plancherel’s isometry and the Cauchy-Schwarz inequality we get

‖kf∗hj − khjf∗‖L2(Ĝ)

=
∥∥∥ ∑
γ′∈M,γ∈F

k̂(γ′)f̂(γ)
(
λ(γ′)λ(γ−1)hj − λ(γ′)hjλ(γ−1)

)∥∥∥
L2(Ĝ)

≤
∑

γ′∈M,γ∈F

∣∣k̂(γ′) f̂(γ)
∣∣ ∥∥λ(γ′)λ(γ−1)hj − λ(γ′)hjλ(γ−1)

∥∥
L2(Ĝ)

=
∑

γ′∈M,γ∈F

∣∣k̂(γ′) f̂(γ)
∣∣µ(Vj)

−1/2
∥∥1γ−1Vjγ − 1Vj

∥∥
L2(G)

=
∑

γ′∈M,γ∈F

∣∣k̂(γ′) f̂(γ)
∣∣(µ(γ−1Vjγ4Vj)

µ(Vj)

) 1
2

≤
( ∑
γ′∈M,γ∈F

|k̂(γ′)f̂(γ)|2
) 1

2
( ∑
γ′∈M,γ∈F

µ(γ−1Vjγ4Vj)
µ(Vj)

) 1
2
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= ‖k‖L2(Ĝ)‖f‖L2(Ĝ)|M|
1
2

(∑
γ∈F

µ(γ−1Vjγ4Vj)
µ(Vj)

) 1
2

,

which converges to 0 as j →∞ since we assumed have that G ∈ [SAIN]Γ.

Proof of Claim B. Without loss of generality we may assume that f = λ(γ) for

some γ ∈ Γ by the triangle inequality in Lq(Ĝ). Replacing m by m(γ ·) we may
assume that γ = e (we leave the details to the reader here). This means that we
are reduced to prove

(4.3) lim
j→∞

∥∥m(e)uj |hj |
2
q − Tm(uj |hj |

2
q )
∥∥
Lq(Ĝ)

= 0.

Given ε > 0 and since m is continuous in e ∈ G, there exists a neighborhood Uε
of the identity such that |m(g) − m(e)| < ε for every g ∈ Uε. Since G is locally
compact we may assume that Uε is relatively compact and so µ(Uε) <∞. Let Wε

be a symmetric neighborhood of e with W 2
ε ⊂ Uε and define

ζ(g) =
µ(Wε ∩ gWε)

µ(Wε)
=
〈λ(g)1Wε

,1Wε
〉

µ(Wε)
.

Hence, ζ is a coefficient function of the left regular representation and the coefficient
is given by the positive vector state with respect to the vector µ(Wε)

− 1
2 1Wε

. It
is then standard that ζ is continuous, positive definite and ζ(e) = 1. Furthermore
by construction supp ζ ⊂ Uε. Let Tζ be the associated Fourier multiplier, then
Tζ : LG→ LG is a normal, trace preserving, unital, completely positive map. This
implies that it extends to a contraction

Tζ : Lp(Ĝ)→ Lp(Ĝ)

for every 1 ≤ p ≤ ∞. By Plancherel isometry we have∥∥Tζhj − hj∥∥2

L2(Ĝ)
=
∥∥(ζ − 1)µ(Vj)

− 1
2 1Vj

∥∥2

L2(G)
=

1

µ(Vj)

∫
Vj

|ζ(g)− 1|2dµ(g),

which converges to 0 as j → ∞ since Vj → {e} and ζ is continuous at e. At
this point we need our result on almost multiplicative maps. Indeed, since hj is a
self-adjoint operator of L2-norm one, we deduce from Corollary 1.4 that

(4.4) lim
j→∞

∥∥Tζ(uj |hj | 2q )− uj |hj |
2
q

∥∥
Lq(Ĝ)

= 0.

Let us now prove (4.3). Setting zj = uj |hj |2/q we write

‖m(e)zj − Tmzj‖Lq(Ĝ) ≤ ‖m(e)(zj − Tζzj)‖Lq(Ĝ)

+ ‖m(e)Tζzj − Tm(Tζzj)‖Lq(Ĝ)

+ ‖Tm(Tζzj)− Tmzj‖Lq(Ĝ) = Aj +Bj + Cj .

By (4.4), limj Aj = limj Cj = 0. By definition of Uε we have∥∥T(m(e)−m)ζ : L2(Ĝ)→ L2(Ĝ)
∥∥ = ‖(m(e)−m)ζ‖L∞(G) < ε.

On the other hand, since ‖Tζ : Lp(Ĝ)→ Lp(Ĝ)‖ = 1 we get∥∥T(m(e)−m)ζ : Lp(Ĝ)→ Lp(Ĝ)
∥∥ ≤ |m(e)|+

∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥.

Applying the three lines lemma to the symbol (m(e)−m)ζ we obtain

Bj ≤ ε1−θ
(
|m(e)|+

∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥)θ for

1

q
=

1− θ
2

+
θ

p
.
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This implies (4.3), which gives Claim B and completes the proof of Theorem A. �

We end this section by giving some examples of groups satisfying the conditions
of Theorem A. We have already considered the ADS condition in the previous
section, so let us analyze the SAIN condition. There are two general conditions
which imply small almost invariant neighborhoods:

• G ∈ [SIN]H (small invariant neighborhoods) if there exists a neighborhood
basis of the identity of G consisting of open sets that are invariant under
conjugation with respect to H, see for instance [22, 38] for this class of pairs
(G,H) when G = H. Of course, we have [SIN]H ⊂ [SAIN]H.

• Another interesting class of pairs satisfying the SAIN condition is given by
amenable discrete subgroups Γ satisfying ∆G|Γ

= ∆Γ, see Theorem 7.11
below. As a consequence of it, we shall show that Theorem A holds for
pairs (G,H) with H any ADS amenable group.

Concrete examples (even in the nonunimodular setting) will be given in Section 7.

Remark 4.1. Both properties above are strictly weaker than the SAIN condition
since none of them is included in the other one. To see this, let us construct
examples of pairs (G,Γ), where Γ is a discrete subgroup of a unimodular, locally
compact group G, satisfying only one of these two properties:

i) The free group with two generators F2 can be represented as a (non-closed)
subgroup of SO(3). This way F2 acts on R3 and the open balls Br(0) ⊂ R3

with center 0 and radius r are invariant under the action of F2. We may
consider the semidirect product G = R3 o F2, which is unimodular since
the action of F2 is measure preserving. Then the sets Br(0) are naturally
contained in G and in fact form a basis of neighborhood of the identity which
are invariant under conjugation with respect to F2. Hence R3oF2 ∈ [SIN]F2

but F2 is not amenable.

ii) Let G be the Heisenberg group in Rn and Γ = Zn × {0} × {0} ⊂ G. Then
Γ satisfies our second property above but G /∈ [SIN]Γ. Indeed, let U be a
small neighborhood of (0, 0, 0) invariant under conjugation by Γ. Assume
that U ⊂ Rn × Rn × [−L,L] for some L > 0. Since conjugation in the
Heisenberg group gives

(−a,−b,−c) · (x, y, t) · (a, b, c) =
(
x, y, t− 〈a, y〉+ 〈b, x〉

)
,

we deduce that (x, y, t) ∈ U ⇒ (x, y, t − ay) ∈ U for all a ∈ Zn. But we
can find an element (x, y, t) ∈ U with y 6= 0 and a sequence (aj)j≥1 in Zn
verifying |ajy| → ∞ which contradicts this property.

Remark 4.2. We already know from Lemma 3.1 that every ADS group must be
unimodular. On the other hand, it also holds that G ∈ [SAIN]H with ∆H = ∆G|H
implies H unimodular since

∆H(h) = ∆G(h) = lim
j→∞

µ(h−1Vjh)

µ(Vj)

= lim
j→∞

µ(h−1Vjh)− µ(h−1Vjh \ Vj)
µ(Vj)
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= lim
j→∞

µ(h−1Vjh ∩ Vj)
µ(Vj)

= 1− lim
j→∞

µ(Vj \ h−1Vjh)

µ(Vj)
= 1

for every h ∈ H. In particular, all our conditions in Theorem A point to the
unimodularity of H. As we shall see in Section 8, this is not the case when we work
with amenable groups in the category of operator spaces. We leave as an open
problem to decide whether unimodularity is an essential assumption for restriction
of Fourier multipliers.

5. The compactification theorem

We now extend de Leeuw’s compactification theorem. In other words, given a
locally compact group G, let us write Gdisc to denote the same group equipped
with the discrete topology. Under the conditions in Theorem D, we prove that the
Lp-boundedness of a Fourier multiplier on G is equivalent to the Lp-boundedness
of that multiplier defined on Gdisc. In this section and for the sake of clarity, we
will write λ = λG and λ′ = λGdisc

for the left regular representation on G and
Gdisc respectively. Moreover, we shall use a similar terminology for trigonometric
polynomials in both LG and LGdisc

f =
∑
g∈F

f̂(g)λ(g) ⇔ f ′ =
∑
g∈F

f̂(g)λ′(g).

Before proving the compactification theorem, let us first discuss the conditions on
the group G that we impose. In de Leeuw’s proof of the compactification theorem
for Rn, the following basic properties were crucial:

P1) We have

Rn =
⋃
j≥1

2−jZn.

P2) There is an injective homomorphism Ψ : Rn → Rnbohr —the dual to the
canonical inclusion map Rndisc → Rn— with dense image and such that
f = f ′ ◦ Ψ for any pair (f, f ′) ∈ L∞(Rn) × L∞(Rnbohr) of trigonometric
polynomials with matching Fourier coefficients. In particular

‖f ′‖L∞(Rnbohr)
= sup
ξ∈Rn

|f ′ ◦Ψ(ξ)| = sup
ξ∈Rn

|f(ξ)| = ‖f‖L∞(Rn).

Of course, we will replace P1) by our ADS condition. On the other hand, P2)
is not a general property of locally compact groups. Indeed, according to Lemma
2.2 iv) for M = C (see the proof), if ‖f‖LG = ‖f ′‖LGdisc

for any trigonometric
polynomial f in LG then the amenability of G is equivalent to the amenability of
Gdisc. However, this is false in general. Consider for instance the group G = SO(3)
which is compact, hence amenable. On the contrary, since the free group F2 is a
subgroup of Gdisc = SO(3)disc, the discretized group Gdisc is not amenable. In the
following result we show that ‖f‖LG = ‖f ′‖LGdisc

when Gdisc is amenable.

Lemma 5.1. If f is a trigonometric polynomial in LG:

i) We always have ‖f ′‖LGdisc
≤ ‖f‖LG.

ii) The reverse inequality holds true whenever Gdisc is amenable.
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Proof. Let (Vj)j≥1 be a symmetric basis of neighborhoods of the identity in G

and let F ⊂ G be finite. Then for j ≥ 1 large enough and hj = µ(Vj)
−1/2λ(1Vj )

the following map is isometric

(5.1) Lhj : `2(F) 3 (ag)g∈F 7→
(∑
g∈F

agλ(g)
)
hj ∈ L2(Ĝ).

Indeed, since (gVj)g∈F are disjoint for j large enough

‖Lhj (a)‖22 = µ(Vj)
−1
∥∥∥∑
g∈F

agλ(1gVj )
∥∥∥2

2
=
∑
g∈F

|ag|2 = ‖a‖2`2(F).

To prove i), we first write

‖f ′‖LGdisc
= sup

〈
f ′ξ1, ξ2

〉
`2(Gdisc)

where the supremum runs over all finite subset X ⊂ G and all ξ1, ξ2 ∈ `2(X) with
‖ξ1‖2 = ‖ξ2‖2 = 1. Pick any such X and ξ1, ξ2. Since f ′ξ1 is supported by FX the
inner product above can be taken in `2(S), where S = FX∪X. Applying (5.1) to this

finite set S, we may find an isometry Lh : `2(S)→ L2(Ĝ). Since Lh(f ′ξ1) = fLh(ξ1)〈
f ′ξ1, ξ2

〉
`2(S)

=
〈
Lh(f ′ξ1), Lh(ξ2)

〉
L2(Ĝ)

=
〈
fLh(ξ1), Lh(ξ2)

〉
L2(Ĝ)

≤ ‖f‖LG.

Taking suprema we obtain i). If Gdisc is amenable, Lemma 2.2 yields

‖f‖LG =
∥∥∥∑
g∈F

f̂(g)λ(g)
∥∥∥
LG

≤
∥∥∥∑
g∈F

f̂(g)λ(g)⊗ λ′(g)
∥∥∥
LG⊗LGdisc

= ‖f ′‖LGdisc
,

where the last equality comes from Fell’s absorption principle in Lemma 2.3 ii). �

Remark 5.2. It follows that Gdisc amenable ⇒ G amenable, but not reciprocally.

We can now prove Theorem D i) and ii), the noncommutative version of de
Leeuw’s compactification theorem. The first implication requires P1) and follows
easily from the lattice approximation in Theorem C. The second one requires an
analogue of P2) —Gdisc amenable, as suggested by Lemma 5.1— and it follows by
adapting our restriction argument in Theorem A.

Proof of Theorem D i) and ii). If G ∈ ADS is approximated by lattices (Γj)j≥1,
then Γj ⊂ Gdisc for j ≥ 1. Since both groups are discrete, we may restrict by taking
a conditional expectation. In conjunction with Theorem C, we obtain∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ ≤ sup
j≥1

∥∥Tm|Γj: Lp(Γ̂j)→ Lp(Γ̂j)
∥∥

≤
∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥.
This proves i). For the converse implication, we may and will assume as in the
proof of Theorem A that 2 < p <∞. Now, since Gdisc is amenable, we claim that
G ∈ [SAIN]Gdisc

. Namely, it follows by the exact same argument as in Theorem
7.11 since our proof there does not use the fact that the topology on the subgroup
is induced by the topology of G. Once we know that the SAIN condition holds, the
goal is to show that

‖Tmf ′‖Lp(Ĝdisc)
≤
∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ ‖f ′‖
Lp(Ĝdisc)
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for any trigonometric polynomial f ′ ∈ LGdisc. Fix such a trigonometric polynomial

f ′0 =
∑
γ∈F f̂

′
0(γ)λ′(γ) ∈ LG and let F ⊂ G denote its frequency support. Let

(Vj)j≥1 be the neighborhood basis of the identity associated to F by the SAIN

condition. Following the proof of Theorem A, define hj = µ(Vj)
−1/2λ(1Vj ) with

polar decomposition hj = uj |hj |. The main difference with the restriction theorem
is that we may no longer assume that the sets (gVj)g∈G are disjoint. Then we
cannot define properly the maps Φpj for all j, since they are not contractive any
longer. However, this still holds true at the limit.

Claim A’. Let 2 ≤ q ≤ ∞. Then

i) If f ′ ∈ LGdisc is any trigonometric polynomial

lim
j→∞

∥∥fuj |hj | 2q ∥∥Lq(Ĝ)
≤ ‖f ′‖

Lq(Ĝdisc)
.

ii) If f ′ ∈ LGdisc is frequency supported by F, we also have

lim
j→∞

∥∥fuj |hj | 2q ∥∥Lq(Ĝ)
= ‖f ′‖

Lq(Ĝdisc)
.

The intertwining result we gave in Claim B of the proof of Theorem A —restated
conveniently without using the maps Φpj— holds replacing Γ by Gdisc with verbatim

the same argument. Moreover, Theorem D ii) follows from it and Claim A’ above
exactly as in the proof of Theorem A. Thus, it suffices to justify this claim.

Proof of Claim A’. Let ε > 0 and let f ′ be any trigonometric polynomial in
LGdisc. Since interpolation cannot be used any longer in our case, Claim A’ i) will
simply follow from the three-lines lemma. Let a = a(f ′, ε, q) be a trigonometric
polynomial in LG such that

(5.2)
∥∥|f | q2 − a∥∥LG

=
∥∥|f ′| q2 − a′∥∥LGdisc

<
1

2
εq/2,

where the equality comes from Lemma 5.1 (together with a standard approximation
argument in the weak-∗ topology) since Gdisc is amenable, and a′ denotes the
trigonometric polynomial in LGdisc associated to a. By (5.1), there exists an index
j0 = j0(f ′, ε, q) such that

(5.3) ‖ahj‖L2(Ĝ) = ‖a′‖
L2(Ĝdisc)

for any j ≥ j0.

The map Fj(z) = u|f |qz/2uj |hj |z —where f = u|f | is the polar decomposition of
f ∈ LG— is holomorphic on the strip ∆ = {0 < Re z < 1} and continuous on its
closure. Since Fj(it) = u|f |iqt/2uj |hj |it is a partial unitary

sup
t∈R
‖Fj(it)‖LG ≤ 1.

On the other hand, by (5.2) and (5.3) we get for all t ∈ R∥∥Fj(1 + it)
∥∥
L2(Ĝ)

=
∥∥|f | q2 hj∥∥L2(Ĝ)

≤
∥∥(|f | q2 − a)hj∥∥L2(Ĝ)

+ ‖ahj‖L2(Ĝ) ≤
εq/2

2
+ ‖a′‖

L2(Ĝdisc)

≤ εq/2

2
+
∥∥a′ − |f ′| q2 ∥∥

L2(Ĝdisc)
+
∥∥|f ′| q2 ∥∥

L2(Ĝdisc)
≤ εq/2 + ‖f ′‖q/2

Lq(Ĝdisc)
.
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Therefore, the three-lines lemma implies that for any j ≥ j0

‖Fj(2/q)‖Lq(Ĝ) = ‖fuj |hj |
2
q ‖Lq(Ĝ)(5.4)

≤
(
εq/2 + ‖f ′‖q/2

Lq(Ĝdisc)

) 2
q ≤ ε+ ‖f ′‖

Lq(Ĝdisc)
,

which proves Claim A’ i). To prove Claim A’ ii) we proceed exactly as in the proof
of Theorem A, but using our version of Claim A’ i). For a fixed trigonometric
polynomial f ′ in LGdisc frequency supported by F, let k′ = k′(f ′, ε, q) be another
trigonometric polynomial in LGdisc (frequency supported by M ⊂ G finite) and
satisfying ‖k′‖

Lq∗ (Ĝdisc)
= 1 with

‖f ′‖
Lq(Ĝdisc)

≤ ‖k′f ′∗‖
L2(Ĝdisc)

+
ε

2
,

where 1/q + 1/q∗ = 1/2. We may choose j0 = j0(f ′, ε, q) such that for any j ≥ j0

i) ‖k′f ′∗‖
L2(Ĝdisc)

= ‖k′f ′∗hj‖L2(Ĝ),

ii)
∥∥kuj |hj |2/q∗∥∥Lq∗ (Ĝ)

≤ 1 + ε,

iii)
∑
g∈F

µ
(
g−1Vjg4Vj

)
µ(Vj)

≤ ε2

‖k‖22‖f‖22|K|
.

Namely, the first property follows from (5.1), the second one from (5.4) and the
third one from the SAIN condition. By the same argument as in the proof of
Theorem A, we obtain that for any j ≥ j0

‖f ′‖
Lq(Ĝdisc)

≤ ε+ (1 + ε)‖fuj |hj |2/q‖Lq(Ĝ).

Letting ε→ 0+, this implies Claim A’ ii) and completes Theorem D ii). �

Remark 5.3. According to Remark 3.4, we know that the Heisenberg group Hn

and the upper triangular matrix groups H(K, n) are ADS. Moreover, since they
are nilpotent the same happens for their discretized forms, which implies in turn
that the discretized forms are amenable. In summary, if G denotes any of these
groups, it satisfies the two-sided compactification result in Theorem D i) and ii) for
bounded continuous symbols∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥ =
∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥.
6. The periodization theorem

We finish our collection of noncommutative de Leeuw’s theorems in the Banach
space setting for unimodular groups with the periodization theorem, nonunimodular
groups and statements in the operator space setting will be considered below. In
this section we consider a locally compact, unimodular, second countable group
G; a normal closed subgroup H of G; a bounded symbol mq : G/H → C and
its H-periodization mπ : G → C given by mπ(g) = mq(gH). As mentioned in
the Introduction, the abelian case has been solved by Saeki [48] but we cannot go
further in the line of Theorem D iii). More precisely, in general

Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H) ; Tmπ : Lp(Ĝ)→ Lp(Ĝ).
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Indeed, consider for instance the infinite permutation group H = S∞ and construct
the cartesian product G = T×S∞, so that G/H ' T. By [45, Proposition 8.1.3], for
1 < p 6= 2 <∞ we can find a bounded mq : T→ C giving rise to a Fourier multiplier
which is bounded in `p(Z) but not completely bounded. Then, its H-periodization
mπ = mq ⊗ id cannot define a bounded Fourier multiplier on

Lp(Ĝ) = `p(Z;Lp(R)),

where R = LS∞ denotes the hyperfinite II1 factor. Hence, Theorem D iii) fails for
this pair (G,H). In fact, since Pisier’s result on the existence of bounded/not cb
multipliers has been extended to any infinite LCA groups [1, 25], with that process
we can construct a large class of counter-examples by taking any group of the form
G = K×H with K an infinite LCA group and H a group satisfying that LH contains
arbitrarily large matrix algebras Mn. This suggests that there is not so much to do
in this direction outside the class of abelian groups. The result in Theorem D iii)
was already proved by Saeki [48]. Hence, we now focus on the reverse implication
given in Theorem D iv) for G nonabelian and H compact.

Proof of Theorem D iv). Assume H is compact and let µH denote the normalized
Haar measure on H. By duality it is enough to consider the case p ≥ 2. By Lemma
2.1, we may see LH as a von Neumann subalgebra of LG and identify λG(h) and
λH(h) for any h ∈ H. Consider the operator

Π =

∫
H

λ(h) dµH(h) ∈ LH ⊂ LG.

Since H is a normal, compact (unimodular) subgroup of G, we deduce that Π
is a central, H-invariant projection of LG onto the functions of L2(G) which are
constant on H-cosets, denoted by

H = ΠL2(G) =
{
ξ ∈ L2(G) : ξ(g) = ξ(g′) when gH = g′H

}
.

The map π : G →M := (LG)Π given by π(g) = λ(g)Π defines a ∗-representation
of G over the Hilbert space H. Moreover, π is invariant on cosets, hence this yields
a ∗-representation of the quotient G/H still denoted by π : G/H → M. Observe
that π(gH) = vλG/H(gH)v∗, where the unitary v : L2(G/H) → H is the natural
identification. Hence π can be extended to a normal map π : L(G/H) → M by
setting π(f) = vfv∗. Since this map is isometric and surjective at the L∞ and L2

levels, this yields by interpolation an isometric map

π : Lp(Ĝ/H)→ Lp(M) = Lp(Ĝ)Π

for any 2 ≤ p ≤ ∞. On the other hand, π intertwines the Fourier multipliers so
that π ◦Tmq = Tmπ ◦π. Indeed, let f ∈ λ(Cc(G/H)). Since the G-invariant measure
on left cosets [18, Theorem 2.49] coincides with the Haar measure on the quotient
group G/H when H is normal we get

π ◦ Tmq (f) =

∫
G/H

mq(gH)f̂(gH)λ(g)Π dµG/H(gH)

=

∫
G/H

mq(gH)f̂(gH)
(∫

H

λ(gh) dµH(h)
)
dµG/H(gH)

=

∫
G

mπ(g)f̂(gH)λ(g) dµG(g) Π = Tmπ ◦ π(f).
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Using this property, we conclude with the estimate

‖Tmqf‖Lp(Ĝ/H)
= ‖π ◦ Tmq (f)‖Lp(M) = ‖Tmπ ◦ π(f)‖Lp(Ĝ)Π

≤
∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)

∥∥‖π(f)‖Lp(Ĝ)Π

=
∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)

∥∥‖f‖
Lp(Ĝ/H)

for f ∈ Lp(Ĝ/H). This completes the proof of Theorem D iv). �

7. Nonunimodular groups

This section is devoted to extend our results to nonunimodular groups. Again the
main focus will be on restriction since compactification and periodization admit less
generalizations, see Remark 7.13. When G is nonunimodular, the modular function
∆G is not trivial and the Plancherel weight —defined in Section 2 and denoted by
ϕ in this section— is not a trace. This forces to introduce noncommutative Lp
spaces associated with arbitrary von Neumann algebras. We will in fact consider
two different such Lp spaces, the Haagerup and the Connes-Hilsum ones [27, 51]
which turn to be isomorphic as we explain below. Recall that the proof of Theorem
A in the unimodular case is based on crucial results derived from Theorem B.
Thus we will need to extend these results to arbitrary von Neumann algebras by
using Haagerup’s reduction method. After that, we will derive Theorem A for
nonunimodular groups and give some examples.

7.1. Haagerup’s reduction for weights. We start by recalling the reduction
method from [24] adapted to a von Neumann algebra M ⊂ B(H) equipped with
a fixed normal semifinite faithful (nsf) weight ϕ. Note that the constructions in
[24] are carried out with respect to a normal faithful state ϕ instead of a weight.
This is not sufficient for our purposes. The weight case is treated in an unpublished
extended version of [24] by Xu. For the sake of completeness, we will indicate below
the technical modifications of the arguments in [24] to obtain the analogous results
for weights instead of states. In this paragraph, we consider the so-called Haagerup
Lp-spaces defined in [51], see also [24] for a standard introduction of the concepts
involved. Since they are only used in this auxiliary technical subsection and the
next one, we will not detail the construction but refer to the above mentioned
works. Let σϕ be the modular automorphism group of ϕ and denote

nϕ = {x ∈M : ϕ(x∗x) <∞} and mϕ = n∗ϕnϕ = span{y∗x : x, y ∈ nϕ}.

In this subsection we fix G = ∪n≥12−nZ with the discrete topology and consider
the crossed product R = M oσϕ G. Recall that R is the von Neumann algebra
acting on L2(G,H) generated by the operators(

λ(t)ξ
)
(s) = ξ(s− t) and

(
π(x)ξ

)
(s) = σϕ−s(x)ξ(s)

for s, t ∈ G, x ∈M and ξ ∈ L2(G,H). We define the unitary operator(
w(γ)ξ

)
(s) = γ(s)ξ(s)

for (s, γ, ξ) ∈ G× Ĝ×L2(G,H) and α̂γ(z) = w(γ)zw(γ)∗ for z ∈ R. Then π(M) is
the fixed point algebra for α̂ and the conditional expectation E : R →M is given
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by E(x) =
∫

Ĝ
α̂γ(x)dγ. The dual weight ϕ̂ on R is defined as ϕ̂ = ϕ ◦ π−1 ◦ E . Let

Rϕ̂ be the centralizer of ϕ̂ in R and denote by Z(Rϕ̂) its center. Consider

bn = −iLog(λ(2−n)) and an = 2nbn,

with Log the principal branch of the logarithm, so that 0 ≤ Im(Log(z)) < 2π. Then
bn ∈ Z(Rϕ̂) and ϕn( · ) = ϕ̂(e−an · ) formally defines a nsf weight. More precisely,
ϕn has Connes cocycle derivative (Dϕn/Dϕ̂)s = e−isan for s ∈ R.

Theorem 7.1. Let Rn be the centralizer of ϕn in R. The sequence (Rn)n≥1 forms
an increasing sequence of von Neumann subalgebras of R. Moreover, the following
properties hold :

i) Rn is semifinite for each n ≥ 1 with trace ϕn.

ii) There exist conditional expectations En : R → Rn such that

ϕ̂ ◦ En = ϕ̂ and En ◦ σϕ̂s = σϕ̂s ◦ En for all s ∈ R.

iii) En(x)→ x σ-strongly for x ∈ nϕ̂ and
⋃
n≥1Rn is σ-strongly dense in R.

Proof. The proof is a mutatis mutandis copy of the arguments in [24, Section 2].
We indicate the main adaptations. Observe that [24, Lemma 2.2] does not remain
valid. This lemma is applied only in two places, where the arguments need to be
adapted. Firstly, it is needed to prove the uniqueness of bn in [24, Lemma 2.3], but
this does not play a role in the subsequent proofs. Secondly it is used in the proof
of [24, Lemma 2.6]. However, we claim that the following fact still holds true: for
every x ∈ nϕ̂ and every ε > 0 there exists a trigonometric polynomial P on T with

(7.1)
∥∥[bn − P (λ(2−n)), x

]∥∥
ϕ̂
≤ ε for all n ∈ N,

where [x, y] = xy − yx denotes the commutator of two operators x and y and
‖y‖2ϕ̂ = ϕ̂(y∗y) for any y ∈ R. This fact is what is actually needed. Let us now
prove it. If x ∈ nϕ̂, then∥∥(bn − P (λ(2−n))

)
x
∥∥2

ϕ̂
= ϕ̂

(
x∗|bn − P (λ(2−n))|2x

)
.

Now ϕ̂(x∗ · x) is a normal functional on R and hence it restricts to a normal
functional ω on the von Neumann subalgebra generated by λ(2−n), which equals
L∞(T). So ω corresponds to integration against a function in L1(T). Recalling
that bn = −iLog(λ(2−n)) we see that we may choose P such that for every n we
have ω(|bn − P (λ(2−n))|2) < ε. On the other hand, we first consider

x ∈ Tϕ̂ :=
{
x ∈ R : x is analytic for σϕ̂ and σϕ̂z (x) ∈ nϕ ∩ n∗ϕ ∀ z ∈ C

}
.

In that case, from Tomita-Takesaki theory we have∥∥x(bn − P (λ(2−n))
)∥∥2

ϕ̂
= ϕ̂

(
x|bn − P (λ(2−n))|2σϕ̂−i(x

∗)
)
,

and as above we may find P such that for every n this expression becomes smaller
than ε. This proves our claim (7.1) in case x ∈ Tϕ̂. For a general operator x ∈ nϕ̂
the claim follows by taking a net (xj)j∈J in Tϕ̂ such that ‖xj − x‖ϕ̂ → 0 (see for
instance [50]) and using that ‖bn‖ ≤ 2π.

Let us now return to the constructions of [24, Section 2]. The statements and
proofs of [24, Lemmas 2.3, 2.4, 2.5] remain unchanged except that bn might not be
unique, which is not relevant for the proof. Note in particular that the restriction
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of ϕn to its centralizer is semifinite. Then Lemma 2.6 remains true provided x ∈ nϕ̂
instead of general x ∈ R and also Lemma 2.7 remains valid for x ∈ nϕ̂. Indeed, as
in the proof of Lemma 2.7, this follows from Lemma 2.6 in case x ∈ nϕ̂ (and also in
the weight case one invokes Lemma 2.5 to derive strong convergence, which implies
σ-strong convergence for a bounded net). This completes the proof. �

Let Lp(M), Lp(R) and Lp(Rn) be the Haagerup Lp-spaces constructed from the
weights ϕ, ϕ̂, and ϕ̂ restricted to Rn respectively, see [51] or [24, Section 1.2]. The
modular automorphism group σϕ̂ restricted toM' π(M) equals σϕ. By Theorem
7.1, the restriction of ϕ̂ to Rn is semifinite. This implies that the crossed products
M oσϕ R and Rn oσϕ̂ R are well-defined subalgebras of R oσϕ̂ R. Let D be the
generator of the left regular representation in each of these crossed products, then
D is the usual density operator in the Haagerup Lp-space Lp(R). Recall that we
have two ϕ̂-preserving conditional expectations E : R → M and En : R → Rn.
For 1 ≤ p < ∞, by Remark 5.6 and Example 5.8 of [24] we obtain contractive
projections

Ep : Lp(R)→ Lp(M) and Epn : Lp(R)→ Lp(Rn)

given by Ep(D
1
2pxD

1
2p ) = D

1
2p E(x)D

1
2p for any x ∈ mϕ̂, and similarly for En. More

generally, for any p ≤ r, s ≤ ∞ such that 1
r + 1

s = 1
p we have Ep(D 1

r xD
1
s ) =

D
1
r E(x)D

1
s for x ∈ mϕ̂, see [24, Proposition 5.5] for the proof in the state case.

Remark 7.2. The notation D
1
r xD

1
s for x ∈ mϕ̂ used in [24] and which we keep

using in the sequel is formal. If x can be decomposed as a finite sum x =
∑
j y
∗
j zj

with yj , zj ∈ nϕ̂, then the notation D
1
r xD

1
s stands for

∑
j D

1
r y∗j · [zjD

1
s ], which is

a well-defined element of Lp(R) by [52, Theorem 26] and Hölder’s inequality. Here
[ · ] denotes the closure of a preclosed operator. Arguing as in [20] one can derive
that this expression does not depend on the decomposition of x.

Lemma 7.3. Given 1 ≤ p <∞ and x ∈ Lp(R) we have

lim
n→∞

‖Epn(x)− x‖p = 0.

Proof. We first assume that 1 ≤ p ≤ 2. Let x ∈ R and x′, x′′ ∈ Rm for some
m ≥ 1. Assume moreover that x, x′′ ∈ nϕ̂, x

′ ∈ n∗ϕ̂ and n ≥ m. Let r be such that
1
p −

1
2 = 1

r . Since En(x′) = x′ and En(x′′) = x′′, using the convention of Remark

7.2, Hölder’s inequality and [52, Theorem 23] imply∥∥Epn(D
1
r x′xx′′D

1
2 )−D 1

r x′xx′′D
1
2

∥∥
p

=
∥∥D 1

r x′En(x)x′′D
1
2 −D 1

r x′xx′′D
1
2

∥∥
p

≤ ‖D 1
r x′‖r

∥∥(En(x)− x)x′′D
1
2

∥∥
2

= ‖D 1
r x′‖r

∥∥(En(x)− x)Λ(x′′)
∥∥

2
→ 0,

since En(x) → x strongly by Theorem 7.1. Here Λ denotes the canonical injection
of nϕ̂ into its Hilbert space completion. We claim that the linear span of elements

D1/rx′xx′′D1/2 with x, x′, x′′ as above is dense in Lp(M). Then the result will
follow for any operator x ∈ Lp(R) for 1 ≤ p ≤ 2 by contractivity of Epn. By [52,

Theorem 26] the linear span of D1/ry∗ = [yD1/r]∗ with y ∈ nϕ̂ is dense in Lr(M)

for 2 ≤ r <∞. Then the Hölder inequality gives that span{D1/rxD1/2 : x ∈ mϕ̂}
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is dense in Lp(M). Let (x′j)j∈J , (x
′′
j )j∈J be nets in Rn of elements that are analytic

for σϕ̂ and such that

σϕ̂z (x′j), σ
ϕ̂
z (x′′j ) ∈ nϕ̂ ∩ n∗ϕ̂

for every z ∈ C. Assume that σϕ̂−i/r(x
′
j) → 1 and σϕ̂i/2(x′′j ) → 1 strongly. Then

using [20, Lemma 2.5] and [34, Lemma 2.3] we get

D
1
r x′jxx

′′
jD

1
2 = σϕ̂−i/r(x

′
j) ·D

1
r xD

1
2 · σϕ̂i/2(x′′j )→ D

1
r xD

1
2 ,

in the norm of Lp(M). Here, the domains of the operators in the first equality
are equal by an argument similar to the one we will use to prove Lemma 7.6.This
concludes our claim, and hence the Lemma for 1 ≤ p ≤ 2. We now consider the
case p ≥ 2. Suppose that we have proved the Lemma for p/2. Take x ∈ R such
that x ∈ nϕ̂. By Hölder’s inequality∥∥(En(x)− x)D

1
p

∥∥2

p
=

∥∥(En(x)− x) ·D
2
p (En(x)− x)∗

∥∥
p/2

≤
∥∥En(x)− x‖∞‖(En(x)− x)D

2
p

∥∥
p/2

=
∥∥En(x)− x‖∞‖Epn(xD

2
p )− xD

2
p

∥∥
p/2
,

which goes to 0 as n tends to ∞. Therefore, the result for a general operator
x ∈ Lp(R) follows by density [52, Theorem 26], recalling that Epn is contractive. �

7.2. Almost multiplicative maps on arbitrary von Neumann algebras. We
now apply the reduction method detailed above to the results of Section 1 needed to
prove Theorem A in the nonunimodular setting. LetM be a von Neumann algebra
with a nsf weight ϕ and T :M→M be a positive map such that ϕ◦T ≤ ϕ. Given
1 ≤ p <∞ and according to [24, Remark 5.6], the map T induces a bounded map
Tp on the Haagerup Lp-space Lp(M) determined by

Tp(D
1
2p
ϕ xD

1
2p
ϕ ) = D

1
2p
ϕ T (x)D

1
2p
ϕ

for x ∈ mϕ, where Dϕ denotes the density operator of ϕ. With that notation, we
can state and prove the following analogues of Corollary 1.3 and Corollary 1.4 for
arbitrary von Neumann algebras.

Corollary 7.4. Let M be a von Neumann algebra equipped with a nsf weight ϕ
and let T : M → M be a subunital completely positive map with ϕ ◦ T ≤ ϕ and
T ◦σϕs = σϕs ◦T for every s ∈ R. Then there exists a universal constant C > 0 such
that the following inequality holds for any x ∈ L+

2 (M) and any 0 < θ ≤ 1∥∥T 2
θ
(xθ)− xθ

∥∥
2
θ

≤ C
∥∥T2(x)− x

∥∥ θ2
2
‖x‖

θ
2
2 .

Proof. We use the notations of Section 7.1. By [24, Section 4], we know that the
map T admits a subunital completely positive normal extension, which is given by

T̂ : R 3 π(x)λ(s) 7→ π(T (x))λ(s) ∈ R

for any (s, x) ∈ G × M. Note that LG is in the multiplicative domain of T̂ .
Moreover, we also have

ϕ̂ ◦ T̂ ≤ ϕ̂ and σϕ̂t ◦ T̂ = T̂ ◦ σϕ̂t .
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Recall that σϕnt and En are defined in [24] respectively by

σϕns (x) = e−isanσϕ̂s (x)eisan and En(x) = 2n
∫ 2−n

0

σϕns (x)ds

for any (x, s) ∈ R × R. Note that these expressions were used in [24] for states,
although the same construction is valid for weights and the resulting conditional
expectations commute with the action of the modular automorphism group. Since

eisan ∈ LG, we deduce that T̂ commutes with En. Hence, we may consider its
restriction to Rn and deduce that we still have that

ϕn ◦ T̂ ≤ ϕn.

By Theorem 7.1 i) (Rn, ϕn) is semifinite and we may extend T̂ to a contractive
map on the tracial Lp-space Lp(Rn, ϕn). This extension does not depend on p. On
the other hand, for 1 ≤ p <∞ the map given by

T̂p(D
1/2p
ϕ̂ xD

1/2p
ϕ̂ ) = D

1/2p
ϕ̂ T̂ (x)D

1/2p
ϕ̂ for x ∈ mϕ̂

extends to a bounded map T̂p : Lp(R, ϕ̂) → Lp(R, ϕ̂) by [24, Remark 5.6]. Since

E ◦ T̂ = T ◦ E , where E : R →M is the ϕ̂-preserving conditional expectation, the

restriction of T̂p to Lp(M) equals Tp. Moreover, it commutes with Epn and we may
consider the restriction

T̂p : Lp(Rn, ϕ̂)→ Lp(Rn, ϕ̂).

As it is proved in [51], we have Lp(Rn, ϕ̂) ' Lp(Rn, ϕn) isometrically, and the iso-

morphism preserves positive elements. The two restriction maps T̂ and T̂p are com-
patible with respect to that isomorphism. Namely, let κp : Lp(Rn, ϕ̂)→ Lp(Rn, ϕn)

be the isometric isomorphism given by κp(D
1/2p
ϕ̂ xD

1/2p
ϕ̂ ) = e

an
2p xe

an
2p for any x ∈ mϕ̂,

then

κp ◦ T̂p = T̂ ◦ κp on Lp(Rn, ϕ̂)

since an lies in the multiplicative domain of T̂ . Fix x ∈ L+
2 (M), then by Lemma

7.3 iii) and the fact that T̂p commutes with Epn we can write∥∥T 2
θ
(xθ)− xθ

∥∥
L 2
θ

(M)
=

∥∥T̂ 2
θ
(xθ)− xθ

∥∥
L 2
θ

(R)

= lim
n→∞

∥∥E 2
θ
n ◦ T̂ 2

θ
(xθ)− E

2
θ
n (xθ)

∥∥
L 2
θ

(Rn,ϕ̂)

= lim
n→∞

∥∥T̂ 2
θ

(
E

2
θ
n (xθ)

)
− E

2
θ
n (xθ)

∥∥
L 2
θ

(Rn,ϕ̂)

= lim
n→∞

∥∥∥T̂(κ 2
θ

(
E

2
θ
n (xθ)

))
− κ 2

θ

(
E

2
θ
n (xθ)

)∥∥∥
L 2
θ

(Rn,ϕn)
.

By Corollary 1.3 in (Rn, ϕn) applied to the map T̂ and to κ 2
θ

(
E

2
θ
n (xθ)

) 1
θ ∈ L+

2 (Rn, ϕn)∥∥T 2
θ
(xθ)− xθ

∥∥
2
θ

≤ C lim
n→∞

∥∥∥T̂(κ 2
θ

(
E

2
θ
n (xθ)

) 1
θ

)
− κ 2

θ

(
E

2
θ
n (xθ)

) 1
θ

∥∥∥ θ2
L2(Rn,ϕn)

∥∥∥κ 2
θ

(
E

2
θ
n (xθ)

) 1
θ

∥∥∥ θ2
L2(Rn,ϕn)

= C lim
n→∞

∥∥T̂2

(
E

2
θ
n (xθ)

1
θ

)
− E

2
θ
n (xθ)

1
θ

∥∥ θ2
L2(Rn,ϕ̂)

∥∥E 2
θ
n (xθ)

1
θ

∥∥ θ2
L2(Rn,ϕ̂)

.
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We finally claim that

lim
n→∞

∥∥E 2
θ
n (xθ)

1
θ − x

∥∥
2
,

which yields the result since ‖T̂2(x) − x‖2 = ‖T2(x) − x‖2. This claim follows
from Lemma 7.3 iii) and the fact that for any operators x, y ∈ L2(R) such that
‖y‖2 ≤ ‖x‖2 and any parameter 0 < θ ≤ 1 we have

‖x− y‖2 ≤ k
∥∥xθ − yθ∥∥ 1

θk
2
θ

‖x‖1−
1
k

2

for any integer k ≥ 1 satisfying 1
k ≤ θ. Indeed, we first observe that for 1 ≤ p ≤ ∞

and k ∈ Z+ ∥∥xk − yk∥∥
p
≤ k‖x− y‖pk‖x‖k−1

pk for x, y ∈ L+
pk(R)

with ‖y‖pk ≤ ‖x‖pk. This easily follows from Hölder inequality and the identity

xk − yk =

k−1∑
j=0

xk−j−1(x− y)yj .

Then we get

‖x− y‖2 ≤ k‖x
1
k − y 1

k ‖2k‖x‖(k−1)/k
2 ≤ k‖xθ − yθ‖1/θk2/θ ‖x‖

(k−1)/k
2 .

The last inequality follows from the Powers-Størmer inequality Lemma 1.2. Note
that we have not justified the validity of such inequality for type III algebras. It is
however a simple exercise to deduce it from [35, Proposition 7 and Lemma B]. �

Corollary 7.5. Let M be a von Neumann algebra equipped with a nsf weight ϕ
and let T : M → M be a subunital completely positive map with ϕ ◦ T ≤ ϕ and
T ◦ σϕs = σϕs ◦ T for every s ∈ R. Then there exists a universal constant C > 0
such that the following inequality holds for any self-adjoint y ∈ L2(M) with polar
decomposition y = u|y| and any 0 < θ ≤ 1∥∥T 2

θ
(u|y|θ)− u|y|θ

∥∥
2
θ

≤ C
∥∥T2(y)− y

∥∥ θ4
2
‖y‖

3θ
4

2 .

Proof. The proof is similar to the one of Corollary 1.4, details are omitted. �

7.3. Connes-Hilsum Lp spaces. In this subsection we recall the construction
for group von Neumann algebras of Connes-Hilsum Lp-spaces [27], since we shall
use them in the proof of Theorem A. This construction will also be needed in the
next section, in order to apply the transference results from [7] in the category of
operator spaces. Since our proof of Theorem A will rely on the results derived
from Theorem B established in Section 7.2 for the Haagerup Lp-spaces, we need to
compare both constructions.

The Connes-Hilsum construction for group algebras. We shall follow the
presentation of [7]. Let G be a locally compact group and let ρ : G→ B(L2(G)) be
the right regular representation

ρ(g)(ξ)(h) = ∆G(g)
1
2 ξ(hg)

for any ξ ∈ L2(G) and g, h ∈ G. Set

ρ(ξ) =

∫
G

ξ(g)ρ(g)dµ(g) for any ξ ∈ L2(G).
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There exists a nsf weight ϕ′ on the commutant LG′ = ρ(G)′′ given by

ϕ′(f∗f) =

∫
G

|ξ(g)|2 dµ(g)

when f = ρ(ξ) for some ξ ∈ L2(G) and ϕ′(f∗f) =∞ for any other f ∈ LG′. For a

nsf weight ω on LG, the partial derivative (dω/dϕ′)
1
2 is the unique closed densely

defined operator, whose domain consists of the left bounded functions in L2(G) and
such that ∥∥(dω/dϕ′)

1
2 ξ
∥∥2

L2(G)
= ω(λ(ξ)λ(ξ)∗) <∞.

For 1 ≤ p < ∞, the Connes-Hilsum noncommutative space Lp(Ĝ) = Lp(Ĝ, ϕ
′)

is then defined as the set of closed densely defined operators f on L2(G) with
polar decomposition f = u|f | such that u ∈ LG and |f |p equals dω/dϕ′ for some
ω ∈ LG∗. In that case

‖f‖Lp(Ĝ) = ω(1)
1
p = ‖ω‖

1
p .

Equipped with this norm, Lp(Ĝ) is a Banach space and the Hölder inequality holds
by understanding the product of two operators as the closure of their product. For
ξ ∈ L1(G) ∩ L2(G), we have the Plancherel formula

[λ(ξ)∆
1
2

G] ∈ L2(Ĝ) with
∥∥[λ(ξ)∆

1
2

G]
∥∥
L2(Ĝ)

= ‖ξ‖L2(G).

In fact, such elements are dense in L2(Ĝ). Moreover, the set of operators{
[λ(ξ)∆

1
p

G] : ξ ∈ Cc(G)
}

is dense in Lp(Ĝ) for 2 ≤ p < ∞, see [52, Theorem 26]. Connes-Hilsum Lp-spaces
are compatible with interpolation, meaning that we may find a compatible structure

so that the family (Lp(Ĝ))1≤p≤∞ forms an interpolation scale, further details can
be found in [7]. Let 2 ≤ p ≤ ∞ and consider any symbol m ∈ L∞(G). Given any
ξ ∈ Cc(G), we have

[λ(ξ)∆
1/p
G ], [λ(mξ)∆

1/p
G ] ∈ Lp(Ĝ).

Then we may consider the associated multiplier

T pm : Lp(Ĝ) 3 [λ(ξ)∆
1/p
G ] 7→ [λ(mξ)∆

1/p
G ] ∈ Lp(Ĝ),

which is called an Lp-Fourier multiplier if it extends boundedly to Lp(Ĝ) (to a
normal map if p = ∞). For 1 ≤ p ≤ 2 and a given bounded symbol m, we define
the associated multiplier by

T 1
m := (T∞mop

)∗ and T pm = (T p
′

mop
)∗ where mop(s) = m(s−1).

Relation between Haagerup and Connes-Hilsum spaces. Let us fix some
notation. We let M be a von Neumann algebra equipped with nsf weight ϕ. Let
ϕ′ be a nsf weight on the commutantM′. We let Lp(M) be the Connes-Hilsum Lp
space constructed from ϕ′. Let d = dϕ/dϕ′ be the spacial derivative. Let x ∈ mϕ
and write x =

∑
i y
∗
i zi with yi, zi ∈ nϕ (finite sum). Define

jp(x) =
∑

i
d

1
2p y∗i · [zid

1
2p ] ∈ Lp(M).

The sum above does not depend on the choice of yi and zi, see [20]. We let Lp(M)o
be the Haagerup Lp-space constructed from ϕ with density operator D. Define also

jp,o(x) =
∑

i
D

1
2p y∗i · [ziD

1
2p ] ∈ Lp(M).
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Let Sϕ be the set of all x ∈ M such that x is analytic for σϕ and σϕz (x) ∈ mϕ for
every z ∈ C. Recall that if a is a closed unbounded operator and b is a bounded
operator then ab is automatically closed.

Lemma 7.6. For every x ∈ Sϕ we have

jp(x) = d
1
pσϕi

2p

(x) = [σϕ− i
2p

(x)d
1
p ].

Proof. Let yi, zi ∈ nϕ be such that

x =
∑

i
y∗i zi.

Using [52, Lemma 22] for the first inclusion and an elementary inclusion

σϕ− i
2p

(x)d
1
p ⊆ d

1
2pxd

1
2p ⊆

∑
i
d

1
2p y∗i · [zid

1
2p ] ∈ Lp(M).

Hence (
σϕ− i

2p

(x)d
1
p
)∗ ⊇∑

i

(
d

1
2p y∗i · [zid

1
2p ]
)∗ ∈ Lp(M).

By (the proof of) [27, Theorem 4 (1)] we in fact have an equality(
σϕ− i

2p

(x)d
1
p
)∗

=
∑

i

(
d

1
2p y∗i · [zid

1
2p ]
)∗
.

Therefore, taking adjoints yields the equality in the next line

d
1
pσϕi

2p

(x) ⊇ [σϕ− i
2p

(x)d
1
p ] =

∑
i
d

1
2p y∗i · [zid

1
2p ],

whereas the first inclusion follows from [52, Lemma 22]. Because the right hand
side is in Lp(M) this inclusion is in fact an equality by [27, Theorem 4 (1)]. �

Lemma 7.7. For every x ∈ Sϕ we have

jp,o(x) = D
1
pσϕi

2p

(x) = [σϕ− i
2p

(x)D
1
p ].

Proof. The proof is the same as of Lemma 7.6. The only difference being that
every time that we used [27, Theorem 4 (1)] one uses [51, Proposition I.12]. �

Proposition 7.8. Let T :M→M be a completely bounded map with ϕ ◦ T ≤ ϕ
that commutes with σϕ. Let Tp,o : Lp(M)o → Lp(M)o be the extended map to
the Haagerup Lp-space given in [24, Remark 5.6] and which is determined by the
relation below for x ∈ Sϕ

Tp,o : jp,o(x) 7→ jp,o(T (x)).

Then, the isometric isomorphism

κp : Lp(M)→ Lp(M)o

defined in [51] intertwines Tp and Tp,o, where

Tp : Lp(M) 3 jp(x) 7→ jp(T (x)) ∈ Lp(M) for x ∈ Sϕ.

Proof. Note that the statement above uses that T preserves the set Sϕ, which is
clear from the definition. Let u0 : L2(R,H) → L2(R,H) be the map defined by
(u0ξ)(s) = disξ(s) with s ∈ R. Let D0 be such that Dis

0 = λ(s), where

(λ(s)ξ)(t) = ξ(t− s)
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is the left regular representation on L2(R). It is proved in [51, Proposition IV.3]
that

u0π(x)u∗0 = x⊗ 1,

u0λ(s)u∗0 = dis ⊗ λ(s),

where x ∈M and s ∈ R. Let κp : Lp(M)→ Lp(M)o be the isometric isomorphism

defined in [51] by a 7→ u∗0(a ⊗D1/p
0 )u0. Let 1 ≤ p < ∞ and x ∈ Sϕ. Consider the

element d1/px which is in Lp(M) by Lemma 7.6. Then

Tp,o ◦ κp
(
d

1
px
)

= Tp,o

(
u∗0
(
d

1
px⊗D

1
p

0

)
u0

)
= Tp,o

(
u∗0
(
d

1
p ⊗D

1
p

0

)
u0u
∗
0

(
x⊗ 1

)
u0

)
= Tp,o

(
D

1
pπ(x)

)
= D

1
pπ
(
T (x)

)
= u∗0

(
d

1
p ⊗D

1
p

0

)
u0u
∗
0

(
T (x)⊗ 1

)
u0

= u∗0
(
d

1
pT (x)⊗D

1
p

0

)
u0 = κp ◦ Tp

(
d

1
px
)
.

Note in particular that at each instance we have an equality of domains and the
fourth equality follows from Lemma 7.7 and the definition of T . Similarly, the last
equality follows from Lemma 7.6. Since such elements d1/px are dense in Lp(M)
this proves that Tp,o ◦ κp = κp ◦ Tp. This completes the proof. �

Remark 7.9. In particular, Corollary 7.5 is valid for Connes-Hilsum Lp-spaces.

7.4. Nonunimodular restriction theorem. We finish this section by sketching
the proof of the restriction theorem in the nonunimodular setting, enlightening the
main changes. Note that in the nonunimodular case, the Fourier multipliers depend
on p. However, for the sake of clarity we just used the notation Tm in the statement
of Theorem A given in the Introduction. After the proof, we shall construct some
natural examples illustrating Theorem A which complement what we did in Section
4. We shall also give a brief discussion on Theorem D in Remark 7.13.

Proof of Theorem A: Nonunimodular case. The proof follows the same
strategy as in the unimodular case, the main ingredient being that in this case the
operator hj should be defined as

hj =
∥∥1Vj∆− 1

4

G

∥∥−1

L2(G)

[
λ(1Vj∆

− 1
4

G )∆
1
2

G

]
∈ L2(Ĝ).

Note that hj is a self-adjoint operator. Indeed, according to [20, Lemma 2.5] and

the fact that Vj is symmetric (recalling that ξ∗(g) = ∆G(g)−1ξ(g−1)), we obtain
the following identity

h∗j =
∥∥1Vj∆− 1

4

G

∥∥−1

L2(G)
∆

1
2

Gλ(1Vj∆
− 1

4

G )∗

=
∥∥1Vj∆− 1

4

G

∥∥−1

L2(G)
∆

1
2

Gλ(1Vj∆
− 3

4

G )

=
∥∥1Vj∆− 1

4

G

∥∥−1

L2(G)

[
λ(1Vj )∆

− 1
4

G )∆
1
2

G

]
= hj .

Then one defines again Φqj : Lq(Γ̂) 3 f 7→ fuj |hj |
2
q ∈ Lq(Ĝ), where hj = uj |hj |

is the polar decomposition. The proof proceeds then exactly as in the unimodular
case in Section 4, which relies on two claims. We can check that Claim A and
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Claim B can be proved mutatis mutandis, except that we need Corollary 1.4 for
noncommutative Lp-spaces associated with type III algebras. Recall that we applied
this result to the Fourier multiplier Tζ for some unital, continuous, positive definite
function ζ ∈ L∞(G). Then Tζ is a unital completely positive, ϕ-preserving map and
by [24, Example 5.9] it commutes with the modular automorphism group. Thus,
we may apply Corollary 7.5 in conjunction with Remark 7.9. �

We now illustrate Theorem A with some example, the main of which will be to
show that we can apply restriction to any ADS amenable subgroup for which the
modular function restricts properly. We need a preliminary technical result.

Lemma 7.10. Let G be a locally compact group. Let ε > 0 and ξ, η1, · · · , ηn be
positive functions in L1(G) satisfying

∑n
`=1 ‖ξ−η`‖1 < ε and ‖ξ‖1 = 1. Then there

exists t > 0 such that
n∑
`=1

∥∥1{ξ>t} − 1{η`>t}
∥∥
L1(G)

< ε‖1{ξ>t}‖L1(G).

Proof. Given g ∈ G and 1 ≤ ` ≤ n, we have

|ξ(g)| =

∫ ∞
0

1{ξ(g)>t}dt,

|ξ(g)− η`(g)| =

∫ ∞
0

∣∣1{ξ(g)>t} − 1{η`(g)>t}
∣∣ dt.

Hence the hypothesis can be written as follows∫ ∞
0

n∑
`=1

‖1{ξ>t} − 1{η`>t}‖L1(G)dt =

n∑
`=1

‖ξ − η`‖L1(G)

< ε‖ξ‖L1(G) = ε

∫ ∞
0

‖1{ξ>t}‖L1(G) dt.

This immediately implies the existence of some t > 0 satisfying the assertion. �

Theorem 7.11. We have

G ∈ [SAIN]Γ

for any discrete amenable subgroup Γ satisfying that ∆G|Γ
= ∆Γ = 1.

Proof. Fix a finite set F ⊂ Γ. Since Γ is amenable and discrete, we know from
the Følner condition (see Lemma 2.2) that for any j ≥ 1 there exist a finite subset
UF,j ⊂ Γ such that

|UF,jγ4UF,j |
|UF,j |

<
1

j|F|
for any γ ∈ F.

Let (Zj)j≥1 be a basis of symmetric neighborhoods of e such that µ(Zj) < ∞.
Since the sets (UF,j)j≥1 are finite, by continuity of the multiplication on G we
can find a sequence (Wj)j≥1 of symmetric neighborhoods of the identity such that⋃
g∈UF,j

g−1Wjg ⊂ Zj . Define for each j ≥ 1

ξj =
1

|UF,j |µ(Wj)

∑
g∈UF,j

1g−1Wjg.
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By unimodularity of Γ (since it is discrete), we have ‖ξj‖L1(G) = 1 and we can
prove ∥∥ξj(γ · γ−1)− ξj

∥∥
L1(G)

<
1

j|F|
for any γ ∈ F.

Indeed, using that for any j ≥ 1 we have

ξj(γ · γ−1)− ξj =
1

|UF,j |µ(Wj)

( ∑
g∈UF,jγ\UF,j

1g−1Wjg −
∑

g∈UF,j\UF,jγ

1g−1Wjg

)
,

and by construction of the Følner sets (UF,j)j≥1 we get∥∥ξj(γ · γ−1)− ξj
∥∥
L1(G)

≤ |UF,jγ4UF,j |
|UF,j |

<
1

j|F|
.

Here we also used that UF,jγ ∪UF,j ⊂ Γ for any γ ∈ F and the unimodularity of Γ.
Hence, by applying Lemma 7.10, for each j ≥ 1 we can find tj > 0 such that the
set Vj = {ξj > tj} satisfies

(7.2)
∑
γ∈F

µ
(
γ−1Vjγ4Vj

)
µ(Vj)

=
∑
γ∈F

‖1Vj − 1γ−1Vjγ‖L1(G)

‖1Vj‖L1(G)
<

1

j
.

It remains to check that (Vj)j≥1 is a basis of symmetric neighborhoods of the
identity. Since Wj is symmetric, we have ξj(g

−1) = ξj(g) for any g ∈ G and Vj is
clearly symmetric. On the other hand, note that ‖ξj‖∞ = ξj(e) = µ(Vj)

−1. Thus
ξj(e) > tj , otherwise we would have 1Vj = 0, which contradicts (7.2). Finally, the
inclusions

Vj ⊂ supp(ξj) ⊂
⋃

g∈UF,j

g−1Wjg ⊂ Zj

ensure that (Vj)j≥1 is a basis of neighborhoods of the identity. �

Corollary 7.12. We have∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)
∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
for any ADS amenable subgroup H satisfying the identity ∆H = ∆G|H

.

Proof. According to Theorem C, we have∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)
∥∥ ≤ sup

j≥1

∥∥Tm|Γj : Lp(Γ̂j)→ Lp(Γ̂j)
∥∥

for any family (Γj)j≥1 of discrete subgroups approximating H. By amenability and
unimodularity of H, it is easily seen that each Γj satisfies the hypothesis of Theorem
7.11, from which the assertion follows. This completes the proof. �

Beyond discrete amenable subgroups of unimodular groups, other pairs (G,H)
satisfying Corollary 7.12 are given by G unimodular and H belonging to the families
in Remark 3.4. Corollary 7.12 also admits pairs with G nonunimodular, consider for
instance the affine group G = RnoGLn(R) which is nonunimodular [18]. However
∆G restricts to SLn(R) (which is unimodular) trivially and hence also to every ADS
subgroup. In particular ADS subgroups of On(R) will form examples of subgroups
of G that satisfy the criteria of Theorem A.
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Remark 7.13. Outside the cb-setting (Section 8), the compactification Theorem D
i) and ii) does not have a suitable analogue in the nonunimodular setting (at least
not from our techniques) since we require that ∆G = ∆Gdisc

≡ 1. Similarly the
periodization Theorem D iii) is meaningless, since we showed that commutativity
of G (hence unimodularity) is an essential assumption. However, Theorem D iv)
does generalize to nonunimodular groups provided that ∆G|H

= ∆H, the proof is
analogous to the one we gave for unimodular groups.

8. Operator space results

The goal of this section is to study de Leeuw’s theorems for locally compact
groups in the category of operator spaces. More precisely, we are interested in
restriction, compactification and periodization results under the assumption that
our multipliers are not only bounded, but completely bounded when we equip our
Lp spaces with their natural operator space structure [45, 46]. Then we aim to
show that the conclusions also give cb-bounded multipliers. It is easily seen that
this is the case when we keep the hypotheses of Theorems A, C and D. In other
words, we have for 1 ≤ p ≤ ∞:

• If H ∈ ADS and G ∈ [SAIN]H, we have∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)
∥∥

cb
≤
∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb

for bounded continuous symbols m : G→ C provided ∆G|H
= ∆H.

• If G ∈ ADS is approximated by (Γj)j≥1∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥

cb
≤ sup

j≥1

∥∥Tm|Γj : Lp(Γ̂j)→ Lp(Γ̂j)
∥∥

cb

for bounded m : G→ C which are continuous µG–almost everywhere.

• If G is ADS, Gdisc is amenable and m continuous∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥

cb
=
∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥
cb
.

The ≤ holds for G ∈ ADS, the ≥ for Gdisc amenable and G unimodular.

• If H C G is compact and mπ(g) = mq(gH) is bounded∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)
∥∥

cb
≥
∥∥Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H)

∥∥
cb
.

Indeed, except for Theorem D iii) our results remain valid when we apply them
to the cartesian product of G with any finite group, since our ADS and SAIN
assumptions are stable under that operation. This operation allows to generalize
our results to the cb-setting in a trivial way.

Remark 8.1. The upper estimate ≤ in our cb-periodization result can be extended
to any pair (G,H) as long as G is discrete, LG is QWEP and ∆G = ∆H on H.
Indeed, the discreteness of G and G/H allows us to apply Fell’s absorption principle
in Lemma 2.3 ii) to the strongly continuous representation π : g 7→ λG/H(gH) and
the existence of an invariant measure is then used to factorize the integral over G
as an integral over G/H×H. After rearrangement and Fubini’s theorem (for which
we use the QWEP property following [30]) one concludes.
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Motivated by the transference results from [5, 7, 40] between Fourier and Schur
multipliers, an alternative approach to obtain de Leeuw type theorems is to exploit
that such results are much more elementary for Schur multipliers. Namely, given
a bounded symbol m : G → C, recall that the associated Herz-Schur multiplier is
formally defined as the linear map

Sm :
∑

g1,g2∈G

ag1,g2eg1,g2 7→
∑

g1,g2∈G

m(g−1
1 g2)ag1,g2eg1,g2 .

By the boundedness of m, it is clear that Sm is (completely) bounded on the
Schatten class S2(L2(G)). When it maps S2(L2(G))∩Sp(L2(G)) to Sp(L2(G)) and
extends to a cb-map on Sp(L2(G)), we say that Sm is a cb-bounded Schur multiplier
on Sp(L2(G)). Let us analyze de Leeuw operations for Schur multipliers.

Lemma 8.2. If 1 ≤ p ≤ ∞ and m : G→ C is continuous∥∥Sm : Sp(L2(G))→ Sp(L2(G))
∥∥

cb

=
∥∥Sm : Sp(`2(Gdisc))→ Sp(`2(Gdisc))

∥∥
cb
.

Moreover, let H be a closed subgroup of G. Then we additionally have

i) If m : G→ C is continuous∥∥Sm|H : Sp(L2(H))→ Sp(L2(H))
∥∥

cb
≤
∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb
.

ii) If H C G and mq : G/H→ C is continuous∥∥Smπ : Sp(L2(G))→ Sp(L2(G))
∥∥

cb
=
∥∥Smq : Sp(L2(G/H))→ Sp(L2(G/H))

∥∥
cb
.

Proof. Lafforgue and de la Salle established in [36, Theorem 1.19] (extending an
unpublished result of Haagerup in the L∞-case) that for any locally compact group
G and any continuous symbol m : G → C, the cb-norm of the Schur multiplier is
given by∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb

(8.1)

= sup
F⊂G

F finite

∥∥Sm|F : Sp(`2(F))→ Sp(`2(F))
∥∥

cb
.

The first assertion (compactification) and property i) (restriction) follow directly
from this. The cb-periodization ii) for Schur multipliers can also be deduced from
(8.1) as follows. For a fixed fundamental domain X, we consider the natural map
σ : G/H → X. Then we may identify the group G with the cartesian product
G/H×H as in the proof of Lemma 2.1 via the bijective map

Υ : G 3 g 7→ (gH, h(g)) ∈ G/H×H

where g = σ(gH)h(g). For 1 ≤ p ≤ ∞, this gives a map

Υ : Sp(L2(G))→ Sp(L2(G/H)⊗ L2(H))

which is completely isometric on finite subsets. Moreover, this map intertwines the
Schur multipliers Υ ◦ Smπ ◦ Υ−1 = Smq ⊗ idB(L2(H)). Therefore, by (8.1) we can
write∥∥Smq : Sp(L2(G/H))→ Sp(L2(G/H))

∥∥
cb

= sup
n≥1

sup
(F1,F2)∈G/H×H

F1,F2 finite

sup
‖A‖Sp≤1

A∈M|F1||F2|n

∥∥Smq ⊗ idM|F2|
⊗ idMn(A)

∥∥
Sp(`2(F1)⊗`2(F2)⊗`n2 )

.
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On the other hand, each term of this supremum satisfies∥∥Smq ⊗ idM|F2|
⊗ idMn(A)

∥∥
Sp(`2(F1)⊗`2(F2)⊗`n2 )

=
∥∥(Υ⊗ idMn)(Smπ ⊗ idMn)(Υ−1 ⊗ idMn)(A)

∥∥
Sp(`2(F1)⊗`2(F2)⊗`n2 )

=
∥∥(Smπ ⊗ idMn)(Ã)

∥∥
Sp(`2(F)⊗`n2 )

,

where F = Υ−1(F1 × F2) ⊂ G is finite and

Ã = Υ−1 ⊗ idMn(A) ∈ Sp(`2(F)⊗ `n2 )

is of norm 1. Hence we deduce that∥∥Smq : Sp(L2(G/H))→ Sp(L2(G/H))
∥∥

cb
=
∥∥Smπ : Sp(L2(G))→ Sp(L2(G))

∥∥
cb
.

Indeed, the left hand side is clearly dominated by the right hand side. The lower
estimate also holds since for any finite subset F ⊂ G, we can find finite subsets
F1 ⊂ G/H and F2 ⊂ H such that

F ⊂ Υ−1(F1 × F2).

Thus, the result follows using that the cb-norm in (8.1) is increasing with F. �

This shows that de Leeuw theorems extend in almost full generality to the context
of Schur multipliers, only continuity of the symbols is needed. In particular, we
do not impose any of our former conditions like ADS, SAIN, the compatibility
of modular functions or the amenability of Gdisc. We now want to use certain
transference results to obtain de Leeuw type theorems for Fourier multipliers from
the results in Lemma 8.2. More precisely, we will use that we have

(8.2)
∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb

=
∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb

for 1 ≤ p ≤ ∞ under the following conditions

(i) G is an amenable group,

(ii) m ∈ L∞(G) defines a completely bounded Fourier multiplier on Lp(Ĝ).

When p = 1,∞ this was proved by Bożejko and Fendler [5]. Other values of p
were first considered by Neuwirth and Ricard [40], who proved (8.2) for amenable
discrete groups. Caspers and de la Salle [7] then obtained this result for arbitrary
amenable groups and 1 < p < ∞. We shall need this identity to transfer Lemma
8.2 to Fourier multipliers. Hence the price to avoid our conditions listed at the
beginning of this section is to assume amenability of G.

Remark 8.3. Observe that the transference theorem proved in [7] requires the
extra assumption that the symbol m : G → C gives rise to a completely bounded
Fourier multiplier on LG. The set of such symbols is denoted by Mcb(G). By
approximation we may extend the identity (8.2) to any bounded symbol m : G→ C
satisfying the above condition (ii) whenever G is amenable. Indeed, consider a
symbol m ∈ L∞(G) verifying (ii). Notice that when G is amenable there is a
continuous contractive approximate unit (mi)i≥1 in the Fourier algebra A(G) with
compact support. Take also (χj)j≥1 a contractive approximate unit in L1(G) that
also belongs to L2(G). Define

mi,j = χj ∗ (mim) ∈ L∞(G).
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Clearly mi,j ∈ A(G) and hence lies in Mcb(G). On the other hand, one can check
that ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb

= lim
i,j

∥∥Tmi,j : Lp(Ĝ)→ Lp(Ĝ)
∥∥

cb
,∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb

= lim
i,j

∥∥Smi,j : Sp(L2(G))→ Sp(L2(G))
∥∥

cb
.

Indeed, the lower estimates easily follows from standard properties of Fourier and
Schur multipliers, and we may deduce the upper estimates from the fact that

Tmi,j → Tm (resp. Smi,j → Sm) pointwise in the weak-topology of Lp(Ĝ) (resp.
Sp(L2(G))). Using Caspers and de la Salle’s result for the symbols mi,j in Mcb(G),
this allows us to conclude that (8.2) holds true for the symbol m.

Theorem 8.4. Let 1 ≤ p ≤ ∞ and G amenable:

i) If m : G→ C is bounded and continuous and H is a closed subgroup of G∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)
∥∥

cb
≤
∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb
.

ii) If m : G→ C is bounded and continuous and Gdisc is amenable, we have∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥

cb
=
∥∥Tm : Lp(Ĝdisc)→ Lp(Ĝdisc)

∥∥
cb
.

iii) If mq : G/H → C is bounded and continuous and H is a normal closed
subgroup of G∥∥Tmπ : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb

=
∥∥Tmq : Lp(Ĝ/H)→ Lp(Ĝ/H)

∥∥
cb
.

Proof. It follows from Lemma 8.2, the transference theorem (8.2) from [7] and
Remark 8.3. �

Remark 8.5. Recall that the lattice approximation Theorem C only works in
the unimodular setting (since we need to assume G ∈ ADS), hence applying the
transference in that case would not improve the cb-result obtained directly from
Theorem C. In fact, applying the transference theorem from [7] and Remark 8.3
in conjunction with Theorem 8.4 i) to that result, we deduce the analog for Schur
multipliers. Namely, for any group G ∈ ADS approximated by (Γj)j≥1, 1 ≤ p ≤ ∞
and any bounded a.e. continuous symbol m : G→ C, we have∥∥Sm : Sp(L2(G))→ Sp(L2(G))

∥∥
cb

= sup
j≥1

∥∥Sm|Γj : Sp(`2(Γj))→ Sp(`2(Γj))
∥∥

cb
.

A. Idempotent multipliers in R

Idempotent Fourier multipliers are those whose symbols are the characteristic
functions of a measurable set Σ. Intervals in R or polyhedrons in Rn are examples
of idempotent symbols which yield Lp-bounded Fourier multipliers (1 < p <∞) as
a consequence of the boundedness of the Hilbert transform. When n > 1, we know
from the work of Fefferman [16] a fundamental restriction for Lp-boundedness of
idempotent Fourier multipliers over (say) convex sets Σ with boundary ∂Σ. Namely,
let

∂Σ⊥ =
{
v ∈ Sn−1

∣∣ v ⊥ ∂Σ
}
.

Then, given Π ⊂ Rn any 2-dimensional vector space, Ω = ∂Σ⊥ ∩ Π can not admit
Kakeya sets of directions in the sense of [16] or [21, Lemma 10.1.1] when Σ leads
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to an Lp-bounded idempotent multiplier. To be more precise we need a bit of
terminology. Given a rectangle R in R2, denote by R′ one of the two translations
of R which are adjacent to R along its shortest side. After a careful reading of the
argument in [16, 21], we could say that a subset Ω of the unit circle in R2 admits
Kakeya sets of directions when for every N ≥ 1 there exists a finite collection of
pairwise disjoint rectangles RΩ(N) with longest side pointing in a direction of Ω
and a family R′Ω(N) formed by rectangles R′ adjacent to the members of RΩ(N)
along their shortest side and such that∣∣∣ ⋃

R∈RΩ(N)

R
∣∣∣ ≥ N

∣∣∣ ⋃
R′∈R′Ω(N)

R′
∣∣∣.

The above symbol | | refers to the Lebesgue measure. This notion is closely related
to Bateman’s notion of Kakeya sets of directions [2]. Fefferman’s theorem implies
that ∂Σ must have vanishing curvature for Lp-boundedness, as for polyhedrons.
Other regions with flat boundary —polytopes with infinitely many faces— may or
may not admit Kakeya sets of directions. This is very connected to the boundedness
of directional maximal operators [2, 43] but we shall not analyze these subtleties
here. Apart from the geometric aspect of Σ, one may consider which topological
structures of Σ yield Lp-boundedness. In dimension 1, Lebedev and Olevskii [37]
showed that Σ must be open up to a set of zero measure, see also Mockenhaupt
and Ricker [39] for Lp-bounded idempotents which are not Lq-bounded.

Our aim in this Appendix is motivated by a problem left open in [32]. The
authors provided there a noncommutative Hörmander-Mihlin multiplier theorem
using group cocycles in discrete groups as substitutes of more standard geometric
tools for Lie groups. This gave rise to some exotic Euclidean multipliers which are
Lp-bounded in Rn. Consider the cocycle b : R→ R4 given by

s 7→ b(s) =
(

cos(2πs)− 1, sin(2πs), cos(2πβs)− 1, sin(2πβs)
)

associated with the action α : R y R4 ' C2

αs(x1, x2, x3, x4) ' αs(z1, z2) =
(
e2πisz1, e

2πiβsz2

)
.

Then, any symbol of the form m(s) = m̃(b(s)) satisfying that

|∂βs m̃(s)| . |s|−|β| for s ∈ R4 \ {0} and 0 ≤ |β| ≤ 3

defines an Lp-bounded Fourier multiplier in R for 1 < p <∞. Take for instance m̃
a Hörmander-Mihlin smoothing of the characteristic function of an open set Σ in
R4 intersecting the range of b. If β ∈ R \Q, the cocycle b has a dense orbit and m
oscillates from 0 to 1 infinitely often with no periodic pattern. A moment of thought
shows that the Lp-boundedness of such a multiplier follows from the combination of
de Leeuw’s restriction and periodization theorems, but this cocycle formulation led
Junge, Mei and Parcet to pose a similar problem in [32] when the lifted multiplier
m̃ is not smooth anymore. More precisely, let m̃ be the characteristic function of
certain set Σ which yields an Lp-bounded multiplier in R4 and intersects the range
of the cocycle b. Is m = m̃ ◦ b an Lp-bounded idempotent multiplier on R?

In order to answer the question above, let us formulate the problem in a more
transparent way. The image of the cocycle b is an helix in a two-dimensional torus
which up to a translation we may identify with T2 ' [0, 1]2. Moreover, under this
identification, the helix corresponds to the straight line γ in R2 passing through
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the origin with slope β. Let us consider the set Ω which results of the intersection
between Σ and the two-dimensional torus where b takes values. We shall identify
this set with the corresponding set in [0, 1]2, still denoted by Ω. According to the
results in [16], we know that Σ must have flat boundary. Assume for simplicity
that Σ is a simple object like a semispace or a convex polyhedron —finite unions
and certain infinite unions of this kind of sets also define Lp-bounded idempotent
multipliers— so that Ω is a closed simply connected set. In summary, given a simply
connected set Ω in [0, 1]2 and certain slope β, we may consider the idempotent
Fourier multiplier associated with the symbol determined by Figure I below and
given by

MΩ,β(s) = 1Ω

(
(s, βs) + Z2

)
for s ∈ R.

Ω

slope(γ)=β

γ

6

-

Figure I
The idempotent symbol MΩ,β

MΩ,β = 1 when γ intersects Ω + Z2 and 0 otherwise

Our problem is to decide for which pairs (Ω, β) we get Lp-bounded idempotent
multipliers on R. There are two cases for which the answer is simple. If the slope
β ∈ Q, the helix is periodic and so is MΩ,β . Therefore, the Lp-boundedness follows
by the boundedness of the Hilbert transform for 1 < p <∞ (finitely many times) in
conjunction with de Leeuw’s periodization in R. On the other hand, we also obtain
Lp-boundedness when Ω is a polyhedron (finitely many faces) since we know its
characteristic function defines an Lp-bounded idempotent multiplier in R2 (finitely
many directional Hilbert transforms). Namely, its Z2-periodization in Lp(R2) and
its restriction to γ in Lp(R) are still bounded by de Leeuw’s periodization and
restriction theorems. In particular, the interesting case arises for sets Ω admitting
Kakeya sets of directions —either having smooth boundary with non-zero curvature
as in Figure I or with infinitely many flat faces admitting Kakeya sets— and slope
β ∈ R \ Q. We will answer this problem in the negative by combining de Leeuw’s
restriction, lattice approximation and Fefferman’s construction.

Theorem A.1. Assume that

β ∈ R \Q and Ω ⊂ [0, 1]2 admits Kakeya sets of directions.

Then MΩ,β does not give rise to a bounded multiplier in Lp(R) for 1 < p 6= 2 <∞.
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Proof. Assume there exists 1 < p0 6= 2 <∞ such that

(A.1)
∥∥TMΩ,β

: Lp0
(R)→ Lp0

(R)
∥∥ ≤ C0 < ∞.

Let MΩ,β(L) = MΩ,β 1[0,L] be the L-truncation of our multiplier. If HTp0
denotes

the norm of the Hilbert transform on Lp0
(R), it is clear that we have the following

bound

sup
L>0

∥∥TMΩ,β(L) : Lp0
(R)→ Lp0

(R)
∥∥ ≤ 2 C0 HTp0

.

On the other hand, we may consider the polygon ΠΩ(L, β) determined by the
crossing points of γ + Z2 with Ω in [0,L]. More precisely, let us set

ΠΩ(L, β) = Conv
(

Ω ∩
{

(s, βs) + Z2 : s ∈ [0,L]
})
.

It is illustrated in Figure II and MΩ,β(L) = MΠΩ(L,β),β(L). By the irrationality

of β, the set γ + Z2 is dense in [0, 1]2 and ΠΩ(L, β) converges uniformly to Ω as
L→∞. In particular, by constructing finer and finer Kakeya sets of directions, we
may pick L0 large enough so that the following inequality holds

(A.2) inf
L≥L0

∥∥T1ΠΩ(L,β)
: Lp0

(R2)→ Lp0
(R2)

∥∥ > 4 C0 HTp0
.

We will complete the proof by showing that (A.1) and (A.2) produce a contradiction.

ΠΩ(L, β)

slope β

6

-
1

22

33

4

4

55

66

77

8

8

99

10

Figure II
The polygon ΠΩ(L, β) determined by a L-truncation

If β ∈ R \Q, the polygon ΠΩ(L, β) converges to Ω as L→∞
Pick coprimes p 6= q such that p

q ∼ β /Dilate MΩ,β and approximate it by Zpq

Indeed, according to Dirichlet’s diophantine approximation, since β is irrational we
may find infinitely many coprime integers p, q so that |β − p/q| < 1/q2. Denote by
I the set of such pairs of coprime integers and pick (p, q) ∈ I. On the other hand
by dilation-invariance of the Lp0

-operator norm of TMΩ,β
, (A.1) implies

(A.3)

∥∥TMp,q
Ω,β

: Lp0(R)→ Lp0(R)
∥∥ ≤ 2 C0 HTp0

for Mp,q
Ω,β(s) = MΩ,β

( √
p2+q2

L0

√
1+β2

s
)

1[0,L0](s).

Divide the segment in γ running from the origin to the point (L0, βL0) into pq
equidistributed points. Formally, we identify this segment with the torus T and the
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set of points{(L0k

pq
, β

L0k

pq

)
: 0 ≤ k ≤ pq − 1

}
'
{
k/pq : 0 ≤ k ≤ pq − 1

}
with the cyclic group Zpq. According to (A.3) and de Leeuw’s restriction∥∥T(Mp,q

Ω,β)|Zpq
: Lp0

(Ẑpq)→ Lp0
(Ẑpq)

∥∥ ≤ 2 C0 HTp0
.

Since p and q are coprime, we may consider the group isomorphism

Λ : Zpq 3
k

pq
7→
(k
p
,
k

q

)
∈ Zp × Zq,

where Zp × Zq is viewed as a lattice of [0, 1]2. It is clear that Λ extends to an
isometry on Lp0

of the corresponding dual groups (still denoted by Λ) and we
obtain

(A.4)
∥∥Tmp,q : Lp0(Ẑp × Zq)→ Lp0(Ẑp × Zq)

∥∥ ≤ 2 C0 HTp0 ,

where mp,q(s1, s2) = Mp,q
Ω,β(L0Λ−1(s1, s2)). Given 0 ≤ k1 ≤ p−1 and 0 ≤ k2 ≤ q−1

let k = k(k1, k2) be the only integer 0 ≤ k ≤ pq − 1 satisfying that kmod p = k1

and kmod q = k2. Then, we can write

mp,q

(k1

p
,
k2

q

)
= Mp,q

Ω,β

(L0k

pq

)
= MΩ,β

( √p2 + q2

pq
√

1 + β2
k
)

1[0,L0]

(L0k

pq

)
= MΩ,β(Lp,q)

( √p2 + q2

pq
√

1 + β2
k
)

with Lp,q =

√
p2 + q2√
1 + β2

.

Letting eβ and e p
q

be the unit vectors in the directions of γ and ( 1
p ,

1
q ) respectively∣∣∣√p2 + q2

pq
k

(1, β)√
1 + β2

−
(k
p
,
k

q

)∣∣∣ =
∣∣∣√p2 + q2

pq
keβ −

√
p2 + q2

pq
ke p

q

∣∣∣
≤

√
p2 + q2

∣∣eβ − e p
q

∣∣ . √
p2 + q2

q2
.

1

q

since we may assume with no loss of generality that β < 1 and p < q. We obtain

mp,q

(k
p
,
k

q

)
= 1Ω

((k
p
,
k

q

)
+ α(k) + Z2

)
= 1ΠΩ(Lp,q,β)

((k
p
,
k

q

)
+ α(k) + Z2

)
with |α(k)| . 1

q
.

We deduce that there must exist a small perturbation Ω(p, q) of Ω so that

mp,q = 1Ω(p,q)|Zp×Zq
and Ω(p, q)→ Ω uniformly as p, q →∞.

By considering the symbol m̃p,q = 1Ω(p,q) : T2 → C for (p, q) ∈ I, we get a sequence
of symbols which converges uniformly to 1Ω and satisfy the uniform estimate below

sup
(p,q)∈I

∥∥T(m̃p,q)|Zp×Zq
: Lp0(Ẑp × Zq)→ Lp0(Ẑp × Zq)

∥∥ ≤ 2 C0 HTp0 .

By the lattice approximation result obtained in Remark 3.3, this would imply that
1Ω yields an Lp0 -bounded Fourier multiplier in T2, and also in R2 by standard
periodization and Hilbert transform truncation. This is a contradiction since Ω
admits Kakeya sets of directions. The proof is complete. �
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Remark A.2. This result also holds in higher-dimensions by using cocycles into
higher-dimensional spaces, essentially the same argument applies. On the other
hand, when β ∈ R\Q and Ω is a polytope with infinitely many faces not admitting
Kakeya sets of directions, the conjecture is that such Ω should define a Lp-bounded
Fourier multiplier (1 < p < ∞) so that we may argue as we did for polyhedrons
with finitely many faces. In dimension 2 this is supported by the results in [2, 9] as
for higher-dimensions by [43].

B. Noncommutative Jodeit theorems

Jodeit’s theorem [29] provides another approach to de Leeuw’s compactification
by looking at extensions of Fourier multipliers. He proved that any Lp-bounded
Fourier multiplier on Zn is the restriction of a Lp-bounded Fourier multiplier on
Rn. To be more precise, define

Mq
p (G) =

{
m : G→ C

∣∣Tm : Lp(Ĝ)→ Lq(Ĝ)
}

for 1 ≤ p ≤ q ≤ ∞. One of the results in [29] is that there is a bounded linear
map φ : Mq

p (Zn) → Mq
p (Rn) so that the restriction of φ(m) to Zn is m. When

n = 1, the symbol φ(m) = m̃ is just the multiplier given by the piecewise linear
extension m̃ = 1[− 1

2 ,
1
2 ] ∗m ∗ 1[− 1

2 ,
1
2 ] of m. Then the ADS property readily gives

compactification but one looses on the norm by some constant depending on n.

This question of extending multipliers from a subgroup makes sense for general
LCA groups and suits in our framework. A commutative solution was provided
by Figà-Talamanca and Gaudry in [17] by extending Jodeit’s result to arbitrary
discrete subgroups Γ of LCA groups G. Given any such pair, they construct a
contractive map φ : Mq

p (Γ)→Mq
p (G) so that φ(m) = m̃ with m̃ = ∆∗m∗∆ where

∆ is a positive definite function with small support relative to Γ. This is not the
exact analogue of Jodeit’s result (as ∆ = 1[− 1

2 ,
1
2 ] ∗ 1[− 1

2 ,
1
2 ]) but one gains on the

constants. Shortly after, Cowling [11] generalized it to all pairs H ⊂ G where H is
closed but not open, G LCA and m ∈ Cc(H). In the same paper, he also looked at
periodization. The underlying idea is to use suitably the disintegration theory and
with that respect are of commutative nature.

If we restrict ourselves only to discrete subgroups, such a result would perfectly
fit in our framework. In full generality, we yet do not have the right tools to
extend Fourier multipliers. However, for the completely bounded ones, we can use
transference from Schur multipliers as in Section 8. Indeed, the latter are much
more flexible and it is proved in [36, Lemma 2.6] that a Jodeit’s theorem for them
is elementary. More precisely, if Γ ⊂ G is a lattice with a symmetric fundamental
domain X and m : Γ → C is a cb-bounded Schur multipliers on Sp(`2(Γ)), then
m̃ = 1X ∗m ∗ 1X is a cb-bounded Schur multiplier on Sp(L2(G)). In particular we
obtain the following extension result.

Theorem B.1. Let Γ ⊂ G be a lattice in an amenable locally compact group G with
a symmetric fundamental domain X. For any m : Γ→ C with m̃ = 1X ∗m ∗ 1X∥∥Tm̃ : Lp(Ĝ)→ Lp(Ĝ)

∥∥
cb
≤
∥∥Tm : Lp(Γ̂)→ Lp(Γ̂)

∥∥
cb
.

In particular, the cb-bounded version of Jodeit’s theorem holds with constant 1.
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