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Abstract

Let fi1, fo,..., fn be a family of independent copies of a given random variable
f in a probability space (2, F, ). Then, the following equivalence of norms holds
whenever 1 < ¢ <p< oo

S () ) e o (f 1)}

We prove a noncommutative analogue of this inequality for sums of free random
variables over a given von Neumann subalgebra. This formulation leads to new
classes of noncommutative function spaces which appear in quantum probability as
square functions, conditioned square functions and maximal functions. Our main
tools are Rosenthal type inequalities for free random variables, noncommutative
martingale theory and factorization of operator-valued analytic functions. This
allows us to generalize (X,,) as a result for noncommutative L, in the category
of operator spaces. Moreover, the use of free random variables produces the right
formulation of (X4), which has not a commutative counterpart. In the last part of
the paper, we use our mixed-norm inequalities to construct a completely isomorphic
embedding of L, —equipped with its natural operator space structure— into some
sufficiently large L, space for 1 < p < ¢ < 2. The construction of such embedding
has been open for quite some time. We also show that hyperfiniteness and the
QWERP are preserved in our construction.

Junge is partially supported by the NSF DMS-0301116.

Parcet is partially supported by ‘Programa Ramén y Cajal, 2005’

and also by Grants MTM2007-60952 and CCG06-UAM /ESP-0286, Spain.

2000 Mathematics Subject Classification: 46107, 46109, 46151, 461.52, 461.53, 46L.54.






Contents

Introduction

Chapter 1. Noncommutative integration
1.1. Noncommutative L, spaces
1.2. Pisier’s vector-valued L, spaces
1.3. The spaces L;(M,E) and L;(M,E)

Chapter 2. Amalgamated L, spaces
2.1. Haagerup’s construction
2.2. Triangle inequality on 0K
2.3. A metric structure on the solid K

Chapter 3. An interpolation theorem
3.1. Finite von Neumann algebras
3.2. Conditional expectations on 0K
3.3.  General von Neumann algebras I
3.4. General von Neumann algebras I1
3.5. Proof of the main interpolation theorem

Chapter 4. Conditional L,, spaces
4.1. Duality
4.2. Conditional L., spaces
4.3. Interpolation results and applications

Chapter 5. Intersections of L, spaces
5.1. Free Rosenthal inequalities
5.2. Estimates for BMO type norms
5.3. Interpolation of 2-term intersections
5.4. Interpolation of 4-term intersections

Chapter 6. Factorization of J' (M, E)
6.1. Amalgamated tensors

6.2. Conditional expectations and ultraproducts

6.3. Factorization of the space J3 (M, E)

Chapter 7. Mixed-norm inequalities
7.1.  Embedding of J' (M, E) into L,(A;£y)

7.2.  Asymmetric L, spaces and noncommutative (£,)

Chapter 8. Operator space L, embeddings
8.1. Embedding Schatten classes
8.2. Embedding into the hyperfinite factor

8.3. Embedding for general von Neumann algebras

Bibliography

13
13
17
20

27
29
31
38

43
44
48
95
61
66

71
72
73
74

79
79
83
99
103

107
108
112
115

119
119
126

129
129
132
144

155






Introduction

Probabilistic methods play an important role in harmonic analysis and Banach
space theory. Let us just mention the relevance of sums of independent random
variables, p-stable processes or martingale inequalities in both fields. The analysis
of subspaces of the classical L, spaces is specially benefited from such probabilistic
notions. Viceversa, Burkholder’s martingale inequality for the conditional square
function has been discovered in view of Rosenthal’s inequality for the norm in
L, of sums of independent random variables. This is only one example of the
fruitful interplay between harmonic analysis, probability theory and Banach space
geometry carried out mostly in the 70’s by Burkholder, Gundy, Kwapien, Maurey,
Pisier, Rosenthal and many others.

More recently it became clear that a similar endeavor for noncommutative L,
spaces requires an additional insight from quantum probability and operator space
theory [15, 17, 50]. A noncommutative theory of martingale inequalities finds its
beginnings in the work of Lust-Piquard [36] and Lust-Piquard/Pisier [37] on the
noncommutative Khintchine inequality. The seminal paper of Pisier and Xu on the
noncommutative analogue of Burkholder-Gundy inequality [51] started a new trend
in quantum probability. Nowadays, most classical martingale inequalities have a
satisfactory noncommutative analogue, see [16, 28, 41, 53|. In the proof of these
results the classical stopping time arguments are no longer available, essentially
because point sets disappear after quantization. These arguments are replaced by
functional analytic or combinatorial arguments. In the functional analytic approach
we often encounter new spaces. Indeed, maximal functions in the noncommutative
context can only be understood and defined through analogy with vector-valued L,
spaces. A careful analysis of these spaces is crucial in establishing basic results such
as Doob’s inequality [16] for noncommutative martingales and the noncommutative
maximal theorem behind Birkhoff’s ergodic theorem [29]. The proof of maximal
theorems and noncommutative versions of Rosenthal’s inequality often uses square
function and conditioned square function estimates, see [26] and the references
therein. These are examples of more general classes of noncommutative function
spaces to be defined below. However, all of them illustrate our main motto in
this paper. Namely, certain problems can be solved by finding and analyzing the
appropriate class of Banach spaces. We shall develop in this paper a new theory
of generalized noncommutative L, spaces with three problems in mind for a given
von Neumann algebra A.

Problem 1. Calculate the L,(A;¢,) norm for sums of free random variables.
Problem 2. If1 <p < q <2, find a cb-embedding of Ly(A) into some L, space.

Problem 3. Any reflezive subspace of A, embeds into some Ly, for certain p > 1.



2 INTRODUCTION

Our main contribution in this paper is the calculation of mixed norms for sums
of free random variables and its application to construct a complete embedding
of L, into L,. Unfortunately, the generalization of Rosenthal’s theorem [57] to
noncommutative L, spaces —whose simplest version is the content of Problem 3
above— is beyond the scope of this paper and we analyze it in [23]. We should
nevertheless note that its solution is also deeply related to the main results in this
paper. Namely, the interplay of interpolation and intersection is at the heart of both
results. On the other hand, operator space L, embedding theory is motivated by
the classical notion of g-stable variables and norm estimates for sums of independent
random variables. Let us briefly explain this. The construction of the ch-embedding
for (p,q) = (1,2) was obtained in [17]. The simplest model of 2-stable variables
is provided by normalized gaussians (gi). In this particular case and after taking
operator coefficients (ax) in some noncommutative L; space, the noncommutative
Khintchine inequality [37] tells us that

(1) EHZk akgkzul ~ inf (Zkrkr,j)% ot H(chm)% 1

aRp=Tr+Ck

Let us point out that operator spaces are a very appropriate framework for analyzing
noncommutative L, spaces and linear maps between them. Indeed, inequality (1)
describes the operator space structure of the subspace spanned by the gx’s in L; as
the sum R+ C of row and column subspaces of B(¢2). We refer to [11] and [47] for
background information on operator spaces. In the language of noncommutative
probability many operator space inequalities translate into module valued versions
of scalar inequalities, this will be further explained below. The only drawback of
inequality (1) is that it does not coincide with Pisier’s definition of the operator
space fo

@ ||, @

However, it was proved by Pisier that the right side in (2) is obtained by complex
interpolation between the row and the column square functions appearing on the
right of (1). One of the main results in this article is a far reaching generalization
of this observation. In fact, the solution of Problem 2 in full generality is closely
related to this analysis.

= inf o ( 2 >§ .
o = ot ol (3, 1) 18020

Following our guideline we will now introduce and discuss the new class of
spaces relevant for these problems and martingale theory. These generalize Pisier’s
theory of L,(L,) spaces over hyperfinite von Neumann algebras. We begin with a
brief review of some noncommutative function spaces which have lately appeared in
the literature, mainly in noncommutative martingale theory. We refer to Chapter
1 below for a more detailed exposition.

1. Noncommutative function spaces.

Inspired by Pisier’s theory [46], several noncommutative function spaces have
been recently introduced in quantum probability. The first motivation comes from
some of Pisier’s fundamental equalities, which we briefly review. Let N7 and A
be two hyperfinite von Neumann algebras. Then, given 1 < p,q < co and defining
1/r =11/p—1/q|, we have
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i) If p < ¢, the norm of @ € L, (N7; Ly(N2)) is given by

inf { ol v 92, i) 18] vy | @ =y}
ii) If p > g, the norm of & € L, (N7; Ly(N2)) is given by

sup { lla@ 1, v x| @6 € Bra, o) }-

On the other hand, the row and column subspaces of L, are defined as follows

Ly(M; RY) = {Zxk ® ew | ox € LP(M)} C L,(M&B(Ly)),
k=1

LyM;Cp) = { Y an @ en | m € Ly(M)} € L, (MBB(£2)),
k=1

where (e;;) denotes the unit vector basis of B(¢3). These spaces are crucial in
the noncommutative Khintchine/Rosenthal type inequalities [26, 37, 40] and in
noncommutative martingale inequalities [28, 51, 53], where the row and column
spaces are traditionally denoted by L,(M;¥¢5) and L,(M;¢5). Now, considering a
von Neumann subalgebra N of M with a normal faithful conditional expectation
E: M — N, we may define L, norms of the conditional square functions

(zn:E(:rka))% and (iE(mZm@)é
k=1 k=1

The expressions E(zgx}) and E(z}xy) have to be defined properly for 1 < p < 2,
see [16] or Chapter 1 below. Note that the resulting spaces coincide with the row
and column spaces defined above when N is M itself. When n = 1 we recover the
spaces L, (M, E) and L;(M,E), which have been instrumental in proving Doob’s
inequality [16], see also [21, 29] for more applications.

2. Amalgamated L, spaces

The definition of amalgamated L, spaces is algebraic. We recall that by
Hoélder’s inequality L, (M)Lg(M)L, (M) is contractively included in L,(M) when
1/p=1/u+1/q+ 1/v. Let us now assume that A is a von Neumann subalgebra
of M with a normal faithful conditional expectation E : M — A/. Then we have
natural isometric inclusions Lg(N) C Lg(M) for 0 < s < oo and we may consider
the amalgamated L, space

Luy(N)Lg(M)Ly(N)

as the subset of elements z in L,(M) which factorize as z = ayf with a € L, (N),
y € Lg(M) and 8 € L,(N). The natural “norm” is then given by the following
expression

l#lhe-gwo = 0 {1z Iyl v 18120 | & = s}

However, the triangle inequality for the homogeneous expression || ||4.q.» is by no
means trivial. Moreover, it is not clear a priori that this subset of L, (M) is indeed
a linear space. Before explaining these difficulties in some detail, let us consider
some examples. We fix an integer n > 1 and the subalgebra A/ embedded in the
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diagonal of the direct sum M = N @ N B * - - Doo N with n terms. The natural
conditional expectation is

1 n
En(xl,...,xn) = Eka
k=1

Then it is easy to see that for 1 <p <2 and 1/p=1/2+ 1/w we have
Ly(N; Ry) V1 Ly(N) La(M) Los (N),
LyN;Cp) = VnLac(N)Lo(M)Lu(N),

isometrically. Here we use the notation vX to denote the space X equipped with
the norm 7| - ||x. At the time of this writing and with independence of this paper,
a result of Pisier [44] on interpolation of these spaces for p = oo was generalized
by Xu [69] for arbitrary p’s

n n 1
T Q0 H = inf ally ( 2)2 oo -
H; L - ol ;nyknz 18110

Tr=CQYk

Here (1/ug,1/vg) = ((1 — 0)/w,0/w) and for § = 1/2 we find Pisier’s definition of
L,(N;¢3). That is, we obtain the space v/n Ly, (N)La(M)L,, (N). Our definition
is flexible enough to accommodate the conditional square function. Indeed, given a
von Neumann subalgebra Ny of N with a normal faithful conditional expectation

Eo : N — Ny, we find

n
H Zxk & 5k’
k=1

1
= n 2

Ly (No) La (M) L oo (No) L,(No)

(3 &olwrap))?
k=1

n
| X =
Loo(No) L2 (M)Lyw(No)

k1 Ly(No)

n 1

( Z Eo(zgay))?
k=1

Xu’s interpolation does not apply in this more general setting, which appears in the
context of the noncommutative Rosenthal inequality. This illustrates how certain
amalgamated L, spaces occur naturally in quantum probability. Now we want to
understand for which range of indices (u, ¢,v) we have the triangle inequality. In
fact, our proof intertwines with the proof of our main interpolation result which
can be stated as follows. Let us consider the solid K in R? defined by

K= {(1/u,1/v,1/q)’ 2<u,v<o00, 1<q¢g<oo, l/u+1l/g+1/v< 1}.

THEOREM A. The amalgamated space Ly (N)Ly(M)L,(N) is a Banach space
for any (1/u,1/v,1/q) € K. Moreover, if (1/uj,1/v;,1/q;) € K for j = 0,1, the
space Ly, (N)Lq, (M)Ly, (N) is isometrically isomorphic to

| Lo W)Ly (M) Ly (M), Luy (V) L, (M) Ly, (W)

The triangle inequality follows from Theorem A. On the other hand we will need
the triangle inequality in order to apply interpolation and factorization techniques
in proving Theorem A. This intriguing interplay makes our proof quite involved.
Our first step is showing that the triangle inequality holds in the boundary region

Dok = {(l/u,l/v,l/q) € K| min {1/u,1/q,1/v} = o}.
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Our argument uses the operator-valued analogue of Szego’s factorization theorem,
a technique which will be used repeatedly throughout this paper. The triangle
inequality for other indices follows by convexity since K is the convex hull of 0K,
so that any other point in K is associated to an interpolation space between two
spaces living in 0., K. Another technical difficulty is the fact that the intersection
of two amalgamated L,, spaces is in general quite difficult to describe. Thus, any
attempt to use a density argument meets this obstacle. The second step is to prove
Theorem A for finite von Neumann algebras, where the intersections are easier to
handle. Moreover, most of the factorization arguments (as Szegd’s theorem) a priori
only apply in the finite setting. In the third step we consider general von Neumann
algebras using Haagerup’s crossed product construction [12] to approximate o-finite
von Neumann algebras by direct limits of finite von Neumann algebras. Finally, we
need a different argument for the case min(qo, q1) = oo, which is out of the scope
of Haagerup’s construction. The main technique here is a Grothendieck-Pietsch
version of the Hahn-Banach theorem.

Let us observe that in the hyperfinite case Pisier was able to establish many of
his results using the Haagerup tensor product. Though similar in nature, we can
not directly use tensor product formulas for our interpolation results due to the
complicated structure of general von Neumann subalgebras. Theorem A will also
be useful in understanding certain interpolation spaces in martingale theory. Let
us mention some open problems, for partial results see Chapter 5 below.

Problem 4. Let M be a von Neumann algebra and denote by Hy (M) and Hs (M)
the row and column Hardy spaces of noncommutative martingales over M. Let us
consider an interpolation parameter 0 < 6 < 1.

(a) Calculate the interpolation norms [H (M), Hs(M)]p.

(b) If x € [HT (M), HS(M)]g, the mazimal function is in Ly.

3. Conditional L, spaces

Once we know which amalgamated L, spaces are Banach spaces it is natural
to investigate their dual spaces. We assume as above that A is a von Neumann
subalgebra of M and E : M — N is a normal faithful conditional expectation. Let

1/s=1/u+1/p+1/v<1.

The conditional L, space
L’Zu)v)(./\/l, E)

is defined as the completion of L, (M) with respect to the norm

lallsg, , ey = sup {lazblz, o | lallzaon: 1Bllz,on < 1}

(u,v

In our next result we show that amalgamated and conditional L, are related by
anti-linear duality. This will allow us to translate the interpolation identities in
Theorem A in terms of conditional L, spaces. In this context the correct set of
parameters is given by

Ko = {(1/u,1/v71/q) EK|[2<uv<00, 1<g<oo, 1ju+1/g+1/v< 1}.
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THEOREM B. Let 1 < p < oo given by 1/¢" = 1/u + 1/p + 1/v, where the
indices (u,q,v) belong to the solid Ko and ¢ is conjugate to q. Then, the following
isometric isomorphisms hold via the anti-linear duality bracket (x,y) = tr(az*y)

(Lu(N)Lg(M)Ly(N)" = LY, ,, (M, E),
(L0, (M E))™ = Ly(N) Lo(M) Ly (N).

In particular, we obtain isometric isomorphisms

{Lz()zwo)(M’ E), LT}, vy (M, E)L =L

(ul,vl) (UGaUS)

(M, E).

As we shall see, Theorem B generalizes the interpolation results obtained by
Pisier [44] and Xu [69] mentioned above. Pisier and Xu’s results provide an explicit
expression for the operator space structure of [Cg, Rg]g with 0 < # < 1. Theorem B
also provides explicit formulas for [(}}, C)']o and [£;, R}]g. In fact, a large variety of
interesting formulas of this kind arise from Theorem B. A detailed analysis of these
applications is out of the scope of this paper. On the other hand, the analogue
of Theorem B for p = oo (which we will investigate separately) has been already
applied to study the noncommutative John-Nirenberg theorem [21].

Exactly as it happens with amalgamated L, spaces, several noncommutative
function spaces arise as particular forms of conditional L, spaces. Let us review
the basic examples in both cases.

(a) The spaces L,(M) satisfy
L,(M) = Loo(N)L,(M)Loo(N) and Ly(M) = L’(’OOM)(M, E).
(b) The spaces Ly(Ny; Lg(N2)):
e Let p<gand 1/r=1/p—1/q. Then
Ly(N15 Lg(N2)) = Lop(N1) Lg(N1@N2) Lo (N1).
e Let p>gand 1/r=1/g—1/p. Then
Ly (Nss Lo(N6)) = Ll ) (MBS, ),
where E : N1®N5 — N is given by E = 1, ® o, -
(c) The spaces L;(M,E) and L (M, E):
e Let I<p<2and1l/p=1/2+41/s. Then
Ly(M,E) = Ls(N)La(M)Loo(N),
Ly(M,E) = Loo(N)La(M)Ls(N).
e Let 2<p<ooand 1/p+1/s=1/2. Then
Li(M.E) = LY, (M.E)
Ly (M,E) = L](Doo,s)(Mv E).
In particular, taking E,, (21, ...,z,) = % >k Tr we find
Lyp(M; Cy) Vn Ly (€5, (M), Ey).
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(d) As we shall see through the text, asymmetric L, spaces (a non-standard
operator space structure on L, which will be crucial in this paper) also
have representations in terms of amalgamated or conditional L, spaces.

4. Intersection spaces

Intersection of L, spaces appear naturally in the theory of noncommutative
Hardy spaces. These spaces are also natural byproducts of Rosenthal’s inequality
for sums of independent random variables. Let us first illustrate this point in the
commutative setting and then provide the link to the spaces defined above. Let
us consider a finite collection f1, fa,..., f, of independent random variables on a
probability space (2, F, i). The Khintchine inequality implies for 0 < p < co

(LIS ) - 5],

Therefore, Rosenthal’s inequality [56] gives for 2 < p < oo

n p 1 n 1 n 1
) ([ IS I0P] ) e, (S 0AlE) "+ (X 0508)
Q" g=1 k=1 k=1

Here () is an independent sequence of Bernoulli random variables equidistributed
on +1. We can easily generalize this result for calculating ¢, sums of independent
random variables. Indeed, consider 1 < g < p < oo and define g1, g, ..., g, by the
relation g, = |fx|?/? for 1 < k < n. Then we have the following identity for the

index s = 2p/q
(D] )" = ([ ] o)™
Q" L
Therefore (X,2) implies

([ é%%?;}{(kz:/g 'fk'rdﬂ)'l‘}'

In particular, Rosenthal’s inequality provides a natural realization of

T (Q) = nv Ly(Q) N nt Ly(Q)

I

into L,(2; €;). More precisely, if f1, fa,..., f, are taken to be independent copies
of a given random variable f, the right hand side of (X,,) is the norm of f in the
intersection space J,,(€2) and inequality (X,,) provides an isomorphic embedding
of J',(2) into the space L, (€2; (7).

Quite surprisingly, replacing independent variables by matrices of independent
variables in (3,,) requires to intersect four spaces using the so-called asymmetric
L, spaces. In other words, the natural operator space structure of J', comes from
a 4-term intersection space. We have already encountered such a phenomenon in
[22] for the case ¢ = 1. To justify this point, instead of giving precise definitions
we note that Holder inequality gives L, = LapLo,, meaning that the p-norm of f
is the infimum of ||g||2p[|h|2p over all factorizations f = gh. If L} and L; denote
the row and column quantizations of L, (see Chapter 1 for the definition), the
operator space analogue of the isometry above is given by the complete isometry
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L, = L5,L5,, see Chapter 7 for more details. In particular, according to the
algebraic definition of L, (¢,), the space J', has to be redefined as the product
Tpq = (nﬁLgp N nﬁL§q> (nﬁLSP N niqu)
We shall see in this paper that
i =neLy LS, Nn2 %5 Ly L An%t2a Ly LS Nna Ly LS.
On the Banach space level we have the isometries
opling = Ls = Ly, L5, with 1/s=1/2p+1/2q.
Moreover, again by Holder inequality it is clear that

Flls < max {1 | £llps 0% 1£1 }

Therefore, the two cross terms in the middle disappear in the Banach space level.
However, replacing scalars by operators in the context of independence/freness over
a given von Neumann subalgebra, the Banach space estimates from above are no
longer valid and all four terms may have a significant contribution.

1
ns

It is the operator space structure of 7', what originally led us to introduce
amalgamated and conditional L, spaces. To be more precise, we consider a von
Neumann algebra M equipped with a normal faithful state ¢ and a von Neumann
subalgebra A" with associated normal faithful conditional expectation E. Then, if
we fix 1 < g <p < oo, we define

Tpg(M,E) = ﬂ et I

(u,v)

(M,E) with 1/r=1/q—1/p.
u,vE{2r,00}

This definition is motivated by the fundamental isometry
(3) S;T(Jzﬁq(M)) :jpﬁq(Mm(gM’le ® ),

which will be proved in Chapter 7. Some preliminary results on 7', (M) (and
vector-valued generalizations) are already contained in the recent paper [22]. We
extend many results from [22] to the realm of free random variables including the
limit case p = oo. Our main result for the spaces J,',(M,E) shows that we have
an interpolation scale with respect to the index 1 < g < p.

THEOREM C. If1 < p < oo, then
[ pr?l(M’ E), jprp(M’ E)]e = jpn,q(M’ E)
with 1/q=1— 60+ 0/p and with relevant constants independent of n.

There seems to be no general argument to make intersections commute with
complex interpolation. For commutative L, spaces or rearrangement invariant
spaces one can often find concrete formulas of the resulting interpolation norms,
see [35]. However, in the noncommutative context these arguments are no longer
valid and we need genuinely new tools.

5. Mixed-norm inequalities

The central role played by Rosenthal inequality partially justifies why the index
p must be finite in the commutative form of (X,,). This also happens in [22], where
we used the noncommutative Rosenthal inequality from [28]. However, mainly



INTRODUCTION 9

motivated by Problems 2 and 3, one of our main goals in this paper is to obtain a
right formulation of (X.0q). As in several other inequalities involving independent
random variables, such as the noncommutative Khintchine inequalities, the limit
case as p — oo holds when replacing classical independence by Voiculescu’s concept
of freeness [67]. Therefore, it is not surprising that we shall use in our proof the free
analogue of Rosenthal inequality [26]. Following (X,,) we have a natural candidate
for a complemented embedding of 7', in L, (¢3) using free probability.

We define Ay, to be the direct sum M@ M for 1 < k < n. Then we consider the
reduced amalgamated free product A = sy Ay where the conditional expectation
Ex : A — N has the form Ex(z1,22) = 3(E(z1) + E(22)) when restricted to the
algebra Ai. Let 7y : A — A denote the natural embedding of Ay into .A. Moreover,
given € M we shall write x as an abbreviation of 7 (z, —z). Note that zj is a

mean-zero element for 1 < k£ < n. Our main embedding result reads as follows.

THEOREM D. Let 1 < q<p < . The map

w:iw € Jpl(ME) = > ok @0k € Lp(A; £])

k=1

s an isomorphism with complemented image. The constants are independent of n.

The map u is of course reminiscent of the fundamental mappings employed in
[15, 17, 22] constructing certain embeddings of L, spaces. Theorem C follows as
a consequence of Theorem D using the fact that

LP(Av EZ) = [L;D(Av E?)a LP(A7 EZ)] 9

We have tried in vain to prove Theorem D directly using uniquely tools from free
probability. The methods around Voiculescu’s inequality seem to work perfectly fine
in the limit case p = oo, for which there is no commutative version. However, basic
tools from free harmonic analysis are still missing for a direct proof of Theorem
D. Instead, apart from the free analogue [26] of Rosenthal inequality, we also use
factorization techniques and interpolation results for noncommutative Hardy and
BMO spaces, see Chapter 5 for further details.

The interested reader might be surprised that we have not formulated our
results in the category of operator spaces. However, as so often in martingale
theory these results are automatic, provided the spaces carry the correct operator
space structure, given in this case by (3) and

Sy (Lo (ot Aki 7)) = Ly (M ® (s1A): £7) = Lp(A; £7),
where the von Neumann algebra A is now given by

A=, A with Ay =M, @ Ay = (M,, @ M) ® (M,,, @ M).

6. Operator space L, embeddings

In the last part of the paper, we shall use the mixed-norm inequalities obtained
in Theorem D to construct a completely isomorphic embedding of L, into L, for
1 < p < q < 2. Our construction solves positively a problem formulated by Pisier
in 1996, whose precise statement is the following.
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THEOREM E. Let 1 < p < ¢ < 2 and let M be a von Neumann algebra.
Then, there exists a sufficiently large von Neumann algebra A and a completely
isomorphic embedding of Ly(M) into L,(A), where both spaces are equipped with
their respective natural operator space structures. Moreover, we have

i) If M is QWEP, we can choose A to be QWEP.
ii) If M is hyperfinite, we can choose A to be hyperfinite.

This is the second part of a series of three papers in which we investigate the
validity of some well-known results, from the embedding theory of L, spaces, in the
category of operator spaces. We refer to the Introduction of the first part [24] for
the motivations which led to our result and also to place it in the right context. As
explained there, the presence of noncommutative L, spaces is not only necessary
but natural. The major result in [24] is a complete embedding of discrete L,
spaces into the predual of a von Neumann algebra. This is the simplest case of our
complete embedding and it allowed us to give an essentially self-contained approach
for a wider audience. In the third paper [25], we shall prove that for M infinite
dimensional the von Neumann algebra A must be of type III. This generalizes a
previous result of Pisier [48] and requires different techniques from [23].

Our argument can be sketched as follows. We first construct a cb-embedding
of the Schatten class S, into L,(A) with A a QWEP von Neumann algebra. This
will give rise to an L, generalization of [24, Theorem D]. The drawback of this
first approach is that this construction does not preserve hyperfiniteness. The
argument to fix this is quite involved and requires recent techniques from [18] and
[20]. We first apply a transference argument, via a noncommutative Rosenthal type
inequality in Lq for identically distributed random variables, to replace freeness in
our construction by some sort of noncommutative independence. This allows to
avoid free product von Neumann algebras and use tensor products instead. Then
we combine the algebraic central limit theorem with the notion of noncommutative
Poisson random measure to eliminate the use of ultraproducts in the process. After
these modifications in our original argument, it is easily seen that hyperfiniteness is
preserved. This more involved construction of the ch-embedding is the right one to
analyze the finite dimensional case. In other words, we estimate the dimension of
A in terms of the dimension of M, see Remark 8.15 below for details. The proof for
general von Neumann algebras requires to consider a ‘generalized’ Haagerup tensor
product since we are not in the discrete case anymore. Our approach here follows
Pisier’s method in [49].

After a quick look at the main results in [3, 15], the problem of constructing
an isometric cb-embedding of L, into L, arises in a natural way. This remains an
open problem.

Structure of the paper. This paper has three natural parts. Part I contains
Chapters 1-4, where we prove Theorems A and B. In Part II, which is given by
Chapters 5-7, we discuss our mixed-norm inequalities. This includes Theorems
C and D. Finally, Part III is the content of Chapter 8 where we construct our
operator space L, embeddings stated in Theorem E. Those readers interested on
getting rapidly to the core of the paper might skip Part I —including Chapter 1
if the reader is familiar with recent advances on noncommutative integration— in
a first reading. Indeed, the arguments there are quite technical and essentially
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independent from the rest of the paper. Thus, the definitions and statements that
we have included in this Introduction should be enough to follow Parts II and III
without too much trouble. Of course, although very rarely, from time to time the
reader will have to go back and read the statement of some result from Part I in
order to keep track of the argument.

Background and notation. Although we shall review some basic concepts along
the paper, we assume some familiarity with some branches of operator algebra such
as von Neumann algebras, noncommutative integration, operator space theory and
free probability. Moreover, we shall also use specific techniques like Calderén’s
complex interpolation method [2], Haagerup’s approximation theorem [12], the
Grothendieck-Pietsch separation argument [43], Raynaud’s results on ultraproducts
of noncommutative L, spaces [55], a noncommutative form of a Poisson process
[20]... Some of these techniques will be briefly introduced within the text. In any
case, our exposition intends to be as self-contained as possible. To conclude, the
non-expert reader must think of [24] as a prerequisite to read Chapter 8, since it
serves as a good motivation for most of our present approach.

We shall use standard notation from the literature such as e.g. [47, 62]. Apart
from this and the terminology introduced along the paper, our notation will be as
coherent with [24] as we can.

Acknowledgements. This work was mostly carried out in a one-year visit of
the second-named author to the University of Illinois at Urbana-Champaign. The
second-named author would like to thank the Math Department of the University
of Illinois for its support and hospitality.






CHAPTER 1

Noncommutative integration

In this chapter we review some basic notions on noncommutative integration
that will be frequently used through out this paper. We begin by recalling Haagerup
and Kosaki’s constructions of noncommutative L, spaces. Then we briefly introduce
Pisier’s theory of vector-valued noncommutative L, spaces, giving some emphasis
to those aspects which are relevant in this work. Finally, we analyze some basic
properties of certain L, spaces associated to a conditional expectation, which were
recently introduced in the literature and are basic for our further purposes. We
shall assume some familiarity with von Neumann algebras. Basic concepts such as
trace, state, commutant, affiliated operator, crossed product... can be found in [31]
or [62] and will be freely used along the text.

1.1. Noncommutative L, spaces

Noncommutative L, spaces over non-semifinite von Neumann algebras will be
used quite frequently in this paper. In the literature there exist two compatible
constructions of L, in such a general setting: Haagerup L, spaces and Kosaki’s
interpolation spaces. These constructions and the associated notion of conditional
expectation will be considered in this section.

1.1.1. Haagerup L, spaces. A full-detailed exposition of this theory is given
in Haagerup [13] and Terp [63] papers. We just present the main notions according
to our purposes with an exposition similar to [28]. A preliminary restriction is that,
in view of our aims, we can work in what follows with normal faithful (n.f. in short)
states instead of normal semifinite faithful (n.s.f. in short) weights.

Let M be a von Neumann algebra equipped with a distinguished n.f. state
. The GNS construction applied to ¢ yields a faithful representation p of M into
B(H) so that p(M) is a von Neumann algebra acting on H with a separating and
generating unit vector u satisfying ¢(z) = (u, p(x)u) for all z € M. Let us agree
to identify M with p(M) in the following. Then, the modular operator A is the
(generally unbounded) operator obtained from the polar decomposition S = .J Al/?
of the anti-linear map S : Mu — Mu given by S(zu) = x*u, see Section 9.2 in [31]
or [60]. We denote by oy : M — M the one-parameter modular automorphism
group associated to the separating and generating unit vector u. That is, for any
t € R we have an automorphism of M given by

o (z) = A%z AT,
Then we consider the crossed product R = M x, R, which is defined as the

von Neumann algebra acting on Ls(R;H) and generated by the representations
m: M — B(La(R;H)) and X : R — B(L2(R; H)) with

(r(@)€)(t) = o—¢(2)€(t)  and  (A(s)§)(t) =&(t — 9)

13
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for t € R and £ € Lo(R;H). Note that the representation = is faithful so that we
can identify M with 7(M). The dual action of R on R is defined as follows. Let
W : R — B(L2(R;'H)) be the unitary representation (W(t)¢)(s) = e "*¢(s). Then
we define the one-parameter automorphism group 6; : R — R by
Gi(x) = W(t)zW(t)*.
It turns out that M is the space of fixed points of the dual action
M= {x€R| G¢(x) :xforallteR}.

Following [42], the crossed product R is a semifinite von Neumann algebra and
admits a unique n.s.f. trace 7 satisfying 706, = e~ 7 for all t € R. Let Lo(R,T)
denote the topological *x-algebra of T-measurable operators affiliated with R and
let 0 < p < 0o. The Haagerup noncommutative L, space over M is defined as

Ly(M, p) = {x € Lo(R,7) | 61(x) = e */Px for all t € R}.

It is clear from the definition that L..(M,¢) coincides with M. Moreover, as it
is to be expected, Li(M, ¢) can be canonically identified with the predual M., of
the von Neumann algebra M. This requires a short explanation. Given a normal
state w € M, the dual state & : Ry — [0, 00| is defined by

o(z) = w(/R&S(w) ds).

Note that, by the translation invariance of the Lebesgue measure, the operator
valued integral above is invariant under the dual action. In particular, it can be
regarded as an element of M. As a n.s.f. weight on R and according to [42], the
dual weight @ has a Radon-Nikodym derivative h,, with respect to 7 so that

o(z) = 7(hyx)
for any x € R. The operator h,, so defined belongs to L1 (M, ¢),. Indeed,

T(hob(z)) = w(/Rérs(ﬁt(:z:)) ds) = w(/Rars(x) ds) = 7(hua).
In particular,
7(6¢(hy,)d¢(x)) = e '7(hyz) = e '7(hy,6¢(x)) for all rE€R,

which implies that 6¢(h,) = e th,. Therefore, there exists a bijection between
M} and Ly (M, ), which extends to a bijection between the predual M, and
L1(M, ) by polar decomposition

w = ulw| € My = uhp,| = hy, € Li(M, @).
In fact, after imposing on L(M, ¢) the norm

[hell = lwl(1) = |wllm.,
we obtain an isometry between M, and Lq(M, ). There is however a nicer way
to describe this norm. As we have seen, for any « € L1 (M, ¢) there exists a unique
wy € M, such that h,, = x. This gives rise to the functional tr : L; (M, ¢) — C
called trace and defined by
tr(z) = wy(1).
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The functional tr is continuous since [tr(z)| < tr(|z|) = ||z|; and satisfies the
tracial property

tr(zy) = tr(yx).
Our distinguished state ¢ can be recovered from tr as follows. First we note as
above that its dual weight ¢ admits a Radon-Nikodym derivative D, with respect
to 7, so that ¢(z) = 7(Dyx) for € Ry. Then, it turns out that

p(z) =tr(Dyx) for = e M.
According to this, we will refer in what follows to D, as the density of ¢. Moreover,

we shall write D instead of D, whenever the dependence on ¢ is clear from the
context. Given 0 < p < oo and x € L,(M, ¢), we define

)1/p

[l = (trl|” and  |[zf|oo = [J]1-

Il I is a norm (resp. p-norm) on L,(M, ) for 1 <p < oo (resp. 0 < p < 1).
LEMMA 1.1. The Haagerup L, spaces satisfy the following properties:
i) If 0 < p,q,r < oo with 1/r =1/p+ 1/q, we have
leyllr < llzllpllylly — forall 2 € Lp(M, @), y € Lg(M, ).

i) If 1 < p < o0, Lp(M,p)* is anti-linear isometrically isomorphic to
Ly (M, ) via

T € Ly (M, ) — tr(z" ) € Lp(M,p)"

An element x € M is called analytic if the function ¢ € R — o(z) € M
extends to an analytic function z € C — o,(z) € M. By [42] we know that the
subspace M, of analytic elements in M is a weak* dense *-subalgebra of M. The
proof of the following result can be found in [28]. It will be useful in the sequel.

LEMMA 1.2. If 0 < p < oo, we have
i) M,DV? is dense in L,(M, ).
i) DO=M/P M, DVP = M,DY?P for all 0 <n < 1.

1.1.2. Kosaki’s interpolation. The given definition of Haagerup L, space
has the disadvantage that the intersection of L,(M, ¢) and Ly (M, ¢) is trivial for
p # ¢q. In particular, these spaces do not form an interpolation scale. All these
difficulties disappear with Kosaki’s construction. As above, we only consider von
Neumann algebras equipped with n.f. states. The general construction for any von
Neumann algebra can be found in [32] and [64]. Let us consider a von Neumann
algebra M equipped with a n.f. state ¢. First we define

Li(M) = MP.
Note that the natural operator space structure for L1 (M) requires to consider M3

instead of M., we refer the reader to [47] for a detailed explanation. Then, given
any real number ¢, we consider the map

joire M a@)p e M) with  (o(2)9) (4) = plon(@)y).
According to [32] there exists a unique extension j, : M — L;(M) such that,
for any 0 < n < 1, the map j_;, is injective. In particular, (j_;,(M), L1(M)) is
compatible for complex interpolation and we define the Kosaki noncommutative Ly,
spaces as follows

‘CP(M7 <P7’7) = [j*ir](M)ﬂ Ll(M)}

T =
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by specifying
lzllo = 153, (2)llm - and 2]l =[]z, (m)-
The following result was proved in [13] except for the last isometry [32].

THEOREM 1.3. Let 1 < p < oo and let M be any von Neumann algebra:

i) If p1 and @o are two n.f. states on M, we have an isometric isomorphism
LP(Mv 901) = LP(M7 902)'

i) If ¢ is a n.f. state and 0 <n <1, we have an isometric isomorphism
Ly(M, ) = Lp(M, 0,1).

More concretely, given x € M

(

=i (@)llz, (Ao = DV PeDE=DP|

According to Theorem 1.3, Haagerup and Kosaki noncommutative L, spaces
can be identified. We shall write L,(M) to denote in what follows any of the spaces
defined above. In particular, after the corresponding identifications, we may use
the complex interpolation method for Haagerup L, spaces. We should also note
that Kosaki’s definition of L, presents some other disadvantages. The main lacks in
this paper will be the absence of positive cones and the fact that the case 0 < p < 1
is excluded from the definition. In particular, we will use Haagerup L, spaces and
we will apply Theorem 1.3 when needed.

1.1.3. Conditional expectations. Let us consider a von Neumann algebra
M equipped with a n.f. state ¢ and a von Neumann subalgebra N of M. A
conditional expectation E : M — N is a positive contractive projection. E is
called faithful if E(z*z) # 0 for any x € M and normal when it has a predual
E. : M. — N.. According to Takesaki [61], if NV is invariant under the action of
the modular automorphism group (i.e. o+(N) C N for all ¢ € R), there exists a
unique faithful normal conditional expectation E : M — N satisfying p o E = ¢.
Moreover, by Connes [6] it commutes with the modular automorphism group

EOO't:O'tOE.

The required invariance of N under the action of o; implies that the modular
automorphism group associated to A coincides with the restriction of o to A. It
follows that AV X, R is a von Neumann subalgebra of M x, R. In particular, the
space L,(N') can be identified isometrically with a subspace of L,(M), see [28]
for details. In this paper we shall permanently assume the existence of a normal
faithful conditional expectation E : M — N.

It is well-known that in the tracial case, the conditional expectation E extends
to a contractive projection from L,(M) onto L,(N') for any 1 < p < oo, which is
still positive and has the modular property E(azb) = aE(z)b for all a,b € N and
x € L,(M). These properties remain valid in this context. We summarize in the
following lemma the main properties of E that will be used in the sequel and refer
the reader to [28] for a proof of these facts.

LEMMA 1.4. Let M and N be as above:
i) E: Ly(M) — Ly(N) is a positive contractive projection.
ii) If2 <p < oo and x € Ly(M), we have E(z)* E(z) < E(z*z).
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iii) Ifa € Ly(N),z € Lg(M),b € L.(N) and %+%+% <1, E(azb) = aE(x)b.
In particular, if 1 <p < oo and v € M

E(DY/7x) = DYPE(x) and E(xD'/?) = E(2)D'/7.

1.2. Pisier’s vector-valued L, spaces

Noncommutative vector-valued L, spaces L,(M;X) appeared quite recently
with Pisier’s work [46]. The reason for the novelty of such a natural concept lies
in the fact that X must be equipped with an operator space structure rather than
a Banach space one. Moreover, many natural properties such as duality, complex
interpolation, etc... must be formulated in the category of operator spaces. Let us
begin by recalling the concept of operator space.

1.2.1. Operator spaces. Operator space theory plays a central role in this
paper. It can be regarded as a noncommutative generalization of Banach space
theory and it has proved to be an essential tool in operator algebra as well as in
noncommutative harmonic analysis. An operator space X is defined as a closed
subspace of the space B(H) of bounded operators on some Hilbert space H. Let
M,,(X) denote the vector space of n x n matrices with entries in X. If we have
an isometric embedding j : X — B(H), let us consider the sequence of norms on
M,,(X) for n > 1 given by

H(xij)HMn(X) = H(j(l"ij))HB(H")'

Ruan’s axioms [11, 47, 58] describe axiomatically those sequences of matrix norms
which can occur from an isometric embedding into B(H). Any such sequence of
norms provides X with a so-called operator space structure. Every Banach space
can be equipped with several operator space structures. In particular, the most
important information carried by an operator space is not the space itself but the
way in which it embeds isometrically into B(H). For this reason, the main difference
between Banach and operator space theory lies on the morphisms rather than on the
spaces. The morphisms in the category of operator spaces are completely bounded
linear maps v : X — Y. That is, linear maps satisfying that the quantity

[ullebx,v) = i‘g idn, ® uHB(Mn(X),Mn(Y))

is finite. In this paper we shall assume some familiarity with basic notions such
as duality, Haagerup tensor products, the OH spaces... that can be found in the
recent books [11, 47].

1.2.2. The hyperfinite case. Before any other consideration, let us recall
the natural operator space structure (o.s.s. in short) on L,(M). Proceeding as in
Chapter 3 of [46], we regard M as a subspace of B(H) with H being the Hilbert
space arising from the GNS construction. Similarly, by embedding the predual
von Neumann algebra M, on its bidual M*, we obtain an o.s.s. for M,. The
0.8.s. on Li(M) is then given by that of M:P, see page 139 in [47] for a detailed
justification of this definition. Then, the complex interpolation method for operator
spaces developed in [45] provides a natural o.s.s. on Ly,(M)

Ly(M) = [Loo(M), Li(M)],, = [M, MP]

1/p 1/p°
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Let us now describe the natural operator space structure for vector-valued L,
spaces. Let M be an hyperfinite von Neumann algebra and let X be any operator
space. Then, recalling the definitions of the projective and the minimal tensor
product in the category of operator spaces, we define

Ll(M,X) = L1(M)®X and L()Q(M7X) = Loo(M) ®min X.
Then, the space L,(M;X) is defined by complex interpolation
Ly(M;X) = [Loo(M; X), Ly (M; X)] .

As it was explained in [46], the hyperfiniteness of M leads to obtain some expected
properties of these spaces. We shall discuss the non-hyperfinite case in the next
paragraph. We are not reviewing here the basic results from Pisier’s theory, for
which we refer the reader to Chapters 1,2 and 3 in [46].

Let us fix some notation. R and C denote the row and column operator spaces
(c.f. Chapter 1 of [47]) constructed over ¢5. Identifying B(¢3) (via the canonical
basis of £3) with a space of matrices with infinitely many rows and columns, R and
C are the first row and first column subspaces of B(¢3). Similarly, if 1 < p < co and
Sp denotes the Schatten p-class over {9, the spaces R, and C}, denote the row and
column subspaces of S,. The finite-dimensional versions over ¢35 will be denoted
by R and C} respectively. Note that, as in the infinite-dimensional case, we have
R, = R}, and C,, = C,. Given an operator space X, the vector-valued Schatten
classes with values in X will be denoted by S,(X) and S} (X) respectively. Among
the several characterizations of these spaces given in [46], we have

Sp(X) = Cp @, X @ Ry and  SP(X) = CF @), X @5, RE.

1.2.3. The non-hyperfinite case. One of the main restrictions in Pisier’s
theory [46] comes from the fact that the construction of L,(M;X) requires M to
be hyperfinite. This excludes for instance free products of von Neumann algebras, a
very relevant tool in this paper. There exists however a very recent construction in
[19] of L, (M; X) which is valid for any QWEP von Neumann algebra. Nevertheless,
since we only deal with very specific operator spaces, we briefly discuss them.

THE SPACES L, (M; Ry) AND L,(M;C}). As we explained in the Introduction,
these spaces are of capital importance. Let us recall that the spaces R (X) and
Cp(X) are defined as subspaces of SJ(X) for any operator space X. Therefore,
motivated by Fubini’s theorem for noncommutative L,, spaces [46], we obtain the
following definition valid for arbitrary von Neumann algebras

Ly(M; RY) = RN(Ly(M)) and  Ly(M; Cp) = Cp(Ly(M)).

These spaces appear quite frequently in the theory of noncommutative martingale
inequalities. However, in that context they are respectively denoted by L, (M;¢5)
and L,(M;£5), see e.g. [51] or [53] for more details.

THE SPACES Ly, (M; (7). The spaces L,(M;£7) and L,(M;L5,) were defined
in [16] for general von Neumann algebras to study Doob’s maximal inequality for
noncommutative martingales. Indeed, since the notion of maximal function does
not make any sense in the noncommutative setting, the norm in L,(€2) of Doob’s
maximal function

[ (w) = sup | fn(w)]

n>1
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was reinterpreted as the norm in L,(£2; ¢ ) of the sequence (fi, fa,...). This was
the original motivation to study the spaces L,(M;¢1) and L,(M;{s). A detailed
exposition of these spaces can also be found in [29]. The spaces L,(M:;£7) will be
of capital importance in the second part of this paper. These spaces were recently
defined in [30] over non-hyperfinite von Neumann algebras as follows

LP(M;EZ) = [LP(M;KZO),LP(M;K?)] 1
This formula trivially generalizes by the reiteration theorem [2]. A relevant property
of these spaces proved in [30] is Fubini’s isometry L,(M;€y) = €5 (L,(M)). Tt

is also proved in [30] that Pisier’s identities hold. In other words, defining the
auxiliary index 1/r = |1/p — 1/q| we find

i) If p < ¢, we have
Il = 8 {llallza, o Mol oty 181y v | & = a8},
i) If p > ¢, we have

I@llpg = sup { w8z, (raep) | @8 € Brann }-

REMARK 1.5. Let M be an hyperfinite von Neumann algebra and

Ap(Min) = [Ly(M; %), Ly(M:6)] 5.
By(Min) = [Lp(M;Cp), Ly(M; Rp)] 4.

According to [46], we have
A,(M;n) = L,(M;OH,,) = B,(M;n).

It is therefore natural to ask whether these identities remain valid with our definition
of L,(M;OH,,) for non-hyperfinite M. This is indeed the case since, following the
same terminology already defined in the Introduction, we have

i) If1<p<2andl/p=1/2+1/q, we have
Ap(M;n) = Lag(M)l3 (L2(M>)L2q(M) = By(M;n).
i) f2<p<ooandl1/2=1/p+1/q, we have
AP(M;n) = \/ﬁLfgq’Qq)(ego(M)v En) = BP(M;n)v

where E, is given by E, : > p_ 2 ® 0 € £ (M) — L Y0 2 € M.

The isometric identities for the A,’s follow from Pisier’s identities above while the
identities for the B,’s follow from [69] or Theorem 3.2 below. Thus, we agree to
define the o.s.s. on L,(M;OH,,) as any of the interpolation spaces above.

REMARK 1.6. As we shall see through this paper, all the spaces mentioned so
far arise as particular cases of our definition below of amalgamated and conditional
L, spaces.
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1.3. The spaces L;(M,E) and Lj(M,E)

The spaces Ly, (M, E) and Lj,(M, E) were introduced in [16], where they turned
out to be quite useful in the context of noncommutative probability. Both spaces
will play a central role in this paper since they are the most significant examples
of the so-called amalgamated and conditional L, spaces, to be defined below. Let
M be a von Neumann algebra equipped with a n.f. state ¢ and let N be a von
Neumann subalgebra of M. Let E : M — A denote the conditional expectation of
M onto N. Then, given 1 < p < oo and (o, a) € N x M, we define

1 1 SE 1/
(L.1) leDvall,y ey = llaDFE@a DI 7 .
' 1 AL S (12
HaD;a{ Le(M.E) Ha D;E(a a)DzljozHLP/z(N).

L, (M,E) and Ly (M, E) will stand for the completions with respect to these norms.

REMARK 1.7. Note that for 1 < p < 2 we have 0 < p/2 < 1 so that we are
forced to use Haagerup L, spaces in the definition (1.1). On the other hand, let
us note that the assumption 2 € NDYP M (resp. x € MDYPN) is not needed to
define the norm of z in L (M, E) (resp. L;(M,E)) for 2 < p < occ. Indeed, given
x € Ly(M) we can define

N
|x||L;(M,E) = HE(x x)||L/p/2(N).

|zl ymE) = HE(M*)HZQ/Q(N) and

In that case E(xz*) and E(z*z) are well-defined and
maX{HE(acx*)l/2 E(x*a:)l/ZHLp(N)} < llzllz,m)-

Hence, by the density of NDY?PM and MD'/?N in L,(M), we obtain the same
closure as in (1.1). However, in the case 1 < p < 2 the conditional expectation E is
no longer continuous on Ly, /5(M) so that we need this alternative definition.

Iz, o0 |

The duality of L;(M,E) and Lg (M, E) was studied in [16]. For the moment
we just need to know that, given 1 < p < oo, the following isometries hold via the
anti-linear duality bracket (z,y) = tr(z*y)

L;E(M, E): = L]:D/(M, E),
Ly(M,E)* = L, (M,E).

LEMMA 1.8. If2<p<oo and 1/2=1/p+1/s, we have

(1.2)

loligane) = sup{llall,n | lalle.on <1},
sup { 28] v | 182,00 < 1.

ProoF. Given z € L;,(M,E), the operator E(xz*) is positive. Hence

HfCHL;(M,E)

ol e = sup{tr(aE(za®)) [ a =0, Jlallr, .o < 1}

= sup {tr(aE(mx*)a*) | la*allr, 0w < 1}

sup {tr(amx*a*) ‘ HOZ*OéHL(p/Q),(N) < 1}
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= sup {[la@ll3, up | oz, 000 <1}
Finally we recall that s = 2(p/2)". The proof for Lg(M,E) is entirely similar. [
As usual, we shall write L5(M) = B(Ly(M),C) and L§(M) = B(C, La(M))
to denote the row and column Hilbert spaces over Ly(M). Both spaces embed
isometrically in B(Ly(M)). Hence, they admit a natural o.s.s. Given any index

2 < p < oo, we generalize these spaces as follows. According to the definition of
Haagerup L, spaces, we may consider the contractive inclusions

jrirEM — D%IGLQ(M)7
jeixeM — aD? € Ly(M).

Then we define for 2 < p < oo
Ly(M) = [jr(M), L5(M)]
LyM) = [je(M), L§(M)]

with  [|z|lo = HD_l/QxHM,

with ||zl = ||9:D71/2HM.

(1.3)

ST RN

Note that Lj,(M) = L,(M) = L;(M) as Banach spaces.

Let A be a von Neumann subalgebra of M. Then, given 2 < u,q,v < oo,
we consider the closed ideal Z; in the Haagerup tensor product L}, (N) ®p Lg(M)
generated by the differences zy ® y — 2 ® vy, with x € Li,(N), y € L(M) and
v € N. Similarly, we consider the closed ideal Zo in Lj(M) ®@; Lg(N) generated
by the differences 2y ® y —  ® vy, with x € Ly(M), y € L{(N) and v € N. Then,
we define the amalgamated Haagerup tensor products as the quotients

L) @ LSM) = LL(N) @ LE(M)/Ta,
(M) @ LSN) = Ly(M) @3 L) /T

Let aq,az,...,am € L,(N) and by, by, ..., by € Ly(M). Using that the Haagerup
tensor product commutes with complex interpolation, it is not difficult to check
that the following identities hold

® e = S, :
sz_lak Ly @n R (;a’“a’“) Lu(\)

PR (s 5 A
H;e]ﬂ@ * Cm@nLg(M) (; F k) Lg(M)

Let us write S,.(a) = (3, axa})/? and S.(b) = (3, bibr)'/2. Then, following the
definition of the Haagerup tensor product, the norm of z in L, (N) @xrn LG (M)
can be written as

@luq = inf {[,(a)]

L“(N)Hsc(b)HLq(M) | T~ Z ap ® bk}7
k=1
where ~ means that the difference belongs to Z;. Similarly, given e, e, ..., e, in

Ly(M) and fy, fa,..., fm in LG (N), we can write the norm of an element x in the
space Ly(M) @x n L5 (N) as follows

lellgw = 08 (1S, g 1Sy | 2= D en® 1}
k=1
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LEMMA 1.9. The following identities hold

[2)lwq = Jnf ol 2, a1yl 2y ()

zllgv = 3}355 lyllz, Aol BllL, -

PROOF. The upper estimates

Il < inf flalzuollyl, o

lzllgw < i liyllz,aollBlz,w),

are trivial. We only prove the converse for the first identity since the second identity
can be derived in the same way. Let us assume that [|z||,.q < 1. Then we can find
a1,a2,...,0n € L,(N) and by, b, ..., by € Ly(M) such that

x:Zak@)bk and ||Sr(a)|
k=1

Lo 1Se@ oy <1

If D denotes the density associated to ¢, we define

S-(a) = (iakaz + 6D2/">1/2 with > 0.
k=1

Since suppD =1, gr(a) is invertible and we can define ay, by ay = g‘r(a)a;C so that

“ o 1/2
HST(OZ)HLOC(N) = H(;O‘iai) HLOO(N) <1

The amalgamation over N allows us to write

Zak ® by = S,p(a) ® (Zakbk)
k=1

k=1

for any possible decomposition of . Then, we have

20wt g < IS @l 1O i IS0 50

Moreover, applying the triangle inequality we obtain

2 - *
L) = H Zakak + 6D?/
k=1

In summary, we have

0t flall ol o < VSO +6 [S.0)],, ey

This holds for any decomposition z ~ >, ar ® by. We conclude letting § — 0. [

15 (a)]

2
) < HST(a)] Lo(A) +0

L,/2

LEMMA 1.10. Let 1 < p < o0 and let M be a von Neumann algebra. Assume
that o, 3 are elements of L,(M), B3 is positive and aa* < CB%. Then, there exists
w € M such that the identity o = pw holds.
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PrROOF. We first construct w in the crossed product von Neumann algebra
M x, R. Indeed, multiplying at both sides of aa* < C? by l(A,m)(ﬁ)ﬁ_l for each
positive )\, we conclude that S~ 'aa*3~! < C and hence S~ v is in M x, R. Now,
using the dual automorphism group, we have

6:(B7 ) = 64(871)6(er) = 6:(8) ' 64() = /P e P = g,
which means that 3~'a € M. This completes the proof. ([l
PROPOSITION 1.11. Let 2 < p < oo and 2 < s < oo related by 1/2 =1/p+1/s.
Then, we have the following isometries
Ly (M, E) = Ly(M,E)" = L{(N) @xn L5(M),
Ly (M,E) = Ly(M,E)" = Ly(M) @prn LE(N).
PrOOF. As we have already said, the isometries
Ly, (M,E) = L, (M,E)",
Ly, (M,E) = L;(M,E)*,
were proved in [16]. Now let us consider an element x € L7(N) Qx5 L§(M) and

let = ay be a decomposition with a € Ls(N) and y € Ly(M). Then, (1.2) and
Lemma 1.8 provide the following inequality

el e =sup {ir(a*sy) | sup zlliaw < 1) < lalle, oo lvllzaa-
vz <t

According to Lemma 1.9, this proves that
id:x € LY(N) @nn Ly(M) — 2 € Ly, (M,E)

is a contraction. Reciprocally, let us consider an element of the form z = ¢D/ P
with £ € N and a € M. Then, given any § > 0, we consider the decomposition
T = agys with as and ys given by

1 1 \/2 1
as = ({DP’ E(aa™ 4+ 61)D?’ 5*) and Ys =y

with
1 . pl . sy
~ .

Let us note that ys is a well-defined element of Ly(M). Indeed, if we set
a 1o \1/2
45 = (¢D7E(aa” +01)D7¢")
it is clear that
rr* <57 Y|a||3 A3
By Lemma 1.10, we know that x = Asw for some w € M. In particular, this gives

Ys = A};_”w and since 1 — v = p//2 we obtain an element in Ly(M). Let us now
estimate the norms of as and ys. We have

Ll 3 /2 Lo, 3 2
letsllz ) = [[€D7 Eaa” + SUDTE 2 ) = €D E(aa” +anDT e[

and

2 1 _N\1/2
H%”Lz(M) tr(xx* [gDpl’ E(aa® 4 61)D?’ f*] 7)

- tr(’gD”%E(aa*)Dif* [€D?E(aa* + 61)D77 ¢°] _PY)W
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. L L 1A\ 1/2
< tr(gD;E(aa*+51)DF5*[§DFE(aa*+61)D?§*] 7) .
In particular,
1 % Lo |1/2-7/2
Isllzaao < [[€D7 Efaa” +61)D7 &*|[ T
We finally conclude

Lol¥sllLaomy < lller, e

) e
nf lallz, o [l < Jim flas

Note that the case p = 2 degenerates since we obtain v = 0 and s = co. However,
this is a trivial case since it suffices to consider the decomposition given by a = 1
and y = x. In summary, we have seen that the norms of L (N) @5 L§(M) and
of Ly, (M,E) coincide on
Ay = NDVY M.

Moreover, A, = NDY/*D'/2 M is clearly dense in L7(N) ®xr.n, L§(M). Therefore,
since the density of A,/ in Ly, (M, E) follows by definition, we obtain the desired
isometry. The arguments for the column case are exactly the same. ([

REMARK 1.12. Proposition 1.11 provides an o.s.s. for Ly (M, E) and L5 (M, E)
when 1 < p < 2. Moreover, by anti-linear duality we also obtain a natural o.s.s.
for Lj;(M,E) and Ly (M, E) when 2 < p < oo. However, we shall be interested only
on the Banach space structure of these spaces rather than the operator space one.
Therefore, we shall use the simpler notation

L,(N)Ly(M) and Lg(M)L,(N)
to denote the underlying Banach space of L}, (N)®xr,n L (M) or Ly (M)@x n L5 (N).

We conclude by giving one more characterization of the norm of L (M, E) and
Ly(M,E) for 2 < p < co. To that aim, we shall denote by Lmys(X1,X2) and
Rmyr(Xy,Xs2) the spaces of left and right A/'-module maps between X; and Xa.

PROPOSITION 1.13. Let N be a von Neumann subalgebra of M. Then, given
any three indices 2 < u,q,v < 0o, we have the following isometric isomorphisms

(LuWN)Lg(M))" = Rmy(Lu(N), Ly (M) = Lmy(Lg(M), L (X)),

(LgM)Lo(N))" = Lmy(Lo(N), Ly (M) = Rmy(Lg(M), Ly (V).

PROOF. The arguments we shall be using hold for both isometries. Hence, we
only prove the first one. Let us consider a linear functional ® : L, (N)Ly(M) — C
and let ¥ denote the associated bilinear map

U: L,(N)x Lg(M) — C,
defined by ¥(a,z) = ®(a ® x). Clearly, we have

19 = sup { |20 @ )| | el Iz, < 1} = @]
On the other hand, we use the isometry
B(Lu(N) x Lg(M),C) = B(Lu(N), Ly (M))

defined by ¥(a,z) = tr(T(a)x). By the amalgamation over A/, any such linear
map T is a right A'-module map (i.e. T(x8) = T(«)g for all 3 € N). Indeed, given
B €N, we have

tr(T(aB)z) = ®(af @ z) = ®(a ® Bz) = tr(T(a)Bz)
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for all 2 € Ly(M), which implies our claim. Reciprocally, if T : L, (N) — Ly (M) is
a right A-module map, we know by the same argument that T arises from a bilinear
map ¥ satisfying (oS, 2) = ¥(a, fz), which corresponds to a linear functional @
on Ly, (N)Ly(M) with the same norm. This proves the first identity. For the second
we proceed in a similar way by using the adjoint map T* instead of T. O

REMARK 1.14. Note that the proof given above still works when we only require
one of the two indices to be finite. In particular, we cover all combinations appearing
for L;(M,E) and Lg (M, E) since in that case the M-index is always 2.






CHAPTER 2

Amalgamated L, spaces

Let M be a von Neumann algebra equipped with a n.f. state ¢ and let us
consider a von Neumann subalgebra N of M. In what follows we shall work with
indices (u, g, v) satisfying the following property

1 1 1 1
(2.1) 1<¢g<>o and 2<wu,v<oc0 and —+-+-=-<1.
w q v P

Let us define N, Ly (M)N,, to be the space L,(M) equipped with

Ly (N) |, BeN,y € Lq(/\/t)}.

lelllug = inf {[[D¥al,, o Iz, v 18D

In the sequel it will be quite useful to have a geometric representation of the
indices (u, q,v) satisfying property (2.1). To that aim, we consider the variables
(1/u,1/v,1/q) in the Euclidean space R3. Then, we note that the points satisfying
(2.1) are given by the intersection of the simplex 0 < 1/u+ 1/v + 1/q < 1 with
the prism 0 < min(1/u,1/v) < max(1/u,1/v) < 1/2. This gives rise to a solid K
sketched below.

1/q
A
— — (1 1
0 = (0,0,0) D=(3,0,3)
B_N\C A =(0,0,1) E =(0,3.0)
P B=1(0,0,3) F=(3130
0 E
1/v
. =04 G = (2.0.0
F K

1/u
Fi1GURE I: THE soLID K.

Now, let (u, g, v) be any three indices satisfying property (2.1). Then we define
the amalgamated L, space L, (N)Ly(M)L,(N) as the set of elements z € L,(M),
with 1/p = 1/u 4+ 1/q + 1/v, such that there exists a factorization z = ayb with
a€ L,N),y € Ly(M)and b e L,(N). For any such element z, we define

el = inf {lallzu a0 92,0 Bl 2o | @ = ayb}-

Chapters 2, 3 and 4 are devoted to prove that L, (N)L,(M)L,(N) is a Banach space
for any (u, ¢, v) satisfying (2.1) and to study the complex interpolation and duality
of such spaces. In the process, it will be quite relevant to know that the spaces
NyLg(M)N, embed isometrically in L, (N)Lqy(M)L,(N) as dense subspaces. This
will be essentially the aim of this chapter.

27
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REMARK 2.1. In order to justify the restriction 2 < u,v < oo on (2.1), let us
show how the triangle inequality might fail when this restriction is not satisfied.
Let us take M = lo(N), then we claim that

L) Loo(M)Loo(N)  and  Loo(N) Loo (M) Ly (N)

are not normed for 1 < w < 2. Indeed, given a sequence = = (zy)p>1 I Loo(M)
and elements a,b € L,,(N), we have by definition the following inequalities

a2 ]|w-co-00 < llallL, 2l Locry  and  [l2blloc.cow < |Z] LA lIBll L, (-

In particular, if these spaces were normed they should contain contractively the
projective tensor product L, (N) @, Loo(M). However, by the noncommutative
Menchoff-Rademacher inequality in [7], we may find (z,) € Ly(N) @7 Loo(M) of
the form

n
Ln .

w= e with L

Z k:1€k1+logk w1 Tk € (N)

and such that (2,,) ¢ Ly (N)Loo(M)Loso(N'). Moreover, taking adjoints we also may
find a sequence (z,) such that (z,) € Ly(N) @7 Loo(M) \ Loo(N) Lo (M) Ly (N).

EXAMPLE 2.2. As noted in the Introduction, several noncommutative function
spaces arise as particular cases of our notion of amalgamated L, space. Let us
mention four particularly relevant examples:

(a) The noncommutative L, spaces arise as
Lg(M) = Loo(N) Lg(M) Lo (N).

Note that these spaces are represented by the segment 0A in Figure I.
(b) If p<gand 1/r =1/p— 1/q, the spaces L,(N7; Ly(N2)) arise as

Loy (N1)Lg(N1@N2) Loy (N).

When the index p is fixed, these spaces are represented in Figure I as
segments parallel to the upper face ACDF whose projection into the plane
xy goes in the direction of the diagonal.

(c) By Proposition 1.11, Ly(M,E) and Ly (M, E) (1 < p < 2) arise as

Ly(M,E) = Li(N)Lo(M)Loo(N) with 1/p=1/2+1/s,

Ly(M,E) = LooN)Ly(M)Ls(N) with 1/p=1/2+41/s.

These spaces are represented by the segments BD and BC in Figure I. As
we shall see in Chapter 4, the spaces L,(M; R}) and L,(M;C}) arise as
particular cases of the latter ones.

(d) If M = N, the so-called asymmetric noncommutative L, spaces arise as

These spaces are represented by the square OEFG in Figure I. The reader
is refereed to [22] and Chapter 7 below for a detailed exposition of the
main properties of these spaces and their vector-valued analogues.
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2.1. Haagerup’s construction

We now briefly sketch a well-known unpublished result due to Haagerup [12]
which will be essential for our further purposes. Let us consider a o-finite von
Neumann algebra M equipped with a distinguished n.f. state ¢ and let us define
the discrete multiplicative group

G=[J2z

neN

Then we can construct the crossed product R = M x, G in the same way we
constructed the crossed product M x,R. That is, if H is the Hilbert space provided
by the GNS construction applied to ¢, R is generated by 7 : M — B(L2(G;H))
and A : G — B(Ly(G;H)) where

(m(2)€)(9) = 0g(x)é(g)  and  (A(h)E)(g) = &(g — h).

By the faithfulness of 7 we are allowed to identify M with 7(M). Then, a generic
element in R has the form }  x4A(g) with 2, € M and we have the conditional
expectation

Ea e ng)\(g) ER— x9 € M.
geG
This gives rise to the state

$: Y wgAg) € R @oEn ( > W(g)) = p(z0) € C.
geG geG
According to [12], R is the closure of a union of finite von Neumann algebras
UM
E>1
where (My,)r>1 is directed by inclusion M; C My C ... and each My, satisfies
(2.2) c1(k)Iam, <Dy, < ca(k)lpm,

for some constants 0 < ¢1(k) < ca(k) < oo. Here ¢y, denotes the restriction of ¢ to
M, and Dy, stands for the corresponding density. Moreover, it also follows from
[12] that we can find for any integer k > 1 conditional expectations

gk R — Mk
such that the following limit holds for every 2 € R,any 1 < p <ocoandall0 <n <1
A=m)/p (4 - n/p
(2.3) HD(2 (& — &(2)) Dz R —0 as k — oo.

REMARK 2.3. The o-finiteness assumption might be dropped if we replaced
sequences of finite von Neumann algebras by nets. However, it suffices for our aims
to consider the o-finite case.

In the following result we provide the first application of this construction. As
usual, we write S for the strip of complex numbers z € C with 0 < Re(z) < 1 where
we consider the decomposition 0§ = Jy U 07 of its boundary into the sets

aoz{ze(C‘Re(z)zO} and 81:{26C|Re(z):1}.
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Let X be a Banach space and let « be an element of X. Then, given 0 < 6 < 1, we
write A(X, 6, x) for the set of bounded analytic functions f : § — X (i.e. bounded
and continuous on S UJS and analytic on §) which satisfy f(6) = «.

LEMMA 2.4. Let x be an element in a von Neumann algebra M. Then, given
0<n<1and1l/py=(1-0)/p for some 0 <8O <1 and some 1 < p < oo, we have

1—n n 1—n n
Do xD7o = inf max{sup D™ f(2)D» ,sup || f(z }},
04D |, ygy= it {mx {sup D5 FDE 500 11
where the infimum runs over all analytic functions f : S — M in the set A(M, 0, x).

PROOF. The upper estimate follows by Kosaki’s interpolation. To prove the
lower estimate, we assume by homogeneity that the norm on the left is 1. Then we
begin with the case where M is a finite von Neumann algebra equipped with a n.f.
state oo such that the density D, satisfies (2.2). That is,

c1lp < Dyy < el

for some positive numbers 0 < ¢; < ¢3 < oo. Note that our assumption implies
Dy, € M. In particular, the function z — Déi is analytic for any scalar \ € C.
Then it is easy to find an optimal function. Indeed, since

2(n,0) = DU-"/Pog D1/Po ¢ M

we find by polar decomposition a partial isometry w such that x(n, 0) = w|z(n, )|.
Our optimal function is defined as

f(2) =Dy, * wla(n,0)] 7 Dy,
Our assumption on D, implies the boundedness and analyticity of f. On the other

hand, it is easy to check that f(6) = x so that f € A(M,0,z). Then, recalling that
both |z(n,0)|* and D% are unitaries for any A € R, we have

_a-ma-» po(1—2) n(i—z2)
p

Do f(=)DE Do wlaln )% o(n,0) 5 DE,
sup P f(z)D& = sup Powl|x P 7 Dg
z€00 oo oo Lp(M) z€0y o G " oo Lyp(M)
Py 1-n 1=
< H:Hz,@ v :HD 2 xDgy =1.
|2(n, 0)] o) e TG
Similarly, we have on 0;
17l Do * - wlelro) D0 <1
sup z = sup H wlx(n, » < 1.
2€0, Loo(M) 2€01 e e Loo(M)

This completes the proof for finite von Neumann algebras satisfying (2.2). In
the case of a general von Neumann algebra M we use the Haagerup construction
sketched above. Let us introduce the shorter notation

Ni(M,p,2) = |[D7

n o
7o zDwo ||Lpg(/\/t)a

1— n

No(M,p,x) = inf {max{sup |D 7 f(z)D?
2€0y

L,,(M)’nggl Hf(Z)HLOO(M)}} :

We are interested in proving N1 (M, ¢, z) > No(M, ¢, ). Combining property (2.2)
with the first part of this proof, we deduce that any x € M satisfies the following
identities

(2.4) N1 (Mg, ok, Ek(x)) = No(My, @k, Ep(z)) for all k > 1.
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By the triangle inequality
N2 (M, o, z) < lim sup N2 (M, o, Exm(Er(2))) + No(M, ¢, 2 — Erp(Ek())).
Applying the contractivity of Exq, (2.3) and (2.4)
limsup No(M, ¢, Epm(Ex(2))) < limsup No(My, @, Ex(2))

k—oo k—oo

= limsup Ny (Mg, v, E(z))

k—oo

= Nl(M7§05z)

It remains to see that No(M, ¢,z — Er(Ex(z))) is arbitrary small. First we note
that

N2 (M, 2 — Ex(E(x))) = No(M, @, Epm(z — Ex(2))) < N2(R, 5,2 — Ek()).
Then we consider the bounded analytic functions
frizeSmimi (v — Ek(z)) €R

with the constants mog, my; defined by

B ~1/2
o = [l ey

_ (1-6)/20
my, = HD%1 n)/p(x—gk(a:))Dg/p R

Note that fr € A(R, 0,z — Ex(z)) since mg, ’m?, = 1. On the other hand,

(I-n)/p n/p
DQ, fk(Z)D¢

sup

= mOkHDgin)/p(x _ 5k(1’)) DVP
z€0o

%)

Ly(R) Ly(R)

Similarly, we have on 0

sélg ka(z)HLw(R) = m1k:Hx - 5k(x)HLOO(R) < 2myg||z|| m-
zZ€01
Therefore, the proof is completed since from (2.3) both terms tend to 0 with k. O

2.2. Triangle inequality on 0, K

Let 0K be the subset of the boundary of K given by the intersection of K with
the coordinate planes (i.e. the union of the plane regions 0ACE, 0ADG and 0EFG).
This set will appear repeatedly in what follows. Note that the indices (u, ¢, v) which
are represented in Figure I by the points of d,,K are those satisfying (2.1) and

(2.5) min {1/u, 1/q, l/v} = 0.

In the following result, we apply a complex interpolation trick based on the
operator-valued version of Szegd’s classical factorization theorem. This result is
due to Devinatz [8]. A precise statement of Devinatz’s theorem adapted to our
aims can be found in Pisier’s paper [44], where he also applies it in the context of
complex interpolation. We note in passing that a more general result (combining
previous results due to Devinatz, Helson & Lowdenslager, Sarason and Wiener &
Masani) can be found in the survey [52], see Corollary 8.2. This interpolation
technique will be used frequently in the sequel.

LEMMA 2.5. If (1/u,1/v,1/q) € 05K, NyLq(M)N,, is a normed space.
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PROOF. Assuming (2.1), Holder inequality gives for 1/p=1/u+ 1/q+1/v
[D¥aDe (|, v S Mlellluge  forall € NyLy(M)N,.

Therefore, |||z|||y.q» = 0 implies z = 0. Since the homogeneity over R is clear,
it remains to show that the triangle inequality holds in this case. Our assumption
(1/u,1/v,1/q) € K reduces the possibilities to those in which at least one of the
indices is infinite. When 1/q = 0, Pisier’s factorization argument (c.f. Lemma 3.5
in [46]) suffices to obtain the triangle inequality. Indeed, it can be checked that
this factorization provides the estimate

121+ z2lllugo < 279 (llle1lllugo + lz2llugo)-

Hence, it remains to consider the cases 1/u = 0 and 1/v = 0. Both can be treated
with the same arguments so that we only show the triangle inequality for 1/u = 0.
In that case, the left term N, is irrelevant in Noo Ly(M)N,, so that we shall ignore
it in what follows. We need to consider two different cases.

CASE 1. We first assume that 1 < g < 2. Let z1,%9,...,2,, be a finite sequence
of vectors in Ly(M)N,, satisfying |||zk|||q» < 1 and let us also consider a finite
sequence of positive numbers A, Aa, ..., Ay, with Y7, Ay = 1. Then, it clearly

suffices to see that

<1
q-v

I 0]
k=1

By hypothesis, we may assume that xj = yi Gk, with

1
ﬁkD“ Lv(./\f)} < 1.

On the other hand, since 1 < ¢ < 2 we can consider 2 < ¢; < oo defined by
1 1 1 1 1

an 2 p g v
It is not difficult to check that

Ly(M) = [Lp(M), Lq,(M)]
Ly(N) = [Lu(WN), L2(N)]
Then, by the complex interpolation method we can find bounded analytic functions
fi 8 = Ly(M) + Ly, (M)
satisfying f1x(2/v) = yx for all k =1,2,...,m and

max { iz, 00,

2/v’

2/v"

sup || fix(2)]] <1,
(2.6) 0 Fr

2€00

sup || fix(z < 1.

oy || 1k ( )Hqu(M)

Similarly, Lemma 2.4 provides us with bounded analytic functions
for : S =N

satisfying for(2/v) = Bk for all k =1,2,...,m and

sup || far(2) <1,

a0 7)o

D= <1
ZSélg || far (2) 2HL2(N’)
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Given § > 0, we define the following function on 9S

_ 1 if z € 0y,
Wie) = { 01+ > 0 Afor(2)" far(2) if 2z € 01

According to Devinatz’s factorization theorem [44], there exists a bounded analytic
function w : & — AN with bounded analytic inverse and satisfying the following
identity on 0S8

w(z)*w(z) = W(2).

Let us consider the bounded analytic function
(Z)\k Jik(2) far( )) “(2).
Then, since w(z)*w(z) =1 on 9y, we have

sup Hg(z)HL,,(M) < sup Z/\kalk(z)HLp(M)||f2k(z)w71(z)”Lm(N) <l
2€0y 2€0p k=1

On the other hand, we can write
2) =Y VA fu(2)m(z) with VA for(2) = 1 (2)w(2)-
k=1

Note that, according to the definition of w, we have for any z € d;

(2.7) Do) w(z) < L.
k=1

Therefore, the following estimate follows from (2.6) and (2.7)

(ZAkflk ) f1i( ))1/2‘

su z < su
i O T Ly (M)
m 1/2
| (Enernio)”|
sup ; (2)" 1 (2) L)

m

1/2
< s (UMl o) <1

Note that the last estimate uses the triangle inequality on Lg, /2(M) and that we
are allowed to do so since ¢; > 2. Combining the estimates obtained so far and
applying Kosaki’s interpolation we obtain

Hg(z/v)HLq(M) <L

On the other hand, we have

_ 1/2

sup Wl oy = sup W) WL =1
12 1 " 1

sup (WD) = sup [DEw(e) WD, v

IA

sug Z)\kagk(z)D%HQLQ(N) +0<1+0.
ZE k=1
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Again, Kosaki’s interpolation provides the estimate

|w(2/v)D7| Loy ST+

In summary, recalling that

DMk =Y Ak fu(2/0) fok (2/0) = g(2/v)w(2/v),
k=1

k=1
we obtain from our previous estimates that

H’Z)\kka <144
k=1 v

Thus, the triangle inequality follows by letting § — 0 in the expression above.

Caskg II. It remains to consider the case 2 < ¢ < co. This case is simpler. Indeed,
given any family of vectors x1, xo, ..., x, and scalars A\, g, ..., A\, as above (with

T = YrPr and yi, By satisfying the same inequalities), we define for 6 > 0

m 1/2
S = (Z)\kﬁzﬁk + 51) so that Br = bk Sg,
k=1

for some by, ba,...,b, € N. Then we have a factorization
> Ay = ( > )\kykbk)sﬁ-
k=1 k=1

Now, since 2 < g < oo, we have triangle inequality in Lg/»(M) and

m)\ b < m/\ A\ m/\b*b 1/2
DR WS (O DX B HO (OIRTUEY R e

m

IN

which is clearly bounded by 1. On the other hand,

1

|SsD*

2
(PI%

m
1 « 1
HDv (kz_l)\kﬂkﬁk + 61)Dv o

PORY [k
k=1

Therefore, the triangle inequality follows one more time by letting § — O.

IA

2
LU(N)+6<1+6.

m 2y . /2
(S mnltnn)” o5 (w5 ),

)7

(]

The following will be a key point in the proof of Theorem 3.2, the main result
in Chapter 3. Note that we state it under the assumption that NV, L,(M)N, is a
normed space and that for the moment we only know it (from Lemma 2.5) whenever
(1/u,1/v,1/q) € OscK. However, since eventually we shall need to apply this result

for any point in K, we state it in full generality.

PROPOSITION 2.6. If N\ Ly(M)N, is a normed space, we have
i) The following map is an isometry

Juw @ € NyLy(M)N, = DuzDv € Ly(N)Ly(M)Ly(N).

ii) Ly(N)Lg(M)Ly(N) is a Banach space which completes NoyLy(M)N,.
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PROOF. It is clear that
0@ lugo < N2l|lwge  forall  x € NyLg(M)N,.

Let us see that the reverse inequality holds. Assume it does not hold, then we can
find zg € NyLy(M)N, such that |||zo|||u-gv > 1 and ||ju,o(20)|lu.q» < 1. By the
Hahn-Banach theorem (here we use the assumption that the space N, L,(M)N,, is
normed) there exists a norm one functional

0 : NyLg(M)N, — C

satisfying

(@) @(zo) = [[|zollfu-gv > 1.

(b) |o(ays)| < |[Dal Lo(N)’
Note that any y € L,(M) provides a densely defined bilinear map

@, : (Dva, fD7) € Ly(N) x Ly(N) = p(ayp) € C,
which satisfies ||®,| < |ly|l, and
®,,yn, (D, BD*) = ®, (D¥any,nyfD*) for all ny,ny € N.

On the other hand, since [|jy,o(20)|/u-q-v < 1 we must have j, ,(20) = aoyobo with

Lu(/\[)”yHLq(M)HﬁD%

max { laoll ., Iollz, s Ioll oo } < 1
If we consider the invertible elements
a = (agal + DY) and b= (b3bo + 6DY?)

we can write jy, »(zo) = aa"tagyobob~'b = ayb. Moreover, for § > 0 small enough

1/2
)

max {lal ), 9l 2, 000 1B, 000} < 1.
Since a? > §D?/* and b2 > §D?/?, there exist bounded elements «, 3 € N with
D" = qa and DY = gb.

Let us denote by e the left support of  and by f the right support of 5. We
note that the right support of o and the left support of 8 is 1. Then, we use
polar decomposition to find strictly positive densities d; € eNe and dy € fN f and
partial isometries w; and wy such that

o =diw; and B = wads.
Note that wiw; = 1, wyw} = e, wiwy = f and wow3 = 1. Then we observe that
ayb = ju.o(zo) = DY"zoDY? = aaxofb = y = axf.

This yields
eyf = axof = diywirowads.

In particular, taking spectral projections e, = 11 ,(d1) and f, = 111 ,,(d2)
wfendfleyfdglfnw; = wie,wizows frws.
This implies that

1
v |

1
“p(wtenwlxow2fnw;)‘ = }(I)wfenwlmowgfnw; (DE,D

2=
=

,D

)

- }(I)wfendfleyfdglf"w; (D
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(adlwl, deQb) |

}(I)W’fendfleyfdilfnws
}@eyf (aemfnb)|
llaenlulley fllqllfadllo
lallullyllqlbll < 1.

IN A

On the other hand, (wfe,wi) (resp. (wsfrpw3)) converges to wjw; = 1 (resp.
wowj = 1) strongly. By Lemma 2.3 in [16], this implies that (D¥/“w}e,w;) (resp.
(ws frwsD'/?)) converges to D*/* (resp. D/?) in the norm of L, (N) (resp. L,(N)).
This combined with the continuity of ®,, gives

|cp(x0)’ = HILH;O ‘(I)fﬂo (D%wfenwl, waHwSD%H

= lim ‘gp(wfenwlwowgfnugﬂ <1.
n—oo

This contradicts condition (a). Therefore, the map j, , defines an isometry and
the proof of i) is completed. Next, we see that || ||4.q.» is & norm ‘outside’ the
space Ny, Ly (M)N,. The homogeneity over Ry is clear and the positive definiteness
follows as in Lemma 2.5. Thus, it suffices to show that the triangle inequality
holds. As we did above, we begin by taking a family x1,xs, ..., x,, of elements in
Ly (N)Ly(M)L,(N) satistying ||g|l4.q» < 1 and a collection of positive numbers
A1, A2,y Ay With Y7, A = 1. By hypothesis, we may assume that z3, = apyibs
with

L,U(N)} < 1.

Given any ¢ > 1 and by the density of DA (resp. ND%) in Ly (N) (resp. Ly(N)),
it is not difficult to check that both ax and by can be written in the following way

max { lax . o) e v 1)

ar = ZD%azk with ||D%alk”Lu(N) é giiv
=0

be = Y bpD®  with  [[buDe |, <€
§=0

This gives rise to

Z )\klUk: = Z D% ( Z )\kaikykbjk)D%.
k=1 i k=1

4,7=0
Assuming the triangle inequality on N, L,(M)N,,, we can write
m
1 1
D ( Z /\kaikykbjk> Dv = A;;Y;;By;
k=1

where

_itg _itg _itg
IAillL.ony <&, IYill,ay <62, IBill,wy <€ 7.

Then, we define for § > 0
S, (A) = ( i AAS; +5D%)1/2 and S.(B) = ( i B;;By +5D%)1/2,

i,j=0 i,j=0
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so that there exist «;, 5;; € N given by S, (A)a;; = A;j and (3;;S.(B) = B;;. Hence,
Z)\kxk - ( Z Qjj zjﬂzj) ( )
2,j=0
Moreover, we have
S, (5 A: )
H HL (N) +§:0” JHL W) \/>+1_1/\/’

The same estimate applies to S.(B). The middle term satisfies

|5 avun, < H(f:aija;j)% (Sl (Z 565)
=0 i 7=0 i,j=0 i,j=0
b /
< Jzowunq) < (@)

In summary,

"%Akmkqu-v = HST(A) L N)HNZ_oainijﬁij Lq(M

as 6 — 0 and £ — oo. This proves the triangle inequality. To prove completeness
we use again a geometric series argument. Let x1,xo,... be a countable family of
elements in L, (N)Ly(M)L,(N) with ||2g|lu.q.0 < 47 for any integer k > 1. That
is, we have z = 4*kakykbk with

— 1

L,(N)

ls.(e)

max { laxl 2, v Itz s 1Bkl 2, o) } < 1

Then, by a well known characterization of completeness, it suffices to see that the
sum Y, xj belongs to L,(N)Ly(M)L,(N). We use again the same factorization

trick
Zxkf (22 Canyi i ) S:(0)
where
Si(a) = (22 Rapal + oD% )1/2 and  Sp(a)ap = 2%,
S.b) = (52 ’“b*bk+6D> Pamd BB = 2,

In particular, we just need to show that S.(a) € Ly, (N), S.(b) € L,(N) and the
middle term belongs to L,(M). However, this follows again by applying the same
estimates as above, details are left to the reader. To conclude, we just need to
show that N, Lg(M)N, is dense in L, (N)Ly(M)L,(N). However, this follows
easily from the density of DY/“A (resp. ND'/?) in L,(N) (resp. L,(N)) and the
triangle inequality proved above. (Il
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2.3. A metric structure on the solid K

At this point, we are not able to prove that N, L,(M)N, is a normed space for
any point (1/u,1/v,1/q) in the solid K. However, we need at least to know that
we have a metric space structure. In fact, we shall prove that ||| |||4.q.» is always a
~v-norm for some 0 < v < 1.

LEMMA 2.7. If (1/u,1/v,1/q) € K, there exists 0 < v < 1 such that

1+ z2ll[go < M2l g + l22llllg,  for all z1,20 € NyLg(M)N,.

PROOF. According to Lemma 2.5, we can assume in what follows that
(1/u,1/v,1/q) € K\ 0xK.

As we did to prove the triangle inequality, let 1,22, ..., 2y € NyLy(M)N, be a
sequence of vectors satisfying |||xg|||u-qv < 1 and let A1, Ag, ..., Ay, € Ry with sum
> & M = 1. Then it suffices to show that

m
[ 32
k=1

By hypothesis, we may assume that xi = agyrSs, with

WkD%

Y

IN

u-q-v

Z)\Z for some 0 <~y <1.
k=1

max {[|D% ay| ) <L

By Figure I we can always find 1 < wuq,qg,v1 < 0o and 0 < 6 < 1 such that

(a) We have 1/go = 1/u+1/qg+ 1/v =1/uy + 1/v;.

(b) We have (1/u,1/v,1/q) = (0,0, (1 —6)/q0) + (6/u1,60/v1,0).
Indeed, we first consider the plane P parallel to ACDF containing (1/u,1/v,1/q).
The point (0,0,1/qg) is the intersection of P with the segment OA. Then, we
consider the line L passing through (0,0,1/qo) and (1/u,1/v,1/q). Then, the point
(1/u1,1/v1,0) is the intersection of L with the coordinate plane z = 0. Note that
the point (1/uy,1/v1,0) is not necessarily in K. However, according to (a) it always
satisfies 1/u; + 1/v; < 1. Note also that, since we have excluded the points in
OsoK at the beginning of this proof, we can always assume that 0 < 8 < 1. Then it
follows from (b) that

Lu(N) ”kaLq(M)a

Lu(N) = [Lec(N), Lu, (V)]
LyM) = [qu (M),LOO(M)]
Ly(N) = [Loo(N), Ly, (V)]
By the complex interpolation method, we can find bounded analytic functions

for 2 8 = Lgy (M) + Loo (M)

9?
67

Pr

satisfying for(0) = yx for k =1,2,...,m and such that
2.8 max{ sup || for (2 , sup || far(z } <1
23 s 542, 510 17

Similarly, by Lemma 2.4 we also have bounded analytic functions

Jik, far : S = N
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for any k = 1,2,...,m satisfying (fix(0), f3r(6)) = (ax, Bx) and
9 < 1’
zsé%; max{”flk(Z)HLoo(,\/) ||f3k(z)||Loo(N)}

(2.9) 1
sup maX{HD“l f1e(2)]
Z€D,

<1.

Ly, (N) }
Given § > 0, we consider the following functions on the boundary

_ 1 if z € 0y,
Wi2) = { o1+ Zk Mef1e(2) fik(2)* if z € Oy,

1 if z € 9
W = i} : )
) { 5L+ Y Mo ()" far(z) i 2 € 0.
According to Devinatz’s factorization theorem [44], there exist bounded analytic

functions wy, w3 : S — A with bounded analytic inverse and satisfying the following
identities on S

Lu, (N)? | fa(z)D7r

wi(2)wi(2)" = Wy(z),
Wg(z)*Wg(Z) = WS(Z)
Then we can write

Z Az = wi(0) {Wfl(e) ( Z /\kf1k(9)f2k(9)f3k(9))W§1(9)} w3 (0).
k=1 k=1

Let us estimate the norms of the three factors above. First we clearly have
1/2

= * =1
sup w1 sup [wi(2)wi(2)* ||,y = 1
sup HW?)(Z)HLOO(N) = sup [lws(z) Hl/Q
z2€0y z€0p

On the other hand, since L,(N) is always a min(p, 1)—n0rmed space

u1/2
Loy /2(N)

Du w1 — Du
sup [[Dw () [ oy = sup |[Drwa(z =z

m 1 w1 /2 )
< sup (Zk 1:\];’2|Du1 fuk(z ||L N) +5) ) lf u; > 2,
€ | Yo N ||Du1 fir(z ”Lul(/\f) LA iy < 2.

< max {(1 +6)m/?6m 2 Z A}f”} .

k=1

Similarly, we have

sup HW3 Dﬁ

1 1 v1/2
sup Eqw><max{(1+5)” 224y }

k=1

In summary, we obtain by Kosaki’s interpolation

Diwl(e) < max \/m, §u/2 4 )\ul/g 1/uy ,
Lu(N) k

L n 1/vy
|w3(0)D* HLU(J\/) < max {m7 (5U1/2 + Z)\Zl/z) } '
k=1
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As we have pointed out above, we have 1/u; + 1/v; < 1. In particular, u;/2 and
v1/2 can not be simultaneously less than 1. Thus, at least one of the two sums
above must be less or equal than 1. This means that taking

~ = min {1,u1/2,v1/2},

we deduce

||Lu(J\/) w3 (6)

)< (2n) = ()

k=1 k=1

fi (D,

In particular, it suffices to see that

Hw (Z)\kflk ) far( )f3k(9)>W§1(9)‘

Lq(M)

Let us consider the bounded analytic function

9(z) = wy'! (Z)\kflk ) fak( )fsk(z)>W§1(Z)-

Since wi(z)wy(z)* = 1 = ws(z)*ws(z) for all z € 9y, we clearly have

Z)\kfm f2k(z)f3k(Z)H

sup lo@ 2, v = zsélg)

< supZAkam O] P [FEO1 AW PR 1 s
°k 1

Lgg (M)

Then it follows from (2.8) and (2.9) that the expression above is bounded above by
1. On the other hand, since w; and w3 are invertible, we can define the functions
hig, har : S — N by the relations

\ﬁflk ) =wi(2)hi1x(z) and \/7f3k- = har(2)ws(2).

Then it is easy to check that for any z € 0;

(210) Zhlk h1k S 1 and Zhgk(z)*h;;k(z) S 1.
k=1

Therefore, we obtain from (2.8) and (2.10) that

_ h s 2|
sup g, an ceb, Z M) Foel0
1/2
< (X meCmeter) |
p I,
X Sél(g) 1max Hf2k HLOO(M)
1/2
< | raernne)

By Kosaki’s interpolation we have H g(9) < 1. This completes the proof. [

Iz,
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Arguing as in the proof of Proposition 2.6 ii), we can see that any amalgamated
space Ly (N)Lq(M)Ly,(N) is a y-Banach space and that jy, , (N, Lq(M)N,) (with
Ju,w as defined in Proposition 2.6) is a dense subspace. Indeed, we just need to
repeat the two given arguments (using geometric series) conveniently rewritten
with exponents v everywhere. We leave the details to the reader. Let us state this
result for future reference.

PROPOSITION 2.8. If (1/u,1/v,1/q) € K, there exists 0 < v <1 such that
i) Ly(N)Ly(M)L,(N) is a y-Banach space.
i) Ju,o(NuLg(M)N,) is a dense subspace of Ly(N)Lg(M)Ly(N).

OBSERVATION 2.9. We do not claim at this moment that j,, is an isometry.






CHAPTER 3

An interpolation theorem

In this chapter we prove that the solid K is an interpolation family on the
indices (u, q,v). Of course, we need to know a priori that L, (N)Ly(M)Ly,(N) is
a Banach space for any (1/u,1/v,1/q) in the solid K. In fact, as we shall see the
proofs of both results depend on the proof of the other. Indeed, let us consider a
parameter 0 < 7 < 1. According to the terminology employed in Figure I, let us
define K, to be the intersection of K with the plane P, which contains the point
(0,0,7) and is parallel to the upper face ACDF of K. Roughly speaking, we first
prove that

K, = {LU(N)LQ(M)LU(N) | (1/u,1/v,1/q) € KT}

is an interpolation family on the indices (u, g, v) for any 0 < 7 < 1 and with ending
points lying on d,,K. Note that we already proved in Chapter 2 that the spaces
associated to the points in 0, K are Banach spaces. Then, we use this result to
prove that every point in K corresponds to a Banach space and derive our main
interpolation theorem. More concretely, we first prove the following result.

LEMMA 3.1. Let us assume that
i) (1/uj,1/v5,1/q;) € 05K for j =0,1.
i) T/ug+1/q0+1/vo =1/ us +1/q1 + 1/v1.
Then Ly, (N)Lq,(M)L,, (N) is a Banach space isometrically isomorphic to

Xo(M) = | Lug (M) Loy (M) Lug (W), Ly (N) Ly (M) Ly (V)]

We know from Lemma 2.5 and Proposition 2.6 that the interpolation pairs
considered in Lemma 3.1 are made of Banach spaces. After the proof of Lemma 3.1
we shall show that L, (N)L,(M)L,(N) is a Banach space for any (1/u,1/v,1/q)
in the solid K and we shall deduce our main result in this chapter.

THEOREM 3.2. The amalgamated space L, (N)Ly(M)L,(N) is a Banach space
for any (1/u,1/v,1/q) € K. Moreover, if (1/uj,1/v;,1/q;) € K for j = 0,1, the
space Ly, (N)Lq,(M)Ly, (N) is isometrically isomorphic to

Xo(M) = |Lug (V) Lag (M) Lug (V) Ly (V) Ly (M) Loy (W)

Note that the pairs of Banach spaces considered in Lemma 3.1 and Theorem
3.2 are compatible for complex interpolation. Indeed, since the amalgamated space
Ly, (N)Lg,(M)L,,;(N) is continuously injected (by means of Hélder inequality) in
Ly, (M) for j =0,1 and 1/p; = 1/uj +1/q; + 1/v;, any such pair lives in the sum
Ly, (M) + Ly, (M). The main difficulty which appears to prove Lemma 3.1 lies in
the fact that the intersection of amalgamated spaces is quite difficult to describe
in the general case. Therefore, any attempt to work on a dense subspace meets

43
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this obstacle. We shall avoid this difficulty by proving this interpolation result in
the particular case of finite von Neumann algebras whose density is bounded above
and below. Under this assumption, we will be able to find a nice dense subspace to
work with. Then we shall use the Haagerup construction [12] sketched in Section
2.1 (suitably modified to work in the present context) to get the result in the general
case. After that, the proof of Theorem 3.2 follows easily by using similar techniques.

3.1. Finite von Neumann algebras

We begin by proving Lemma 3.1 for a finite von Neumann algebra M equipped
with a n.f. state ¢ with respect to which, the corresponding density D satisfies the
following property for some positive constants 0 < ¢; < ¢ < 00

(31) Cll S D S Cgl.

LEMMA 3.3. Assume that (1/u;,1/vj,1/q;) € OsK for j = 0,1. Then, given
any 0 < 0 < 1, the space Ly, (M) N Ly, (M) is dense in
Xo(M) = |Lug () Lag (M) Lug (), Ly (V) Ly (M) Loy (V)]
PRrROOF. Let us write A for the intersection

Lug(N) Lo (M) Lo (N) N Lty (N) Lg, (M) Ly, (N).

According to the complex interpolation method, we know that A is dense in Xg(M).
In particular, it suffices to show that we have density in A with respect to the norm
of Xg(M). Let x be an element in A so that we have decompositions

T = ao¥obo

v = apb where  a; € Ly,(N), §; € Ly;(M), bj € L, (N).

CASE 1. Let us first assume that max {uo,ul, vo,vl} < 00. Then, we can define

a = Y (a0} +0,
§=0,1

b= > (b5,)"* +6D.
§=0,1

Note that, since 2/u; and 2/v; are in (0, 1], we have
* /2 * ws

R S e

G < b [T LB < B

Therefore, if we define o, 3; by a; = a*/% a; and b; = 3;b'/i, we have ajai <1
and 353; < 1. Thus, o, B; € N for j = 0,1 and we can set y; = a;7;3; in Lg, (M)
so that

(3.2) r = al/ujyjbl/vj
for 7 = 0,1. Now we consider the spectral projections
en =111 y(a) and  fro =11 ,(b).

Then, since e,xf, = (e,a/%)y;(b'/% f,) we find e,xf, € Ly (M) N Ly (M).
Thus, we have to show that e, f,, tends to x in the norm of Xy(M). Let us write

x—enxfn=(1—en)x+ex(l— fn).
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Then it is clear that

[(1—en)z|,, = maX{H(l — en)a“%'yjb“%'

‘u]'-quvj | -7 = 071}
i .
b5, 13 =01},

The term on the right tends to 0 as n — oo since max(ug,u1) < oo. Therefore,
since the norm of Xy(M) is controlled by the norm of A when 0 < 6 < 1, we obtain
that (1 — e,,)z tends to 0 in the norm of Xy(M). The second term e,z(1 — f,) can
be estimated in the same way. This concludes the proof of Case I.

IA

1
mae {[|(1 = ea)a™ |, [l

CASE II. Now let us assume that there exists some indices among wug, u1, vy, V1
which are infinite. Then we can assume without lost of generality that a; (resp.
b;) is 1 whenever u; (resp. v;) is infinite. According to this and assuming the
convention 1°° = 1, the previous definition of a and b still makes sense. Moreover,
the relations obtained in (3.2) also hold in this case. Therefore, we need to prove
again that e,xf,, tends to x with respect to the norm of Xg(M). We only prove
the convergence for the term (1 — e, )z since again the second one can be estimated
in the same way. By the three lines lemma, we have

(1 - e")xng(M) <||a- en)le—g 1 = en)al]

u0-q0-vo
Now, let us recall that both norms on the right hand side are uniformly bounded
on n > 1. In particular, since 0 < 6 < 1, it suffices to prove that e,z tends to z
with respect to the norm of L.,; (N') Ly, (M) Ly, (N) for either j = 0 or j = 1. There
are only three possible situations:

0

u1°q1-v1

(a) Assume min(ug,u1) < oco. Let us suppose (w.l.o.g.) that min(ug,u;) =
ug. Then, we apply the estimate

1 1
H(l - en)xHuo-qo-vg S H<1 - e”)auo HLuo(N)HyOHLqO(M)Hbvo ’ L”O(N’).

(b) Assume min(qg,q1) < oo. Let us suppose (w.l.0.g.) that min(qgo,q1) = ¢o-
Then, we apply the estimate

12 = en)z

(c¢) Finally, assume that neither (a) nor (b) hold. Let us suppose (w.l.o.g.)
that min(vg,v1) = vo. In this case we have up = gp = w1 = ¢1 = ®©
and A = Lo (N)Loo(M)Ly, (N). Therefore, M (= Ly, (M) N Ly, (M)) is
dense in A (by Proposition 2.6) and thereby in Xg(M).

< ||a%} m

Lug(N) ” (1 - 6ﬂ,)yOHLqO(M) |

u0+qo-vo

Loy ()"

O

REMARK 3.4. Note that the finiteness of M is used in the proof of Lemma 3.3
to ensure that e,a'/% and b/ f, are in A/. In particular, in the case of general
von Neumann algebras we shall need to use a different approach.

PrROOF OF LEMMA 3.1. The lower estimate is easy. Indeed, let
To : Luo (N) X qu (M) X Lvo (N) - Luo (N)qu (M)Lvo (N)a
Tyt Luy(N) X Lgy (M) X Ly, (N) = Ly, (N) Lg, (M) Lo, (N),
be the multilinear maps given by Ty(a,y,b) = ayb = T1(a,y,b). It is clear that

both Ty and T, are contractive. Hence, the lower estimate follows by multilinear
interpolation. For the converse, we proceed in two steps.
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STEP 1. Let x be of the form
z=DY"aydDY" with «,B€N, ye Ly, (M).
Using the isometry j defined in Proposition 2.6, we have
T € Jug,ve (Nuane (M>Nve)
We claim that it suffices to see that

(3.3) 17zg.0 (@) 000 < N1l ()

for all = of the form considered above. Indeed, let us assume that inequality (3.3)
holds. Then, combining this inequality with the lower estimate proved above, we
obtain

(3.4) |Hj1:91,ue(x)”|us‘qe‘ve < ||x||X9(M) < ||x||ue~qe‘ve < |‘|J;91,u9 (x)mueﬂeme-

Note that, since Xy(M) is a Banach space, we deduce that N, Ly, (M)N,, satisfies
the triangle inequality. Then, applying again Proposition 2.6 we deduce that the
space Ly, (N)Lgy,(M)L,,(N) is the completion of N, Ly, (M)N,,. Therefore, it
follows that for any x € Ly, (N)Lg, (M)Ly, (N), we have

Hx”wqe-ve = “‘ere(M)'

In particular, L, (N)Lg, (M)Ly, (N') embeds isometrically in Xg(M). To conclude,
it remains to see that both spaces are the same. However, according to Lemma 3.3,
we deduce that Ly, (N)Lg,(M)L,,(N) is norm dense in Xg(M).

STEP 2. Now we prove inequality (3.3). We use one more time the interpolation
trick based on Devinatz’s factorization theorem [8]. Again, we refer the reader to
Pisier’s paper [44] for a precise statement of Devinatz’s theorem adapted to our
aims. Let x be an element of the form

z=DY"aypDY" with «,B€N, y€ Ly, (M).

Assume the norm of z in Xy(M) is less than one. Then, the complex interpolation
method provides a bounded analytic function

f :S— Luo (N)qu (M)Lvo (N) + Lul (N)qu (M)L'Ul (N)
satisfying f(f) = z and

sup [|f(2)luo-gove < 1,

3.5 2€0p
(3.5) Sup [|f () ur-gres < 1.

On the other hand, we are assuming that the density D satisfies the boundedness
condition (3.1). In particular, z € S — D € M is a bounded analytic function
for any A € C. Therefore (multiplying if necessary on the left and on the right by
certain powers of D and its inverses), we may assume that f has the form

f(z) =D D% f1(z)DTD W,

where f; : & — Ly (M) + Ly (M) is bounded analytic. Hence, we deduce from
the boundary conditions (3.5) and Proposition 2.6 that f can be written on the
boundary S as follows

1—z2_ =z z 1=z
f(z) =D w0 Du1g1(2)g2(2)g3(z)D*1D w0 ,
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where g1,93 : 0§ — N and g3 : 9; — Ly, (M) satisfy the following estimates

sup mise {[D g1 (2) ], Il (DT [, } < 1,
(3.6) #€0 N N

sup max {[D% g1 2)],,. g, 952D ), | < 1.

z 1

Given any § > 0, we define the following functions on the boundary
Wi:2€0S — gi1(2)g1(2)" +1 €N,
W3:2€0S — g3(2)"gs(z) +1 €N.
According to Devinatz’s factorization theorem [44], we can find invertible bounded

analytic functions wi,wsz : S — N with bounded analytic inverse and satisfying
the following identities on 0S

wi(2)wi(2)" = Wi(z),
ws(z)*ws(2) Ws(z2).

Then, we consider the factorization
f(2) = h1(2)ha(2)hs(2)
with ho(z) = hy ' (2)f(2)h3 ' (2) and hy, hs given by

(3.7)

hi(z) = Do Dirwi(2)D Do,

hs(z) = D%D_ﬁvvg,(z)DﬁDlv;oz.
Note than our original hypothesis (3.1) implies the boundedness and analyticity of
h1,ha, hs. Then, recalling that D“ is a unitary for any w € C such that Rew = 0

and that 2 < wj,v; < oo (so that we have triangle inequality on L, /2(N) and
Ly, /2(N)), we obtain from (3.6) the following estimates for hy and hs

2 1 s L
Zsélg) th (Z)’ LugN) Zsélgz HD““ wi(z)wi(z)" Do HLuO/Z(N)
< Sélg HD%gl(z)Hiuo(N) +0<1+0,
z&0o
2 1 1
Zsélg) ”h3(z)||Lvo(N) = zsé%:, ||D“0 ws(z)*ws(z)D%o | Luga(N)
< Sélg) Hgg(z)D% ’2LUO(N) +d<1+9,
z2€0o0
sup [[hs (2)D% % [ = sup [DEwi(2)wa(2) DI,
Z€01 “1 2€01 u1/2( )
< swp D@}, ) +I< 1+,
zE01
1 2 1 . 1
p I hs @l = R PG @D vy

1,2
< Dv 0<1+06.
< swp |g3(2)D7r HLvl(N) +0<1+

By Kosaki’s interpolation, we obtain
o

|h1(6)D7 ~ %

\LUH(N) < V1434,
6 _ 6
D% ks O],y < VIFO.
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On the other hand, using again the unitarity of D* when Rew = 0, we have
2

sup [[n2(2)][ 1, (ay

_ _ 2
= sup Wi " (2)ga(2)2(2)gs (Iws (|, gy
2€0p

< sw Wit @ o g2z, anllos@ws GG
zZ€0o

< sup [[wi ' (2)an (2 () w1 @]y 5 (@) 3(2) 5 (2w I ey

Z€E0,
D% % by (2)D7 5 |2
su ug  uy z)Dvo 1
zEapi ’ qu(M)
T e [wit(2)91(2)g2(2)g3(2) w5 I(Z)Hiﬂw)
4 1
— 2 2 a3 ;
= I @91 92, 93w @,

< s Wi @90 ()W ) 15 )95 0525 Gy

Then we combine (3.7) with the inequalities
91(2)91(2)" < g1(2)g1(2)" + 01,

93(2)"g3(2) < g3(2)"g3(z) + 61,
to obtain by Kosaki’s interpolation

2] o

[D# ~#T hy(6)D76 o <1

}ng (M)

In summary, we have obtained the following factorization

1 o _ 6 o _ 0 L . . .
f(0) = (D7 wi(0)) (D~ ho(0)D¥ 1) (w3(0)D% ) = j1(6)j2(0)js(0),
with
71O Luyvy < VIHE, 52002, <1, [l73(0)]
Therefore, (3.3) follows by letting 6 — 0 in
| | |j7:917'U9 (f(e)) ‘ | |ug-q9-v9 <1 + 0.

This concludes the proof of Lemma 3.1 for finite von Neumann algebras. 0

Luy(N) < v1+96.

REMARK 3.5. Note that condition ii) of Lemma 3.1 is not needed at any point
in the proof given above for finite von Neumann algebras. This will be crucial in
the proof of Theorem 3.2 below.

3.2. Conditional expectations on J,K

Before the proof of Lemma 3.1 for general von Neumann algebras, we need
some preliminary results in order to adapt Haagerup’s construction to the present
context. We begin with a technical lemma and some auxiliary interpolation results.
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LEMMA 3.6. Let M be a von Neumann algebra equipped with a n.f. state ¢
and let D be the associated density. Let us consider a bounded analytic function
f:8 — M. Then, given 1 < p < oo, the following functions are also bounded
analytic

h:z2eS8S — DUDPFD*P e [, (M),

ho:2€8 — DPf(z)DU=2/P ¢ [ (M).
PROOF. The arguments to be used hold for both h; and hs. Hence, we only
prove the assertion for h;. The continuity and boundedness of h; on the closure of

S is trivial. To prove the analyticity of h; we may clearly assume that the function
f is a finite power series

f(z)= Zxkzk with  xp € M.
k=1

In particular, it suffices to see that for a fixed element xy € M, the function
ho:z €S DI=/PyD/P ¢ [, (M)

is analytic. If 2o € M, is an analytic element this is clear. Assume that x( is not
an analytic element. According to Pedersen-Takesaki [42], the net (2)y>0 C M,

given by
Ty = 1/1/ o¢(g) exp(—~t?) dt
™ JRr

converges strongly to zg as vy — co. Then Lemma 2.3 in [16] gives that
hy(2) = D(l—Z)/prDZ/p

converges pointwise to ho(z) in the norm of L,(M). Now, let us consider a linear
functional ¢ : L,(M) — C and a cycle I" in S homologous to zero with respect to
S. Then, since ||z ||pm < ||zo]|m for all 4 > 0, the dominated convergence theorem
gives

/F<P(ho(2’))d2’ = lim [ ¢p(hy(2))dz = 0.

Y= Jr

Thus, ¢(ho) is analytic for any linear functional ¢ : L,(M) — C and so is hg. O

LEMMA 3.7. If 2 < u,v < 00, we have the following isometries
[Lu(N) Loo (M), Lu(N) L2(M)], Ly(N) Lz /g (M),
[Loo(M)Ly(N), Lo(M)Ly(N)], = Lasg(M)Ly(N).

PRrOOF. We shall only prove that

Xg(M) = [Ly(N)Loo(M), Ly(N)La(M)],, = Lyy(N)Lgjg(M).

0

The other isometry can be proved in the same way. The lower estimate follows by
multilinear interpolation just as in the proof of Lemma 3.1 for finite von Neumann
algebras. To prove the upper estimate we first note that, according to Proposition
2.6, we have a dense subset

DN (Ly(M) N Log(M)) € Ly (N) Ly jg(M).
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Since this subset is also dense in Xg(M) (note that the intersection in this case is
Ly(N)Loo(M)) , it suffices to show that for any = of the form D'/“ay with a € N/
and y € La(M) N Lo (M), we have the following inequality

(3-8) []lu.2 < l2llxe)-

Assume that the norm of z in Xg(M) is less than 1. Then we can find a bounded
analytic function f : S — Ly(N)Loo(M) + Ly(N)Lao(M) satisfying f(6) = x and
the inequalities

Sup Hf<Z)Huoo < 1’

3.9 zZE€0p
39 w /)], < L
z€01

Moreover, by our previous considerations we can assume that f has the form

f(2) =D (),
where f1 : S — La(M) N Ly (M) is a bounded analytic function. Then we deduce

from the boundary conditions (3.9) and Proposition 2.6 that f can be written on
dS as follows

1(2) =D g1(2)ga(2),
with g1 : 9§ — N and g2 : S — La(M) N Lo (M) satisfying

1
Hlaux{zselg?S HDugl(Z)HLu(N)’Sgg) Hgg(z)HLoo(M),ilg ng(Z)HLQ(M)} <1

Now we apply Devinatz’s theorem [44] to W : z € S — ¢1(2)g1(2)* + 01, so that
we find an invertible bounded analytic function w : § — N satisfying ww* = W on
the boundary. Then we consider the factorization

F(2) = (D¥w(2)) (w (2) f1(2)).

Clearly both factors are bounded analytic and we have

o 2 - o D
ZseuggHDuw(z)HLu(N) = Zseuafj9 |D*w(2)w(2)*D L) < 1494,
sup ||W71(Z)f1(z)||Loo(M) S sup Hwil(z)gl(z)HLoo(N)||92(Z)HL°O(M) < 1;

2€0y z€0o
sup 5 A < s v Gl o2 <1
2€01 z€01

Finally, by Kosaki’s interpolation and letting § — 0, we obtain inequality (3.8). O
LEMMA 3.8. Assume 1/u+1/2=1/p=1/2+1/v and 1/qp = (1-06)/p+6/2.

Then, we have the following isometries
[LP(M)vLU<N)L2(M)]9 Lu/G(N)Lqe(M)a

[Lp(M), La(M)Ly(N)] ;= Lgy (M) Lysp(N).

PRrROOF. One more time, the lower estimate follows by multilinear interpolation
and we shall only prove the first isometry

X9(M) = [LP(M>7LU(N)L2(M)]9 = Lu/G(N)Lqe (M)
Let us point out that Holder inequality gives
A = Ly(M) 0 Ly(N)Lo(M) = L (N)Lo(M).



3.2. CONDITIONAL EXPECTATIONS ON 0, K 51

On the other hand, it follows from Lemma 1.2 that
DY? M, = DY*N,M,D'? = DY/“N, M ,D" /%
Hence DY/P M, is dense in A and in L, /g(N)Lg, (M) so that it suffices to see
2]l -go < [l@llxq(r)

for any element x of the form D'/Py for some y € M,. Assume that the norm of z
in Xy(M) is less than 1. Then, according to the considerations above, we can find
a bounded analytic function f: S — L,(M) + L, (N)La(M) of the form

f(z) =DYPf(2) with f;:S — M, bounded analytic,
satisfying f(f) = x and such that
(3.10) max{ sup Hf(z)”p, sup Hf(z)Huz} <1.
z€0o z€01
Moreover, since f; takes values in M, we can rewrite f as
fz)= D%+1%zfg(z)D§ with  fy: S — M, bounded analytic.
In particular, f| o has the form
f(1+it) =Dvo_y5(fa(1+it))D3.
According to Proposition 2.6 and the boundary estimate for f on 0;, we can write
F(1+it) = Dugy(1+it)ga(1 + it),
with g1 : 91 — N and g3 : &1 — Lo (M) satisfying
3.11 max{ sup D g (z , sup z } < 1.
(3.11) s D g1 ( )HLu(J\/) i ¢ lg2( )HLQ(M)

By Devinatz’s theorem, we can consider an invertible bounded analytic function
w : § — N satisfying w(z)w(z)* = W(z) for all z € &S where this time the
function W : 8§ — N is given by

B 1, if z € 9,
Wiz) = { 0 tmzyu(91(2)g1(2)%) + 61, if 2 € 0y,

with z = Rez 4 ilmz. Then we factorize f as f(z) = hy(z)D ™% hy(z) where
hi(z) = Diw(2)D 7w,
ho(z) = Diw '(z)D =

o Dszfz(Z)D%~
Note that Lemma 3.6 provides the boundedness and analyticity of h; and hy. As

usual, we need to estimate the norms of hy and hy on the boundary. We begin with
the estimates for hy. On 9y we have

Lo(N) — §g§’|0t/u(w(it))HLm(N)

sup th(z)D_%
z€0o

= sup W), o,

1/2

Loy = L

= sup ||w(z)w(z)*
zE€0Dp

On 01 we apply the boundary condition (3.11)

2 1 . 2
sup @, vy = 502 [lou(Dxwl+ D) v,
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= sup |[Diw(2) 2 |
2€d,

— sup [DEw(e)w(z D,
2€EO1

w/2(N)
S sup 10—tz /u (Dagl(z)gl(z)*Da)||Lu/2(/\/) +0
2E€01
= sup HDigl(z)Hi W) +d<1+0.
Z€01 “
For the estimate of hy on dy we use (3.10)
RSN 1,
S0 [[h22)ll, gy = 80P [lonu (WD )02 (D (i) 1, 0y
= sup floryu (w (i) o o up(D7 F20)) 1

= sup W @)o—/p (D7 29) 1,

< sup (| (w(it)w(it)*) ™ |1/2 N)HD SRICO] P
= sup H(T_t/Q(DEfQ(it))HLP(M)
=5 [[£)ll, gy <1
Finally, we use again (3.11) to estimate hy on d;
sup D= ha(2)]] (0

= iup loesu (W (1 +it))o—sja (f2(1 + it) %)HLQ(M)
€R

= sup Hat/u(w (1+it) )gl + it)ga(1 +it) HL M)
< s [loyu (v A+ i) n @+ )], llea il
< Sup HUt/u(W (1+1t) )91 (T+it)gr (1 +it)* at/u( 1—|—zt) ||1/2
= swp w1+ it)o (g1 (1 +it)gr (1 + i) ) w™ L (1 + it) ||1/2
te
< *___—1 * 1/2 :1
< Zsélél))l HW (2)w(z)w(z)"w " (2) Loo(N)
In summary, by Kosaki’s interpolation we find
_1-9 _e
|h1(0)D~ = HLu/ew) <v1+4 and |D uh2(9)y|ng < 1.
Therefore, since we have
1(6) = (m(6)D~ ) (D~ ho(6)),
the result follows by letting 6 — 0. This completes the proof. O

REMARK 3.9. For the proof of Lemmas 3.7 and 3.8 it has been essential to have
an explicit description of the intersection A of the interpolation pair. The lack of
this description in the general case is what forces us to use Haagerup’s construction
to extend the result from finite to general von Neumann algebras.
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Let us consider a so-called commutative square of conditional expectations.
That is, on one hand we have a von Neumann subalgebra N7 of M;. On the other,
we consider a von Neumann subalgebra Ay of Mz such that My (resp. N2) is a
von Neumann subalgebra of M (resp. A7) so that the diagram in Figure IT below
commutes. The interpolation results in Lemmas 3.7 and 3.8 will allow us to show
that the conditional expectation Ea extends to a contractive projection on the
amalgamated spaces which correspond to points (1/u,1/v,1/q) in the set doK.

N1 ——— N
Ex
FIGURE II: A COMMUTATIVE SQUARE.

OBSERVATION 3.10. Let us assume that the commutative square above satisfies
that E;(M3) C Na. Then we claim that the restriction El\Mz of E; to M3 coincides
with E5. Indeed, let us consider an element x € M. Then, since E;(z) € Ns, we
have

Ei(x) = Enx o Ei(z) = Ex 0 Epq(z) = Ea(a).
Similarly, we have Exq|,. = Ex whenever Exq(N1) C V2. In what follows we shall
assume these conditions on the commutative squares we are using. In fact, the
commutative squares obtained from the Haagerup construction defined below will
satisfy these assumptions.

PropPOSITION 3.11. If2 < wu,v < 0o, Eprq extends to contractions
EM : Lu(Nl)LQ(Ml) — LU(NQ)LQ(MQ),
EM : LQ(Ml)LU(Nl) — L2(M2)Lv(/\/2)'
PROOF. Let us note that for any index 2 < p < oo, the natural inclusion
J i Ly(Mz,Ea) — Ly(Ma, Ey)
is an isometry. Indeed, since the space L,(N>) embeds isometrically in L,(N;) and
the conditional expectation E; is the restriction El‘ Mo of E; to My (see Observation
3.10), the following identity holds for any = € L} (M2, Ez)

1/2 1/2

@) o) = [Ex@a™) 2] oy = [Eal@a) 2], o = o

Now let us consider the index 2 < u < oo defined by 1/2 = 1/u+1/p. When u > 2
we have p < oo and Proposition 1.11 gives

Ly(Nj)La(Mj) = Ly(My,Ej)* for j=1,2.

Therefore, our map Exg : Ly (Ni)La(Mi1) — Ly(N2)La(Ms) coincides with the
adjoint of j so that we obtain a contraction. Finally, for u = 2 we just need to note
that Ly (N;)L2(M;) embeds isometrically in L7 (M, E;)* for j = 0, 1. Indeed, the
first part of the proof of Proposition 1.11 holds even for p = co. Therefore, in this
case our map is a restriction of j* to a closed subspace of L;(./\/ll, E1)* and hence

contractive. The proof of the contractivity of the second mapping follows in the
same way after replacing L (M, E) by L5 (M, E). O

L;(MQ,EQ)'
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ProrosiTiON 3.12. If 2 < wu,v < 00, Epq extends to a contraction
E./\/l : Lu(Nl)LOO(Ml)LU(Nl) — LU(NQ)LOO(MQ)LU(NQ)

PROOF. According to Proposition 2.6, it suffices to prove the assertion on the
dense subspace juu (NiyLoo(M1)N1,). Thus, let 2 be an element in such subspace

so that it decomposes as = D'/ "y, 3D'/? with «, f € N7 and yo € M;. Let us
define the operators

a= (aa* +61) 1/2, b= (68 + 51)1/2, y=a tayesbt,
so that 2 = D'/%aybD'/?. Then, we proceed as in [27] by writing E () as follows
Eae(w) = DV *Ens(a?)/2 [Er(a®) " 2Ene(agb)Eae (b2) /2| Ea(67) /2D

We clearly have

IN

(I
(HQD%’ L) +5>

On the other hand, let us consider for a moment a von Neumann subalgebra N
of a given von Neumann algebra M and let E : M — N be the corresponding
conditional expectation. Let us consider a positive element v € M satisfying
~v > 01. Then we define the map

A, cw e M — E(v?)TY2E(ywy)E(?) T2 e V.

According to [27], this is a completely positive map so that |A,| = [|A,(1)| = 1.
Thus, A is a contraction. Then we apply this result to

a 0
7= ( 0 b )
More concretely, A, : My ® M; — My ® M, is given by

M) = B ()] Bl [En (4 % )] with Eu— idoEw.

(3.12) ID*Em@®) 2]l 0

1

HEM(b2)1/2 Ds

IN

L,(N2)

Then we observe that

A’Y( 8 g ) _ ( 8 EM(a2)—1/2EMéayb)EM(b2)—1/2 )

In particular, since ||y|am, < Ha’lcyHN1 lvoll Aty ||ﬁb’1||N1 < |lyollm, , we deduce

(313)  [|Eaa(@®) " Erd(ayb)Erm (D)2, nen) < Il ans)-

In summary, according to (3.12) and (3.13)

Nl

1
[D*ErCmnB)D |, oy < (ID¥allZ, 005, +6) ol cren (19712, ) +6) ™

The proof is completed by letting § — 0 and taking the infimum on the right. O

COROLLARY 3.13. If (1/u,1/v,1/q) € 0K, Exq extends to a contraction
EM : Lu(Nl)Lq(Ml)Ly(Nl) - Lu(NQ)Lq(MQ)LU(NQ)
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PROOF. The case 1/¢ = 0 has already been considered in Proposition 3.12.
Thus, assume (without lost of generality) that 1/v = 0. Then, we know from
Propositions 3.11 and 3.12 that

EM: L1L(N1)L2(M1) — LU(NQ)LQ(MQ)7
EMZ Lu(Nl)Loo(Ml) — Lu(NQ)LOO(MQ),

are contractions. Therefore, it follows from Lemma 3.7 that the same holds for
Eam: LU<N1)Lq(M1) - Lu(N2>Lq(M2)

when 2 < ¢ < oo. Finally, it remains to consider the case 1 < ¢ < 2. Given
1<¢g<2and2<u<ocosuchthat 1/u+ 1/g < 1, we consider the index defined
by 1/p =1/u+ 1/q. Then, according to Lemma 3.8 we have

Lu(N)Lg(M1) = [Ly(Ma), Ly, (N1) La(M1)]

for some 0 < 6 <1 and some 2 < u; < co. Note that the fact that u; can be chosen
so that 2 < u; < oo follows by a quick look at Figure I. By Proposition 3.11, E 4
is contractive on L, (N7)L2(M;) and of course on L,(Mj). Therefore, the result
follows by complex interpolation. O

3.3. General von Neumann algebras I

In this section we prove Lemma 3.1 under the assumption min(gg,q1) < oo.
However, most of the arguments we are giving here will be useful for the remaining
case. Before starting the proof we fix some notation. As in Lemma 3.1, we are
given a von Neumann subalgebra A of M and we denote by E : M — N the
corresponding conditional expectation. According to the Haagerup construction
sketched in Section 2.1, we have

RM:MNUG:UMk.

E>1
As above, we consider the conditional expectation
Eac: Zl‘gk(g) ERmM— xg €M
geG

and the state ® = ¢ o Epq on Raq. Moreover, we have conditional expectations
Em,, : Rpm — My, for each k > 1 so that (if ¢ denotes the restriction of @ to My,
and D, stands for the corresponding density) the family of finite von Neumann
subalgebras (My)g>1 satisfy

(3.14) c1(k)1lpm, <Dy, < ca(k)lng,.
Moreover, given 0 <7 <1 and 1 < p < 0o, we have

(3.15) lim [ DS/ (3 — &(2) DY

k—oo ¥

=0
LP(RM)

for any £ € Raq. Clearly, we can consider another Haagerup construction for the
von Neumann subalgebra A so that the analogous properties hold. In summary,
we sketch the situation in Figure III below.
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EM ng
M~ R - My,
E \ E l&c
N = Rn - Ni

FIGURE III: HAAGERUP’S CONSTRUCTION.

Now let us consider two points (1/ug, 1/vo,1/qo) and (1/uy,1/v1,1/q1) in O K.
Then it is clear that the natural inclusion mappings
id : Ly, (N)qu (M) Ly, W) — Ly, (RN)LQO (Rm) Loy (Rv)s
id : Lul (N)Lih (M)L’Ul (N) - Lul (RN>L(11 (RM)LU1 (RN)’

are contractions. In particular, defining for 0 <6 <1

Xo(M) = [Zug V) Ly (M) Ly (V) Ly (V) Ly (M) Loy (V)]

0
Xo(Rat) = [ Luo(Ra) Ly (Rat) Lug (RA): Ly (Rav) Ly (Rovn) Luy (R

we obtain by interpolation that id : Xg(M) — Xp(Ram) is also a contraction.
Now, considering the commutative square on the right of Figure III, it follows from
Corollary 3.13 that for each k£ > 1 we have contractions

ng : Luo (RN)LQO(RM)LUO (RN) - Luo (Nk)qu(Mk)Lvo (Nk),
ng : Lul (RN)LQ1 (RM)LM (RN) - Lu1 (Nk)LQ1 (Mk)Lm (Nk)
Moreover, My, satisfies (3.14) for each k > 1. In particular, since we have already

proved that Lemma 3.1 holds in this case, we obtain by complex interpolation a
contraction Eay, : Xg(Ra) — Ly, (Ni)Lg, (M) Ly, (Ni). In summary, writing

ng_ = ng o ld,
we have found a contraction
(3.16) 5Mk : Xa(./\/l) — LuG (Nk)qu (Mk)ng(Nk)-

On the other hand, regarding the space Ly, (Ny)Lg, (M) Ly, (Ny) as a subspace
of Ly, (Ra7)Lgy(Ra) Ly, (Rar), we can consider the restriction of the conditional
expectation Exq to My and define the following map

Ent Ly (Ni) Lgg (M) Ly (Ni) = Luy (N) Lgg (M) Ly, (V).
The following technical result will be the key to prove Lemma 3.1.
PROPOSITION 3.14. If k> 1 and 0 < 0 < 1, Exq extends to a contraction
Ent 0 Luy (Ni) Lgg (M) Ly (Ni) = Lug(N)Lgy (M) Ly, (N).
PRrROOF. It clearly suffices to see our assertion on the dense subspace
A = DY Nioa D29 My, o D20 N, DV,

where My, , and Ny , denote the %-algebras of analytic elements in My, and N
respectively. Thus, let us consider an element x in A; and assume that the norm
of z in Ly, (Ng)Lg, (Mg)Ly, (Ng) is less that 1. Then, since we know that Lemma
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3.1 holds for finite von Neumann algebras satisfying (3.14), we can find a bounded
analytic function f: S — Ay satisfying f(6) = 2 and the boundary estimate
025 { S5 (17 g 000 590 1), | < 1
Then we use the hypothesis 1/ug + 1/gp + 1/vg = 1/ug + 1/vg + 1/go and Lemma
1.2 to rewrite A, as follows
A = Dilo/uo+1/2QOMk D;/QQOJrl/UO
k a k :

Therefore, multiplying if necessary on the left and on the right by certain powers
of DZ, and its inverses, we may assume that f has the following form (recall that
we are using here the property (3.14))

1—=z z 1—2

2z  l=z =z z 1= 2z 1=z
(3.17) f(z) = D DEDZR DI f1(2) DEI DEP DA DY

with f1 : & — My, , bounded analytic. In particular, we have

z

SRR I
u q q, v,
o CEa O )
2€00 0900

1 1 1 1

ul ' 2491 291 vy
sup ||Dgr f1(2)Dgi < 1
2€01 u1-q1-v1

Note that here we have used the fact that D¢, is a unitary for any w € C such that
Rew = 0. Now we apply Corollary 3.13 to the commutative square on the left of
Figure III. In other words, we have contractions

Eat : Loy (Ni)Lg; (M) Ly, (Ni) — Ly, (N)Lg,(M)Ly,; (N)
since (1/u;,1/v;,1/q;) € 0K for j =0, 1. Therefore,

L_ﬁ.% %J’_i
sup |Dg® " Ea(f1(2))Dg™ ™ < 1
z€0y u0q0°V0

pi T E pzi 1
sup | Dy Mm(f1(2))Dy < L
z€01 u1-q1-v1

Then, according to Proposition 2.6, we can find functions g1, g3 : S — N and
g2 : 05 — Lg; (M) such that

D}o/zth EM(fl(z))D;/ij = g1(2)g2(2)g3(z) forall ze€9;

and satisfying the following boundary estimates

1
Lugy 19212, 00y l93(2)DE HLvom} <L

1
sup {HD;O gl(z)|
zE€0p

< 1.

Ly, (N) }

Then we can proceed as in the proof of Lemma 3.1 for finite von Neumann algebras.
Namely, we apply Devinatz’s factorization theorem to the functions

Wi:2€08 — Oumzj2qi—tmz/20(91(2)91(2)") + 01 €N,
W3:2€08 — Ommz/2g9—Imz/201 (93(2’)*93(2’)) +381eN,
so that we can find invertible bounded analytic functions w1, w3 : S — N satisfying
wi(2)wi(2)" Wi (2),
ws(z)*ws(z) = Ws(z),

1
Luy (N)? HQQ(Z)HLq1 oy ll9s(2)De!

1
sup {[|DZ g1(2)|
z€01
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for all z € 9S. Then we consider the factorization

Em(f(2)) = hi(2)ha(2)hs(2)
with ho(z) = hi ' (2)Eam(f(2))h3  (2) and hy, hs given by

1-z =z _z =z
hi(z) = Dg° Dg'wi(z)Dy, “' Dy,
z .z =z 1=z
hs(z) = D@D, Tws(z)Dg DO .

To estimate the norm of h;(f) for j = 1,2,3 in the corresponding L, space we
proceed as in the proof of Lemma 3.1 for finite von Neumann algebras. That is, we
first show the boundedness and analyticity of hq, ho, hg. This enables us to estimate
the norm on the boundary dS and apply Kosaki’s interpolation. Let us start with
the function h;. To that aim we note that

(a) If up < uq, we can write

(&-)(1-2) &2

hl( ) DulD 0 Wl(Z)DLpuo “1
(b) If ug > uy, we can write

(&-&)=

1 1 1y(1—s 11
hl(z):(D;ODq,” uQ o uo)(l )) ul)

w1(2)Dg D ™
By Lemma 3.6, h; is either bounded analytic or can be written as

(—k)

hi(z) = ji(z)D™ ™,
with j; bounded analytic. In any case, Kosaki’s interpolation gives

0 _ 6
Iha(6)Dg* ™|

1 1
< max { S0 [ ()], ey 500 [l ()P lowyon )

Moreover, arguing as in the proof of Lemma 3.1 for finite von Neumann algebras

sup th(z)HLu W) < V149,
Z€0p 0

Luy (W)

i S
u1 uo’

sup Hh1 Lo,y < Vv144.

Indeed, the only mgmﬁcant difference (with respect to the proof for finite von
Neumann algebras) is that we can not assume any longer that D¢ is a unitary for a
purely imaginary complex number w. However, this difficulty is easily avoided by
using the norm-invariance property of the one-parameter modular automorphism
group. In fact, that is the reason why we used the modular automorphism group
in the definition of W; and W3, see also the proof of Lemma 3.8. Our previous
estimates give rise to

6 _ 6
(3.18) I (ODG 0, oy < VI+6.
Similarly, we have

6 _ 6
(3.19) [Dgt s O)|,,, oy < VI+9:

Finally, we consider the function hs. To study the boundedness and analyticity of
ha, we recall the expression for f obtained in (3.17). Then, we can rewrite hs in
the following way

1-z =z _z =z
ha(2) = DE D, 0wy (:)D2% DET Eag(f1(2))DE" D wy ' (2)D;, * DY
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Using one more time that 1/ug +1/q0 + 1/vo = 1/u1 + 1/q1 + 1/v1, we can write

(a) If max(ug,u1) = up and max(vg,v1) = vg, we have

z _ z 1 1-2 1-=
_ uy ug — uq uq
ha(z) = Dg wyi (2)Dy
1—2 1—2 1—2 z z 1—2 1—2 1—=2
- + + For - +
uQ uy 290 2q1 291 ' 290 vl v
x Em(D fi(z)DZ )

1—z _ 1—=z z _ =z
x Dg' 0 wil(z)Dgt .

The first and third terms on the right hand side are bounded analytic

by Lemma 3.6. The middle term is clearly bounded analytic in L,, (M).

Indeed, it follows easily from the fact that D, satisfies (3.14).

(b) If max(ug,u1) = w1 and max(vg,v1) = v1, we proceed as above with

1 1 1 1

D0 "Thy(z2)Dg L.

(¢) If max(ug,u1) = ug and max(vg, v1) = vy, we proceed as above with

11

ho(2)Dg” "',

(d) If max(ug,u1) = u; and max(vg,v1) = vg, we proceed as above with

1

1 1
DL T hy(2).

In any of the possible situations considered, Kosaki’s interpolation provides the
following estimate

6 _ 6 6 _ 6
HD;O u1h2(9)D;0 vy

‘ng (M)
11 11
uQ uq vg vl
= max{zsgg) ||h2(z)||qu(/\/t)vZSS(};1 1 ha(2)Dg Hqu (M)}'

On the other hand, arguing one more time as in the proof of Lemma 3.1,

h 1,
SUp [|ha(e)ll gy <

1 11
wo " ur %0 1
zsggHD¢ ha(2)Dg Hqu(M) < L
In particular,
o _ 6 o _ 6
(3.20) [Dg° “the(9)D ™ }L%(M)<1.

In summary, we have found a factorization of Eq(x)
0 (2]

En(f(9) = (6D ) (DEF “ ho(@)DF ) (D hy0))
which, according to (3.18, 3.19, 3.20), provides the estimate
H Em(x) <1+0.
Therefore, the proof is concluded by letting § — 0 in the inequality above. a

‘UG'QG'UQ

COROLLARY 3.15. If k> 1 and 0 < 60 <1, we have
|EntErt, @), .o < lelixyonn Jorall € Xo(M).

PROOF. The result follows automatically from (3.16) and Proposition 3.14. O
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Proor orF LEMMA 3.1. As in Lemmas 3.7 and 3.8 and also as in the proof
for finite von Neumann algebras, the lower estimate follows by using multilinear
interpolation. This means that we have a contraction

(3.21) id : Luy(N)Lgy (M) Ly, (N) — Xg(M).
To prove the converse, let us consider the space
A= D}/""/\/’D}/Qq"MD}D/Q""/\/’D;/“".

According to Proposition 2.8 and Corollary 3.15, given x € A we have

ol

0 g0 < 10y rgy + Jim 2 = EneErte @17,

Therefore, we need to see that the limit above is 0. To that aim, we use that z € A
so that we can write

z=DY"yD/" with y€ Lg,(M).

Then we use the contractivity of Exq on Ly, (Raq) to obtain

ug-qo-ve

k]l_)H;O HCE - EMng (x)|‘u9-q9-ve = k;li)n;o HD}O/IU’G (y a EMng(y))D‘»l"/ve H
< o= Endn s, o
= Hm [[Ev(y = Ene @), o
< klin;0||y*5Mk(y)||Lqe(RM)'

Then, recalling our hypothesis min(gg, q1) < oo assumed at the beginning of this
paragraph, we deduce that gy < oo for any 0 < 6 < 1. Therefore, according to
(3.15) we conclude that the limit above is 0. In particular, we have

[2llus-govs = 1Zllxp(r) forall e A

Now, using the density of A in L,,(N)Lg,(M)L,,(N) and (3.21) we deduce that
the same holds for any = € L,,(N)Lg,(M)L,,(N). Hence, it remains to see that
Ly, (N)Lgy(M)Ly, (N) is dense in Xg(M). To that aim, it suffices to prove that
the subspace

EmEmy (Xo(M)) C Lug (N) Lgy (M) Ly (N)

is dense in Xg(M). Moreover, since the intersection space
A= LUO (N)L(I(J (M)LUO (N) N Lul (N)L(h (M)Lvl (N)

is dense in Xp(M) for any 0 < 6 < 1, we just need to approximate any element x
in A by an element in Ex(Epq, (Xo(M)) with respect to the norm of Xg(M). Using
one more time that min(gp,q1) < oo we assume (without lost of generality) that
qo < 00. Then, applying the three lines lemma

1-6

U0 °qo Vo

[%

u1-q1-v1’

o — ExeEan @), gue) < 12 — EmEn @ o 1o — EneEnn, (0]

we just need to show that the first term on the right tends to 0 as k — oo while
the second term is uniformly bounded on k. The uniform boundedness follows from
Corollary 3.15 since

||93 - EMng(z)||ul.q1.vl < ||5L'Hu1'q1~v1 + HEM‘SM;C(I)H
For the first term, we pick y € Ly, (M) so that
o~ DY oyDY ], <6

up'qo-vo

u1-q1v1 < 2||15Hu1'q1'v1~
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Then we have
|2 — EmEnn, () < o =Dy gDy |

Uo-go-vo Uop-qo-vo

+ HDSID/UO (y - EMng (y))DSIO/UO Huo-qo-vo
+ HD<1P/uO EMng(y)Di’/vo - EMng(x)Huo'%mo’
In particular, according to Corollary 3.15

2 = EMEM (@) ]| S 26+ DY (4 = EmEnn (v)) DY ™|

A

%0400

< 20+ [ly - EmEm Wl 1, oany
= 20+ HEM(y_ng(y))HLqO(M)
< 204 |y = Em W1, (mp

Finally, since gy < oo by hypothesis, we know that the second term on the right
tends to 0 as k — oo. Then, we let § — 0. This completes the proof of Lemma 3.1
for general von Neumann algebras with min(qo, ¢1) < oo. O

3.4. General von Neumann algebras 11

To complete the proof of Lemma 3.1 we have to study the case min(qo, 1) = oo.
Note that the proof above fails in this case since (3.15) does not hold for p = co.
However, Corollary 3.15 is still valid in this case so that it suffices to see that

(3.22) 1] 21g-00-vp < ilili |‘EM€MI€($)Hu9'oo'vg for all = € Xp(M).

Indeed, since the lower estimate follows one more time by multilinear interpolation,
inequality (3.22) and Corollary 3.15 are enough to conclude the proof of Lemma
3.1. In order to prove (3.22) we shall need to consider the spaces

L7(M,E) @aq LE(M,E) = {kalkw% | wik € L3(M,E), way, € LE(M, E)}
for 2 < p,q < oo and equipped with
Lq(N)}

/ /
lyllr,-c, = inf {H (Zk E(wmw’fk))l 2‘ . (N)H<Zk E(wgszk))l 2‘
P

where the infimum runs over all possible decompositions

Yy= E K W1k W2k -

It is not hard to check that Lj(M,E) @ Lg(M,E) is a normed space, see e.g.
Lemma 3.5 in [16] for a similar result. The notation ® a4 is motivated by the fact
that the norm given above comes from an amalgamated Haagerup tensor product,
we refer the reader to Chapter 6 below for a more detailed explanation. The
following result is the key to conclude the proof of Lemma 3.1. We use the well
known Grothendieck-Pietsch version of the Hahn-Banach theorem, see [43] for more
on this topic.

THEOREM 3.16. Let 2 < p,q,u,v < oo related by
lju+1/p=1/2=1/v+1/q.
Then, we have the following isometry via the anti-linear bracket (x,y) = tr(x*y)

LulN) Lao(M)Lo(N) = (L3(M, E) ©00 L5(M, E)) "
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ProOOF. Given 2 = ayb in Ly,(N)Lo(M)L,(N), Holder inequality gives
o i)
oo [ ][, )|

< o (e )|l | (32, e 9 )
= (a0 [, Elwnini)]) ot ([ 32, Bl |p76)
< Nollalllo bl (3, Eri)) | | (2, Ewsiw))

Thus, taking the infimum on the right, we have a contraction
2 € Ly(N)Loo(M)Ly(N) = tr(z* ) € (LL(M,E) @ LE(M,E))".

To prove the converse, we take a norm one functional ¢ on Ly (M, E) @ Lg (M, E).
If1/s =1/p+1/q it is clear that (see Remark 1.7)

Ly(M) = Ly(M)Ly(M) — L,(M,E) @ Lyg(M, E)
is a dense contractive inclusion. In particular, we can assume that there exists
z € Ly(M) = Ly(M)Ly(M)
satisfying
(3.23) e(y) = ea(y) = tr(z"y).

To conclude, it suffices to see that ||z]/y.cov < 1. Let us consider a finite family
Y1,Y2, .., Ym in the dense subspace L,(M)L4(M) with decompositions

Y = W1kWag-
Since ¢, has norm one

1/2 1/2
: <[ 32, Emivl], | 30, B,y
‘ka (’UJlkw2k)‘ > sz (wlkwlk) L, Zk (wzszk) Ly/s(N)

Moreover, since the right hand side remains unchanged under multiplication with
unimodular complex numbers z; € T, we have the following inequality
1/2

Zk |a (wikwar) | < H Zk E(wirwy ‘ L) H Z E(w3rwak H L)
Now we consider the unit balls in L, (N') and L, (N)
Bi = {aeLaV)| ol <1},
B: = {BeLWN) [ I8l <1}
By the arithmetic-geometric mean inequality

(3.24) Z ‘9% (wlkw2k:)’
1
< 2( sup Z tr(aE(wipwiy)a’) + sup Z tr(s3 w%wgk)ﬁ))

a€eBy BEB2

1 2 2
= (o 37 lowinlly, o + sup 37, losesll )
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Note that B; and Bs are compact when equipped with the o(Ly(N), Ly (N))
and the o(Ly,(N), Ly (N)) topologies respectively. Now, labelling (wig)r>1 and
(wak)k>1 by wi and way, we consider fy,w, : B1 X B2 — R defined by

Fonwn (@0,8) = 37 Nlowie[ 7, ey + D, Mol 0y =23, [0 (wriwa) |-
This gives rise to the cone
C,= {fleQ € C(By x By) | wipway € Lp(M)Lq(M)}.
Then we consider the open cone
C ={fec(B xBy)| supf <0}

According to (3.24), the cones C, and C_ are disjoint. Therefore, the geometric
Hahn-Banach theorem provides a norm one functional £ : C(B; x B3) — R satisfying

§(f-) <p<&(fy)

for some p € R and all (fy, f-) € C. x C_. Moreover, since we are dealing with
cones, it turns out that p = 0 and £ is a positive functional. Then, according to
Riesz representation theorem, there exists a unique (positive) Radon measure ¢
on By x By satisfying

(3.25) f(f):/B : fdue forall feC(Byx Bs).

In fact, since £ is a norm one positive functional, ji¢ is a probability measure. Now
we use that §‘C+ takes values in Ry and (3.25) to obtain the following inequality

2Zk|<pz(w1kw2k)’ < Zké . tr(wlkwrka*a) dug(a,ﬂ)
+ %, ) b duco,)

= Zk ||0‘0w1k'||iz(M) + Zk ||w2k60||iz(/\/l)’

where (ag, Bo) € By X By are given by
1/2

ay = (/ a*adug(a,ﬁ)) € By,
B1 xBsg

([ o duc(o,) " € By,

Then, using the identity 2rs = inf.~o (yr)? + (s/7)?, we conclude

1/2
S Jewtwnws)| < (3 Nlaowielsynn) (30, leanbolls, ug )

In particular, given any pair (wi,ws) € Lp(M) x Ly(M), we have

Bo

1/2

(3.26) |<Pa:(w1w2)| < ||Oéow1HL2(M)||w250HL2(M)-

Let us write g, and gg, for the support projections of ag and Fy. Then we define
dao = ag+(1_qao)D(1_qao)’
dﬁo = ﬁg)} +(1_Q50)D(1 _Qﬁo)'
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Note that ¢, = tr(da,-) and ¢g, = tr(dg,-) are n.f. finite weights on M. In
particular, by Theorem 1.3 we know that

dY?M — Ly(M) and  Mdy* — Ly(M)
are dense inclusions. Therefore, since
qaod%z/\/l = ag/2./\/l = aoag/p./\/l C agL,(M),
M g5, = MB = MB"By C LM,

it follows that agL, (M) (resp. Ly(M)Bo) is dense in qq, L2 (M) (resp. La(M)gg, ).
Hence we can consider the linear map

Ty : anLQ(M) - ngLQ(M)
determined by the relation

(Bows, To(cowr) ) = tr(w2BoTy(aowr)) = pa(wiws).
According to (3.26), T, is contractive. Moreover, T}, is clearly a right M module
map so that it commutes with the right action on M. This means that there exists
a contraction m € M satisfying T, (cow1) = mapw;. Finally, applying (3.23) we
deduce the following identity

tr(z* wiws) = g (wiwz) = tr(Ty(agwr)wsBo) = tr(Bomagwiws),
which holds for any pair (w1, ws) € Ly(M) x Ly(M). Therefore, by the density of
Ly(M)Ly(M) in Ly(M,E) @ L (M, E) we have
T = asgm* ;.

Then, since (ag, By) € By x By and m is contractive, we have ||2||y.00.0 < 1. ]

OBSERVATION 3.17. With a slight change in the arguments used, we can see
that Theorem 3.16 holds for any (u,v) € [2,00] x [2,00] such that max(u,v) > 2.
Indeed, by symmetry it suffices to see that

(8) Ly(N)Loo(M)La(N) = (L5 (M,E) @1 LE (M, E))" for any 2 < u < oco.

(b) Lu(N)Loo(M)Loo(N) = (L5 (M, E) @ L§(M,E))” for any 2 < u < oo.
Since the proofs are similar, we only prove (a). Recalling that L,(M)Ls (M) is
norm dense in Ly (M, E) @ LE, (M, E), we deduce that every norm one functional
¢ @ Ly(MLE) @m LS (ML E) — Cis given by p(y) = ¢.(y) = tr(z*y) for some
x € Ly (M). Using one more time the Grothendieck-Pietsch separation trick we
get

* * 1/2
|tr(z* wiws)| < Haow1||2w(E(w2w2))

for some g in the unit ball of L,(N) and ¢ € N*. Let (es) be a net such that
eq — 1 strongly so that lim, ¢(e,y) = @n(y) gives the normal part. Now replace
y by ye, and we get in the limit

* X 1/2
’tr(x wlwg)’ < ||a0w1H2<pn(E(w2w2)) /
Thus [tr(z*wiws)| < ||agw:||2||lw2foll2 and we may continue as in Theorem 3.16.

Proor oF LEMMA 3.1. As we already pointed out at the beginning of this
section, we have to prove inequality (3.22). Before doing it we recall that the indices
(ug,vg) satisfy

(3.27) 2 < max(ug,vg) and min(ug,vy) < 0.
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for any 0 < 6 < 1. Indeed, otherwise we would have ug = vg = 2 or ug = vy = oc0.
However, (1/2,1/2,0) and (0, 0,0) are extreme points of KN{z = 0} and this is not
possible for 0 < # < 1. The first inequality in (3.27) allows us to apply Theorem
3.16 after Observation 3.17, while the second inequality will be used below. Now,
let  be an element of Ly, (N)Loo(M)L,,(N). According to Theorem 3.16, we
know that we can find a finite family (w1, wax) € Lp, (M) x Lg, (M) with

1/UQ + 1/p9 = 1/2 = 1/U9 + 1/q9

so that
(3.28)

e { H ( >, E(wl’“wik)y/QHLpe W)’ } (Zk E(w;kw%)) 1/2‘

and
tr(ac Zk wlkw2k> ‘ + 4.
Moreover, given 1/s = 1/up + 1/vg, we have
‘tf<[$ - EMng(x):I* Zj wljw2j> ‘ < ||SU - Emng(fU)Hs Zj wleZjHS,'

According to (3.27) we have 1 < s < co. Then, it follows from (3.15) that the first
factor on the right hand side tends to 0 as kK — oo while the second factor belongs
to Ly (M). In conclusion, we obtain the following estimate

tr(EMSMk (x)* Zk ’UjlkU/Qk) ‘ + 4.

Using (3.28) and applying Theorem 3.16 one more time

oo
Lgy(N)

[1Z/|up-c0ve <

||x||ug~oo~1)9 S hm
k—)(_)o

”‘TH“G'OO'US < igll) HEMng(x)Hueoo»va +0.

Thus, (3.22) follows for € Ly, (N)Lo(M)L,,(N) by letting 6 — 0. Finally,
as in the case min(qo,q1) < 00, it remains to see that L, (N)Leo(M)Ly, (N) is
dense in Xy(M). Here we also need a different argument. Let us keep the notation
1/ug + 1/vg = 1/s = 1/uy + 1/v;. Then, we may assume that (ug,v9) = (s,00)
and (u1,v1) = (00,s). Indeed, if we conclude the proof in this particular case,
the general case follows from the reiteration theorem for complex interpolation, see
e.g. [2]. This can be justified by means of Figure I, since the segment joining the
points (1/ug,1/vg,0) and (1/u1,1/v1,0) is always contained in the segment joining
(1/s,0,0) and (0,1/s,0). Thus, we assume in what follows that

Xo(M) = [Lo(N) Lo (M) Loo(N), Loe (M) Lo (M)L()]
so that 1/ugp = (1 —0)/s and 1/vyp = 0/s. By the density of

in Xp(M), it suffices to approximate any element z € A. In particular, we can
write © = agby and z = bja; where ag,a; € Ls(N) and by, by € M. Moreover, we
can assume that ag = aq. Indeed, taking

0

a = (agag + ajar + 6Di/s)1/2

1

we have = = aa " laghy = acp and = bjaia”'a = c1a with

lleillme < |bjllage for 5 =0,1.
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Then ¢; = acpa™! and we claim that a’cpa=? is in M for all 0 < 6 < 1. Indeed, let
¢ be the n.f. finite weight ¢(-) = tr(a®-) and let M x,4 R be the crossed product
with respect to the modular automorphism group associated to ¢. Let us consider
the spectral projection p,, = 11/, nj(a). Then, for a fixed integer n the function

fn(2) = pna®coa™*pp = paa®pncopna” *pu
is analytic so that
1-6 —1y1? -6 —1y0 —0[,. 10
2@ < sup ), fe0) [~ 7, (acoa)][* = llol*=*lacoa™ | = flol[**ler
Sending 7 to infinity, we deduce that a’coa=? is a bounded element of M X, R.

Moreover, using the dual action with respect to ¢, we find that a’coa=? belongs to
M. Therefore, we obtain

z=a"%qa"%0 e Ly, (N)Loo (M) Ly, (N).

We have seen that the intersection space A is included in Ly, (N)Loo (M) Ly, (N).
Hence, the result follows since A is dense in Xy(M). The proof of Lemma 3.1 (for
any von Neumann algebra) is therefore completed. O

3.5. Proof of the main interpolation theorem

To prove Theorem 3.2, we need to know a priori that L, (N)Lg(M)L,(N) is
a Banach space for any indices (u, ¢, v) associated to a point (1/u,1/v,1/q) € K.
This is a simple consequence of Lemma 3.1. Indeed, according to Lemma 2.5 and
Proposition 2.6, we know that our assertion is true for any (1/u,1/v,1/q) € 0xK.
In particular, it follows from Lemma 3.1 that

Lug(N) Lgy (M) Loy (N)

is a Banach space for any 0 < 6 < 1 whenever (uj,q;,v;) € 0K for j = 0,1
and 1/ug + 1/qo + 1/vo = 1/us +1/q1 + 1/v1. In other words, according to the
notation introduced at the beginning of this chapter, this condition holds whenever
(1/uj,1/v5,1/q;) € Ky N 0K for j = 0,1 and some 0 < 7 < 1. Therefore, it
suffices to see that K, is the convex hull of K; N9, K for any 0 < 7 < 1. However,
this follows easily from Figure I. Note that K, is either a point (7 = 0), a triangle
(0 <7 <1/2), a pentagon (1/2 < 7 < 1) or a parallelogram (7 = 1).

OBSERVATION 3.18. In fact, in the case of finite von Neumann algebras, Lemma
3.1 provides more information. Namely, according to (3.4) and the fact that K,
is the convex hull of K; N 05K, we deduce that N, Ly(M)N, is a normed space
when equipped with ||| |||y.q.» for any (1/u,1/v,1/q) € K. Moreover, N, L,(M)N,
embeds isometrically in L, (N)Ly(M)L,(N) as a dense subspace, something we
did not know up to now (see Observation 2.9). This means that Lemma 2.5 and
Proposition 2.6 hold for any point in K in the case of finite von Neumann algebras.

PrOOF OF THEOREM 3.2. Now we are ready to prove Theorem 3.2. The
arguments to be used follow the same strategy used for the proof of Lemma 3.1. In
particular, we only need to point out how to proceed. In first place, as usual, the
lower estimate follows by multilinear interpolation.

STEP 1. Let us show the validity of Theorem 3.2 for finite von Neumann algebras
satisfying the boundedness condition (3.1). First we note that, once we know that
L,(N)L,(M)L,(N) is always a Banach space, the proof of Lemma 3.3 is still
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valid for ending points (1/u;,1/v;,1/¢;) lying on K\ 0,K. Then we follow the
proof of Lemma 3.1 for finite von Neumann algebras verbatim to deduce Theorem
3.2 in this case. Here is essential to observe (as we did in Remark 3.5) that the
proof of Lemma 3.1 for finite von Neumann algebras does not use at any point the
restriction 1/ug + 1/qo + 1/vo = 1/us + 1/q1 + 1/v1. Note also that, in order to
obtain the boundary estimates (3.6), Proposition 2.6 is needed. Here is where we
apply Observation 3.18. This proves Theorem 3.2 for finite von Neumann algebras.

STEP 2. The next goal is to show that the corresponding conditional expectations
are contractive. First we observe that, according to Lemma 3.1, we can extend the
validity of Corollary 3.13 to any point (1/u,1/v,1/q) € K by complex interpolation.
Here we use again that K, = conv(KTﬁaoo K). Then, it is straightforward to see that
Corollary 3.15 also holds in this case. Indeed, first we apply complex interpolation
to obtain a contraction

Emy, 1 Xog(M) = Xg(Rat) = Ly (Ni) Lgy (M) Ly (Vi)
Second, the contractivity of
En i Ly, (Nk)Lqe (Mk)Lve (Nk) — Ly, (N)Lqe (M)Lvs (N)
follows since, as we have seen, Corollary 3.13 holds for any point (1/u,1/v,1/q) € K.

STEP 3. We now prove Theorem 3.2 in the case min(gg,q1) < oo. It follows
easily from Step 2. Indeed, recalling again that the restriction 1/ug+1/go+1/vo =
1/u1+1/q1 +1/v1 is not used in the proof of Lemma 3.1 (once we know the validity
of Corollary 3.15), the proof follows verbatim.

STEP 4. Finally, we consider the case min(qg,q;) = oo. First we observe that the
first half of the proof of Lemma 3.1 for this case holds for any two ending points
p; = (1/u;,1/v;,0) in the square KN {z = 0}. Thus it only remains to check that
Ly (N)Loo(M)L,, (N) is dense in Xg(M). Applying the reiteration theorem as we
did in the proof of Lemma 3.1, we may assume that pg and p; are in the boundary of
KN{z = 0}. We have three possible situations. First we assume that pg and p; live
in the same edge of KN{z = 0}. Let A be the intersection of the interpolation pair.
In this case, we have A = Ly (N)Loo(M)Ly (N) or A = Ly, (N)Log (M) Ly, (N)
since the points of any edge of KN {z = 0} are directed by inclusion. In particular,
we deduce A C Ly, (N)Loo(M)Ly,(N) from which the result follows. If py and
p1 live in consecutive edges of KN {z = 0}, we have four choices according to the
common vertex v of the corresponding (consecutive) edges. Following Figure I we
may have v = 0,E,F,G. When v = E, G we are back to the situation above (one
endpoint is contained in the other) and there is nothing to prove. When v = 0, we
may assume w.l.o.g. that

Luy(N)Log(M)Lyy(N) = Ly (N)Loo(M),
Ly, (N)LOO(M)Lvl (N) = Lo (M)le (N),

for some 2 < sp,s17 < co. Moreover, we may also assume w.l.o.g. that sg < s7.
This allows us to write 1/sg = 1/s1 + 1/r for some index 2 < r < co. In particular,

Lsy(N)Loo(M) = (Ls,(N)Lp(N))Loo(M). Let z € A so that
T = aymy =m0
with o, 3 € Ly, (N), v € L.(N) and mg, m; € M. Taking
a=(aa*+B*B+ 5D2/31)1/2,
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we may write z = aco = c1a (so that ¢; = acpa™t) with

co = (a"ray)mp € Ly (N)Loo(M) and ¢; =mifat € Loo(M).
On the other hand, (1/r,0,0) and (0, 0,0) are in the same edge of KN{z = 0}. Thus
[Lr(N)Loo(M), Loo(M)]g = Lyy(N)Loo(M) with 1/rg = (1 — 6)/r. Using this
interpolation result and arguing as in the proof of Lemma 3.1 for min(qg, ¢1) = oo,
we easily obtain that a’coa=? € L,,(N)Loo(M). Thus we deduce

r=a""%coal € (Lsy 1(1-0)(N) Ly (N)) Lo (M) L, 19(N).

Then, since the latter space is Ly, (N)Loo(M)L,, (N), we have seen that A is
included in this space. This completes the proof for v = 0. When v = F, we may
assume w.l.o.g. that

LugN)Loo (M) Loy (N) - = Ly (N)Loo (M) L2(N),
Luy(N)Loo (M) Ly, (N) = La(N)Loo(M)Ls, (N).

Writing 1/2 =1/sg+ 1/rg = 1/s1 + 1/r1 for some 2 < rg,r; < 0o we have
LsyN)Loo(M)Lo(N) = Lsy(N)Loo (M) Ly, (N)Ls, (N),
Lo(N)Loo(M)Ls, (N) = Ly (N)Lyy(N)Loo(M)Ls, (N).

Thus, using our result for v =0 we find
A = LgyyN)(Loo(M) L, (N) N Ly (N) Loo(M)) L, (N)

C LgyWN)(Lry/o(N)Loo(M) Ly, s1-6)(N)) Ls, (N)
C Lyy(0)(N) Loo(M) Ly, 6)(N),

with 1/s9(0) = (1 —6)/so +60/2 and 1/s1(0) = (1 — 0)/2 + 6/s1. This completes

the proof for consecutive edges. Finally, we assume that py and p; live in opposite

edges of KN {z = 0}. Since the two possible situations are symmetric, we only
consider the case

Lug(N)Loo (M) Lyy(N) = Ls,(N)L
Luy(N) Loo(M) Ly, (N) - = L, (N)L
If sp > s1 we clearly have
A = Lug(N) Loo (M) Ly (N) C Lug(N) Loo (M) Ly (N)
and there is nothing to prove. If sg < s1 we have 1/sg = 1/s; 4+ 1/r so that

£ 8
LS
S
z

A = Ly (N)(Ly(N)Loo(M) N Log(M)L2(N))
C Ly N)(Lr/(1-0)(N)Loo(M) Ly /e (N))
= Luy(N)Los(M)Ly,(N).
This proves the assertion for opposite edges and so the space Ly, (N) Loo (M) Ly, (N)
is always dense in Xg(M). The proof of Theorem 3.2 is completed. d

REMARK 3.19. The key points to see that the proof of Lemma 3.1 applies
whenever we start with any two ending points (1/u;,1/v;,1/¢;) lying on K are the
following:

(a) Lu;(N)Lg;(M)L,,;(N) is a Banach space.
(b) Lemma 2.5 holds on K for finite von Neumann algebras.
(c¢) Corollary 3.15 also holds with ending points in K\ K.
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Thus, it suffices to see that Lemma 3.1 gives (a), (b), (¢) by complex interpolation.
On the other hand, it is worthy to explain with some more details why restriction
1/up 4+ 1/q0 + 1/vo = 1/u; + 1/q1 + 1/v1 can be dropped. The only two points
where this restriction is needed (apart from the case min(gg,q1) = oo which has
been discussed in Step 4 above) are in the proofs of Lemma 3.8 and Proposition
3.14. However, Lemma 3.8 is only needed to obtain Corollary 3.13 (which we have
auto-improved in Step 2 above by using Lemma 3.1). Moreover, as we also pointed
out in Step 2, Proposition 3.14 now follows from our improvement of Corollary 3.13.
Therefore, restriction 1/ug + 1/go +1/vo = 1/u1s + 1/¢1 + 1/v1 can be ignored.






CHAPTER 4

Conditional L, spaces

We conclude the first part of this paper by studying the duals of amalgamated
L, spaces and the subsequent applications of Theorem 3.2. Let us consider a von
Neumann algebra M equipped with a n.f. state ¢ and a von Neumann subalgebra
N of M. Let E: M — N denote the corresponding conditional expectation. We
consider any three indices (u,p,v) such that (1/u,1/v,1/p) belongs to K and we
define 1 < s <ooby1l/s=1/u+1/p+ 1/v. Then, the conditional L, space

L, (M.E)

is defined as the completion of L, (M) with respect to the norm

ey, , ey = sup {lawBllz, o | lallz,ons 181z, <1}

We shall show below that amalgamated and conditional L, spaces are related
by duality. According to our main result in Chapter 3, this immediately provides
interpolation isometries of the form

(4.1) Lo

(uo,vo

J(MLE),LP (M, E)L =L

(u1,v1) (ue,v0

J(MLE).
Our aim now is to explore these identities, since they will be useful in the sequel.

ExXAMPLE 4.1. As in Chapter 2, several noncommutative function spaces arise
as particular cases of our notion of conditional L, space. Let us mention four
particularly relevant examples:

(a) The noncommutative L, spaces arise as

Ly(M)=LF_ _ (M,E).

(00,00)
(b) If p> g and 1/r = 1/q — 1/p, the spaces L,(N7; Ly(N2)) arise as
Li?z,,.z,.) (Nl ®N27 E)?
where the conditional expectation E : N{&N; — N7 is E = 1x, ® @nrs,-
(c) f2<p<ooand 1/p+1/¢=1/2, Lemma 1.8 gives
Ly(M,E) = L’(’q’oo) (M,E),
Ly(M,E) = L’(Dooﬁq) (M, E).
As we shall see below, L,(M; R}) and L,(M;Cy') are particular cases.

(d) In Chapter 7 we will also identify certain asymmetric noncommutative Ly,
spaces as particular cases of conditional L, spaces. We prefer in this case
to leave the details for Chapter 7.

71
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4.1. Duality

Note that given (1/u,1/v,1/q) € K, we usually take 1/p =1/u+1/¢+1/v. In
the following it will be more convenient to replace p by p’, the index conjugate to
p. Let us consider the following restriction of (2.1)

1 1 1 1

(4.2) I1<g<oo and 2<wy,v<oc0 and 0<-—+-+-=— <L
w g v P

THEOREM 4.2. Let E: M — N denote the conditional expectation of M onto
N and let 1 < p < co given by 1/q" = 1/u+ 1/p + 1/v, where the indices (u,q,v)
satisfy (4.2) and ¢’ is conjugate to q. Then, the following isometric isomorphisms
hold via the anti-linear duality bracket (x,y) = tr(x*y)

(LuN)Lg(M)Lo(N)" = LT, ) (M, E),
(Lfu 0y (M. E)™ = Lu(W) Lg(M) Ly (N).
PROOF. Let us consider the map
Apia€ L], \(ME)—tr(z”-) € (Lu(N)Lg(M)L,(N))".
We first show that A, is an isometry

[ (@) gy = Sup{|t1"($*y)H Jnf el onllzlzanliBllz,on < 1}

= sup {[tr(B"az)]| | a0, a8 uory < 1

= Sup{Hﬁm*aHLQ,(M) | Ha”Lu(N) <1, ||ﬁ‘ L,(N) < 1}

= sup{|

= |lzllg J(ME)®

(u,v

o*x[*

L) < L8]

|Lq/(M) | llef Ly) = 1}

It remains to see that A, is surjective. To that aim we use again the solid K
in Figure I. Note that, since the case u = v = oo is clear, we may assume that
min(u,v) < co. In that case any point (1/u,1/v,1/q) with (u,q,v) satisfying (4.2)
lies in the interior of a segment S contained in K and satisfying

(a) One end point of S lies in the open interval (0, A).

(b) The segment S belongs to a plane parallel to ACDF.

According to Theorem 3.2, this means that
(43)  LaM)LM)Ly(N) = [y (M), L, (V) (ML, (V)]

for some 0 < 0 < 1 and some (1/uy,1/v1,1/q1) € K. Recalling that 1 < p < 0o, we
know that L, (M) is reflexive. In particular, the same holds for the interpolation
space in (4.3) and we obtain the following isometric isomorphism

(LuN) oMLy = [Lp(M), (L (V) L, (ML, (N)]

0
Moreover, since 0 < 6 < 1, we know that the intersection

Ly(M) N (L, (N) Ly (M) Loy (V)
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is norm dense in the space (L, (N)Lq(M)LU(./\/'))*. On the other hand, recalling
that 1/u;+1/q1 +1/v1 = 1/p’, we know from the definition of amalgamated spaces

that
Ly (M) = Ly (M) + Lu, (N) Lg, (M) Ly, (N).
Hence, L,(M) = L,(M) N (Ly, (N)Lg, (M) Ly, (./\f))>k is norm dense in

(Lu(N)Lg(M)Lo(N)) "
Therefore, A, has dense range since
Ly(M) C L{, (M, E).
For the second part, we use from (4.3) that Ly(N)Ly(M)L,(N) is reflexive. O

REMARK 4.3. The first part of the proof of Theorem 4.2 holds for any point
(1/u,1/v,1/q) in the solid K. In particular, we always have an isometric embedding

LY, 0y (M, E) — (Lu(N)Lg(M)Ly(N) .

REMARK 4.4. Note that the indices excluded in Theorem 4.2 by the restriction
imposed by property (4.2) are the natural ones. For instance, the last restriction
0<1/u+1/g+1/v <1 only affects conditional/amalgamated L; and L., spaces,
which are not expected to be reflexive. Moreover, the spaces Ly (N) Loo (M) L, (N)
are not reflexive in general. Indeed, let us consider the particular case in which A/
is the complex field. These spaces collapse into L., (M) which is not reflexive.

4.2. Conditional L., spaces

Among the non-reflexive conditional spaces, we concentrate on some properties
of conditional L., spaces that will be needed in the second half of this paper. Note
that, given indices (u, g, v) satisfying (2.1) with 1/u+1/g+1/v = 1, we have defined
the space

Law) (M, E)
as the completion of Lo, (M) with respect to the norm

) < 1}.
According to Remark 4.3, we know that this space embeds isometrically in
B (M B) = (Lu(W) Lg(M)Lu(N)
ProproOSITION 4.5. The following properties hold:
i) Lo (M, E) is contractively included in Ly (M).
ii) Loo(M) and L, , (M, E) are weak™ dense subspaces of L7, (M, E).

lellzes , ey = sup { lawBllz, v | iz

(u,v)

PROOF. Let us consider the map
. oo 11
jip €LY ) (ME) = ¢(Dv-Dv) € Ly(M).
By Proposition 2.6, the map j is clearly injective. On the other hand,
11
[|o(D* - D“)”Lq,(M)
= sup{|cp(D%yD%) < 1}

sup { o (D aysD?) || [DEal, (s 9l |

IN

BDH[|, ey <1}
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= llolleg

(M,E)-

(u,v)

The last identity follows from Proposition 2.6. This shows that j is a contraction.
For the second part, it suffices to see that L..(M) is weak* dense. However, it is

clear from the definition of amalgamated spaces that the inclusion map
Lu<N)Lq<M)Lv(N> - LI(M)

is injective. In particular, taking adjoints we get the announced weak* density. [

4.3. Interpolation results and applications

In this last section we consider some interesting particular cases of the dual
version (4.1) of Theorem 3.2. One of the applications we shall consider generalizes
Pisier’s interpolation result [44] and Xu’s recent extension [69].

THEOREM 4.6. Let N be a von Neumann subalgebra of M and let E: M — N
be the corresponding conditional expectation. Assume that (u;,q;,v;) satisfy (4.2)
for j=0,1 and that 1/u; +1/q; + 1/v; = 1/p};. Then, if p; denotes the conjugate
index to p}, the following isometric isomorphism holds

[LPO (M, E).

(uo0,v0) (u1,v1) (ue,v0)

(M,E), L (M, E)L} —

Moreover, if 2 < uj,v; < oo for j =0,1, we also have

(’U.(],’U() (u17'Ul u97'U<’7')

[Oo (ML E), L3 >(M7E)r:£(°° (M,E).

ProOOF. The first part follows automatically from Theorem 3.2 and Theorem
4.2. The second part follows from Theorem 3.2 and the duality properties which
link the complex interpolation brackets [ , g and [, ]%, see e.g. [2]. O

Now we study some consequences of Theorem 4.6. We shall content ourselves
by exploring only the case py = p;. This restriction is motivated by the applications
we are using in the successive chapters. The last part of the following result requires
to introduce some notation. As usual, we shall write R} (resp. C}) to denote the
interpolation space [R,,Cy]i/p (resp. [Chn, Ryl1/p), where R, and C,, denote the
n-dimensional row and column Hilbert spaces. Alternatively, we may define R}
and C} as the first row and column subspaces of the Schatten class S7. On the
other hand, given an element xg in a von Neumann algebra M, we shall consider
the mappings L., and R,, on M defined respectively as follows

L, (x) = zox and R, (x) = xxy.
COROLLARY 4.7. Let N be a von Neumann subalgebra of M and letE : M — N

be the corresponding conditional expectation of M onto N'. Then, we have the
following isometric isomorphisms:

i) If2<p<ooand?2 < q<oo are such that 1/2=1/p+1/q, we have

[LP(M)a L;(Ma E)]g = L;?s,oo) (Mv E)y ’thh 1 _ Q
[LP(M)a L;(Ma E)]g = L;(Dooys) (Mv E)a S q

In the case p = 0o, we obtain

[Loo(M), L (M E)], = L3590 (M,E
[Loo(M), LS (M, E)], L,

)

~— —

(o2/6) (MLE
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i) If2<p<o0and 2 < q< oo are such that 1/2=1/p+ 1/q, we have

[L]ﬁ,'(/\/l,E),L;(/\/l7 E)] = Lp (M E)
with

(1/u,1/v) = (0/q, (1 = 0)/q).

iii) Let us define for 2 < p < oo
XQ(M) = [LP(M§O;})’L1)(M§RZ)]9~
Then, if 1/w=1/p+ 1/v with 1/v = (1 — 0)/q, we deduce

H ZIk ®5k‘ ’
k=1

— S L, Ry L, Ly, H
Xo(M) sz_:l wBay 2 Lyja(M) = Lyja(M)
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PROOF. The assertions in the first part of i) and ii) follow from Theorem 4.6
after the obvious identifications, see Example 4.1. For the last part of i) we only
prove the first identity since the second one follows in the same way. According to
Remark 4.3, L7 (M, E) is the closure of Loo(M) in L35 (M, E). Then, applying
a well-known property of the complex method (see e.g. [2, Theorem 4.2.2]) we find

[Loo (M), L (M, E)], = [Loo(M), L5 (y(M,E)], for 0<6<1.
By Berg’s theorem, we have an isometric inclusion
[Loo(M), L ) (M E)]y € [Loo(M), £35 ) (M, E)]".
Therefore given € Lo, (M), Theorem 4.6 gives
IzlliLe vy Lo, mene = lzlize o, L35 o) (ME)s

= [lzllize ), LY ) (ME)®

= ||95||L(°g/0m)(M,E)-
The assertion then follows by a simple density argument

[Loc(M), LI (M, E)], = L5 p,00) (M, E).

Finally, for part iii) we consider the direct sum Mg, = M &M @ - - & M with
n terms and equipped with the n.f. state ¢, (z1,22, - ,2n) = %Zk o(zk). The

natural conditional expectation is given by

En:Z:ck®6keM@ni—>%ZxkeM.

k=1 k=1
It is clear that we have the isometries

LP(M;RZ) = \/EL;(M®H7EH)>
Ly(M:C?) = i Ls(Mean, En).

According to ii) and the definition of the norm in Lp (./\/l@n, E.), we have

[0
k=1

Xo (M)

Canson| |l
= sup nH arph X H allL,
kz_:ﬂ k k L2(M€Bn) L(M
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= sup

Ztr azpB8 zpa”) | lledlp, o 18l L. < 1}

= supq | D Lo Ru (88 Bllr.an <1
{ kz=1 R Eew (M) | 18Il L., om)
= sup H Lz,Rz*vH 720, v, <1;.
{ ]; 2 k( ) L(u/g)/(M)’ ” ‘L /2(M)
Recalling that , L., Ryx is positive and that (u/2)" = w/2, we conclude. O
OBSERVATION 4.8. Arguing as in Corollary 4.7, we easily obtain

These results shall be frequently used in the successive chapters. Moreover, let us
also mention that Corollary 4.7 i) is needed in [21] to study the noncommutative
John-Nirenberg theorem.

At the time of this writing we do not know whether Corollary 4.7 ii) extends to
p = oo in full generality. We will now show that the equality holds when restricted
to elements in M. This result will play a very important role in the sequel.

LEMMA 4.9. If1 < p,q < o0 and z € M, we have
inf {||$\|L(2p e lllee , ome | 2=y, 2y € M} <llzllzsg, ,, MmE)-
PrOOF. On M we define the norm

lzlln = mf lzllzee (e lYllze

(2p, OC)

(M7E)

(o0,2q)

where the infimum is taken over x,y € Lo, (M). Tt is easy to check that we do not
need to consider sums here. Let us assume that ||z]|;, = 1. By the Hahn-Banach
theorem there exists a linear functional ¢ : M — C such that ¢(z) =1 and

1/2

1/2
(4.4) ‘ g kqﬁ(xkyk)’ < sup H g kaxk.:ﬁ,ﬁa*H sup H E kb*yZykaq
4<1

llall2p<1 P bl

Note that ||z]|5, < ||2]lco and thus ¢ is continuous. It follows immediately that we
may move the absolute values in (4.4) inside. Thus, we get

1/2 1/2
Zk |p(xryr)| < b;lP tr( Zk axkx?;a*c> sbug) tr( Zk b*y?;ykbd)

Here we take the supremum over (a,c, b, d) in
+ +
Bro,w) X B, (m) X Bragv) X By, (u

all equipped with the weak® topology. Using the standard Grothendieck-Pietsch
separation argument as in Theorem 3.16 we obtain two probability measures p
and po such that

1/2
oay) < ( [ r(ans"ar dmn(a,0)) ([ 10y yba) dpa(0,0)
Since Lop(N) Ly (M)Lap(N) and Laog(N) Ly (M)Log(N) are Banach spaces,

a:/a*cadul(a,c) and B:/bdb* dus (b, d)

1/2
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are positive elements respectively in the unit balls of
Lop(N) Ly (M) Lap(N) - and - Lag(N) Ly (M) Lag(N).

Therefore we find a1,as € BLQP(N) and c1,co € BL2P/(M) such that a = ajciceas.
We deduce from the Cauchy-Schwartz inequality and the arithmetic-geometric
mean inequality that

tr(za*a) = |[tr(zz*aicicoas)]
= ‘tr(czagmr*alclﬂ
< tr(czagaca:*a;‘c;)UQtr(c}‘aTxx*alcl)l/z
< u (zx* aicicial ; a5C5coa2 ) .

We could consider a = (aja; + ajas)/? to deduce that
* % * %
ol aijciciaj + ascscaas a-!
2
is a positive element in L, (M) of norm < 1. This is not enough for our purposes.
However, following the proof of the triangle inequality in Lemma 2.5, we may apply

Devinatz’s theorem one more time to find an operator a € (1 +¢)Bp, (v with full
support and ¢ € BLPI(M) such that

aicicial + ascicaar

= a*ca.
2
We leave the details to the interested reader. This implies that c is positive and
tr(zz*a) < tr(zz*a*ca) = ||/ ?az|2.

The same argument for 3 gives b € (1+¢)Br, (v and d € B , (M) Such that

tr(y*y) < tr(y*ybdb”) = [lybd/?|3.
This yields
|b(xy)| < ¢ ?az|s||ybd"? 5.
From this it is easy to find a contraction u € M such that
o(zy) = tr(uc%axybd%).
If 1/r =1/2p 4 1/2q, we deduce from Holder’s inequality that

Izlln = |6(2)] = |tr(uczazbd?)| < [lazb||L, (my < (1+€)2||2] oo

(2p,2q

Finally, recalling that € > 0 is arbitrary, the assertion follows by taking e — 0. O

J(M.E)-

COROLLARY 4.10. Assume that 1 < pg,p1,qo,q1 < 00 satisfy

max(po, p1), max(qo,q1) > 1 and min(po, p1), min(go,q1) < co.
Then, given x € M we have

[l zeg

Bop2ayME) = [ZlliLgg, o)L

(2pg,2q0)

(M,E)]g'

oo
(2p1,2q91)

In particular, for 8 = 1/q we obtain

2]l [Le. (M,E), L1 (M,E)]y = SUP {||a$b||L2(M) | llall agays 10012y, ) < 1}-
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PROOF. The upper estimate is an easy application of trilinear interpolation.
For the converse we apply Lemma 4.9 so that for any € > 0 we can always find a
factorization x = x1x4 satisfying

lzillee e llz2llne

(2pg,0)

me < (L +e)lzleg, . -

(o0, 209)(

According to Corollary 4.7 i) we know that
(ME) = [Loo(M), LL(M.E)], .
Taking 0y = 1/po and 6; = 1/p, the reiteration theorem implies that
[Loo(M), L (ME)] | = [[Loc(M), LT (M, E)lgy, [Loc (M), L3 (M, E)]p, |-
In particular,
[LOO(M)ngo(M7E)]1/ = [ (2po, w)(M E), L(2p1 W)(M E)]

Therefore, we get

(2P9 )

1/po

lzillizs,, o B Le,, ool = 21l e
Similarly, we have
z2lliLe, L, MB.LE L, Bl = 122l , ()
On the other hand the inequality
oo <
[l yHL<2p 2y (ME) ||$HL(2P oy (M, E)||Zl/||L(oo 2y (ME)

holds for all 1 < p,q < oco. Thus, by bilinear interpolation we deduce

1211, 20

< iz,

(ME), L% (M,E)]o

(2p1,2q1)
(ME),LY, oy (ME) ||152||[L(°o 2q0) MELLE, 5, (MB)]o-

Combining the previous estimates and taking e — 0 we obtain the assertion. O

REMARK 4.11. If M is dense in the intersection L7 (M, E) N LS (M, E), then
Corollary 4.7 ii) extends to p = oo. This holds for instance when the inclusion
N C M has finite index or when M = AQN with A finite-dimensional. However,
at the time of this writing it is not clear whether the density assumption is satisfied
for general conditional expectations. On the other hand, we note that the validity
of Corollary 4.7 ii) for p = oo can be understood as a conditional version of Pisier’s
interpolation result [44]. Indeed, taking 0 = 1/¢ we easily find that

lzllize ¢ (M,E),LT (ME)ls = SUP{HCU*GCUHLQ(M) | lallz, oy < 1}

_ sup{||sz*||qu(M)| IbllL,, o) < 1}.

Furthermore, according to Theorem 4.6, this also applies for 2 < p < oo (we
leave the details to the reader). In particular, we also find a conditional version of
Xu’s interpolation result [69]. Moreover, when 1 < p < 2 this result follows from
Theorem 3.2 instead of Theorem 4.6.



CHAPTER 5

Intersections of L, spaces

In a second part of this paper, we study intersections of certain generalized
L, spaces. Our main goal is to prove a noncommutative version of (X,,), see the
Introduction. In this chapter we begin by proving certain interpolation results
for intersections. As usual we consider a von Neumann subalgebra N of M with
corresponding conditional expectation E : M — A/. Then given a positive integer
n,1<qg<p<ooandl/r=1/q¢—1/p, we define the following intersection spaces

L 1
Bpg(MLE) = n% Loy(M)Nn= L (M,E),
Copq (M,E) = n2Lop(M)N anL?(fo,Q’r‘)(M’ E).

Our main result in this chapter shows that the two families of intersection spaces
considered above are interpolation scales in the index ¢q. That is, the intersections
commute with the complex interpolation functor. Indeed, we obtain the following
isomorphisms with relevant constants independent of n

[ Sp,l(M’E)v gp,p(M’E)]g = gp,q(M7E)’

(5.1) . - -
[C2p,1 (M7 E)a C2p,p (M’ E)] 7] = C2p,q (M7 E)7

and with 1/g =1 — 6 4 0/p. Moreover, we shall also prove that

1-6, 1 406
(5'2) [ gp,l(M7E>7Cgp,1(M’E)]g = ﬂ now A LQI:“ (MaE)

(t%5.%)
u,ve{2p’ 00}

5.1. Free Rosenthal inequalities

Our aim in this section is to present the free analogue given in [26] of Rosenthal
inequalities [56], where mean-zero independent random variables are replaced by
free random variables. This will be one of the key tools needed for the proof of
the isomorphisms (5.1) and (5.2). For the sake of completeness we first recall the
construction of reduced amalgamated free products.

5.1.1. Amalgamated free products. The basics of free products without
amalgamation can be found in [67]. Let A be a von Neumann algebra equipped
with a n.f. state ¢ and let A/ be a von Neumann subalgebra of A. Let Epxr : A — N
be the corresponding conditional expectation onto A/. A family A, As, ..., A, of
von Neumann subalgebras of A, having N as a common subalgebra, is called freely
independent over Es if

En(araz--am) =0
whenever Epr(a;) = 0foralll <k <mandar € Aj, withji # jo # -+ # jm. Asin
the scalar-valued case, operator-valued freeness admits a Fock space representation.

79
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We first assume that A1, Ao, ..., A, are C*-algebras having N as a common
C*-subalgebra and that Ex = Ep A, Are faithful conditional expectations. Let us
consider the mean-zero subspaces

/Z\k = {ak € Ai| Ex(ax) = O}.

Following [9, 65], we consider the Hilbert M-module Z\jl ®,Z\j2 ®--- ;\jm (where the
tensor products are amalgamated over the von Neumann subalgebra ') equipped
with the N -valued inner product
(01 @ @ by © - @by ) = B, (a5, Ejy (a3 Ejy (a1b1) b2) -+ b))
Then, the usual Fock space is replaced by the Hilbert A/'-module
HNZN@@ @ Aj; QAj, @@ Aj,,-
m2>1j1#joFFjm

The direct sums above are assumed to be A -orthogonal. Let £(H ) stand for the
algebra of adjointable maps on Hs. A linear right A/-module map T : Har — Hyr
is called adjointable whenever there exists S : Hy — Ha such that

(x, Ty) = (Sz,y) for all x,y € Har

Let us recall how elements in Ag act on Hr. We decompose any ay € Ay as

ap = (cl),k + Ek(ak).

Any element in A acts on Hs by left multiplication. Therefore, it suffices to define
the action of mean-zero elements. The x-homomorphism 7y, : A — L(Hs) is then
defined as follows
ak@bﬁ@"'@l)jm, if k # ja
Tr(ag)(bj, @ -~ ®@b; ) = o
k( k)( J1 Jm) Ek(ak:bjl)b]2®®bm ®
(arbj, — Ex(arb;,)) @by, @ - @ b;
This definition also applies for the empty word. Now, since the algebra L(Hxr)
is a C*-algebra (c.f. [34]), we can define the reduced N -amalgamated free product
C*(xarAk) as the C*-closure of linear combinations of operators of the form

m)

mj (a1)my, (az) - 75, (am).

Now we consider the case in which A” and Aj,Ag,...,A, are von Neumann
algebras. Let ¢ : N'— C be a n.f. state on M. This provides us with the induced
states @ : Ay — C given by ¢ = ¢ o Ex. The Hilbert space

Ly(Aj, ® Aj, @ @ Aj,., )
is obtained from ,;-J\j1 ® /Z\jz ®: - ® ,Z\jm by considering the inner product
(1@ @am b @ @b), = p((01 @ B, by @ @ b))
Then we define the orthogonal direct sum

'HW:LQ(/\/’)EB@ @ L2(&j1®Rj2®"'®/&j,,L7@)~

m21 j1#joF - Fjm
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Let us consider the s-representation X : L(Hyr) — B(H) defined by A(T)x = Tx.
The faithfulness of A is implied by the fact that ¢ is also faithful. Let M(Hur)
be the von Neumann algebra generated in B(H,,) by L(Har). Then, we define the
reduced N -amalgamated free product xa Ay as the weak* closure of C*(xxAx) in
M(Hy). After decomposing

ar = ay, + Ex(ax)

and identifying ,&k with /\(Trk(,&k)), we can think of xxAy as
o o o "
s AR = (NEB@ @ /—\lejQ"'Ajm> .
m21j1FjoFFim
Let us consider the orthogonal projections
Qp:H, — La(N),
le"'jm, :H<P - LQ(AJI ®AJ2 ®.'.®Ajm,7g0)'
If we also consider the projection Qa, = Qp + Qk, the following mappings
Env:2z€xnvAr — QprQy €N,
En, 1T €ExnAE — Oa,zQa, € A,
are faithful conditional expectations. Then, it turns out that A;, Ao, ... A, are
von Neumann subalgebras of sy Ay freely independent over Enr. Reciprocally, if

A1, As, ... A, is a collection of von Neumann subalgebras of A freely independent
over Enr : A — N and generating A, then A is isomorphic to *x-Ag.

REMARK 5.1. Let A and N5 be von Neumann algebras and assume that N5
is equipped with a n.f. state p3. A relevant example of the construction outlined
above is the following. Let A = A; ® N3 and let us consider the conditional
expectation Ey;, : A — N defined by

Eny (71 @ 22) = 71 ® p2(72)1.
Assume that Aj, A,, ..., A, are freely independent subalgebras of A5 over 5. Then,
it is well-known that N7 @ A, N1 @A, ..., N1 ®A, is a family of freely independent

subalgebras of A over Ep,, see e.g. Section 7 of [17]. In particular, if Ay, Ag, ..., A,
generate Ns, we obtain

(5.3) A=M® (kEIAk) = n, (V1 @ A).

5.1.2. A Rosenthal/Voiculescu type inequality. In this paragraph we
recall the free analogue [26] of Rosenthal inequalities [56] for mean-zero random
variables and prove a simple consequence of it. Let Ay, As, ..., A, be a family of von
Neumann algebras having N as a common von Neumann subalgebra and let xxAg
be the corresponding amalgamated free product. Given a family aq,a2,...,a, in
*xnrAg we consider the row and column conditional square functions

ral@) = (Y Ewlwap)”,

k=1

fale) = (O Entaian)

k=1
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THEOREM 5.2. If2 <p < oo and a1, as,...,a, € L,(xxAg) with a, € Lp(,z\k)
for 1 < k < n, the following equivalence of norms holds with relevant constants
independent of p orn

n n
|3 a] ~ (X asl) ™ + 8mma@l, + [Somalall,
k=1 P k=1

This is the operator-valued/free analogue of Rosenthal’s original result. On the
other hand, a noncommutative analogue was obtained in [30] for general algebras
(non necessarily free products), see also [68] for the notion of noncommutative
independence (called order independence) employed in it. Recalling that freeness
implies order independence, Theorem 5.2 follows from [30] for 2 < p < oco. However,
the constants there are not uniformly bounded as p — o0, in sharp contrast with
the situation in Theorem 5.2. This is another example of an L, inequality involving
independent random variables which only holds in the limit case as p — oo when
considering their free analogue. This constitutes a significant difference in this
paper. Theorem 5.2 for p = co was proved in [17] and constitutes the operator
valued extension of Voiculescu’s inequality [66]. Finally, we refer the reader to [26]
for a generalization of Theorem 5.2, where aq,as,...,a, are replaced by certain
words of a fixed degree d > 1.

The following result is a standard application for positive random variables.

COROLLARY 5.3. If2 <p < oo and ai,...,a, € Ly(xnAy) with a € L,(Ag)
for 1 < k < n, the following equivalence of norms holds with relevant constants
independent of p orn

n

H(Zakaz)l/zu ~ (

k=1 P
H(Zazak)lmu ~ (

k=1 p

PrOOF. We we clearly have
(X taell) ™ < [ (X i)™
k=1 k=1 P

Indeed, our claim follows by complex interpolation from the trivial case p = co and
the case p = 2, where the equality clearly holds. This, together with the fact that
En is a contraction on L, /5(*arAg), proves the lower estimate with constant 2. For
the upper estimate, we begin with the triangle inequality in Lj,(xxAg; RR})

n n n
S, <[], [ S5, - A0
k=1 p k=1 p k=1 p

To estimate A, we apply Kadison’s inequality (see Lemma 1.4 1))

= H(ZEN (ar)En(ak) )1/2 < H(ZEN apay, )

On the other hand, according to (5.3) we can regard ak ® e1x as an element of

Sy (Lo(ercAn)) = Ly (5 ) S(AR))

1/
Jaxl) " + 1 Stonal@)],

NE

k

Il
-

\E

1/
faxlg)” + [Sema(@)]].

=~
Il
_

p
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where Epr is replaced by 1y, ® Enr. Then, writing zp for ng ® ey and En for
1m, ® Epr, we estimate B using the free Rosenthal inequalities in this bigger space.
Indeed, using ||z, = ||ak||, we obtain

P () #(mton) = [ metin)

Let us note that

ZEN(QMEZ) = 2611 ® EN(aksz) < Zeu ® En(aray,),
k:il k:il kil
ZE,\/(wak) = Z et @ EN(cOszLk) < Z ewr @ Ex(agar).
k=1 k=1 k=1

This implies

(S matenei) ™, < (S evto)

p

On the other hand, the third term is controlled by
n 1/2 n 1/2
Betind) |, = | metin]
H(% n (k) » ; (k) /2
n 1/2
|3 s Evtizn)]

k=1 P

~ / n /
(S lentaanl) ™ = (S larlz) ™"

k=1 k=1

Combining the inequalities above we have the upper estimate with constant 2. [J

IN

5.2. Estimates for BMO type norms

Apart from the free Rosenthal inequalities, our second key tool in the proof of
(5.1) and (5.2) will be certain estimates that we develop in this section. Let us recall
the definition of several noncommutative Hardy spaces. Xu’s survey [68] contains a
systematic exposition of these notions. Let M be a von Neumann algebra equipped
with a n.f. state ¢. Let My, My, ... be an increasing filtration of von Neumann
subalgebras of M which are invariant under the modular automorphism group
on M associated to . This allows us to consider the corresponding conditional
expectations &, : M — M, and noncommutative L, martingales z = (z,)n>1
with martingale differences dx,dxs,... adapted to this filtration. The row and
column Hardy spaces H,,(M) and Hj (M) are defined respectively as the closure of
the space of finite L, martingales with respect to the following norms

1
el = [[(30, dondei) |

1
el = (3, deides)||

On the other hand, the space H} (M) measures the p-variation

/
[l 3z A1) = (Zk ||dgck||£)1 "

)
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Finally, the conditional row and column Hardy spaces for martingales h;(/\/l) and

h (M) are defined as the closure of the space of finite L, martingales with respect
to the following norms

1
Zllhy oy = H ( Zk En—1(dzrday))?

[zllhemy = H ( Zk Ep—1(dziday))?

)
p

p

A further tool are maximal functions. The notion of maximal function was
introduced in [16] via the spaces L,(M;{«,). Here we are using variations of these
from Musat’s paper [38]. Given 2 < p < oo we define the spaces Lj(M;{)
and L (M;l) as the space of bounded sequences in L,(M) with respect to the
following norms

1/2
lenlzpanen = sup @il
1/2
lenlgoeny = llsup o]y,

This definition requires some explanation. Indeed, in the noncommutative setting
there is no obvious analogue for the pointwise supremum of a family of positive
operators. Therefore, the above is to be understood in the sense of the sugges-
tive notation introduced in [16]. Among several characterizations of the norm in
L,(M;l) of a sequence (z,)n>1 of positive operators, we outline the following
obtained by duality

(5.4) I ilg anp = sup { Zn tr(znwn) | wn > 0,

‘ann y < 1}‘

The reader is also referred to [29] for a rather complete exposition. One of the
fundamental properties obtained in [38] of the spaces L} (M;{) and L (M;{x)
is that they form interpolation families. Indeed, given 2 < pg, p1 < oo, we have the
following isometric isomorphisms for 1/pg = (1 — 6)/po + 0/p1

[L;O(M;Zoo),Lgl (M;Eoo)}e = L, (M;ls),

(5.5)
(L6, (M loo), LG, (M3 €s)], = L, (M; o).

Here it is also interesting to point out that these spaces can easily be identified as
one-sided amalgamated L, spaces. In particular, the interpolation formula (5.5)
follows from Theorem 3.2.

5.2.1. One-sided estimates. We will simplify our arguments considerably
by assuming that M is finite and the density D associated to the state ¢ satisfies
c11p £ D < calp. The general case will follow one more time from Haagerup’s
approximation theorem:.

LEMMA 5.4. Let 1 < p <2 < g < oo be such that 1/p = 1/2+ 1/q. Given
0 <0 <1, let x be a norm one element in [Hp(M), H,(M)]g and let us consider
the indices 1 <u <2 < v < oo defined as follows

1/u=1/p—0/q and 1/v=~0/q.
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Then we may find a positive element a € L, j2(M) and by € L, (My,) such that
1/u
da, = (@) by and max{llallosz (D Ioli) T} < V2.
k>1

If x belongs to [HE(M), Hs(M)]e, the same conclusion holds with dxy, = biEr(a)?.

PROOF. The last assertion follows from the first part of the statement by taking
adjoints. To prove the first assertion, we may assume by approximation that x is a
finite martingale in L, (M,,) for some m > 1. Therefore, since x is of norm 1 there
exists an analytic function f : & — L,(M,,) of the form

z) = Z di(2)
k=1

which satisfies f(0) = x and the estimate
1

max { sup (i |ldk (2 ) 1, sug) H(idk(z)dk(z)*)i
€01 T g

z€0o

<1
p

Note that we are assuming that the dj’s are also analytic where d;(2),ds(2),...
denote the martingale differences of f(z). Now we consider the following functions
on the strip for 1 <k <m

B 1’ ifze@o,
gr(2) = (35, dj(2)d;(2)* +8DF) 7, itz €.

According to our original assumption on the finiteness of M and the invertibility
of D, we are in position to apply Devinatz’s theorem. Indeed, here we need Xu’s
modification, which can be found in Section 8 of Pisier and Xu’s survey [52]. This
provides us with analytic function hj with analytic inverse and such that

(5.6) hi(2)he(2)" = gr(2) forall z € dS.
STEP 1. We claim that

m 2]
5.7 H Sk @ h 9” < (1+6%)9
(5.7 ; @O ey = )

where ¢ appears in the definition of g,. Indeed, according to the interpolation
isometries (5.5) and the three lines lemma, it suffices to see that the following
estimates hold

5.8 su oL@ h ‘ < 1,
(5:8) zei Z y k< ) LT, (M)

bl
5.9 su 5 @ h ’ < (1+6%5)7.
(5.9) Zeg Z k@ hi(z) LE(Mito) ( )

To prove (5.8) we first recall from (5.6) and the definition of gi that hi(z) is a
unitary for any z € Jp and any 1 < k < m. Therefore, since Fubini’s theorem gives

LT (M) = Loo(boo(M)), we conclude

Z5k®hk )‘

sup
Z€Do

, =sup sup |[[hg(2)[le = 1.
Lt (Miloo) 289 1<k<m
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On the other hand, if z € 9; we have the following estimate from (5.6)

k
2\ P/4
1) hue( d;(2)d;(2)* +6D»
HZ k ® he( LT(MEQQ) 1;}:27?1(; i(2)d;(2)" + )

Ui . 2\ P/a)|a/2
(;dj(z)dj(z) +6Dp> Hq/2

Lis p/2

= Zdj * 4 6D7

where the last inequality follows from the fact that L, 2(M) is a p/2-normed space
and also from the right boundary estimate for the function f given above. Thus,
inequality (5.9) follows and the proof of (5.7) is completed.

q/2

q/2

IN

STEP 2. Let us consider the functions wy,(z) = hg(2)~'dk(2). Now we claim that

m

(5.10) (X loyli) ™ < V2" (1+65)".

k=1

According to (5.6), we can write hy(z) = gx(2)2ux(2) for some unitary ug(z). Thus,
we deduce that for z € 9y we have wy(z) = ur(z)*di(z). This and the left boundary

estimate for f yield
sup (Z [lwg (2 Hp) <1.

z€0o

The interesting argument, based on the classical Fefferman-Stein duality theorem,
appears for z € ;. In that case we have hy(2) ™! = up(2)*gr(z) "2 and we find the
following estimate for any z € 0;

ank 3 = Ztr(hk ) ()i () ()7
R CCTORUCTISZORTAC)
= Ztr(Qk(Z)_%dk(z)dk(z)*gk(z)_%)-
k=1

Now we define the positive operators

(Zd “+oD?)",
(Zd 4+ 6D> )p

and the indices (s,t) = (2/g, 2/p). Lemma 7.2 in [28] gives
< _5/2(516 2)5;3/2) < 2tr(5k — ak).

According to our choice of (s,t), we may rewrite this inequality as follows

tr(9e(2) Bk (2)du()"gn(2)7F ) < 200(Bi — ).

p
2

€75

Br
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Summing up, we deduce that

/2
}:Hwk H2<2H§:d 4 6D? S
p

Finally, recalling that the functions wy, : S — L,(M) are analytic since are products
of analytic functions, inequality (5.10) follows from the estimates given above and
the three lines lemma.

2(1+6%).

STEP 3. For the moment, we have seen that
dzy, = h(0)w(0).
Now, recalling that
gr 2 08 — Lg/a(My) foreach 1<k <m,

we conclude that h(0) = (h1(0),ha(0),...,hn(0)) is an adapted sequence. That is,
we have hy € L,(My) for all 1 < k < m. On the other hand, according to the
definition of the space L] (M; £y ), we may find for any § > 0 a positive operator a
such that hg(0)hi(0)* < a for 1 <k <m and

< (1+a%)"

/2
. (1+49) H E Ok @ hy(0 }
(5.11) ||aHv/2 k @ h(0) Lr(Mitos)

k=1
Moreover, since h(6) is adapted, we have hy(0)hi(0)* = Ex(hip(0)hi(6)*) < Ex(a).
This gives a contraction v, € My, with hy(0) = & (a)%fyk. In particular, we deduce

(5.12) da?k = Ek(a)%%wk(ﬁ) = Sk(a)%bk.

Finally, since ~;, is a contraction

G () < (o) < V2 s a8
k=1

Therefore, the assertion follows from (5.11), (5.12) and (5.13) by letting § — 0. O

Applying the anti-linear duality bracket (x,y) = tr(z*y), we consider in the
following result an immediate application of Lemma 5.4 for the following dual spaces

ZMO) = M) M),
Z5(M,0) = [HE(M), HE(M)],.
LEMMA 5.5. If p,q,u,v are as above and 1/u+ 1/s =1, we have
s\ 1/
lelzy e < (o) b
R |\a|\w/2<1(z n(@? da])
a>0
[zl zeme < | prq(z (| dzrEk(a) || )
ally /2
a>0

PROOF. There exists y in the unit ball of [H (M), H] (M)]e such that

2]l zp a0y = [tr(azy™)|.
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On the other hand, according to Lemma 5.4 and using homogeneity, we may write
dyr, = Ex(a)'/?by, with a being a positive operator in the unit ball of L, /(M) and
b1, ba, ... satisfying

(5.14) (S imelz)”

k>1

With this decomposition we obtain the following estimate
lellzgome = |, tr(dondy;)

- ‘ > tr(dugbicn(a)?)

(3, oeli) ™ (3, llnt@ bz ]) "

The assertion follows from (5.14). The proof of the second estimate is similar. O

IN

In the following result and in the rest of this paper we shall write A < B to
denote the existence of an absolute constant ¢ such that A < ¢B holds.

LEMMA 5.6. If p,q,u,v are as above and 1/u+ 1/s =1, we have

s\ 1/
sup (30, €@ anil}) T 2 12l uny e, aay

llally/2<1
a>0

sup (Z dekgk | ) S Hx”[HP'(M) HE, (M)]o”
llally/2<1 p’ > hp!

a>0
PrOOF. We may find an analytic function
8 = HE (M) +HD (M)
such that f(0) = z and

/ T < ’ .
e { 5D 12y 592 17 Mg 0§ 5 1 v, car,

By homogeneity, let us assume that the right hand side above is 1. Now we take
positive element a in the unit ball of L, /(M) so that we may consider an analytic
function g : & — Loo(M) + Lg/2(M) satistying g(6) = a and

max { sup [l9(2)ll, sup fl9(2)llg/2 } < 1
z€01

z€0o

Then we construct the analytic function

Z Sk © di(£(2))*Er(9(2))di(f(2)) € loo(L1(M)).
For z € 9y we have
1A )l /2 < (ledk IIP) o 21;;1>||5k(g(z))}|w(zHdk(f(z))ngi)l/p SL
k>1 z E>1

In the case z € 01, we choose a factorization g(z) = g1(2)gz2(2) such that

191(2)llq = ll92(2)llq = 4/ llg()llq/2 < 1.
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Then, Holder inequality provides the following estimate

[17(2)]l1 D lIE(d (£ () 91(2)g2(2) i (£ (D) [l

k>1

(X (@) ()2 el 7(2)))

k>1

(32 (@) 022)" g2(2)dk(1(2)))

k>1

1> (s @)an sz

k>1

1
2

IA

X
Nl=

1/2

/2"

IN

1/2
p'/2

> dlf(2)de(F ()"
E>1

Indeed, in order to apply Holder inequality in the first inequality above, we factorize
the conditional expectation E_1(a*b) as the product ug_1(a)*ur_1(b) by a right
Mj._1-module map ug_1 : M — Coo(Mp_1), see e.g. [16, 26]. By complex
interpolation (2/s = 2(1 — 0)/p’ + 6), we conclude that

1 s 1/s 1/2
(3, llee@bdan]2) = RO S 1.
The column version of this inequality follows by taking adjoints. (I

REMARK 5.7. When 1 < p < 2 we have

1/s
Hx”ZT(M,G) ~ sup (Z ||5k(a)%d$kuz) év
v lall.2<1 §
az

1 1/s
zlzeme) ~  sup (Zk |dzrEx(a)? Hi) '
lall,/2<1
a>0
Indeed, since anti-linear duality is compatible with complex interpolation via the
analytic function tr(f(z)*g(z)), we find by reflexivity in the case 1 < p < 2 the
following isomorphisms

(5.15) ZpM.0) = [Hp (M), Hy (M),
ZEM,G) = [HE (M), HS (M)

Therefore, the result follows from Lemma 5.5 and Lemma 5.6.

REMARK 5.8. Lemmas 5.4, 5.5, 5.6 and Remark 5.7 immediately generalize for
the row and column conditional Hardy spaces. Indeed, if we replace the row and
column Hardy spaces H; (M) and H (M) by their conditional analogues hj (M)
and hg(M) and the conditional expectation & by &1, it can be easily checked
that the same arguments can be adapted to obtain the conditioned results.

We shall also need to generalize the norms of hy (M) and hg (M) for arbitrary
(non-necessarily adapted) sequences z1, 22, ... in L,(M) as follows

R I [ Spaee |
|5 e [, 6]

)

LEona(Ms5)
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LEMMA 5.9. Let p,q be as above and let us consider the indices (s,t) given
by 1/s = (1 —n)/p' +n/2 and 1/t = n/q for some parameter 0 < n < 1. Then,
the following estimates hold for every martingale difference sequence dxq,dxs,. ..

in Ly (M)

1/t
t
sz‘smd“@’“a’“u oty (Z”‘”ﬂ”t) 120 gr, ) 2, n31,

Eeona k>1
H Zk 6k ®akdka co d(./\/lf ) S (% ||ak|| ) ‘£E||[hc (./Vl) Hp (M)]

PRrROOF. We recall that

[Lf:)co)nd <M7 g'f‘) Llc)cl)nd (M7 Eg)} 0 C Lf:)gnd (M7 f;),
[ngnd (M7 gc) Lfénd (M’ Eg)} 2] C ngnd (M’ eg)v

hold isometrically. Indeed, we recall the factorization
Er—1(a*b) = up—_1(a)*ug_1(b)
used in the proof of Lemma 5.6 and the resulting isometric embeddings
LEna(M;65) € Ly(M; Ry(N?)),
LEnaM:£5)  C Ly(M; Cp(N9)).

We refer the reader to [16] for a more detailed explanation. According to our claim
and by bilinear interpolation, it suffices to prove the assertion for the extremal
cases. When 7 = 0 we have (s,t) = (p’,00) and the following estimate holds

H ( Zk Er_1 (dxkakaZda?,t)) H Hp, < 21;11) lak || co H ( Zk Er_1 (dm;@dm,‘;))%

On the other hand, for 7 = 1 we have (s,

H ( Zk Er_1 (dxkaka};de))% ,

(2,9) so that

t) =
( tr akakdxkdmk))l/Q
(

< (3, laxlZlarel2) "
’ 1/1)
P
< (3, anle) " (3, el
This proves the first inequality. The second one follows by taking adjoints. ([

The following is the main result of this paragraph.

PrOPOSITION 5.10. If p,q,u,v are as above and 1/u+ 1/s =1, we have
lellzgone < e.0) max { el oy Nl g e ey,

lollzsianer < eln) max {1l a1 e o, -
Here the constant c¢(p,0) satisfies c¢(p,0) ~ 1 as v — oo and
~1/2 2

c(p,é))w(ﬁ—l) =\y—g @ v — 2.
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PrOOF. According to Lemma 5.5 we have

1 s 1/
zZp(m.0) <2 sup (Zk’|5k(a)§dx’“”s) )
Ha\lv>/%S1

]

However, since 2 < s < oo we have

1 s /s
(5.16) (ZkHé’k(a)ida:kH‘S)l
= (S, N (o + s (@] 12)
(ZkdeZdakdkazg) +<Zk||dx}';5k 1 dfckHS/z)

As we pointed above, Lemma 5.6 and Remark 5.7 generalize to conditional Hardy
spaces after replacing & by £_1. In other words, the inequality below holds with
absolute constants for 1 < p < 2

. s/2 1/s <
(5.17) HaHSBESl (Zk Hd$k5k71(a)df”k||s/z) < ”x”[HZf(M),h;,(M)]g'
a>0

IN

Therefore, it suffices to estimate the first term on the right of (5.16).
STEP 1. We first assume 4 < v < co. Since 1/s=1/v+1/p

(30, Nndancn [12) " < (32, Haanlif2) " (32, aaalz)) ™"

Then, complex interpolation gives

(3, laal?2) " < Valal 2 < V2 for 4<v<oc
Indeed, our claim is trivial for the extremal cases.

STEP 2. The case 2 < v < 4 is a little more complicated. By the noncommutative
Burkholder inequality [28], we may find a decomposition day = day + dfB; + dyg
into three martingales satisfying the following estimates

(3 laanl?2)™" < eullale
(518) |, eertdmas)?]| < collal
(3, Erdrian))® o < ellale

where we know from [54] that

e S

v —

for 2<wv<4.

Since we need to estimate the first term on the right of (5.16), we decompose it into
three terms according to the martingale decomposition above. The resulting term
associated to a can be estimated as in Step 1. For the second term (associated to
() we may find a norm one element (by) in L, 2) (M;£(/2)) such that

(5.19) (Z Hd:ckdﬁkdxkus/z \/‘Z tr bkdxkdﬁkd:ck)‘
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However, we have

>, tr(bedaidiedai)| = |0, tr(dBedupbrdar)]
_ Zktr(gk,l(dﬁkdxkbkdx;))’
< (X, &xr(dpuasy)’®

X ](Zksk_l(dxkb;;dx;;dzkbkdz;)P

(v/2)
collally /2 H ( Zk En—1(dzpbidaydugbrday))®

IN

(v/2)
Indeed, the first inequality above follows from Holder inequality after representing
Er—1(a*b) as uk_1(a)*ur—_1(b) via the right module map ug_; considered in the
proof of Lemma 5.6. The estimate for the term associated to + is similar and yields
the same term with b} and by exchanged. Now we have to estimate the term

|3, &0 s(dubdatdabeda) 5

(w/2)"
Writing each by as a linear combination
b = (brr — br2) + i(bes — bra)

of positive elements and allowing an additional constant 2, we may assume that
the operators by, bo, ... are positive. This consideration allows us to construct the
positive elements z; = (dwkbkd:rZ)%. Then, recalling our assumption 2 < v < 4, we
have 2 < (v/2)" < co and Lemma 5.2 of [28] gives for t = 1(v/2)

I, ], =yt (3, )™

In our situation, this implies

(5.20) H ( Zk Er—1 (dwkbzdﬂfzdﬂﬁkbkdﬂ)) ?

(v/2)

iy <Z Hdmkb’“dmkﬂ(zg)')

= 3,, we find
p

Using a5 ~ o7y =
1
v/2)"\ w2’ *
(32, ldwibudzi |7 ) 7 < dallp 1ol s oy el < (D2, Idelly)”

In other words, we have
(v/2)’ at—2
Z | (v/2)! — || HHP (./\/l
For the first term on the right of (5.20) we use Lemma 5.9 with

(n,5,1) = (1 - 9,2(0/2)',2(3/2)’).

e

This yields

’ 312
H Zk gk_l(dxkbkdx’“)H(U/Q)f B H Zk O @ dyby ’ L2 (i)
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(s/2)’ Y
< (Zkubk\l(sm,) 118, gy, ra

Hence, since (by) is in the unit ball of L, /2 y (M £(5/2y), we conclude

2t1

Er—1(dxibd e

HZ k— 1 L0k xk) (w/2)’ || |‘Hp,(M)7h;,(M)]9

The estimates above and (5.20) give rise to

|32, exstdmmbidmidantndat))* | | smae {15 g 0ol s ua,

Taking square roots as imposed by (5.19) and keeping track of the constants, we
obtain the assertion for Z;(M, ). The column case follows by taking adjoints. O

At the beginning of this paragraph, we assumed that the von Neumann algebra
M was finite and equipped with a n.f. state ¢ with respect to which the associated
density satisfied c;1p < D < ca1p. This assumption was only needed in Lemma
5.4 (and its conditional version) in order to apply a variation of Devinatz’s theorem.
On the other hand, this result has been only applied to prove Lemma 5.5. Therefore,
if we are able to show that Lemma 5.5 (and its conditional version) holds for
arbitrary o-finite von Neumann algebras, the same will hold for Proposition 5.10.
As we shall see, this is relevant for our aims since we shall use these results in the
context of free products. Let us indicate how to derive Lemma 5.5 for o-finite von
Neumann algebras. As expected, we apply Haagerup’s construction and consider
R = M x, G for the discrete group

G=[J2z
neN
The crossed product R is a direct limit of a family of finite von Neumann algebras
R1,Ra,... (we change our usual notation here since in this chapter M1, M, ...

stand for a filtration of M) which are obtained as centralizers constructed from the
modular action for ¢ o Exq, where

En Z TgA(g) E R — x9g € M
geG
denotes the natural conditional expectation onto M. The trace in R,, is given by
Tn(z) = @ 0 Epq(dpx) where c1,1r, < d,, < ca,lg, . It is then easily checked that

M, = M, x,G,
Mu(m) = MuN R,
are increasing filtrations in R and R,, respectively. Thus, Lemma 5.5 (and its
conditional version) holds for R,, and the filtration M;(m), Ma(m),... for fixed
m > 1. Moreover, according to (2.3) and a snnple density argument, Lemma 5.5
remains valid for R and the filtration M1, Mo, ... Finally, it remains to see that
Eam extends to a contraction on H;(R) and hf,(R) where s € {r,c,p}. This is

obvious for s = p, see e.g. [28] for the convention hb(R) = HE(R). For s =r,c we
recall that Exq and &1 commute. In the case 2 < p < oo, this implies

|32, 1 (@ Er@) e Era())?) | 32, 61 (EndmiBrntaz)) |

H Zk Er1 (Eama(dopdzy)) Hp/z

p/2

IN
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_ HEM(Zké‘k_l(dzkde))Hp/Q

H > E&i(dordai)

The arguments for H,(R), p > 2 (as well as the analogues for the column spaces)
are the same. For 1 < p < 2 we have to argue differently. By duality, it suffices to
prove the assertion for Ly MO with 2 < ¢ < oo, see Theorem 4.1 of [28] for this
duality result. Indeed, the norm in that space is given by

1
su En(dxydx, H
nzl;}; (drrdxy,) /2

2
q

IA

p/2

]

LyMO =

Therefore, using the inequality
* *
Isup Ereznz)lly o < [l 50 2nz2l,
which follows easily from (5.4), we see that the same argument above applies. On

the other hand, it is easily checked (as in [28], Theorem 4.1) that the corresponding
dual in the conditional case is given by

1
su E gn dx dl‘*
nzli Eon ( F k)

2
q/2

||$HLgmo =

5.2.2. Two-sided estimates. Now we will perform a similar task considering
two-sided terms. Since most of the arguments are the same, we shall only sketch
the main ideas in the proofs. Again, we begin by assuming that M is finite and
the density D associated to the state ¢ satisfies c;1p < D < colpag. The above
argument via Haagerup’s construction leads to the o-finite case.

LEMMA 5.11. Let 1 < p <2 < g < o0 be such that 1/p = 1/2+ 1/q. Given
0 <0 <1, let x be anorm one element in [Hy(M), H;(M)]o and let us consider
the indices 2 < w,, w., < oo defined as follows

1w, =(1-0)/qg and 1/w.=0/q.
Then there exists (ar,ac) € Ly, j2(M)y X Ly, j2(M)y and by € La(My) such that

1

dxy, = Ek(ar)%bké'k(ac)% and max{||ar||wr/2, (Z ||bk||§) ’ H%ch/?} < 2.
k>1

PROOF. Assume by approximation that x is a finite martingale in L,(M,,)
for some integer m > 1. Therefore, since x is of norm 1 there exists an analytic
function f: S — L,(M,,) of the form

f(z) =) di(2),
k=1
which satisfies f(6) = z and the estimate
max{suap (de(Z)dk(z)*)% , sup H(de(z)*dk(z))% p} <1.
z2€0o k=1

Now we define

gi(z) = { (XF dj(2)d;(2)* +8D¥) 7, if z € Oy,

1, if z € 01.
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. B 1’ ifzeao,
BV (S i) +o0h) ey

Asin Lemma 5.4, we are now in position to apply Devinatz’s theorem. This provides

us with two analytic functions h} and hj, with analytic inverses and satisfying the
following relations

hL(2)h}(2)* = gp(2) forall z€dS,
h§(z)*h§(z) = gi(z) forall zedS.

According to the argument in Step 1 of the proof of Lemma 5.4, we have

(5.21)

m L 10
[Sacmol, ., < 07
(5.22) i R ;
5k @ he (6 ‘ < (146%)9.
H; k@D (0) Lo, (Milos) ( )

Now we consider the functions
w(2) = hi(2) " Hdi(2)hi (2) 7
Note that we have unitaries u},(z) and uf,(z) for which
T T 1 T ks (& C 1
hi(2) = gi(2)?up(2) and  hi(z) = ug(2)gp(2)2.
Thus, wy can be rewritten as follows on 9S

wk(z)

uf(2) gh(2) "2 dy(2)ug ()" on  y,
wi(2) £(2)"

uh(2) di (2)g5(2) " Fug(2)

In particular, the same argument as in Lemma 5.4 (second part of Step 2) yields

sup (3 un(2)13) " < /201 + %),
z P

Therefore, the same bound holds for z = 6 by the three lines lemma. For the
moment, we have seen that dxy = hj,(0)wy(0)h{(0). Now, recalling that g, and gf
take values in Lg/o(My), we deduce that the sequence hf(0),h5(0),... as well as
h§(0),h5(0), ... are adapted. In particular, the argument in Step 3 of Lemma 5.4
gives rise to

on 0.

1 1
hi(0) = Exlar)?;  and Ay (0) = 7iEk(ac)?
for some contractions vy, v € My, and some positive elements a,, a. satisfying
py142
max { ar |, /2, faclhu, /> | < (1+8%)" .
The proof is completed by taking the elements b;, to be vy wivy; for 1 <k <m. O

Exactly as we did in Lemma 5.5, the following result is a direct application of
Lemma 5.11 for the dual space

Z,(M,0) = [Hp (M), HE(M)],.

LEMMA 5.12. If p,q, w,,w. are as above, we have

1 1 1/2
lellz, om0 < 8 Sup (Zk ||5k(ar)5dask5k(ac)5f|§) .

Ha""er/ZaHaC”wc/le
ar,ac20
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In Proposition 5.10 we found the constant ¢(p, ). Now we define
d(p,0) = max {c(p, 0),c(p,1 — 0)}
ProrosiTION 5.13. If p,q, w,, w. are as above, we have
Iz, 000y < & (0 O) max {1zl Il o, 12, e, el i 1o -
PrOOF. According to Lemma 5.12 we have to estimate the term

L 1 1/2
A= (Zk ”gk(ar)§d$k5k(ac)i H;)

for any pair (a,,a.) of positive elements satisfying |a,||,, /2 <1 and |acl|w, /2 < 1.
To that aim, we decompose it into the following three terms

(5.23) A? = Zktr(dmkgk(ac)dzzgk(ar))

< |32, tr(dondeac)duidi(an)|

+ Zktr(dwkc‘,’k,l(ac)dadek(ar))‘

+ 13 tr(dxkdk(ac)dxz&_l(ar))‘

+ | D0 tr(dwi (ac)dwiEya(ar) ‘ = A2+ AZ 4 A2+ A2

In particular, we have A < Ay + As + Az + A4. The estimate for A, is rather
simple. Indeed, arguing as in Remark 5.8, the conditional version of Lemma 5.12
follows after replacing & by E_1. Moreover, as in (5.17) the argument in Lemma
5.6 gives

1 12\ 1/2
swp (D [Er@n) i@ ;) S Il e, oo
Ha7“|w7«/27”ac>”wc/2gl P 4
ap,a.>0

with absolute constants. Therefore, we find

1 12\ 1/2
Ay = (Zk ||5k—1(ar)2d$k5k—1(ac)2||2) S lzlliny, (m,he, (),
It remains to estimate the terms A1, As and As.

STEP 1. We first estimate the term A;. Recalling that 1/w, + 1/w. = 1/q < 1/2,
we must have 4 < max(w,,w.) < oco. Moreover, since both cases can be argued in
the same way, we assume without lost of generality that 4 < w, < oco. In this case
we have

Aj

‘ Zk tr (dxkdk (ac)dxidy (ar)) ’
(w7~/2)’) 1/(wr/2)/.

Jus
< (Zklldk(ar)\lijﬁ)2 (D, lldzsdr(ac)dai]|(oa)

The first term on the right is controlled by ||a,|., /2 since we are assuming that
wy > 4. For the second term on the right, we observe that 2(w,/2)’ is determined
by the following relation

1 1 1 1 1-46 1 6 1 1

2(wr/2) 2 w2 q p+q u S

A
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Thus, this term is estimated as follows

s /5 118 /
(3, Mmavtadasillfs) " < (X, ldméeta?]:)

18\ 2/s
b (3, lmeiaeot]]) " = a2, + A%,

By (the proof of) Proposition 5.10 we conclude that

A < clp,f) max{”x”wiw)’ Hx”[%?i(MLh%(M)]e}'

On the other hand, (5.17) yields the estimate

< /
A;p S Hx||[7-tz,(./\/l),h:,(./\/()]9'
The case 4 < w,. < oo is similar and yields

A1 < e(p.) max{”x”wiww ”wll[h"',(M):H”;(M)]e}'

Therefore, in the general case we conclude

Ar < clp,f) maX{”“”H;Z(MV 12, ) 427 o ”5”||[H51(M),h;,<we}'

STEP 2. The same arguments as in Step 1 yield the right estimate for Ay in the
case 4 < w, < oo and for Az in the case 4 < w. < co. Of course, there is an obvious
symmetry between both cases so that we only prove the estimate for Ag in the case
4 <w, < oco. We have

w 2/we 1 Wwe / 1/(“’6/2),
A< (X, Mdeteollizfe) (X, et bamllis)

The first term on the right is controlled by ||acl|., /2 while
11 1 1 6 1. 196

2we/2) 2 w. 2 ¢ P q
That is, the roles of § and 1 — 6 have exchanged with respect to the situation in
Step 1 above. Therefore, according to the equivalence (5.17) we easily conclude
that

As 5 HxH[h;/(M),H:;;(M)]s :

When 4 < w, < oo we obtain the estimate

Ay S ||=’C||[sz(M),h;,(M)]e‘

STEP 3. Now we estimate As for 2 < w, < 4 and A3 for 2 < w, < 4. Again by
symmetry, we only prove the estimate for As. The proof of this estimate follows the
argument given in Step 2 of Proposition 5.10. By the noncommutative Burkholder
inequality, we may find a decomposition di(a,) = di(c.) + dg(8,) + di () into
three martingales satisfying (5.18) with («, 3,7) ~ (o, Br,7vr) and v ~» w,. Then
we have A2 < As(a)? 4+ Az(3)% + Az(v)? with

Ag(oz)2 = ’Z tr(d!ﬁk&c 1(ae dw;’zdk(ar))
As(B)? = ’Z tr(dogEx—1(ac)daydy(B)) |,
Ax(y)? = ‘Z tr(dapEr—1(ac)dayde(y ))’

)
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The term Ay(«) is estimated as in Step 2, due to the first inequality in (5.18). The

terms Ao(8) and As(7y) are estimated in the same way so that we only show how
to estimate As(83). We proceed as in Proposition 5.10 again and obtain

As(B)? = ’Zktr(é‘k_l(dk(ﬂr)dxké'k_l(ac)dx@)‘
| (32, EmrtdiBan(s))?
5 sttt

Cu /2| (D2, Ex1(donde-n(a)dai)?)?

IN

wy /2

X

IN

(wr/2)"

To estimate the last term on the right we define z, = (dzkEx—1(ac)dz}) 3, Recalling,
our assumption 2 < w, <4, we have 2 < (w,/2) < co and Lemma 5.2 of [28] gives
for t = 1(w,/2)

I, e

In our situation, this 1mphes

ng 1Zk

(Z P

=1
2t—1
(wr/2)!

1
wy/2)" T2
wr/2)’> '

(5, 6 saneis i, <

H Zk gk_1 (dl’kgk_l (ac)d:c,";)

(Z | dakEr—1(ac)d

If we take
MH = maX{H:E”Hz:v ||m||[h;,,’)—(£j]9’ ”x”[HZ:ﬁ;/]W ||x‘|[h;,,h;,]g }7

we have already seen in Step 1 above that

(3, ldensir(ae)dail|ars )™ < Mo,

We claim that
(520 |3, & (dresir(ac)da)|

< zllBr ey < Mz
(wn )2y = ||$||[hp,,hp,]9

If we prove (5.24) then it is easy to see that Ay(5) < M and the estimate for Ay
will be completed. Arguing as in Lemma 5.6, it is not difficult to check that the
left hand side of (5.24) does interpolate. Hence, it suffices to estimate the extremal
cases. When 6 = 0, we have (w,,w.) = (¢,00) and (w,/2)" = p’/2. Consequently,
we find

|32, e (dmtin(ardey) | < lacllo|| 35, Eertdmarp)]| < el onn
When 6 = 1 we have (w,,w.) = (00, q) and (w,/2)’ = 1 so that
|, S (dmdinsaddny) | = 7, er(Ena(ac)daida)
Z tr(acEy—1(daday))
> dxkdxk)‘

IN

lacllg

, < H$||hc (M)
2



5.3. INTERPOLATION OF 2-TERM INTERSECTIONS 99

Note that the first identity assumes that a. is positive and this is not necessarily true
on the boundary. However, decomposing into a linear combination of four positive
elements and allowing an additional constant 2, we may and do assume positivity.
Therefore, (5.24) follows from the tree lines lemma. A detailed reading of the proof
gives now the constant ¢(p, ) stated above. This completes the proof. O

5.3. Interpolation of 2-term intersections

Let us fix some notation which will be used in the sequel. As usual, we begin
by fixing a von Neumann algebra M and a von Neumann subalgebra N with
conditional expectation E : M — A. Given 1 < q¢ < p < oo and a positive integer
n > 1, the main spaces in this paragraph will be the following

217 Q(M E) = nﬁl@p(M)mnqu(gpqq’oo)(M7E)a

Chyg (MUE) = 0 Lop(M) 03 LY oy, (MLE).

In order to study these spaces we need to introduce some terminology. We set Ay
to be M@ M for 1 < k < n. Then we consider the reduced amalgamated free
product A = xxAj where the conditional expectation En : A — N, defined in
Paragraph 5.1.1 as Exr(a) = QpaQy, has the following form when restricted to Ay

1
Given a n.f. state ¢ : NV — C, let 3 : M & M — C be the n.f. state

pal1,22) = 5 (0(E(1)) + 9(E2))) = 0(Enlan,22))

We shall write Ag,, for the direct sum AS AP ... D A with n terms. If ¢ stands
for the free product state on A, we consider the n.f. state ¢, : Ag, — C and the
conditional expectation &, : Ag, — A given by

Zxk X 51@ Z ¢ a:k and 5@n ka X 61@ Zxk

k=1
Let 7y, : Ak — A denote the embedding of Ay into A as defined at the begmmng
of this chapter. Moreover, given x € M we shall write x; as an abbreviation of
7 (xz, —x). Note that zj is a mean-zero element for 1 < k < n. In the following we
shall use with no further comment the identities

EN(xlva) -

En(zpay) = E(zz™) and En(zizk) = E(z"2).

Let us consider the following map

n
(5.25) u:xGMHsz@)(SkEA@n.
k=1
Moreover, if ds denotes the density associated to the n.f. state $ = ¢ oE on M and
dg, stands for the density associated to the n.f. state ¢, on Ag,, we may extend
the definition of u to other indices by taking

1 1 1 1
u(dé z) = dy u(z) and u(xdé) = u(x)d} .
In the following we shall consider the filtration on the von Neumann algebra A

given by Ay = Ay spr Ag kpr - - - 7 Ag. In particular, for any € L,(M) we obtain
that u(x) = (z1,22,...,2,) is the sequence of martingale differences of ), xy.
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LEMMA 5.14. If 1 < p < oo, the following mappings are isomorphisms onto
complemented subspaces

Wi R (ME) — H5(A),
Wi Gy (ME) — Hs,(A).
Moreover, the constants are independent of n and remain bounded as p — 1.
PROOF. Let us observe that
51 (ME) = n¥ Loy (M) N VL, (M,E),
Ch o (MLE) = n® Lyy(M) N v/aLs,(M,E).
Given r € Ry, ;(M, E), Corollary 5.3 gives

n n 2p n 1
o0 o = [ ), ~ (32 hot)” + (3 Bt
k=1 k=1 k=1

In other words, we have

P

HU(x)Hng(A) ~n2 2L, m) + VR %l L5, (rE)-

This proves that u : Ry, ;(M,E) — Hj,(A) is an isomorphism onto its image
with relevant constants independent of p,n. A similar argument yields to the same
conclusion for the column case. To prove the complementation, we recall that

op(A)" = His,) (A) for 1<p<oo

(with relevant constants which remain bounded as p — 1) and consider the map

1 1,
w:T e ,’,LT%L(QP)/(M) + ﬁ L(Qp)/

Let dg be the density associated to ¢ o E. Assume by approximation that

1 n
(M,E) — —~ D @k @ 6k € Hiypy (A).
k=1

T = ad;/@p)la

for some («,a) € N'x M. Then, taking dy to be the density associated to the state
¢ on A and defining ay = m;(a, —a), the following estimate holds by Theorem 7.1
in [28]

w(z) || = —lad ara )d «
H ()||H(2P),(A) n ¢ k; k)™ Liapyr /2(A)
1 ’ n ’ 1/2
< 1 Hadl/(Qp) ( Ex (apat )dl/(2p) o ,
nll ¢ kz:l (axai) )dy Liapy ;2N)
This gives
1
. < — r .
(5.26) Hw(x)HH(sz),(A) =/n 2z, (e

On the other hand, the inequality

(5.27) (@), 1

N
n?2r

1 (A) < H"T”L(QP)/(M)

r
(2p
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follows by the complex interpolation method between the (trivial) extremal cases
for p =1 and p = co. The estimates (5.26) and (5.27) show that the map w is a
contraction. Note also that

1 n 1 n
<U($1)’w($2)> = ZUA(Z‘TM%) = ZUM(QCTM) = (1, 22).
k=1 k=1

In particular, since we have

1 1 *
3 (MB) = (= Loy (M) + = Loy (M E))

it turns out that the map w*u is the identity on R, ; (M, E) and uw* is a bounded
projection onto the image of u with constants independent of n and bounded for
p ~ 1. This completes the proof in the row case. The column case is the same. [

Before proving our interpolation result, we need to consider a variation of
Lemma 5.14. Namely, we know from [28] that H5,(A) ~ L5, MO(A) for 1 <p < oo
and with constants depending on p which diverge as p — oo. We claim however
that Lemma 5.14 still holds in this setting with bounded constants as p — oo.

LEMMA 5.15. If 1 < p < o0, the following mappings are isomorphisms onto
complemented subspaces

u: R, (ME) — Ly MO(A),
u: Cy(M,E) — L5 MO(A).
Moreover, the constants are independent of n and remain bounded as p — oo.

PROOF. The noncommutative Doob’s inequality [16] gives

n 1 n 1

2 2
||u(:c)|L, MO = H sup Epn( E TRT}) SPYPH E xk:cZH .
2p k=m k=1 P

1<m<n ‘P

Note that 7, — oo as p — 1 but vy, < 2 for p > 2. On the other hand, we may
estimate the term on the right by using the free Rosenthal inequality (see Corollary
5.3) one more time

- 3 - 2p\ %P - B
[$5 el ~ (S 103)” (S vte],
k=1 P k=1 k=1 P

This shows that u : R%, ;(M,E) — L5, MO(A) is bounded with constant ~,. To
prove complementation and the boundedness of the inverse we proceed by duality
as in Lemma 5.14. Indeed, using the map w one more time and recalling that

L5, MO(A) =y, (A)

with constants which remain bounded as p — oo (c.f. Theorem 4.1 in [28]), we
may follows verbatim the proof of Lemma 5.14 to conclude that the map w*u is the
identity on R, ; (M, E) and uw* is a bounded projection onto the image of u with
constants independent of n and bounded for p ~ oco. This completes the proof in
the row case. The column case follows in the same way. ]

= lzllrg, , (Mm.E)-

THEOREM 5.16. If1<p<oo and1/qg=1—-60+0/p, we have
[ gp,l(Ma E)7 gp,p(Mv E)]@ = gp,q(M7 E)a
[Cgp,l (M7 E>7 Cgp,p (M7 E)]g C;p,q (M’ E)>

1R
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isomorphically with relevant constant c(p, q) independent of n and such that

P—q
c(p,q) S as (p,q) = (00,1).
Pg+q—p

PRrROOF. By Corollary 4.7 i), we have contractive inclusions
[ gp,l(Mﬂ E)7 2p p(M E)] - Rgp,q(MV E)?
[Cgp,l (M7 E)a CQp,p (Mv E)] /] C Cgp,q (Ma E)

To prove the converse, we consider again the map given in (5.25). It is clear that

n 1
@) lygze 0y = (3 lell3h) ™ =0 flap.
k=1

This shows that u : n% Lop(M) — Hgg(A) is an isometric isomorphism. Moreover,
arguing as in the proof of Lemma 5.14 we easily obtain that the image of u is
contractively complemented. This observation together with Lemmas 5.14 and
5.15 give rise to the following equivalences

for small p,

Izl =g, e =3, 8l ~ W@ g ) 220,

for large p,

l2llims, ;875 om0 ~ @iy smowme

with constants independent of p,q,n. On the other hand, Berg’s theorem gives
isometric inclusions

[H5,(A), H3b(A)]
(L5, MO(A), Hop (A)]
Now we can use duality and obtain

[H5,(A). 1A = [Hyy (A), HGD,

(2p)’

(L5, MO(A), HE(A)]" = [, (A), HED ()], for 1 <p< oo,

[H,(A), H2E(A)],

C
0
r 2p 0
C L3, MO(A), H2(A))".

0

(A)]; for 1 <p < o0,

where the constants in the first isomorphism remain bounded as p — 1 and the
constants in the second one remain bounded as p — oo. Therefore, recalling the
terminology used in the previous section
2p)’ *
[Miapy (A). Hia) (A = 2oy (A1~ 6)

and taking adjoints, we obtain

el ~ lu@lzr a1-0 = AL(A,0),

Izlli=g, , (m.E),R ey

n
2p,p

lelites, ,mey ez, mple ~ @)z, | a1-0) = AZ(A0),

2p,p

with constants independent of p, ¢,n. According to Proposition 5.10 we have

A (A,0) < e(p,q) max { (@) lzr s 10 | pze ay s sy -

Let us estimate the two terms on the right

() gz ) = (Zuxkn ) =% |2llap < |l2llry, e
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For the second term we observe that

lu(@)llng, ) = (igkfl(xka))% 2
k=1
- [[(Sevtmen)
k=1
= (iE(mx*))%
k=1

where the second inequality follows by freeness. By complex interpolation and
Corollary 4.7 we conclude

P

,, = Ve,

2048
||U($)||[hgp(,4)7n§§(,4)]9 < nzhw ||$||L?P2p, )(M,E)
1§
1
= i, e < lelleg, e
Pod

In summary, we have proved that

||CUH7zgp,q

e < lzllrg,  (mE) Ry, (MEN < (D, [[2llRg,  (ME)

2p,p 2p,q

where (recalling that p ~» (2p)’ and 6 ~~ 1 — @), it follows from Proposition 5.10

that
p—q
cp,q) ~/—— as (p,q) — (00, 1).
(.0) ~ [>T e (ma) = (o)

This proves the assertion for rows. The column case follows by taking adjoints. [

REMARK 5.17. At the time of this writing, we do not know whether or not
the relevant constants in Theorem 5.16 are uniformly bounded in p and g. Our
constants are not uniformly bounded due to fact that we use the noncommutative
Burkholder inequality from [28] in our approach. We take this opportunity to pose
this question as a problem for the interested reader. The same question applies to
Theorems 5.18 and 7.2 below.

5.4. Interpolation of 4-term intersections

In this section we study the interpolation spaces between R%, (M, E) and
C;’p)l(/\/l, E). Of course, as it is to be expected, our main tools will be the free
Rosenthal inequalities and the two-sided estimates for BMO type norms. We shall
use below the constant ¢'(p, ) in Proposition 5.13.

THEOREM 5.18. If 1 < p < oo, we have

n n 1-6, 1 , 6
[R5, (M,E),Co  (MLE)], =~ [ e Parto L,

T25:7)

(M, E)

u,vE{2p’,00}
isomorphically with relevant constant controlled by ¢’ (p,0) and independent of n.

PrROOF. According to Corollary 4.7, we have

[VALy, (M E),n Loy(M)], = n'z T35 L%,

1-6°

M)

E c 1-0_ 0
(27 Lop(M), VLG, (ML), = 3 ¥ L7, (MLE),
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for 1 < p < oco. Moreover, if 1 < p < oo the same result gives

[Vn Ly (M, E),v/n L5(M,E)], = v/n L, %,,)w, E).

(25,
In the extremal case we claim that we have a contractive inclusion
[LZO(M7 E)?-Lgo(Ma E)}g - LOO%)%)(/\/L E)

Indeed, let us consider the multi-linear mappings

Ti: (o,2,8) € Lo(M) x LE (M, E) X Log(M) = azf € Lay(M),

To: (ayz,8) € Log(M) X LS (M,E) x Lo(M) — axf € Ly(M).
By the definition of L’ (M,E) and LS (M, E) it is clear that both T; and Ty are
contractions. In particular, it is easily checked that our claim follows by multi-linear
interpolation, details are left to the reader. Therefore, according to the observation

above and Corollary 4.7, we obtain the lower estimate with constant 1. In other
words, there exists a contractive inclusion

1-60., 1,6
(R, 1(ME).Ch, (M B)], € () nw ToT0 L, (MLE).

1-6°06
u,we{2p’, 00}

To prove the converse, we consider again the map given in (5.25). Arguing as in
the proof of Theorem 5.16 and according to Lemmas 5.14 and 5.15, we obtain the
following equivalences

Hxll[RQP’I(M,E),CQP,I(M,E)]Q ~ Hu(m)H[ng(A),ng(A)]e for p <2,

H$||[R;‘p’l(M,E),Cgp,l(M,E)]g ~ Hu(m)H[L;FMO(A),LgpMO(A)]g for p > 2,

with constants independent of p,q,n. On the other hand, Berg’s theorem gives
isometric inclusions

[Hz,(A), Hs, (A)]
(L3, MO(A), L5, MO(A)],

Now we can use duality an obtain

C (M5, (A), Hs, (),
c  [L5,MO(A), L5, MO(A)]’.

(M5, (A) H5, ()] = [Hyy (A), HEy,y (A for 1< p < o0,
[L5, MO(A), L, MO(A))” = [Hiy, (A) Hiny (A)]

0
where the constants in the first isomorphism remain bounded as p — 1 and the
constants in the second one remain bounded as p — oco. Therefore, recalling the
terminology used above

[H&p)’ (A), Hép)’ (A)]; = Z(2py (A, 0),

we deduce the following equivalence

for 1 < p < o0,

Izlliry, ,(MmE).cp,  (ME ~ U@z, (a0)-

According to Proposition 5.13, the right hand side is controlled by

¢ (p,0) max {lu(a) lag, 1) ez, N s 1o 1) g, 1o -
The first two terms are estimated as in Theorem 5.16

1
[u(@)llyzeay = 12 l|2ll2p,
2p(A)
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1
@)y, a2z an, < 07 el NECES

Note that the latter term is the norm of x in
nw Ty L%I% 5y (ME) with  (u,v) = (2p', ).
=,

Taking adjoints and replacing 6 by 1 — 6, we obtain

LJ,_L
@)l pzeay s, aye < 772 ||x||L?p oy (ME)
g

It remains to estimate the last term in the maximum. As in Theorem 5.16
lu(@)llng,a) = \/ﬁHE(M*)H%,
lu(@)llng, 9 = ValE@ o),

Thus, by complex interpolation we conclude

(@)l 5,

Jo < \/ﬁ”xHL??%’QTg,)(M,E)'

Combining the estimates obtained above, the assertion follows. O

REMARK 5.19. As we shall see in Chapter 7 below, another useful way to write
the intersection space appearing on the right side of Theorem 5.18 is in the following
form

m nlen+% L?p 4pq 4pq )(M7 E)
e 2p 20} aT=m (p—a)’ 72p—5)

REMARK 5.20. It might be of independent interest to mention that our methods
immediately imply that the spaces R, ; (M, E) and C3, ; (M, E) form interpolation
families with respect to the index p. In other words, for any 1 < p < oo

[ Zo,l(MaE)a S,I(MaE)] gp,l(MaE)7
[ ;Lo,l(M7E)7 C;l(MvE)]l/p = Cgp,l (M7E)

Moreover, using anti-linear duality we may replace intersections by sums and extend
our results to the whole range 1 < 2p < co. These generalizations of Theorems 5.16
and 5.18 are out of the scope of this paper.

/p —






CHAPTER 6

Factorization of J (M, E)

Let (X1, X3) be a pair of operator spaces containing a von Neumann algebra M
as a common two-sided ideal. We define the amalgamated Haagerup tensor product
X1 ®m,n X2 as the quotient of the Haagerup tensor product X; ®j Xy by the closed
subspace Z generated by the differences

1Y QX9 — X1 ® yro Wwith ~v € M.

We shall be interested only in the Banach space structure of the operator spaces
X1 ®m,n Xo. In particular, we shall write X; ®a X2 to denote the underlying
Banach space of X; ®aq,5 X2. According to the definition of the Haagerup tensor
product and recalling the isometric embeddings X; C B(H;), we have

(6.1)  llx, @rxs = inf{H(Zk xlkxik)l/zHB(Hl) ’(ka;k%k)uzusmz)}’

where the infimum runs over all possible decompositions of x + 7 into a finite sum

JSZkalk@xzk +I.

REMARK 6.1. Our definition (6.1) of the norm in X; ® ¢ X2 uses the operator
space structure of X; and X, since the row and column square functions live in
B(H;) but not necessarily in X;. However, in the sequel it will be important to
note that much less structure on (X7, X32) is needed to define the norm in X; ® pq Xo.
Indeed, we just need to impose conditions under which the row and column square
functions become closed operations in X; and X, respectively. In particular, this
is guaranteed if X; is a right M-module and X5 is a left M-module. On the other
hand, note that this structure does not provide us with a natural operator space
structure on X; ®q X2, as we did above with X; ®@aq,n Xo.

Let us consider any pair of indices 1 < p,q < oo satisfying ¢ < p and let us
define 1/r = 1/q — 1/p. Then, given a positive integer n, the rest of this paper will
be devoted to study the following intersection spaces

1

n _ wtets
jp,q(Mv E) - n n Lz()u,v) (M, E)
u,ve{2r,00}
The aim of this chapter is the following factorization result for the spaces jp’Z(M, E).
THEOREM 6.2. If1 < g < p < oo, we have

T (ME) ~ R, (M,E) @ C

2p,q

(M, E),

n
2p,q

isomorphically. Moreover, the constants are independent of p,q,n.

107
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6.1. Amalgamated tensors

Before any other consideration, let us simplify the expression (6.1) for the
amalgamated Haagerup tensor product in Theorem 6.2 above. Since R%, ,(M,E)
and C3, ,(M, E) coincide with Lg, (M) as a set, the product ab of any two elements
(a,b) € Ry, ,(M,E) x C3, ,(M, E) is well-defined and the amalgamation over M
allows us to identify finite sums

Zk apby >~ Zk ar by, +T.
Moreover, it is easily seen that
1,02, ..., 0y EL(UOo (M,E) = (Zk akak) EL(u OO)(/\/l,E),
2 * 2
bisba,. by € LT (ME) = (D bibi)® eL(fov)(M,E).

In particular, it turns out that (6.1) simplifies in this case as follows

vy \1/2
Ré‘p,qH(Zk bibr)

where the infimum runs over all possible decompositions

Tr = Zk akbk.

Of course, this argument holds in a more general context. Indeed, arguing as
in Proposition 4.5, we deduce that the conditional L, space L(u v)(/\/l, E) embeds

contractively into Lg(M) with
1/s=1/u+1/p+1/v.
Thus, the same arguments lead to the same simplification for the spaces

A = Lyp(M) @pm Lap(M),

. N\ 1/2
[#llry, . (ME)©MCE, ,(ME) = Inf { H ( Zk aray) ‘

it
C2P-,q

B = L2p(M) ®M LQCI:O 2pq (M E)

(00, 72%)

C = L?gpq 00 )(M, E) QM L2p(M)a
D = L?pzpq (M E) M L?p ,2pd (M7 E)

Our first step in the proof of Theorem 6.2 is the following.
LEMMA 6.3. We have

1

9p.q(M,E) @1 Coy (M, E) =~ nrAnnztaBAn»t2CAniD
where the relevant constants in the isomorphism above are independent of p,q,n
PROOF. It is clear that
5o ME) @ Ch (M,E) CnsANn®t2iBNn® 2 CAniD
contractively. To prove the reverse inclusion it suffices to see that

(62) nrANR®TEC C R, (M,E) @pn Lyy(M) = X,

(6.3) n®TuBARID C Rgp,q(M,E)@aMn%Lf su ) (ME) = X,
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with constants independent of p, ¢,n and also

(6.4) X1NAX, C 7?,3;0’(1(./\/17 E) Qm C (./\/t7 E)

with absolute constants. In fact, the three inclusions can be proved using the same
principle, which obviously works in a much more general setting. Indeed, let us

prove (6.2). If z is a norm one element in nrANn?t2C and § > 0, we may
find decompositions x = Zk aipasr and r = Zk c1icop satisfying the following

estimates
1 1
( Zk aikaiy)’ ( Zk asyak) 2p}
1 1
(Zk Cincar)” 2]9}

(> circiy)® n
k L?gﬂ oo)(M,E)’

p—q’

n
2p,q

IN

max {nﬁ 1+ 6,

1
77’[[2?
2p

1+6.

IN

L
max {Tl 2q

Let us consider the following element in Loy, (M)

1/2
v = (Zk a;kagk + Zk C;kCQk + 6D1/P) .

Since 7 is invertible as a measurable operator, we may define £ by « = &v. Moreover,
we also define (aj,ch,) by asx = ab,y and co = cby,y. This gives rise to the
following expressions for = that will be used below

= 57 = (Zk alkalgk)')’,
r=& = (D, cnch)r.

The norm of x in X; is estimated as follows

]l < ll€limy

2p,q

(M,E)”'}/Hnﬁsz(M)v

where the norm of § in the space Rj, (M, E) is given by

/ L /
g a1pa n2q E C1KC ‘
gLk 2’“H2p’ ) C1RC2k

= maX{Sl,Sg}.

1
max {n 2p
2pq

Lf” )(M,E>}

p—q’
However, since

Zk Uy Oy = ’Y_l(zk aspagk)y ' <1,

1
(Zk alkaik) ’ 2

we obtain

€1 €
Sl = n?zr g alkaékH S n2p
k 2p

Similarly, we have

Zk CopCop = Vﬁl(zk hpear)y P <1

and therefore we deduce

1 /

= Mn27su 6% C1kC o <1
E » >
SQ p{ k 1k Qk:HL (M)| || HL2 q (W) }
2q rP—aq

) 1/2
< n2su { E acypcy a*H «o < 1}
S a 19 k 1kC1k Lq(./\/l) ’ || ||Lp2§<51 (N) —

1 1
= n2su { « E C11Ci1 ) 2
p ( g Gk 1k;)

Thus, we have proved

allp,,, o) S1} <148
L2q(M)\ [ ||Lﬁ(1\/)

1€llrs

2p.q

(ME) < 1+4.
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It remains to estimate the norm of v in n Lop(M)

1 1
n# sy < % (| 2, aduas| + |30, e
In conclusion, letting § — 0% we obtain
]|, < V2.

This proves (6.2) and inclusion (6.3) is proved in a similar way. To prove (6.4) we
just need to observe that the common factor R3, ,(M,E) in X1 N A&, is on the left,
in contrast with the previous situations where the common factor was on the right.
The only consequence is that the roles of £ and v above must be exchanged. O

+6)" < V2(1+06) +8hn.

LEMMA 6.4. We have
A = LP(M)7
B = L‘?oo M)(M7 E)a

C = Lpzpq oo)(M7 E)a

(224,

D = L‘?%q 2pq)(M7E)a

P—q’pP—q

isometrically whenever the indices p and q satisfyl <g<p<oworl<qg<p<oo.
PROOF. Let us define
1/s=1/u+1/p+1/v=1/s1 +1/s9
with the indices s; and so given by
1/s1 = 1/u+1/2p,
1/s9 = 1/2p+1/v.
Then we obtain the following estimate

|3, 3, v

< sup Ha( akak
a,B

= [ (2w’

where the supremum runs over all « in the unit ball in L,(N) and all ﬁ in the
unit ball of L,(N). Therefore, taking infima on the right we obtain a contractive
inclusion

= sup
qu)v)(MvE) ()1,/3

S

1
2

Z bkbk

S2

1
%71 \3
L2 (ME) H OBLLY

b

L2P oy (ME)

2 2p
Lp (M E) ML (M, E)CLI(’uU)(M,E).
This shows at once the lower estimate for all isometries and for 1 < ¢ < p < 0.
That is, with no restriction on the indices. In order to show the reverse inequalities,

we restrict the indices v and v to be either pp‘é or co. We shall obtain
Ly ML E) € LEE ) (ML E) @00 L ) (M, E)

contractively. To do so we begin with some remarks. First, the isometry A = L,(M)
is very well-known and there is nothing to prove. Thus, the case ¢ = p is trivial
since the spaces on the left collapse into Lo,(M) @aq Loy(M) while the spaces

(o0,v)

(o0,v)
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on the right coincide with L,(M). Therefore, we just need to consider the cases
1<g<p<ooandl<q<p<oo. In both cases we have

2
2<ﬂ<oo.

In other words, we may assume that 2 < min(u,v) < oco. In particular, we are
in position to apply the standard Grothendieck-Pietsch separation argument as in
Theorem 3.16 and Observation 3.17. This will be our main tool in the proof. Let
us consider the following norm on L,(M)

L?;m)(M,E)}

1 1
et =i 2, )5, 50

where the infimum runs over all decompositions of z into a finite sum ), axby with
ak, by € Lop(M). Since this norm majorizes that of L?ﬁm) (M,E)®@m L?fow) (M, E)
in L,(M), it suffices by density to see that the norm in L](Duﬁv)(/\/l, E) controls ||| |||
from above. To that aim, given « € L,(M), we consider a norm one functional

¢ (Lp(M), [[LIl) = € satisfying |p(z)| = |[]]]]-

Then, the reverse inequalities will follow from

(6.5) [6(2)] < sup { ]

Applying the standard Grothendieck-Pietsch separation argument, we may find
positive elements o € By vy and 3 € By, () satisfying

|#(ab)| < ||aal

Then, taking ¢, and gg to be the support projections of o and 3 respectively, we
obtain after the usual arguments (see e.g. Theorem 3.16) a right M-module map
W goLs, (M) — qpLg, (M) determined by

o(ab) = trpg (\P(aa)bﬂ) .

In particular, there exists my € Br ,(aq) satisfying U(aa) = mygaa so that

Ly | @ €Br ), B € BL,,(/\/)}'

Lo, (108l L., (M)

¢(x)] = |traq (mwaz)| < sup {||0¢l‘ﬂ||Ls(M) | a€BL,w)B€ BLW(J\/')}-
This completes the proof of inequality (6.5) and thus the proof is concluded. (]

Let us observe that Lemmas 6.3 and 6.4 give Theorem 6.2 for every pair of
indices (p, q) except for the case of JZ ; (M, E). However, this is for several reasons
one of the most important factorization results that we need. In order to factorize
the space JZ ; (M, E), we note that Lemma 6.3 is still valid. Moreover, due to the
obvious isometries

X1®MM:X1 and M@MXQZXQ

for any right (resp. left) M-module, we deduce that the first three isometries in
Lemma 6.4 are trivial in the limit case p = oco. Hence, we just need to show that
the isometry for D still holds in the case (p,q) = (00,1). Again, we recall that
the lower estimate can be proved as in Lemma 6.4 so that it suffices to prove the
upper estimate. Unfortunately, the application of Grothendieck-Pietsch separation
argument in this case is much more delicate and we need some preparation. After
some auxiliary results in the next paragraph, we will go back to this question.
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6.2. Conditional expectations and ultraproducts

We study certain ultraproduct von Neumann algebras and the corresponding
conditional expectations. These auxiliary results will be used to factorize the norm
of J% 1(M,E) as explained above.

LEMMA 6.5. Let F be a finite dimensional subspace of M* and let G be a finite
dimensional subspace of M. Then, given any § > 0 there exists a linear mapping

w:F— M,
satisfying the following properties:
) ||lwllew <146.
ii) The space w(F NN*) is contained in N.
iii) The following estimate holds for any f € F and g € G
lg( () = F@] <l fllr llglls-

PROOF. Let (f1, f2,... fx;ff,f5,...,f;) be an Auerbach basis of FNAN*. That
is, (f1, f2,. .., fi) is a basis of FNN* with || f;|| = 1 for 1 < j <k and the f{’s are
functionals on F N N* satisfying f/(f;) = d;;. Let us take Hahn-Banach extensions
fio-- o fi :F—=Cof f},... f; respectively. Then we may define the projection

k
P:feF=) fi(Nfi e FON™.
j=1
Now, using P we may also consider an Auerbach basis (fri1,..., fn; i, f)

of (1 — P)(F). Then, given any k+ 1 < j < n we consider the linear functional
J; + F — C defined by the relation

1) =5 (7= P()-
Finally we consider an Auerbach basis (g1,92,.-.,9m; 97,95 ---,95,) of G. This
allows us to define the following set for any € > 0

Cle) = conv{w F— M, { wFNN*) C N, |9k(w(fj)) - fj(gk)‘ < 5}‘

Let us assume that

(1+6)Bepr,m,) NCle) =0,

where C(g) denotes the closure of C(¢) in the o(CB(F, M.),F ® M) topology. We
will show below that C(g) is not empty. Thus, by the Hahn-Banach theorem we
may find a linear functional ¢ : CB(F, M,) — C such that

Re(£(w1)) < 1< Re(£(w2))

for all wy € (1+6) Bep(F,m,) and wy € C(e). This implies [[€]lcaE .y < (1+0)71
After identifying the space CB(F, M) with the minimal tensor product F* ®in M,
we consider the associated linear map T¢ : M, — F defined by

[ (Te(my)) = €07 © m.).
Then, taking m; = fF oTe € M it turns out that

J
£=> m;® f;.

j=1
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We claim that

I€llnre,p = IElm.p < X +6)7H
where N(M,, F) (resp. I(M.,F)) denotes the space of completely nuclear maps
(resp. completely integral maps) from M, to F. Indeed, according to the main
result of [10], M, is locally reflexive and so the first identity follows from Propo-
sition 4.4 in [10]. The inequality following it holds by Corollary 12.3.4 of [11] and
the fact that [|¢[lcsF .y < (14 0)~ . Moreover, since F is finite dimensional

N(M,,F) =F&M and N(M,,F)* = CB(F, M*).

This means that given any linear map w : F — M*, we have

§@)l = | D () my)

< élinem. pllwlles < (1 +8) 7 lwlles-

In particular, the inclusion map j : F — M™ satisfies
€G) < (1 +6)7"

On the other hand we can write

i=Y_fef
j=1

Given 1 < j <k, let (fja)aca C Ni be a net converging to f; in the o(N*, N)
topology. Thus f;, o E converges to f; o E in the o(M*, M) topology. When
j=k+1,k+2,...,n we may also fix a net (fja)aca C M, converging to f; in
the o(M*, M) topology. This implies that the maps w, : F — M, defined by

walf) =D (Ffja satisfy wa(FON*) CAN,
j=1

since fjo € Ny for j = 1,2,....k and f;(P(F)) =0 for j = k+ 1L, k+2,...,n.
Moreover, for large enough « we clearly find
gk (wa (£)) = filgr)| < e

This shows that there exists o for which w, € C(g). Finally, we have
lim é(wa) =lim Y m;(wa(fy)) = lim Y m;(fa) = £0)-
j=1 j=1

Therefore we may find « such that
wae € Ce) and [{(wq)| < 1.

However, any w € C(e) satisfies Re(¢(w)) > 1. Therefore, we have a contradiction
so that we can find

w € (14 6)Besr,m.) NCle).
Such a mapping clearly satisfies

m

@) = 90N = |32 £ (Ngi@) oul i) = filar)| <= 315NN gkl
Jik j=1 k=1

Then, recalling the definition of f} and gy we easily obtain

9w (f)) = g(f)] < emnll1e =Pl flFlglle < 2emn?||fllellglle
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for all f € F and g € G. Therefore, taking ¢ < §/2mn? the assertion follows. (]
In the following we use the notation
(x;)* = Equivalence class of (z;) in Hi,l/f X;.
LEMMA 6.6. There exist an ultrafilter U on an index set I and a linear map
a: M — Hi,u M,

satisfying the following properties:

i) The map « is a complete contraction.
ii) The space a(N*) is contained in 1], ;, Nx.
ili) The following identity holds for all ¢ € M* and m € M

lim; 3y m(a(y))i) = P (m).

PROOF. Let I be the set of tuples (F,G) with F a finite dimensional subspace
of M* and G a finite dimensional subspace of M. Let U be an ultrafilter containing
all the subsets of I of the form

Irc = {(F’,G') |FCF, Gc G'}.

Note that this can be done since these sets have the finite intersection property.
For fixed F, G we choose wr g : F — M, satisfying the assumptions of Lemma 6.5
for 6 = (dim Fdim G)~!. Then we define

a(y) = (wr(¥))*.

Note that for (F,G) € Iy, (o) this is well-defined. Hence « is well-defined on M*.
It is easily checked « is linear and completely contractive. By construction we have

a(N*) C I, 4 Ne and a()(m) = lim; y m(a(i);) for all m € M. O
LEMMA 6.7. There exists normal conditional expectations
B: ([T, M) = (IL,N) end &:(T], M) =M
Moreover, they are related to each other by the identity E** o £ = £ o E.

PROOF. Let us consider the map
U . e e
B o)t e [ Mo (B e ], N
By strong density of [],;, M in ([, ;, M.)", we may define
B: <qu M*) - (Hi,u *)
with predual E¥. On the other hand, the map
v ((;02). S Hi u M* (g limi’u QOZ() S M*

clearly satisfies a0y = 1y, y M., with « being the map constructed in Lemma 6.6.
Taking adjoints we find that

v MT = (quM*)*
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is an injective x-homomorphism so that the adjoint £ of «

£: (qu M*>* - M

is a normal conditional expectation. We are interested in proving the relation
E** o £ = £ o E. Note that since a(N*) is contained in [, ,, NV, we have

*

E(HWN*) c N*.
In particular, both maps E** o £ and € o E end in N**. However, if we predualize
this identity it turns out that it suffices to see that

QOE*:EZ;’OOqN*-

This is a reformulation of Lemma 6.6 iii). The proof is complete. ([l

6.3. Factorization of the space J3 ;(M,E)

According to [55],

L,(My) = qu L,(M) with My = (qu ./\/l*) and 1<p<oo.
Then, by Lemma 6.7 the inclusion below is a complete contraction

&p o Lp(M™) — Lp(My).
LEMMA 6.8. The map & : Li(M**) — L1(My) satisfies
& ((an)(wh)) = &1(a®)? 2y &1 (07)

for all (z,y) € L, (M,E) x LS (M, E) and all positive elements a,b € L3 (N**).

PrOOF. Accordingly to the terminology used in Lemma 6.7, we may identify
M** with its image v*(M**) in M. In particular, the map ¢, can be regarded as
an M** bimodule map satisfying

1 1
&(DY/") = DY/%,

for every functional ¢ € M* with associated density Dy, € L1 (M**) so that ¢po€ is
a functional on My, with associated density Dyog € Li(My). Therefore, we have

&(Dy) = DY/2ADY2 — &(DY/A)6(DY?).

Now, let us consider a,b € La(M™**) and define Dy, = aa* 4 b*b with corresponding
positive functional . Let my, mo € M** such that a = Dll/le and b = mQD,le}/Q.
Assuming that m; and msy are y-analytic and using the bimodule property of &

we obtain

51 (DQI/QT)’HTTLQD:/Q)
= & (Ufi/g (ml)Dwa$2(m2))

of 1/2 1/2 of
= V5, (m)DyED ol (mo)

§1(ab)

1/2 1/2
= Dq/;/<>£m1m2sz/o£

= 62 (D:/Q)mlmgﬁg (D,ll/2)



116 6. FACTORIZATION OF J (M,E)

Thus, by approximation with ¢-analytic elements, we conclude & (ab) = £2(a)&a2(b).
Assuming in addition that a,b are positive and z,y € M™**

(6.6) £1((az)(yb)) = E2(az)éa(yb) = Ex(a)ayéa(b) = €1(a®)F ay &1(b?)7.

This proves the assertion with a,b € L] (M**) and z,y € M. Before considering
elements (z,y) € L. (M, E) x LS (M, E), we observe that &,(L,(N**)) is contained

in the space
Ni) =TT, LoN) with N = (Hw N)

Indeed, according to Lemma 6.7 we know that E** o€ = £ o E so that £(L,(Ny)) is
contained in L,(N**). According to (6.6) and the density of M in L’ (M, E) and
LS (M, E), to prove the assertion it suffices to see that given a,b € Lj (N**) and
x,y € M we have

Eea”) || IEW 9) | 1Bl oo

6.7) & ((az)(@D) ||, ryyy < Mallzoqaes
By (6.6) we have

1/2 1/2
||§1 ((ax)(yb)) HLl(Mu) < tragy, (52((1):0;5*52(‘1)) tr gy, (fz(b)y*y&(b)) .
Now, using E** o £ = E o E and &; : Lo(N**) — La(MNy), we have

tr Ay, (Eg(a)xx*gg (a)) 12 = tra, (5 o E(fg (a)a:x*§2(a))) V2
1/2
oty (&2(@)E(ra")2(a) )

162(a) | Ly riny | ECea™)|| 2

IN

Similarly, we have

" 1/2 NTYE
tran (&) v®)) < [EG DI 1O 0i-
Therefore, (6.7) follows since &; is a contraction. This concludes the proof. O
PROPOSITION 6.9. Any x € M satisfies

M) = 17 Lo

H33||Lg>g y(ME)®MLY 5.2

(M,E)-

(00,2)

PROOF. The lower estimate can be proved as in Lemma 6.4. To prove the
upper estimate, we consider the following norm on M

|[|z]|| = inf { H(Zk E(akaz))mHLw(N)H(Zk E(b;’ibk))l/2HLw(N)}

where the infimum runs over all decompositions of x into a finite sum Zk arby

with ay, b, € M. Let € M and take a norm one functional ¢ : (M, ||| [||) — C
satisfying |||z||| = |¢(z)|. Then it is clear that it suffices to see that
(6.8) [6(2)] < sup { 0@l 1, | @B € Brya |-

Applying the Grothendieck-Pietsch separation argument, we may find states ¢, and
by in N* with associated densities D1 and Dy in L1 (N**) satisfying the following
inequality

|(ab)| < 41 (aa*) o (b*D)2 .
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By Kaplansky’s density theorem, D;/QM is norm dense in D;/ZM** for j =1,2.
Therefore, taking e; to be the support of D; for j = 1,2, we may consider the map
v €1L2(M**) — €2L2(M**)
determined by the relation

(ab) = (Db, W(D?a)) = trpqes (Q(Dfa)bDé).

1 1
From this it easily follows that ¥(D?am) = ¥(D?a)m for all m € M. Hence, by
density we deduce that ¥ commutes on Lo (M™**) with the right action on M**. In
particular, we may find a contraction myg € M** such that

¥(D?a) = myDia.
This gives
1 1
d(ab) = tr e (m\prang)

On the other hand, by Goldstein’s theorem there exists a net (my) in the unit
ball of M which converges to myg in the o(M**, M*) topology. Therefore, since

DyZabDé/2 € Li(M**) we deduce that
dlab) = lim tr .- (m,\D% abD3 ).
By Lemma 6.6 we have
1 e (m,\D%abDé) — ¢
Observing that & = a we may apply Lemma 6.8 to obtain
tr Ay, (onz(w )) = lim; 3/ trag (m,\§2 (D%)i ab EQ(DQ%)Z>

D2abD2 (ma) = tran, (m’\a(wD%abDé ))

Dlé abDé
Therefore we conclude
1 1
o(x) = li}r\n lim; 14 trpq (mAgg(Df )iz &a(D3 )Z) .
Moreover, since there exist nets (o;) and (3;) in L3 (N) such that
1
(00)" =&(DF) and  (5)" = &(0%),
we obtain the following expression for ¢(x)
o(x) = li)r\n lim; ¢ tr g (mAai T ﬁl)
Recalling that lim; g ||a; |2 < 1 and lim; g || 352 < 1, we obtain
[6(2)] < sup {lawBll 1, | @8 € Brya |-

This proves (6.8) and implies the assertion. The proof is completed. (I






CHAPTER 7

Mixed-norm inequalities

In this chapter we construct an isomorphic embedding
jpv?q(M? E) - LP(A; EZ))

with A being a sufficiently large von Neumann algebra. After that, we conclude
by studying the right analogue of inequality (X,,) (see the Introduction) in the
noncommutative and operator space levels. As we shall see, this appears as a
particular case of our embedding of J', (M, E) into L, (A; £;) when considering the
so-called asymmetric L, spaces, a particular case of conditional noncommutative
L, spaces. These results complete the mixed-norm inequalities explored in this
paper, which will be instrumental in the last chapter when dealing with operator
space L, embeddings.

7.1. Embedding of J,',(M,E) into L,(A;¢y)

Now we use the factorization results proved in the previous chapter to identify
the spaces J,',(M,E) as an interpolation scale in g. This will give rise to an
isomorphic embedding of J;', (M, E) into the space L,(A; /), with A determined
by the map (5.25)

u:zEMHsz@)(SkEA@n.
k=1
Here z = mi(z, —x) in the terminology of Chapter 5. That is, Ag, denotes the
direct sum A® A D ... A (with n terms) of the A -amalgamated free product
s A with Ay = M@ M for 1 < k <n and 7, denotes the natural embedding of
Ay into A. The following lemma generalizes the main result in [22].

LEMmMA 7.1. If1 < p < oo, the map

u:z € J, 1 (ME) Zxk ® 0 € Ly(A; 07)
k=1

is an isomorphism with complemented image and constants independent of p,n.
PROOF. Since the result is clear for p = 1, we shall assume in what follows
that 1 < p < oo. According to Theorem 6.2, we identify the intersection space

o1 (M, E) with the amalgamated tensor Ry, ; (M, E) @ Cs, 1 (M, E). Now, using
the characterization of L,(A; ¢}) given in [16], we have

. 1/2’
LQP(A)H(j’Zkbkjbkj)

_ .\ 1/2
@1, asey) = inf ”(§akjakj) ‘ Lap(A) [

119
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with the infimum running over all possible decompositions

T = E jakjbkj

and where sum above is required to converge in the norm topology for 1 < p < oo
and in the weak operator topology otherwise. Then, given any decomposition of x
into a finite sum z = . «;3; with a; € Ry, (M, E) and B; € C3, (M, E), we
have

Tp = Zj a;br;  with ap; = mp(oj, ;) and by = (85, —5;).
This observation provides the following estimate

(7.1) w@) ey < [0, Arrle) @ e

X H Zk Aci(B) ® 61@1’

Lap(ARE,)

Lap(A;C3)

for any possible decomposition z =) j o 3; and where
AT',k(a) = ﬂ-k|:(2j Oéj@j)l/27—(zj OéjOé;)l/2:|,
Meal®) = m[(328:8)"" =3 88,)"):

We want to reformulate (7.1) in terms of the square functions

Si(@) = (3 0503)"* amd S.0)= (32, 87:)""

By the definition of the map u, we find

||u(5'3)||1;p(,4;e;1) < inf { (S () ||L2p(A;Rgp) [[u(Se(8)) ||L2P(A;C§Lp)} ’

where the infimum runs over decompositions = = >, o;3;. However, applying
Corollary 5.3 as we did in the proof of Lemma 5.14, the spaces R%, ;(M,E) and
C3,1(M,E) are isomorphic to their images via u in La,(A; R5,) and Lgy(A; C3,)
respectively. In particular, we obtain the following inequality up to a constant
independent of p,n

@1, ey S {15 @y aag ISP lles aer -

The right hand side is the norm of z in R, ;(M,E) ® C3, 1(M,E). Thus, we
have proved that v is a bounded map. Now we prove the reverse estimate arguing
by duality. First we note that it easily follows from Theorem 4.2 and Remark 4.3
that

i (M,E) =K (M,E)* for 1<p<oo
where, following the notation of [22], the latter space is given by
(l4141
Ko MEB) = > 0 0 DLW L, (ML),
u,ve{2p’, 00}

with py, determined by 1/u+ 1/py, + 1/v = 1/p’. We claim that

1 n
(7.2) w:x €Kl o (ME)— ﬁZ:EkQ@(Sk € Ly (A;0m)
k=1



7.1. EMBEDDING OF J (M,E) INTO Ly,(A; ") 121

is a contraction. It is not difficult to see that the result follows from our claim.
Indeed, using the anti-linear duality bracket we find that

(u(z), w(y)) Ztu (2, ) Ty th ') = (,y).
"=

In particular, it turns out that w*u is the identity map on J,' (M, E) and uw* is a
bounded projection from L, (A; £1) onto u(J,"; (M, E)). Thus, u is an isomorphism
and its image is complemented with conbtants independent of p,n. Therefore, it
remains to prove our claim. Since the initial space of w is a sum of four Banach
spaces indexed by the pairs (u,v) with u,v € {2p’, 00}, it suffices to see that the
restriction of w to each of these spaces is a contraction. Let us start with the case
(u,v) = (00,00). In this case the associated space is simply n=*/P L, (M) and we
have by complex interpolation in 1 < p’ < co that

1Hi =rA <n ¥z
— i n r\Hx .
[ P Ly (Al) Ly (M)

Indeed, when p = 1 we have an identity while for p = oo the assertion follows by the
triangle inequality. Therefore, recalling from [29] that the spaces L, (M, ¢Z,) form
an interpolation scale in p’, our claim follows. The space associated to u = 2p’ = v
is

1

Ly (V) Lo (M) Loy (N).

Here we use the characterization of the norm of L,/ (A; ¢Z)) given in [16]

HZxk®5kH i) = inf {Hasz,(A)(lzzganHLm(A))b||L2p,(A)}.

ack_adkb

Then we consider the decompositions of x; that come from decompositions of x.
In other words, any decomposition = = ayf with «, 3 € Loy (N) and y € Loo(M)
gives rise to the decompositions zj = amy(y, —y)0. Hence, since

7 (Y =Lty = YllLwry for 1<k <n,

we obtain the desired estimate

r=

Wy 08, {0 00} = lellay o
Hle’“@’“prw inf {11l 191 20 1812y 0) = 122

Finally, it remains to consider the cross terms associated to (u,v) = (2p’,00) and
(u,v) = (00,2p’). Since both can be treated using the same arguments, we only
consider the case (u,v) = (2p’, 00) whose associated space is

1

n2+2p

L2;D (N)L2p’ (M)Loo (N)

Here we observe that given any a € Lo, (N), the left multiplication mapping

Lo 0> ar® 0k € Loy (A l,) > Y ax ® 6k € Ly (A; (%)

k=1 k=1
is a bounded map with norm < ||«]| L,/ (A)- Indeed, by complex interpolation we
only study the extremal cases. Noting that the result is trivial for p’ = oo, it suffices
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to see it for p’ = 1. Let us assume that

n
> llakll7 o <1
k=1

Then we define the invertible operator 8 = (Y, ajar + 5D¢)1/2 (Dg being the
density associated to the state ¢ of A) so that ap = bg3 for 1 < k < n where the

operators by, b, ..., b, satisfy
n
> bpbp < 1.
k=1

This provides a factorization aay = abg from which we deduce

oo,

Thus, we conclude letting § — 0. Now assume that x is a norm 1 element of

Loy () Ly (ML),

b 1+9
ey S el (502 Wl ) 180zaca) < 040) alzaca)

so that for any § > 0 we can find a factorization x = ay such that

lallz,, o <1 and [lylL,, ) < (1+08)n"2.
Then, since a € Loy (N') we have

Zm@csk—a}jm y) ® 0 = L (Zwk y) @ ).

In particular,

1 n
- H E Ik®5k
n

k=1

A

1 n
by S EHanLgp,W)HZm,—y)@ak\

Loy (A385)

/20
< (Z\m DI ) " <1+

Letting § — 0, we conclude that the mapping defined in (7.2) is a contraction. [

THEOREM 7.2. If1 < p < oo, then
[‘-71:31('/\/1’ E)a jpn;p(M7 E)]g = jpyfq(Ma E)
with 1/g=1—0+4 0/p and with relevant constants independent of n.
PrOOF. By Theorem 4.6 and Observation 4.8, we have
[ pr,Ll(Mv E)a jp’rfp(Mv E)]g - jpr:q(Ma E)
contractively. To prove the reverse inclusion we consider the map u : M — Ag,.
STEP 1. Since J', (M, E) = n%Lp(./\/l), we clearly have
lu(@) |z, aen) = 2l 70 (ME)-

Moreover, u(J,",(M,E)) is clearly contractively complemented in L,(A;¢;). On
the other hand, according to Lemma 7.1, 7.1 (M,E) is isomorphic to its image
via u, which is complemented in L,(A; ¢}) with constants not depending on p,n
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Therefore, the norm of = in the space [7!1(M,E),J,',(M,E)]g turns out to be
equivalent to the norm of

n
Y oa @ in Ly(A6).
k=1
Thus, it remains to see that

(7.3) H ixk ® 54
k=1

STEP 2. We need an auxiliary result. Let us consider the bilinear map

< |lz|| 7n .
a5 1ol 000

A (a,b) € RE, ((M,E) x C3, (M,E) > mi(ab, —ab) @ by, € Ly(A; £).
k=1
We claim that A is bounded by ¢(p,q) ~ (p — q)/(pq + ¢ — p). By Theorem 5.16,
we may use bilinear interpolation and it suffices to show our claim for the extremal
values of ¢q. Let us note that, since we are applying Theorem 5.16 for Rgp,q(M, E)
and C3, ,(M, E), the operator norm of A is controlled by the square of the relevant
constant in Theorem 5.16, as we have claimed. The boundedness of A for ¢ = 1
follows from Theorem 6.2 and Lemma 7.1. The estimate for ¢ = p is much easier

8@l ) = (3 melab=ab)|)” = n labl, < el , ¥l
k=1

STEP 3. Now it is easy to deduce inequality (7.3) from the boundedness of the
mapping A. Indeed, according to Theorem 6.2 we know that (7.3) is equivalent to

T | Emeen, g I 0m) ey [(Z,55) ]

for any decomposition of x into a finite sum Z a;b;. Let us assume that the index

4 runs from 1 to m for some finite m. Then we consider the matrix amplifications

N M,, @ N and M = M,,, ® M. Similarly, we consider A = M,, ® A. According
to (5.3), we have

A= My @Ay sg My @ Ag s g My ® A, = (M M)™
By Step 2, we deduce

(75) [t ) S s, Mol

where the elements xj, are given by x; = m,(ab, —ab) and
Agp,q = %04 (M I, ® E)
égpﬂ = Coypy (M’ I, ® E)'

To prove the remaining estimate (7.4) we fix z in 7' (M, E) and decompose it into
a finite sum ), a;b; with m terms. Then, we define the row and column matrices

a:Zaj®elj and b:ij@)ejl.

j=1 j=1
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According to (7.5), it just remains to show that

n n

Xk®5k‘ ) = xk®5k‘

H ; Ly (Asen) kz::l Ly(Asen)
1
2
allsn Z a a*)

lales,, = [[(3;@%) |,
1
— * . 2

b, = [(,50)],

The first identity follows easily from
xy = mi(ab,—ab)
= Zj 7 (a;b; ® e11, —ajb; ® enr)
= Wk(zj ajbj’_Zj ajbj) @ e11
= z ® e,

where the third identity holds because 7 is an N-bimodule map. The relation
X = 2 ®eq1 shows that ), x; ® dj, lives in fact in the (1, 1) corner, which by [30]
is isometrically isomorphic to L,(A;£;). The identities for a and b are proved in
the same way, so that we only consider the first of them. We have

al
2pgq
pP—q’

1 1
gy = max {n ol ) a2, m)WJMm@E)}.

It is clear that

1
lallg,, i = || (32 ajas)”

Therefore, we just need to show that

. — X
lalzs,,  oitan,en = | (2;00)

Lop(M)

1
2

,20) pgq

Lfg )(M,E)'
pq '™

By definition, we have

Ialliz,,

1
(Mo, ®E) T Sup Ho‘aa*a*H;
= sup ||a a;a) Qe ]a*
o o[, ) o
1
3
sup || a;a’ ®e}
ap H [(Zj J J) 1

where the supremum runs over all o such that

||a‘|Lm(/\7) <L
P—q

If (o;j) are the m x m entries of «, we clearly have

1 m 1
a[(zjaja;)Q(X)ell} :ZQSI(Zjaja;>2®esl'
s=1
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Therefore, we obtain the following estimate

Jo[(32, aja;f @e|

L2q(M)
1 11
x| 2 % *[ 22
= a;al| « 04(1[ _a-a})
(Zs |:Z] J j} s1s Za 77 Laq(M)
(3 ean) (X2 0)’
g s10el i) M La M)
1
3
IS onoal, o)
2@ L 2pq (N) Zj ) e, )
P—a pog

Hence, the result follows since the column projection is contractive on L 2ps (N). [
P—q

The following is a major result in this paper.

THEOREM 7.3. If1 < g <p < oo, the map

n
u:z € J, (ME) ka ® 0 € Lp(A; L)
k=1
is an isomorphism with complemented image and constants independent of n.

PROOF. It is an immediate consequence of Lemma 7.1 and Theorem 7.2 [

REMARK 7.4. If 1 < ¢ <p < 00, let us define

1
Koo ME) = > n Mo Lu(N) Ly, (M)Lu(N)
u,vE{2r,00}
where 1/r = 1/q— 1/p and py, is determined by 1/u+ 1/py, + 1/v = 1/p’. Note
that this definition is consistent with the space K}, . (M, E) introduced in the proof
of Lemma 7.1. Arguing by duality as in [22], we easily conclude from Theorem 7.3
that we have an isomorphism with complemented image

1 n
(7.6) Eree -0 € Ky (MLE) > — D @k @ 6k € Ly (Afree; )
k=1
where Ay, denotes the usual free product algebra A from Theorem 7.3. Moreover,
it is important to note that replacing free products by tensors and freeness by
noncommutative independence as in [22], Theorem 7.3 and (7.6) hold in the range
1 <p' < ¢ < oo. In other words, we replace Ay, .. by the tensor product algebra

Aipg=MOIM--- @ M
with n terms and zj is now given by
=10 - 1rl®---1

where z is placed in the k-th position. The question now is whether or not (7.6)
holds in the non-free setting for p’ = 1. Using recent results from [18], we shall see
in a forthcoming paper that we have an isomorphism with complemented image

Cind : 7 € KPo(M,E) = > 2% @ 6k € Ly (Aina; OH,,).
k=1
Let us note that the same question for lC’fyq/(/\/L E) with ¢’ # 2 is still open.



126 7. MIXED-NORM INEQUALITIES

7.2. Asymmetric L, spaces and noncommutative (X,,)

Let M be a von Neumann algebra equipped with a n.f. state ¢. Now let
2 < u,v < oo be such that 1/p = 1/u + 1/v for some 1 < p < co. Then, we
define the asymmetric L, space associated to the pair (u,v) as the M-amalgamated
Haagerup tensor product

where we recall that Ly (M) and Lg(M) were defined in (1.3) for 2 < ¢ < co. That
is, we consider the quotient of LI, (M)®}, LS (M) by the closed subspace Z generated
by the differences 17 ® z2 — 1 ® yxo with v € M. Recall that we are using the
notation ® a4, instead of ® 4 because, in contrast with the previous chapters, we
shall be interested here in the operator space structure rather than in the Banach
space one. By a well known factorization argument (see e.g. Lemma 3.5 in [46]),
the norm of an element x in L, ,)(M) is given by

2l ) = inf llellz, ollBllz, m)-

According to this observation, it turns out that asymmetric L, spaces arise as a
particular case of the amalgamated noncommutative L,, spaces defined in Chapter 2
when we take ¢ = oo and NV to be M itself. Asymmetric L, spaces were introduced
in [22] for finite matrix algebras. There the amalgamated Haagerup tensor product
used in (7.7) was not needed in [22] to define the asymmetric Schatten classes. In
fact, if M is the algebra M,, of m x m matrices and X is an operator space, we can
define the vector-valued asymmetric Schatten class
S(muyv)(X) = Cyyo @n X ®p Ryjys.

Note that this definition is consistent with (7.7). Indeed, recalling that

Li(M,,) = ;’;2 ®p Ry and  L{(M,,) = Cr, @1 RZ;Q,
it can be easily checked from the definition of the Haagerup tensor product that
we have Ly, (M) @, Ly (M) = 57 ) (C) isometrically. Moreover, according to
[22] any linear map u : X; — Xy satisfies

(78) ||uHCb = sup 1Mn Qu: Snuv (Xl) - Snu'u (XQ) .
sup (1) (s

In particular, since it is clear that
Sluw) (L’U(Mm) M, h L;(Mm)) = S(muffj)((C) for all m >1,
we have the following completely isometric isomorphism
Liuwy(Mm) = 57 ) (C).
REMARK 7.5. L,(M) is completely isometric to Lb,(M) @a,n L5,(M).

We conclude by generalizing the inequalities (2,,) stated in the Introduction to
the noncommutative setting. Moreover, we shall seek for a completely isomorphic
embedding rather than a Banach space one. As we shall see, this appears as a
particular case of Theorem 7.3 module the corresponding identifications. Indeed,
let M be a von Neumann algebra equipped with a n.f. state ¢ and let us consider
the particular situation in which (M, N, E) above are replaced by

(7.9) (Mo, N, Ee) = (Mm®M,Mm,1Mm ®¢).
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If D, is the associated density, we consider the densely defined maps
Pr : D;/Q (.’Eij> S Sgé (LE(M)) — (xij) S Lgo(./\/lm, Em),
pet (255)DY? € SE(LSM)) +—  (245) € L (Mo, Eny).
LEMMA 7.6. The maps p, and p. extend to isometric isomorphisms.
Proor. By [11, p.56] we have

— it (D1/2 *D1/2) 1/2
szazen) & IMWPeZinZinPe ) )|y

m . 1/2
= (Z@(%k%k)) HMm
k=1
1/2

= [ @ e[ )Y, = 1Gw)l

The proof of the second isometric isomorphism follows from [11, p.54] instead. O

D5 (z:5))

L (Mm Em)”

Now, assuming that M, N and E are given as in (7.9), our aim is to identify
the intersection space J!,(Mm,E;) in terms of asymmetric L, spaces. More
concretely, let us define the following intersection of asymmetric spaces

n 1,1
TprgM) = ﬂ 0wt Ly (M).
u,ve{2p,2q}
LEMMA 7.7. If m > 1, we have an isometry
S;n (jpnﬂl (M)) = jp’rfq (MTI’M Em)

PrROOF. By definition we have

Tre M, Bn) = () ne 5T LE (M, ).
u,we{ 2L 0o}
Since the powers of n fit, it clearly suffices to show that
S;n( 217’217 ) = (oo OO)(Mm, Em)s
(L(2p’2q ) = Lz(jw%)(/\/lma Em),
Sp' (L(2q 2p) ( ) = L?zpq )(Mma Em),
Sp' (L(2q’2q ) = szwz spz)(Mma En)-

The first isometry follows from Remark 7.5, we have L,(M,,) at both sides. The
last one follows from Example 4.1 (b), which uses one of Pisier’s identities stated
in Chapter 1. It remains to see the second and third isometries. By complex
interpolation on g, it suffices to assume ¢ = 1 since the case ¢ = p has been already
considered. In that case, we have to show that

S;Dn(L(?PQ)(M)) = L(Do 2p)(Mm7ETYL)
Sy (Lzap) (M) = Liny ooy (Mo, Em).

(2p’,00)
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When p = 1, the isometry follows again from Remark 7.5. Therefore, by complex
interpolation one more time, it suffices to assume that (p, ¢) = (00, 1). In that case,
we note that

SZ(L(so,2) (M) = SZ(L5(M)) = L (M, En) = L% 29 (Mo, Enn),
Sg (L(2x°°)(M)) = SOWOL (LS(M)) = Lgo(Mma Em) = ?S,oo)(va Em)-

We have used Lemma 7.6 in the second identities. This completes the proof. (I

Let A,, stand for the usual amalgamated free product von Neumann algebra
constructed out of M,, = M,,, ® M with N,, = M,,. According to (5.3), we have
A =My, ® A with A = (M & M)*". In particular, Ly,(Am; 5) = S5 (Ly(A; 7))
and we deduce the result below from Theorem 7.3 and Lemma, 7.7.

THEOREM 7.8. If1 < q < p < oo, the map

u:w € Jy,

n
(M) = "2 ® 0 € Lp(A; 7))
k=1
is a cb-isomorphism with cb-complemented image and constants independent of n.

REMARK 7.9. The o.s.s. of L,(A; 7)) was introduced in Chapter 1.

REMARK 7.10. Let M be the matrix algebra M,,, equipped with its normalized
trace 7 and let us consider the direct sum Mg, = MAEM@--- &M with n terms.
We equip this algebra with the (non-normalized) trace 7, = 7®7@--- ® 7. In this
case, given an operator space X, we could also define the space

jpﬂ(M@n; X) = ﬂ LZ(MGBn) O Megyn,h Ly (Mﬂan; X) D Mgn,h LzC;(M@n)~
u,v€{2p,2q}
The analogue of Theorem 7.8 with
i) (p, q) being (p, 1),

ii) freeness replaced by noncommutative independence,

iii) vector-values in some operator space X as explained above,
was the main result in [22]. In our situation, a vector-valued analogue of Theorem
7.8 also holds in the context of finite matrix algebras. However, note that the use
of free probability requires to define vector-valued L, spaces for free product von
Neumann algebras [19], which is beyond the scope of this paper.

REMARK 7.11. The constants in Theorems 7.2, 7.3 and 7.8 are also independent
of p,q unless p ~ oo is large and g ~ 1 is small simultaneously. In that case the
argument in Theorem 7.2 produces the singularity (p —q)/(pq+ g — p) which affects
Theorems 7.3 and 7.8. Moreover, it arises as a byproduct of the use of Burkholder
inequality in Proposition 5.10, which is used in the proof of Theorem 5.16, a key
tool in Theorems 7.2. Of course, this seems to be a removable singularity. It is also
worthy of mention that this will not cause any singularity in our main application,
the construction of operator space L, embeddings in the next chapter. Indeed, in
that case we will work all the time with ¢ = 2 and we have

(r—aq)/(pa+q-p)=@-2)/p+2) <1



CHAPTER 8

Operator space L, embeddings

Given 1 < p < ¢ < 2 and a von Neumann algebra M, we conclude this
paper by constructing a completely isomorphic embedding of L,(M) into L,(.A)
for some sufficiently large von Neumann algebra A. In the first section we embed the
Schatten class S, into L,(A) for some QWEP von Neumann algebra .A. Roughly
speaking, the proof is almost identical to our argument in [24] after replacing
Corollary 1.9 there by Theorem D in the Introduction. Thus, we shall omit some
details in our construction. The second paragraph is devoted to the stability of
hyperfiniteness and there we will present the transference argument mentioned in
the Introduction. Finally, the last paragraph contains our construction for general
von Neumann algebras.

8.1. Embedding Schatten classes

We shall prove an L, version of [24, Theorem D], from which the embedding of
the Schatten class S, into L,(A) will follow for 1 < p < ¢ <2 and A a sufficiently
large QWEP von Neumann algebra. The main embedding result in Xu’s paper [71]
claims that any quotient of a subspace of Cj, &, R, cb-embeds in L,(.A) for some
sufficiently large von Neumann algebra A whenever 1 < p < 2. In particular, if
1 <p<q<2, both R; and C; embed completely isomorphically in L,(A) since
both are in QS(C, ®, R,,). The last assertion follows as in [24, Lemma 2.1]. More
precisely, Xu’s construction holds either with A being the Araki-Woods quasi-free
CAR factor and also with Shlyakhtenko’s generalization of it in the free setting
[69]. In any case, A can be chosen to be a QWEP type III, factor, 0 < A < 1.

Our first embedding result generalizes Xu’s embedding.
THEOREM 8.1. If for some 1 <p <2
(X1,X2) € QS(Cp @2 OH) x QS(R, &2 OH),
there exist a cb-embedding X1 ®j, Xo — L,(A), for some QWEP algebra A.

SKETCH OF THE PROOF. The argument is very close to that of [24]. By
injectivity of the Haagerup tensor product, we may assume that X; is a quotient
of C, @2 OH and X, is a quotient of R, &2 OH. Therefore, the cb-isomorphisms
below follow from [24, Lemma 2.5] by duality

X1 =~ Hite, D2 Hi2,on B2 ((’Cn,cp D2 /Clz,oh)/graph(/\l)l)a

Xy =~ Hoir, ®2 Haoon D2 ((/Cm,rp D2 /C22,oh)/gmph(/\2)l),

129
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for certain closed subspaces H;;, KC;; (1 <4,j < 2) of £5 and

Ay ]Cll,cp/ e KlZ,oh,
As ’Czl,rp, - ’C22,0h7

injective closed densely-defined operators with dense range. Let us set

2z = (K, ®2 Kiz.on)/graph(hy)*,
2y, = (’C21,rp D2 ’C2z,oh)/gmph(A2)L,

Then, we have the following cb-isometric inclusion

(8.1) Xi@nXe C  Z1Qp 2

@2 Hite, ®n X2

@2 X1 @p Hat,r,

@2 Hi2,0n Dn 22

D@2 Z1 ®n Hoz,on

@2 Hi2,0n ®n Ha2,0h-
According to [71], we know that OH € QS(C), @, R,) and that any element in
9S(C, @, R,) completely embeds in L, (A) for some QWEP type III factor .A. This
eliminates the last term in (8.1). The second and third terms embed into S,(Xs)

and S, (X1) completely isometrically. On the other hand, since OH € QS(C, &, R,)
and we have by hypothesis

X, € QS(Cp Do OH) and Xs € QS(RP Do OH),

both X; and Xy are cbh-isomorphic to an element in QS(C), &, R,). Applying Xu’s
theorem [71] one more time, we may eliminate these terms. Finally, for the fourth
and fifth terms on the right of (8.1), we apply [24, Lemma 2.6] and the self-duality
of OH to rewrite them as particular cases of the first term Z; ®;, Z5. This reduces
the proof to construct a complete embedding of Z; ®j, Z2 into L,(A).

By [24, Lemma 2.8] we may assume that the graphs appearing in the terms
Z; and Z, are graphs of diagonal operators dy, and d,. Moreover, exactly as in
the proof of [24, Theorem D] we may use polar decomposition, perturbation and
complementation and assume that Z; and Z5 are given by

2 = Cp+18"(\) = (C,@ OH)/(Cpntgh(N)™,
Z, = R,+0"(\) = (R,®OH)/(Ryntg"(N)",
with A1, Ag,... € Ry strictly positive and
CyNeh(\) = span {(5k, Aidr) € Cr o OH},
R,y Nes"(\) = span {((Sk, Ai0k) € Ry @2 OH}.

Before going on we adapt some terminology from [24]. Given a sequence
V1,72, - - . of strictly positive numbers, the diagonal map d, = >, Vrexx is regarded
as the density of a n.s.s.f. weight ¢ on B(f3). We also keep from [24] the same
terminology for its restriction v, to the subalgebra ¢, B(¢2)q, (where g, denotes the
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projection ZZ=1 erx) and for the state ¢, determined by the relation ¥, = k, ¢,
with k,, given by Y7, vk If 1 < p < 2, we define

P R SR SR S
T 2(tbn) = { (A3 2l 0377 =y, dj, =07, =) | = € 0uB(Eo)an |
as a subspace of the direct sum

v = (Cy @n Ryy) @2 (Cyy @4 OHy) @2 (OH, @y, Ry) @2 (OH,, ®5 OH,,).

p — \“p
In other words, we may regard J, 2(1,,) as an intersection of some weighted forms
of the asymmetric Schatten classes (see Section 7.2) considered above. On the
other hand, by a simple perturbation argument, we may assume as in [24] that
k, = > 7_, 7k is an integer. Then, if we set M,, = ¢,B(¢2)qn, we easily find the
complete isometry

jp’,2(d}n) = j;(/tLQ(MTL)7
see Section 7.2 again. Hence, according to Theorem 7.8, we obtain a complete
embedding of J,y 2(1,,) into a cb-complemented subspace of L, (A,; OHy, ), where
A,, stands for the k,-fold reduced free product of ¢,B(¢2)q, & ¢.B(¢2)q,. Let us
now consider the dual space

ICPQ(wn) = jp’ﬂ(d)ny'

A simple duality argument provides a cb-embedding

k
1 n
(8.2) Wz € Kpa(thn) = 5= > 2;®0; € Ly(An; OHy,),
n j:1

with cb-complemented image and constants independent of n.

Let us now go back to our study of the Haagerup tensor product Z; ®j Zs.
Let us recall that the finite weights 1,, are restrictions of the n.s.s.f. weight ¥ to
the subalgebras ¢,8(¢2)q,, which are directed by inclusion. In particular, we may
consider the direct limit

Kpa(¥) = | Kpaltn).

n>1

A fairly simple adaptation of [24, Lemma 2.4] to the L, case gives
(8.3) Z1@n Z2 = (Cp + 65" (V) @n (Rp + 65" (V) = Kp2(¥) — []  Kpaln).

The last step being the natural embedding of a direct limit into the corresponding
ultraproduct. According to [55], this reduces the problem to the finite-dimensional
case, which follows from Xu’s cb-embedding [71] of OH into L, (B) since

Kp2(tn) = Lp(An; OHy,) — Ly(An@B) = Ly(Ay),
see [24] for a rigorous explanation. We have therefore constructed a cb-embedding
ZienZa— LA with A= (], A.)"
The fact that A is QWEP is justified as in the proof of [24, Theorem D]. O
COROLLARY 8.2. If1 <p < ¢q <2, the Schatten class S, cb-embeds into L,(A).
PROOF. Since S, = Cy ®j, Ry, combine [24, Lemma 2.1] and Theorem 8.1. O
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8.2. Embedding into the hyperfinite factor

Now we want to show that the cb-embedding S, — L,(A) can be constructed
with A being a hyperfinite type III factor. Moreover, we shall prove some more
general results to be used in the next paragraph, where the general chb-embedding
will be constructed. We first set a transference argument, based on a Rosenthal
type inequality for noncommuting identically distributed random variables in L,
from [18], which enables us to replace freeness by some sort of independence.

Let A be a o-finite von Neumann subalgebra of some algebra A and let us
consider a family Aj, A, ... of von Neumann algebras with ' C A, C A. As usual
we require the existence of a n.f. conditional expectation Ex : A — N. We recall
that (Ax)r>1 is a system of indiscernible independent copies over N (i.i.c. in short)
when

i) fae <A1,A2, .. .,Ak,1> and b € Ag, we have
Ex(ab) = Ex(a)En (D).

ii) There exist a von Neumann algebra A containing A, a normal faithful
conditional expectation Eg : A — N and homomorphisms 7, : A — Ay
such that

Enomy =Eo
and the following holds for every strictly increasing function v : N — N
Ex (75 (a1) - 7, (am)) = Ex (Tag) (a1) - Tagi,) (am)).
iii) There exist n.f. conditional expectations & : A — A such that
En = Eoﬂlzlgk forall k>1.

Further, when the first condition above also holds for @ in the algebra generated
by A1,...,Ak_1,Ak+1,... and the second condition holds for any permutation «
of the integers, we shall say that (Ag)r>1 are symmetrically independent copies
(s.i.c. in short) over N. In what follows, given a probability space (Q, i), we shall
write €1,€2,... to denote an independent family of Bernoulli random variables on
Q equidistributed on +1. We now present the key inequality in [18].
LEMMA 8.3. The following inequalities hold for x € Ly(A)
a) If (Ap)k>1 are i.d.c. over N, we have

ERTE(T H d,u
/QHkZ_l @) Li(A)

~ b nfallz, )+ Val[Eo (62| ) + VAol R, oy

b) If moreover, Eo(x) =0 and (Ag)k>1 are s.i.c. over N, then

|3t
k=1

~ 1:(i£flj+cn|\a||Ll(A) + \/EHEO(bb*)%HLlW) + \/ﬁHEO(c*c)%HLl(N).

Li(A)

PrROOF. We claim that

1 n n
; <[ X ewmta)
2”;7%(93)HL1(A) = kZ::l KTk ()

Li(A)

o3
o =2 )
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for any choice of signs €1, €2, ..., €, whenever Aj, As, ... are symmetric independent
copies of A over N and Eo(z) = 0. This establishes (a) = (b) and so, since the first
assertion is proved in [18], it suffices to prove our claim. Such result will follow
from the more general statement

ExTr(x §2H 7r:vH ,
DTSN ) S

for any family x1,xs,...,2, in L1(A) with Eg(zg) = 0 for 1 < k < n. Indeed,
take zp = x for the upper estimate and z; = e,x for the lower estimate. Since we
assume that A is o-finite we may fix a n.f. state ¢. We define ¢ = ¢ o Exr and
¢o = ¢ o Eg. According to [6] we have

0f 0Eg=Epocf® and of oEx =En ooy,
Moreover, since Exr = Exr 0 & we find ¢ = ¢ o & which implies
J?ngigkoo'f.

In particular, af(Ak) C Ay, for k > 1. Therefore, given any subset S of {1,2,...,n}
we find a ¢-invariant conditional expectation Eg : A — Ag where the von Neumann
algebra As = (Ai | k € S). We claim that

Es(mj(a)) =0 whenever Eg(a) =0 and j¢S.
Indeed, let b € As and a as above. Then we deduce from symmetric independence

¢(Es(mj(a))b) = ¢(m;(a)b) = ¢(En(m;(a)b)) = ¢(Eo(a)En(b)) = 0.
Thus we may apply Doob’s trick

|52l =[S, =[5ty

Then, the claim follows taking {1,2,...,n} =S;US_; with Sy ={k: e = a}. O

REMARK 8.4. The inequalities above generalize the noncommutative Rosenthal
inequality [30] to the case p = 1 for identically distributed variables and under such
notions of noncommutative independence. Of course, in the case 1 < p < 2 we have
much stronger results from [28, 30] and there is no need of proving any preliminary
result for our aims in this case.

Let us now generalize our previous definition of the space ICp2(1)) to general
von Neumann algebras. Let M be a given von Neumann algebra, which we assume
o-finite for the sake of clarity. Let M be equipped with a n.s.s.f. weight .
In other words, % is given by an increasing sequence (a net in the general case)
of pairs (¢n,qn) such that the ¢,’s are increasing finite projections in M with
lim, g, = 1 in the strong operator topology and crf’ (¢n) = qn. Moreover, the
1¥y’s are normal positive functionals on M with support ¢, and satisfying the
compatibility condition ¥, +1(¢n2g,) = ¥n(x). As above, we shall write k,, for the
number ¥, (g,) € (0,00) and (again as above) we may and will assume that the
ky’s are nondecreasing positive integers. In what follows we shall write d, for the
density on ¢, Mg, associated to the n.f. finite weight ¥,,. If 1 < p < 2, we define
the space Jp 2(1,) as the closure of

i sy sy o1 o1 L1 1
(A3 2d3y a3y =df, ,d} =d3 d} =d )| = € g M, }
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in the direct sum

‘CZ’ = Ly (QnMQn> D2 L(2p’,4) (QnMQn) D2 L(4,2p/)<QnMQn) D2 Lo (QnMQn)-

In other words, after considering the n.f. state ¢, on ¢, Mg, determined by the
relation ¢, = kyp, and recalling the definition of the spaces 7!, (M) from Section
7.2, we may regard J 2(1y) as the 4-term intersection space

1,1
jp/,Z(wn) = ﬂ knu+” L(u,v) (anqn) - j;?z(QnMQn)
u,ve{2p’,4}

Now we take direct limits and define

Ty 2®) = | T 2(n),

n>1
where the closure is taken with respect to the norm of the space
Ly = Ly (M) &2 Lap ) (M) B2 La,2p) (M) Sz Lo(M).
To define the space K, 2(10) we also proceed as above and consider
U, 0 L) — Li(gnMan)
given by
37 g3 g3 gk 1 7 L 1
U, (21, 02,23, 70) = d)) w1d)) +d)" wod) +dj w3d)? +dj xady
This gives ker ¥,, = Jp 2(1,)* and we define

Kp2(tn) = Ly /ker ¥, and  Kpa(1) = | Kpa(thn),

n>1

where the latter is understood as a quotient of £,. In other words, we may regard
the space K, 2(y,) as the sum of the corresponding dual weighted asymmetric L,
spaces considered in the definition of J 2(%n)

141
(84) ]Cp,Q(qun) = Z knu+v L(u,v)(‘]nMQn)~
u,ve{2p,4}
Thus, using v, = ko, backwards and taking direct limits
Kp2(¥) = Lp(M) + Lzp,4) (M) + La,2p) (M) + L2(M),

where the sum is taken in L,(M) and the embeddings are given by

Je(x) 1 € Ligpay(M) xdﬁ € L,(M),

Jr(®) r 2 € Ligop (M) — dim € L,(M),
with 8 = 1/2p — 1/4, while the embedding of Ly(M) into L,(M) is given by

Jo(x) = dimdﬁ.
REMARK 8.5. It will be important below to observe that our definition of

Kp,2(y) is slightly different to the one given in the previous paragraph. Indeed,
according to the usual duality bracket (z,y) = tr(z*y), we should have defined

Kp,2(¢n) = Z kniv(u’v) L(u,v) (QnMQn)

u,ve{2p,4}
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with
1 1

1) = Sty T ey
This would give ICp 2(¢n) = Jpr 2(1n)* and

1 141
ICPQ(M’”) = k. Z kp, vt L(u,v) (g Man).

n u,ve{2p,4}

However, we prefer to use (8.4) in what follows for notational convenience.

Now we set some notation to distinguish between independent and free random
variables. If we fix a positive integer n, the von Neumann algebra A7, , will denote
the k,,-fold tensor product of ¢, Mg, while A% __ will be the k,-fold free product
of ¢, Mg, ® ¢,Mq,. In other words, if we set

Anj =@M and Ay =g Mgn ® g Mg,
for 1 < j <k,, we define the following von Neumann algebras
ind = @jAnj;

n
free

ree

= *j An,j-

We also consider the natural embeddings

n

A n g ,
And - Aind and . A”v] - free

J
T free

ind *

into the j-th components of the algebras A" , and .A?Tee respectively.

ind

ProprosITION 8.6. If1 < p <2, the map
ky
znnd HEAES K:ZLQ(wn) = Zﬂ—znd(m) ® 5] € LP( ?nd; OHkn)
j=1

is a completely isomorphic embedding with relevant constants independent of n.

Before proceeding with the proof of Proposition 8.6, we need a more in depth
discussion on the cb-embedding of OH. Given 1 < p < 2, Xu constructed in [71]
a complete embedding of OH into L,(A) with A hyperfinite, while for p = 1 the
corresponding cb-embedding was recently constructed in [18]. The argument can
be sketched with the following chain

OH — (C’p ®p Rp)/graph(dA)J‘ ~e Cp 4+ Rp(N) — Ly(A).

Indeed, arguing as in [24, Lemma 2.1/Remark 2.2] and applying [24, Lemma 2.8],
we see how to regard OH as a subspace of a quotient of C}, ®, R, by the annihilator
of some diagonal map dy : C,y — R,. By the action of dy, the annihilator of
its graph is the span of elements of the form (dx, —0x/Ax). This suggest to regard
the quotient above as the sum of C), with a weighted form of R,. This establishes
the cb-isomorphism in the middle. Then, it is natural to guess that the complete
embedding into L,(.A) should follow from a weighted form of the noncommutative
Khintchine inequality. The first inequality of this kind was given by Pisier and
Shlyakhtenko in [50] for generalized circular variables and further investigated in
[26, 70]. However, if we want to end up with a hyperfinite von Neumann algebra A,
we must replace generalized circulars by their Fermionic analogues. More precisely,
given a complex Hilbert space H, we consider its antisymmetric Fock space F_1(H).
Let c¢(e) and a(e) denote the creation and annihilation operators associated with



136 8. OPERATOR SPACE L, EMBEDDINGS

a vector e € H. Given an orthonormal basis (e+r)r>1 of H and a family (pr)r>1
of positive numbers, we set fi = c(er) + pr a(e—x). The sequence (fx)r>1 satisfies
the canonical anticommutation relations and we take A to be the von Neumann
algebra generated by the fi’s. Taking suitable uj’s depending only on p and the
eigenvalues of dy, the Khintchine inequality associated to the system of fj’s provides
the desired cb-embedding. Namely, let ¢ be the quasi-free state on A determined
by the vacuum and let dy be the associated density. Then, if (Jx)r>1 denotes the
unit vector basis of OH, the cb-embedding has the form

w(bk) = Ex di” frdi = &k fon

for some scaling factors (€;)r>1. The necessary Khintchine type inequalities for
1 < p < 2 follow from the noncommutative Burkholder inequality [28]. In the L;
case, the key inequalities follow from Lemma 8.3, see [18] for details. With this
construction, the von Neumann algebra A turns out to be the Araki-Woods factor
arising from the GNS construction applied to the CAR algebra with respect to the
quasi-free state ¢. In fact, using a conditional expectation, we can replace the uy’s
by a sequence (y},)r>1 such that for every rational 0 < A < 1 there are infinitely
many p;’s with g = A/(14+ ). According to the results in [1], we then obtain the
hyperfinite type I11; factor R.

On the other hand, there exists a slight modification of this construction which
will be used below. Indeed, using the terminology introduced above and following
[18] there exists a mean-zero 7, € L,(R) given by a linear combination of the f, s
such that

w(d;) = Wgnd(%)
defines a completely isomorphic embedding

w: OHy, — L,(Rgk,)

with constants independent of n. Here Rgy, denotes the k,-fold tensor product
of R. Moreover, given any von Neumann algebra A, idy,,4) ® w also defines an
isomorphism

ide(A) ®@w: Ly, (./4, OHkn) — Lp(A®R®kn)-
We refer to [18, 71] for a more detailed exposition on the cb-embedding of OH.

PrROOF OF PROPOSITION 8.6. By Theorem 7.8, this is true for
ffree HAS ICPQ ¢n Zﬂ-f'r‘ee ® 5 €L ('Afree’ OHk )

Indeed, it follows from a simple duality argument (see e.g. Remark 7.4) taking
Remark 8.5 into account. According to the preceding discussion on OH, we deduce
that

w o gfree HEES KP 2 wn Zﬂ-free ® ﬂ-znd(’yP) €L ('Afree®R®k )

also provides a cb—isomorphlsm. Now, we consider
anj = ’n{nd(A ) ® ﬂ—znd(R)7
B"vj = Trf’ree (A 5J ) znd(R)’
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for 1 < j <k,. It is clear from the construction that both families of von Neumann
algebras are s.i.c. over the complex field. Therefore, Lemma 8.3/Remark 8.4 apply
in both cases (note that the mean-zero condition for the §n7j’s holds due to the
fact that -y, is mean-zero) and hence

HZdS;n ® w o f?rae(x)up ~e ||st;n X w o {Zlnd(x)Hp
holds for every element x € S;*(Kp2(¢,)). In particular, we obtain

||$‘|S;”(]Cp,2(¢n)) ~ HZ'CZS}TQ@’LUOf}LTee(.’E)Hp ~ HZdS;n@IUOonnd(ZE)Hp ~ HldS;"(X)gznnd(x)Hp
since w and &}, are cb-isomorphic embeddings. This completes the proof. O

REMARK 8.7. Proposition 8.6 extends (8.2) to general von Neumann algebras,
where freeness is replaced by noncommutative independence. The only difference
between both results is the factor 1/k,,, which follows from Remark 8.5.

REMARK 8.8. The transference argument applied in the proof of Proposition
8.6 gives a result which might be of independent interest. Given a von Neumann
algebra A, let us construct the tensor product A;,q of infinitely many copies of
A @ A. Similarly, the free product Ay, of infinitely many copies of A ® A will be
considered. Following our terminology, we have maps

7w A= Aja and ﬂ'}me tA = Afpee.

ind

If1 <p<qg<2, we claim that

8.5 H iz —2)®6; ~ H i (e, —2)®6; ,
( ) Zj ﬂ-znd($ Jf)@ J Lp(Ainaiby) b Zj T(free(x .13)@ J Ly(Afrecity)

where the symbol ~; is used to mean that the equivalence also holds (with absolute
constants) when taking the matrix norms arising from the natural operator space
structures of the spaces considered. The case ¢ = 2 follows by using exactly the same
argument as in Proposition 8.6. In fact, the same idea works for general indices.
Indeed, we just need to embed ¢, into L, completely isometrically and then use
the noncommutative Rosenthal inequality [30]. Recall that the cb-embedding of ¢,
into L, is already known at this stage of the paper as a consequence of Corollary
8.2. At the time of this writing, it is still open whether or not (8.5) is still valid for
other values of (p, q).

Our main goal in this paragraph is to generalize the complete embedding in
Proposition 8.6 to the direct limit /C, 2(¢0). Of course, this is possible using an
ultraproduct procedure. However, this would not preserve hyperfiniteness. We will
now explain how the proof of Proposition 8.6 allows to factorize the cb-embedding
Kp2(thn) — Ly(AL ,QRgk,) via a three term K-functional. We will combine this
with the concept of noncommutative Poisson random measure from [20] to produce
a complete embedding which preserves the direct limit mentioned above.

Let us consider the operator space

1 1, FR
K%p (wn) =kn Lp(QnMQn) + ki L2p (QnMQn) + ki LQP (QnMQn)a

where the norms in the L, spaces considered above are calculated with respect to
the state ¢, arising from the relation v¥,, = k,,¢,,. More precisely, the operator
space structure is determined by

i 1 1
I/l s (xc2, (6,)) = inf {kﬁ 21l (z,) + ki lz2ll g zry + ki ll2s] sg»(L;p)}7
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where the infimum runs over all possible decompositions
— [e% (e}
T =x+ d@nxg + asgd%,

with d,, standing for the density associated to ¢, and a = 1/p — 1/2. Note that
K., (1) coincides algebraically with L,(g,Mg,). There exists a close relation
between ICfCp (1y) and conditional L,, spaces. Indeed, let us consider the conditional
expectation E,, : M, (¢gnMgn) — M, given by

Een () = (onoy) = (222280).

LEMMA 8.9. We have isometries
1 T
S;n (Lgp (QnMQn)) = mpr(Mm(QnMQH)v Etpn)a
Cp 1
S;n(LQ (anqn)> = mpL;<Mm(anqn)7Egan)-
Moreover, these isometries are densely determined by

1_ 1 1 1 1 1
27 2p 2p _ > 2p 2p
||d . Padg? = mp||d%ad%|

H S (LyP (qnMan)) L5 (Mm(gnMgn),Ep,)’

111 T
2 2 2 = 2 2
Hdsai adg, ™ ‘ me Hdsoi adé’

87 (L3P (gn Mgy)) Lg (Mo (gnMgn),Ep,,)’

1 1
In particular, using the relation dg,, = dg,dg . we conclude

sy iz, 0

. 1 1 w1 1 % 1
= inf {kﬁnxpnp +k721HE<Pn(x7'xr)2HS;n +k721||E4Pn(xc‘rC)2 |

T=Tp+T,r+Tc

o)

PRrROOF. We have

1

1_ 1 L 1_ 1 1 1_ 1 1
27 2p 2p _ 2 2p p ¥ J2 2p)\2
Hd w | adgy, = HU"M (dson adg,a’dg, )

S (157 (an Man)) sy

= (i, ® o) (@ P ad}, 0%, )

s
Then, normalizing the trace on M, and recalling that
. % 3 LBV 3 5 odb qra® )}
”(Zde@w”) (dwpad@”a d“""p) sgtimp Ee. (d%ad%a d‘/’") Lp(Mm (gnMan))
when regarding the conditional expectation as a mapping
Ep, : Lp(Mpn (42 Mgyn)) — Lp(My),
we deduce the assertion. The column case is proved in the same way. (]

PRrOPOSITION 8.10. Let R be the hyperfinite 1111 factor and ¢ the quasi-free
state on R considered above. Let us consider the space /Cf’cp (¢ ®1y), defined as we
did above. Then, there exists a completely isomorphic embedding

Pn - Kp,?(wn) - ’C%p (¢ 2 wn)

Moreover, the relevant constants in p, are independent of n.
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PrROOF. We have
1 _ 1. 1o
]Cfcp (¢ b2 wn) =ks Lp(R®QnMQn) + ki L2P (R®QnMQn) + ki Lgp (R®QnMQn)~

The embedding is given by p,,(x) = v, @z, with ~y, the element of L,(R) introduced
after Proposition 8.6. Indeed, taking Egg,, @ M (R®¢nMgn) — M, and letting
z € Sp'(Kp2(¥n)), we may apply Lemma 8.9 and obtain

17 ® | s iz, (d@w0))

1 1 1
= ot Kl 1 Eosg, (o)) | g+ K[ Eosie, (a0 }-

Therefore, Lemma 8.3 and Remark 8.4 give

ky, ky,
I ® @llsg ity oo ~ |20 Taato @D~ |32 7o) @ 7yl =)
k=1 j=1

Hence, the assertion follows as in Proposition 8.6. The proof is complete. (]

Let M be a von Neumann algebra equipped with a n.s.s.f. weight ¢ and let
us write (¢, gn)n>1 for the associated sequence of g,-supported weights. Then we
define the following direct limit

IC]TDCP (77[}) = U ’C%p (wn)-

n>1

We are interested in a cb-embedding KF, (¢)) — L,(A) preserving hyperfiniteness.
In the construction, we shall use a noncommutative Poisson random measure. Let
us briefly review the main properties of this notion from [20] before stating our
result. Let MJ, stand for the subspace of self-adjoint elements in M which are
1-finitely supported. Let M, denote the projection lattice of M. We write e L f
for orthogonal projections. A noncommutative Poisson random measure is a map
A (M,y) — Li(A, Dy), where (A, @) is a noncommutative probability space
and the following conditions hold
i) A\: Mf, — Li(A) is linear.

ii) @, (@) = exp((e® — 1)) for x € M.

iii) Ife, f € Myande L f, A(eMe)” and A(f M [f)" are strongly independent.
These properties are not yet enough to characterize A, see below. Let us recall
that two von Neumann subalgebras A;, A2 of A are called strongly independent if
a1as = azaq and Py (araz) = @y (a1)Py(az) for any pair (a1,a2) in A; x As. The
construction of A follows by a direct limit argument. Indeed, let us show how to
produce A : (¢, Mgy, ) — L1(Ay, @y, ). We define

oo

k=0

where ®§ym qnMgq, denotes the subspace of symmetric tensors in the k-fold tensor
product (¢, Mg, )ek- In other words, if S is the symmetric group of permutations
of k elements, the space ®§ym qn Mg, is the range of the conditional expectation

1
E(@1 @22 @ - @ap) = 7 Z Tr(1) @ Tr(2) @ - & Trr(k)-
" neSy
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Then we set
AMz) = (Ae(2)k>0 € Moym (gnMayn)  with  Ag(z Zﬂ'md

and properties (i), (ii) and (iii) hold when working with the state

Dy, ((z)r=1) = Z oxP(~¥n(D) Y ® -+ @ Pn(2k).

!
P k!

k times
In the following, it will be important to know the moments with respect to this
state. Given m > 1, II(m) will be the set of partitions of {1,2,...,m}. On the
other hand, given an ordered family (24 )aea in M, we shall write

=

acA
for the directed product of the z,’s. Then, the moments are given by the formula

iv) @y, (A@)A@2) M) = > Hwn(H ;).

o€ell(m) k=1 JEOK
o={01,...,0:}

Now we can say that properties (i)-(iv) determine the Poisson random measure
A for any given n.s.s.f. weight ¥ in M. According to a uniqueness result from
[18] which provides a noncommutative form of the Hamburger moment problem, it
turns out that there exists a state preserving embedding

Msym (inMin ) - Msym <Qn2MQn2 )

for n; < ng and such that the map A = \,, constructed for g,, may be obtained
as a restriction of A,,. This allows to take direct limits. More precisely, let us
define the algebra Mgy, (M) as the ultra-weak closure of the direct limit of the
Mgy (¢nMgyp)’s. Then, there exists a n.f. state @, on Mgy, (M) and a map A
which assigns to every self-adjoint operator x (with supp(z) < e for some -finite
projection e in M) a self-adjoint unbounded operator A(z) affiliated to My, (M)
and such that

0y (D) = exp(y(e” —1)).

THEOREM 8.11. Let 1 < p < 2 and ¥ be a n.s.s.f. weight on M. Then there
exists a von Neumann algebra A, which is hyperfinite when M is hyperfinite, and
a completely isomorphic embedding

Ky, (¥) — Lp(A).
PROOF. Let us set the s-fold tensor product
Bn,s = (L [0 1] [QnMQn S2] QnMQn]>
Given s > ky,, we define the mapping A, s : KL, (¢n) — Ly(By,s) by

1 1 5. 1 1
Ao (@Z2d2) = S mha(Lok, s @ 2 (@, —2) dZ)
j=1

1

Zdnsﬂ'lnd( [()kn/s]®<3j —SL’)) s

j=1
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where d,, s is the density associated to the s-fold tensor product state

1

1
0 ®s

s times

If we tensor A, with the identity map on M,,, the resulting mapping gives a sum
of symmetrically independent mean-zero random variables over M,,. Therefore,
taking @ € Sp*(KE, (1)) and applying Lemma 8.3 /Remark 8.4

S;n, }7

|Ans(@ZadZ) ]|, ~ inf {5 lall, + 5% [Eg, (0°)F | g0 + 5% [Eg, ()|

where E4, denotes the conditional expectation
Es, : M, (Loo[O, 1® [gn Mgy @ qn/\/lqn}) — M,
and the infimum runs over all possible decompositions

a1 1
(8.6) Lok, /s) @ dg), (z,—x)dg), =a+b+ec.

Multiplying at both sizes of (8.6) by 1jx, /s ® 1, we obtain a new decomposition
which vanishes over (k,, /s, 1]. Thus, since this clearly improves the infimum above,
we may assume this property in all decompositions considered. Moreover, we claim
that we can also restrict the infimum above to those decompositions a + b+ ¢ which
are constant on [0,k,/s]. Indeed, given any decomposition of the form (8.6) we
take averages at both sizes and produce another decomposition ag + by + co given
by the relations

kn
S

(a0:b0,0) = Lo @ 1 [ (ale)ble).c(t))
n Jo
Then, our claim is a consequence of the inequalities

laoll, < lallp,

[Ea. Gobi) g, < [1Eon 00)* ]
[Es.(cieo)? gy = [Eau(c0)? .

The first one is justified by means of the inequality

1 A
5 [ at)| < .
5 [ aoa], <l

which follows easily by complex interpolation. The two other inequalities arise as a
consequence of Kadison’s inequality E(z)E(x*) < E(xzx*) applied to the conditional

expectation
1 )\
E=1 / dt.
AJo

Our considerations allow us to assume

1

AP

(a, b, C) = 1[071(”/3] (24 (xpa Ly, .’Kc)

for some zp,, z,, . € S} (Lp(gnMgn)). This gives rise to

1 1 1 1
s (aZzadZ ), ~ int {iE Lyl + 3 B )1

3 * 1
Sm +kan HES"n (xch)Q HS;n}’
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where the infimum runs over all possible decompositions

d d%—wp—i—xr—i—mc.

This shows that A, s : K, (wn) — L,(B,,s) is a completely isomorphic embedding
with constants independent of n or s. We are not ready yet to take direct limits.
Before that, we use the algebraic central limit theorem to identify the moments in
the limit as s — 0o. To calculate the joint moments we set

Cn:}“@n@@n) and <7L,s:<n®<n®"'®<n

2

s times

and recall that the map A,, ¢ corresponds to

umS(I) = Z Trzjnd (1[07kn/5] ® ($7 _I)) :

j=1
Then, the joint moments are given by

¢n,s (un,s(ml) CtUp s(ajm))

Z / Hﬁ%d(l[mkn/ﬂ) dt Cns( H 7T'erl i, xl))

J1.J2,-Jm=1 =1 1<i<m
kn r s — e
- X ¥ () IIe[(ITe e I =)
o€ll(m) (i, sjm)~o k=1 €0} 1€0

o={01,....,0n

where |oj| denotes the cardinality of o}, and we write (j1, ..., jm) ~ o when j, = jp
if and only if there exits 1 < k < r such that a,b € oi. Therefore, recalling that
Cn = %(@n @ ), the only partitions which contribute to the sum above are the
even partitions satisfying |oy| € 2N for 1 < k < r. Let us write II.(m) for the set
of even partitions. Then, using ,, = k,¢,, we deduce

—

¢n7s(un7s(x1)...unys(ajm)) — Z {15 dm) ~ 0o} H¢n< ]._.[ %)

s .
o€ll.(m) €0y

o={o1,...,00}

s! - —
- > s(s —r)! Hw"(H x’)
o€ll.(m) k=1 i€oy

o={o1,....,00}

Therefore, taking limits

hﬂm (bn s(un s(xl) u'ms(xm)) = Z ﬁ 7//n( ﬁ JUZ)

o€ll.(m) k=1 €T
o={o1100}

These moments coincide with the moments of the Poisson random process
A (QnMQTvan) - Ll(Msym(anQn)7 q)wn)-

Hence, the noncommutative version of the Hamburger moment problem from [18]
provides a state preserving homomorphism between the von Neumann algebra
which generate the operators

{eiun,s(f) } = anQna 52 1}
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and the von Neumann subalgebra of My, (g, Mg,) generated by
{ei)\($) |z ¢ (anqn)é‘a}_
In particular, taking A, = Msym (¢, Mgn)

L L
2p .szp

1435 23 Nl sy icn. oy

EIE 1 gl
~ o dim (A (@0 2di ) sy 5,0 = e, AN@ES, sz, )y
Now, we use from [20] that
(Msym(M)»‘I’w) = U (Msym(Qann)7(I)¢n)
n>1
exists. Therefore, the map
1 1 el 1
A(dy xd))) = g’ A(x)dg’,
extends to a complete embedding
Ky, () = limy KF. (thn) — Lp(Msym(M)).
Moreover, if M is hyperfinite so is Mym (¢,Mgy,) and hence My, (M). O

COROLLARY 8.12. Let 1 < p <2 and ¢ be a n.s.s.f. weight on M. Then there
exists a von Neumann algebra A, which is hyperfinite when M is hyperfinite, and
a completely isomorphic embedding

Kp2(1h) — Ly(A).
PROOF. Let us set

RBs = (Locl0, 1E[(RE4u Map) & (REgu Mg,)] )

®Xs

By Proposition 8.10 and Theorem 8.11, the map
Apsopn: IC,’D,2(¢7L) - K:g)cp (¢ ®@Pn) — LP(RBmS)

provides a complete isomorphism with constant independent of n and s. Using
the algebraic central limit theorem to take limits in s and the noncommutative
version of the Hamburger moment problem one more time, we obtain a complete
embedding

Ao Pn : ICp,2('(/}n) - K:f)cp (¢ 0y wn) - Lp(Msym(R®QnMQn))-

Taking direct limits we obtain a cb-embedding which preserves hyperfiniteness. [

COROLLARY 8.13. If1 <p < ¢ <2, S, cb-embeds in L,(A) with A hyperfinite.

PrROOF. By the complete isometry S, = C, ® R, and [24, Remark 2.2], it
suffices to embed the first term Z; ® 25 on the right of (8.1) into L,(A) for some
hyperfinite von Neumann algebra A. However, following the proof of Theorem
8.1, we know that Z; ® Z5 embeds completely isomorphically into /Cp 2(1), where
1 denotes some n.s.s.f. weight on B(¢3). Therefore, the assertion follows from
Corollary 8.12. O
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REMARK 8.14. Theorem 8.1 easily generalizes to the context of Corollary 8.13.
More precisely, given operator spaces X; € QS(C, @2 OH) and Xy € QS(R,$2 OH)
and combining the techniques applied so far, it is rather easy to find a hyperfinite
type III factor A and a completely isomorphic embedding

X1 ®h Xg — LP(A)

REMARK 8.15. In contrast with Corollary 8.2, where free products are used,
the complete embedding of S, into L, given in Corollary 8.13 provides estimates
on the dimension of A in the cb-embedding

Syt — Ly(A).
Indeed, a quick look at our construction shows that
St = Cl ®@p RY" — Kpo(thn) — Ly (AZLg OHy, ) = L, (M&*"; OHy, ),

with n ~ mlogm, see [18] for this last assertion. This chain essentially follows
from [24, Remark 2.2], the complete isometry (8.3) and Proposition 8.6. On the
other hand, given any parameter v > 1/2k,, and according once more to [18], we
know that OH, embeds completely isomorphically into Sy~ for w,, = kYkn with
constants depending only on v and that k, ~ n®*. Combining the embeddings
mentioned so far, we have found a complete embedding S7* — Sé‘/[ with

M ~ mPrm

8.3. Embedding for general von Neumann algebras

Let 1 < p < ¢ <2 as in the statement of our main result in the Introduction.
We will encode complex interpolation in a suitable graph. This follows Pisier’s
approach [49] to the main result in [17]. Indeed, given 0 < 6 < 1, let py be
the harmonic measure of the point z = 6. This is a probability measure on the
boundary S (with density given by the Poisson kernel in the strip) that can be
written as pg = (1 — 0)po + 01, with p; being probability measures supported by
0; and such that

£6)= [ fdg
oS
for any bounded analytic f extended non-tangentially to 9S. Let

Hy = {(f‘ao,fbl) | f:S—C analytic} C Lo (80) @ La()).
‘We need operator-valued versions of this space given by subspaces

b o (M,0) C (Lgp’ (%) @n Ly (M)) @ (Lgh(al) ®n LQ(M)) — O @O,

MG, (M, 6) C ( 50 (M) @y Ly (ao)) @ (Lﬁ(M) ®n Lgh(61)> =0, ® 0% .

More precisely, if M comes equipped with a n.s.s.f. weight ¢ and dy, denotes the
associated density, Hj,, (M, 0) is the subspace of all pairs (fo, f1) of functions in
0, 0®0,, 1 such that for every scalar-valued analytic function g : S — C (extended
non-tangentially to the boundary) with g(6) = 0, we have

1

(1-9) /a 9(=)d1 ™ fol2) dpuolz) + 0 /8 9(2)f1(2) dpn (2) = 0.
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Similarly, the condition on Hs,, (M, 0) is

1

(1-0) /8 9(2)fol2) ™ dpg(z) +0 / 9(2)f2(2) dpn (=) = 0.

o1
We shall also need to consider the subspaces

1 1

Heo = {(o 1) € Moy oM O)| (1=0) | dy™ ™ foduo+0 | frdm =0},
Do v o1

Heo {(fo,fl) € M5, (M, 0)| (1-06) /d fodj*rbduo +9/61 frdus = o}.

REMARK 8.16. In order to make all the forthcoming duality arguments work,
we need to introduce a slight modification of these spaces for p = 1. Indeed, in that
case the spaces defined above must be regarded as subspaces of

oM, 0) C (L;(@o)@v\/l) ® (Lgh(al) R Lg(M)),
Sa(M,0) © (MBLy@) @ (L5(M) @i L5 (0)).

The von Neumann algebra tensor product used above is the weak closure of the
minimal tensor product, which in this particular case coincides with the Haagerup
tensor product since we have either a column space on the left or a row space on
the right. In particular, the only difference is that we are taking the closure in the
weak operator topology.

LEMMA 8.17. Let M be a finite von Neumann algebra equipped with a n.f. state
@ and let d, be the associated density. If 2 < ¢’ < p' and 2%1, = 12;,9 + %, we have
complete contractions

s s 1
wn+ d27 0 € Ly (M) = (1827 2,1@ i) + Huo € Hay (M, 0)/Hr,

1 1 1
ue : 2d3 € L, (M) (:ﬂd;”' ©1,zdi ® 1) + Hep € HSyy 5 (M, 0)/Heo.

Proor. By symmetry, it suffices to consider the column case. Let z be an
element in M, (L5, (M)) of norm less than 1. According to our choice of 0 < 6 < 1,
we find that

My, (Lsg (M) = [Min (L5, (M), My (LG (M))] -
Thus, there exists f : S — M,, (M) analytic such that f(0) = z and

1
max { sup || f(z)dz”
z€0p

1
Mo (Lg,, (M) 52D Hf(z)dé”Mm(Lz(M»} =1

If 1 <s<ooandje{0,1}, we claim that

1 1
(8.7) Hf\aj dg’ HMm(LgS(M)(gths @) = Sup £ (2)dz HMm(Lgs(M))'
z€0;

Before proving our claim, let us finish the proof. Taking f; = f|, , we have

1 1 o 1
(fod2' | frd3) — (:cd:f ®1,2db @ 1) € Hep-

Indeed by analyticity, we have

1

(1=0) [ fodZ al ™ dpo0 [ fididu = [ fabue = )ik = o},
o o oS
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This implies from (8.7) applied to (s,7) = (p’,0) and (s,j) = (2,1) that
= 1

| <oz 1)

Hence, it remains to prove our claim (8.7). We must show that the identity map
Loo (95 LS (M)) — L5, (M) @), L5*(9;) is a complete contraction. By complex
interpolation, we have

Lo (05 L5,(M)) = [Loo(aﬁ-/\/l),Loo(aj;Lg(M))]%a
Li (M) @n Ly (9;) = [M®@n L5(9;), Ls(M) ®n L5(9;)]

= [M @uin L5(9;), L5 (M) @min L5(0;)]

In other words, we must study the identity mappings
M ®min Loo(0;) — M Qmin L5(0)),
L5(M) @min Loo(95) = L5(M) @min L5(9;).

However, this automatically reduces to see that we have complete contractions

Los(05) —  L5(0)),

Loo(9;) —  L5(9)).

Therefore it suffices to observe that

e (2d2 ) <1

’Mm(H;p,z) o

’Mm(H;p/YQ/HC,o

w =

10 ez = | /8 i < ms@) s IR, = 1R o
5 m z J
Bonizsion = | [ 70wl < m@) sup 1R, = 1By 2o

This completes the proof for 1 < p < 2. In the case p = 1, we have overlooked the
fact that the definition of HS, o(M, 0) (see Remark 8.16 above) is slightly different.
The only consequence of this point is that we also need the inequality

Hf\ao HMM(M@@L;(&))) < Zsél}i £ ()M (a1
However, this is proved once more as above. The proof is complete. ([l

To continue with the argument we need to introduce some predual spaces. This
requires to extend our definition (1.3) to the case 1 < ¢ < 2. This is easily done as
follows

LyM) = [Ly(M), LE(M)] 5,
LoM) = [La(M), L§(M)] 5 .

Lemma 8.17 is closely related to [24, Lemma 2.1] and a similar result holds on the
preduals. More precisely, we begin by defining the operator-valued Hardy spaces
which arise as subspaces

HS, o(M,0) C (Lg” (00) ®n L, (M)) ® (Lgh(an on LG (M)),

Hp,a(M,0) C (L7a (M) @0 LY (00)) @ (L3 (M) @1 I8°(31)),

p+1
formed by pairs (fo, f1) respectively satisfying

(1-9) /8 9(2)fo(2) dpo(2) + 0 /8 g(2)d

_3
1

h(z)dp(z) = 0,
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p+1

(1-6) /8 9()fol2) dpo(2) + /8 oD h AT Tz = o,

for all scalar-valued analytic function g : S — C (extended non-tangentially to the
boundary) with g(¢) = 0. The subspaces H;., and H,, , are defined accordingly. In
other words, we have

e0 = {(fo,fl) € H5,o(M,0)| (1—106)

p+1 3

fodpo 0 [ aZ " pyd — o},

8(] 81

_3
4

o = 0o eMa M0 (-0) [ foduo+0 [ fid =0},

LEMMA 8.18. Let M be a finite von Neumann algebra equipped with a n.f. state
¢ and let d, be the associated density. Taking the same values for p,q and 0 as
above, we have complete contractions

g+1

pEl 3
(M) — (1 ®d 2,10 d;,g;) +HL o € HE, o (M, 0)/H o,

ptl 3
we : 2d 2T € Loy (M) (a:d;’P ®1,2db ® 1) +H o € Hpp (M, 0)/H. 4.
ProOOF. If 1 < s < co and M,,, = M,,,(M), we have

(8.8) ST (Lo (M) = S?([Ll(M),LS(M)]S%)

S+1

[Sin (Li(M)), S5 (L2(M))S;n} 1

= 5% (Lae (M))STy = Lse, (Mon) S

Indeed, the second isometry follows by dualizing the second isometry below

|d2 (i;) HMm(Lg(M)) = ||aﬁ;£)§1 ’ dg ( g aikmkj) ’ Lo(Mu)]
(8.9) 1 2 i )
||(ffij)d5HMm(Lg(M)) = ||5HS;1;1)§1 H(;%kﬁkj)dé‘ SV

The first one is needed for the analysis of the mapping w,. The isometries (8.9) are
well-known in operator space theory, see e.g. p.56 in [11]. Alternatively, one may
argue directly as we did in Lemma 8.9. The third isometry in (8.8) follows from
Theorem 3.2. Now, let us consider an element of norm less than 1

a+1
rdT € ST (L0 (M),

The isometry above provides a factorization
q+1

rdy" = afyd € L (M) Lp, (M) S5, S5

with «, 8,7, d in the unit balls of their respective spaces with

1 q+1 3 11 1
P1 2q 4 p2  2¢  2p
Moreover, by polar decomposition and approximation, we may assume that § and 0
are strictly positive elements. In particular, motivated by the complex interpolation
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isometry

L 20, (M)S53 = L 2 (M) Ly (M) ST = [X0.X] .
we take (39, d9) = (Y (=9 §/9) and define

f:zESHaﬂé_zfﬁg € Xo + Xi.

q+1
Since f is analytic and f(0) = zd,? , we conclude

pt1 3
(f|8o’f‘31) € (xd(;p ® 1,.Tdé ®1) +H:‘;0'
Therefore, taking f|, = f; we obtain the following estimate

q+1

c(zd ST
Hw (v ) ST (g, 5/ Mo o)
= max{|‘fo| SP(L",, (M)®RLY (90))’ | leSrL(Lg (M)@Mgh(al))}
p+T 3
- max{||a5‘”||smv‘2p e 0398l gye 1 <M>>} =1,
p+1 3

where the last inequality follows from (8.8) and the fact that (afg,7dg) are in the
unit balls of Ly, /p41(M,y,) and SJ* respectively. The assertion for the mapping w,
is proved similarly. The proof is complete. (I

ProprosITION 8.19. Let M be a finite von Neumann algebra equipped with a
n.f. state ¢ and let d, be the associated density. If 2 < ¢ < p' and 2%, = 12;,9 4 %}
we have complete isomorphisms

wp  d3 x € Ly (M) - (1 ®dZ ¢,16 dg,x) + Hyo € My 5 (M, 0)/Hyo,

U 2d € Ly, (M) (xd? ®1,zds ® 1) +Heo € Hgy 2(M,0)/Heo.

PRrROOF. This follows easily from the identity

b p () = /6 (72 0(2)duo(2),

valid for any pair of analytic functions f and g such that (f(0),g(0)) = (z,y).
Indeed, according to the definition of the mappings u,., u., w;, we, this means that
we have

<Ur(351)awr(y1)> = (21,91)

<u0(332)7w0(92)> = (z2,92)

for any

(@1, 22,51,52) € Lo (M) X L (M) x L%q (M) X L2 (M).
In particular, we deduce
Wi, = idL;q,(M) and wliu. = idqu,(M).

Therefore, the assertion follows combining Lemma 8.17 and Lemma 8.18. ([
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Let M be a von Neumann algebra equipped with a n.f. state ¢ and let M,,
be the tensor product M, ® M. Then, if E,, = idm,, ® ¢ : M,, — M, denotes
the associated conditional expectation, the following generalizes Lemma 7.7.

LEMMA 8.20. If1/r =1/2—1/p’, we have isometries

L2§roo(Mm7E) = CZ,T/L(X)hLZ(M)@hRm,
L?fo 2r) (M, Em) = Cp @ Li(M) @4, R;T/L

ProOOF. By Kouba’s theorem, it is clear that the spaces on the right form
complex interpolation families with respect to 2 < p’ < co. Let us see that the same
happens for the conditional L, spaces on the left. Indeed, according to Theorem
4.6 we have isometries

L3 )M B) - = [ L oy Moy Enn), L oy (Mo Eun)]

2/p’
(oozr)<Mm,E ) = [ ?20,4)(va|5 )L(oooo)(Mm7Em):|

2/p'
This reduces the problem to the cases p’ = 2 and p’ = co. If p’ = 2, we have r = oo
and both spaces on the left coincide with L(Oo o) (Mm, Em) = Ly(Mp,). On the
other hand, the spaces on the right are respectively given by

C3' @p Ly(M) @ Ry = [Coy @4 M @1 Ry, Ry @ Ly(M) @4 R,

Com @ L§(M) @1 R = [Coy @4 M ®p R, Cpy @1, L§(M) @5, Cp ] .-
In other words, we find the spaces L}(M,,) and L§(M,,) which coincide with

L4(M,,) at the Banach space level. It remains to check the validity of the assertion
for p’ = oo, but this is exactly the content of [24, Lemma 1.8]. O

Let M be a von Neumann algebra equipped with a n.f. state ¢ and let N
be a von Neumann subalgebra of M. Let E : M — A denote the corresponding
conditional expectation. In Chapter 5, we defined the spaces

P T

By o(ME) = n3 Lgp/(/\/l)ﬂanL?;’mo(M,E),
=L c

Chy o (M,E) = n2 LS, (M) N nt L(OOM(M,E),

with 1/r =1/2 — 1/p’ and in Chapter 6 we proved the isomorphism
(8.10) o 2(M,E) ~ Ry, (M, E) @ Cgyp (M, E).

In fact, to be completely fair we should say that we have slightly modified the
definition of R, ,(M, E) and C3,, ,(M, E) by considering the row/column o.s.s. of
Loy (M). However, the new definition coincides with the former one at the Banach
space level. Hence, since we do not even have an operator space structure for
these spaces, our modification is only motivated by notational convenience below.
Namely, inspired by Lemma 8.20, we introduce the operator spaces

n i{ T 1 T
QPI,Q(M) n?zr L2p/(M) N n4 L4(M),
n i{ C 1 C
6217/12 (M) n?ze L2p/(M) N n4 L4(M)
These spaces give rise to the complete isomorphism

(8.11) o 2(M) = Ry o (M) @0 Copr 2 (M).
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Indeed, taking (M, N, E) = (M,,, M,,,E,,) in (8.10) we have
Sy (T a(M)) = T o (M, Em)
~ 29 2(Mm; Em) @, Capr 2(Min, En)
= S0y 00) (R 2 (M) @, ST 2y (C3r 2 (M)
= O @n (Riy o(M) @tn Cliy 2(M)) @1 By
= 5P (RE, 2(M) @ Chy 5(M)),

where the third identity follows from Lemma 8.20 after taking in consideration
our new definition of Ry, ,(M,E) and Cg, ,(M,E). In other words, (8.10) and
(8.11) are the amalgamated and operator space versions of the same factorization
isomorphism. Now assume that M is equipped with a n.s.s.f. weight ¥, given
by the increasing sequence (¢, gn)n>1. Then, we may generalize the factorization
result above in the usual way. Namely, assuming by approximation that k,, = ¢,,(1)
are positive integers, we define

57 T I T
Rop2(¥n) = k" Loy (gnMan) Nk Ly(gnMgn),

L 1
CQpCQ(wn) = k' Lgp/ (@nMan) Nk Li(gnMay).
This gives the complete isomorphism
i_;’_l
T 2(¥n) ~eb Rapr 2(¥n) @atn Copr2(n) = [ ki ¥ Liuw) (Gn M)
u,ve{2p’,4}
Then, taking direct limits we obtain the space
jp’,Q(’l/}) = R2p/,2(w) ®M,h CZp/,Q(w) = ﬂ L(u,v)(M)~
u,ve{2p’ 4}

LEMMA 8.21. Let M be a von Neumann algebra equipped with a n.s.s.f. weight
. Then, there exists a n.s.s.f. weight & on B({l3) such that the following complete
isomorphisms hold

gp’,Q(M7€> ®n R = Rop (@8,

C®n Hip 2(M,0) = Cop (¥ ®E).
PROOF. By symmetry, we only consider the column case. Let us first observe
that Hs is indeed the graph of an injective closed densely-defined (unbounded)

operator with dense range. This is quite similar to [24, Remark 2.2]. It follows
from the three lines lemma that for z = a + @b

P 1oy 1 (o, e 116, 1 0110

Since p, and pg have the same null sets, we deduce that
75(F) = fi, € La(dy, o)

are injective for j = 0,1 when restricted to analytic functions. Thus, the mapping
A(mo(f)) = m1(f) is an injective closed densely-defined operator with dense range
and Hs is its graph. Let A = u|A| be the polar decomposition. Since M,, =1 ® u*
defines a complete isometry (recall that A has dense range)

L§(M) @n L5"(01) — L§(M) ®n L5" (Do),
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we may replace A by |A[ in the definition of H5, ,(M, ). Using [24, Lemma 2.8],
we may also replace L2(0p) by {2 and the operator |A| by a diagonal operator dy.
These considerations provide a cb-isomorphism

C @n Hp 2(M, 0) =0 (c ©n Ly (M) @5, Rp,) N (C @ LE(M) zgh(A)),

where £3"()\) is the weighted form of OH which arises from the action of dy. The
assertion follows by a direct limit argument. Indeed, the n.s.s.f. weight ¥ on M
is given by the sequence (5, ¢n)n>1- On the other hand, we may consider the
n.s.s.f. weight & on B(¢3) determined by the sequence (&, 7, )n>1, Where 7, is the
projection onto the first n coordinates and &, is the finite weight on 7, B(¢2)m,
given by
&n (wn(zij wijeij)ﬂn) = ; VeTre With vy = .

Let us define the parameters k!, = £,(1) and w,, = k,k/,. Then, arguing as we did
in [24, Lemma 2.4], it turns out that the intersection space above is the direct limit
of the following sequence of spaces

(Lgp, (qn./\/lqn®7rn3(ﬂg)7rn)) Awi (Li(qn./\/lqn@mnl?(fg)ﬂn)).

However, the latter space is Cop 2(1, ® &,). This completes the proof. O

2p”
Wn

PRrROPOSITION 8.22. The predual space of
51)’,2('/\/{7 6) ®M7h ng/’Q(M, 9)

embeds completely isomorphically into K%p((ﬁ ® Y &) for some n.s.s.f. weight &
on B(l2) and where ¢ denotes the quasi-free state over the hyperfinite 111y factor R
considered in Proposition 8.10.

PrOOF. According to Lemma 8.21
Hay (M, 0) @, Hpy 2(M,0)

= (Mo 2M0) @1 R) @atornnn (C @My a(M.0)

~eb Rap 2(¥ ® &) @rmeBes),n Copr 2(¥ @ E) ~cb Tpr2(¥ ®E).
However, Jy 2(¢ ® §) is a direct limit of spaces

Ty 2(tn ® 0) = Ty (0 Man@maB(£2)n ).
According to Proposition 8.10, the direct limit
Kp2(¥ ® &) = lim, K 5 (1 @ &n)

of the corresponding predual spaces cb-embeds into K, (pRY ). O

Now we are ready to prove our main result. In the proof we shall need to
work with certain quotient of M5, ,(M,8) @a1,n HS, o(M,0). Namely, recalling
the subspaces H, o and H.o, we set

Qapr 2(M,0) = ( gp172(M79)/Hr’0) M, h (ng/,Q(M,G)/HC’O).

We claim that Qo 2(M, 0) is a quotient of H5,, o(M, 0)@ M, 5 (M, 0). Indeed,
according to the definition of the M-amalgamated Haagerup tensor product of two
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operator spaces (see Chapter 6), we may write Qgy 2(M,0) as a quotient of the
Haagerup tensor product

Agp 2(M,0) = (H, 2(M,0)/Hro) @n (Hsy 2(M,0)/Heo)

by the closed subspace spanned by the differences =17 ® x9 — 1 ® yxo, with
v € M. Therefore, it suffices to see that the space Agy 2(M,0) is a quotient
of Hy, o(M,0) @ HS, 5(M,0). However, this follows from the projectivity of the
Haagerup tensor product and our claim follows.

Let us prove our main embedding result.

THEOREM 8.23. Let 1 < p < q < 2 and let M be a von Neumann algebra.
Then, there exists a sufficiently large von Neumann algebra A and a completely
isomorphic embedding of Lq(M) into L,(A), where both spaces are equipped with
their respective natural operator space structures. Moreover, we have

i) If M is QWEP, we can choose A to be QWEP.
ii) If M is hyperfinite, we can choose A to be hyperfinite.

PROOF. Let us first assume that M is finite. According to Theorem 8.11 and
Proposition 8.22, it suffices to prove that the operator space L, (M) is completely
isomorphic to a quotient of

51)’,2 (Ma 9) @M ng/72<./\/l, 9)
This follows from Proposition 8.19 since
Ly (M) =ep Loy (M) @mn Lg (M) ~ep Qapr2(M, 0).

The construction of the cb-embedding for a general von Neumann algebra M can
be obtained by using Haagerup’s approximation theorem [12] and the fact that
direct limits are stable in our construction. Indeed, Haagerup theorem shows that
for every o-finite von Neumann algebra M, the space L,(M) is complemented in
a direct limit of L, spaces over finite von Neumann algebras. Finally, if M is any
von Neumann algebra, we observe that L,(M) can always be written as a direct
limit of L, spaces associated to o-finite von Neumann algebras. On the other hand,
the stability of hyperfiniteness follows directly from our construction. Indeed, our
construction goes as follows

Lo(M) = (Hay o(M,0) @ pn Hoyy 2(M,0)) = Kk (980 ©€) = Ly(A)

*

where the first embedding follows as above, the second from Proposition 8.22 and
the last one from Theorem 8.11. In particular, it turns out that the von Neumann
algebra A is of the form

A= My (REMEB(Ly)),

which is hyperfinite when M is hyperfinite and is a factor when M is a factor.
Finally, it remains to justify that the QWEP is preserved. If M is QWEP, there
exists a completely isometric embedding of Ly(M) into Lg(My) with My, of the

form i
My = (HW st)

Since we know from Corollary 8.2 that the Schatten class S; embeds completely
isomorphically into L,(.A,) with relevant constants independent of n and A,, being
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QWEP, we find a completely isomorphic embedding
Lo(M) = Ly(Ay) with Ay = ( WAM) .
This proves the assertion since Az, is QWEP. The proof is complete.

153






10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

Bibliography

. H. Araki and E.J. Woods, A classification of factors. Publ. Res. Inst. Math. Sci. Ser. A 4
(1968/69), 51-130.

. J. Bergh and J. Lofstrom, Interpolation Spaces. Springer-Verlag, Berlin, 1976.

. J. Bretagnolle, D. Dacunha-Castelle and J.L. Krivine, Lois stable et space LP. Ann. Inst. H.
Poincaré 2 (1966), 231-259.

. D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probab. 1 (1973),
19-42.

. D.L. Burkholder and R.F. Gundy, Ezxtrapolation and interpolation of quasi-linear operators
on martingales. Acta Math. 124 (1970), 249-304.

. A. Connes, Une classification des facteurs de type III. Ann. Sci. Ecole Norm. Sup. 6 (1973),
133-252.

. A. Defant and M. Junge, Mazimal theorems of Menchoff-Rademacher type in non-
commutative Lq-spaces. J. Funct. Anal. 206 (2004), 322-355.

. A. Devinatz, The factorization of operator valued analytic functions. Ann. of Math. 73 (1961),
458-495.

. K. Dykema, Ezactness of reduced amalgamated free product C*-algebras. Forum Math 16

(2004), 121-189.

E.G. Effros, M. Junge and Z.J. Ruan, Integral mappings and the principle of local reflexivity

for noncommutative L1 spaces. Ann. of Math. 151 (2000), 59-92.

E.G. Effros and Z.J. Ruan, Operator Spaces. London Math. Soc. Monogr. 23, Oxford Univer-

sity Press, 2000.

U. Haagerup, Non-commutative integration theory. Unpublished manuscript (1978). See also

Haagerup’s Lecture given at the Symposium in Pure Mathematics of the Amer. Math. Soc.

Queens University, Kingston, Ontario, 1980.

U. Haagerup, L, spaces associated with an arbitrary von Neumann algebra. Algebres

d’opérateurs et leurs applications en physique mathématique, CNRS (1979), 175-184.

U. Haagerup, H.P. Rosenthal and F.A. Sukochev, Banach Embedding Properties of Non-

commutative Lp-Spaces. Mem. Amer. Math. Soc. 163, 2003.

M. Junge, Embeddings of non-commutative Ly-spaces into non-commutative L1-spaces, 1 <

p < 2. Geom. Funct. Anal. 10 (2000), 389-406.

M. Junge, Doob’s inequality for mon-commutative martingales. J. reine angew. Math. 549

(2002), 149-190.

M. Junge, Embedding of the operator space OH and the logarithmic ‘little Grothendieck in-

equality’. Invent. Math. 161 (2005), 225-286.

M. Junge, Operator spaces and Araki-Woods factors: A quantum probabilistic approach. Int.

Math. Res. Pap. 2006.

M. Junge, Vector-valued L, spaces over QWEP von Neumann algebras. In progress.

M. Junge, Noncommutative Poisson random measure. In progress.

M. Junge and M. Musat, A noncommutative version of the John-Nirenberg theorem. Trans.

Amer. Math. Soc. 359 (2007), 115-142.

M. Junge and J. Parcet, The norm of sums of independent noncommutative random variables

in Lp(£1). J. Funct. Anal. 221 (2005), 366-406.

M. Junge and J. Parcet, Rosenthal’s theorem for subspaces of noncommutatuve Ly. To appear

in Duke Math. J.

M. Junge and J. Parcet, Operator space embedding of Schatten p-classes into von Neumann

algebra preduals. To appear in Geom. Funct. Anal.

. M. Junge and J. Parcet. Paper in progress.

155



156

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

BIBLIOGRAPHY

M. Junge, J. Parcet and Q. Xu, Rosenthal type inequalities for free chaos. Ann. Probab. 35
(2007), 1374-1437.

M. Junge and Z.J. Ruan, Decomposable maps on non-commutative Ly spaces. Contemp.
Math. 365 (2004), 355-381.

M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31
(2003), 948-995.

M. Junge and Q. Xu, Noncommutative mazimal ergodic theorems. J. Amer. Math. Soc. 20
(2007), 385-439.

M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities II: Applications.
To appear in Israel J. Math.

R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I and II.
Grad. Stud. Math., 15 & 16, American Mathematical Society, 1997.

H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra. J.
Funct. Anal. 56 (1984), 29-78.

S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with
vector valued coefficients. Studia Math. 44 (1972), 583-595.

E.C. Lance, Hilbert C*-modules. Cambridge University Press, 1995.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II. Springer-Verlag, 1996.

F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < 00). C.R. Acad. Sci. Paris 303
(1986), 289-292.

F. Lust-Piquard and G. Pisier, Non-commutative Khintchine and Paley inequalities. Ark.
Mat. 29 (1991), 241-260.

M. Musat, Interpolation between non-commutative BMO and non-commutative Ly-spaces.
J. Funct. Anal. 202 (2003), 195- 225.

J. Parcet, B-convez operator spaces. Proc. Edinburgh Math. Soc. 46 (2003), 649-668.

J. Parcet and G. Pisier, Non-commutative Khintchine type inequalities associated with free
groups. Indiana Univ. Math. J. 54 (2005), 531-556.

J. Parcet and N. Randrianantoanina, Gundy’s decomposition for non-commutative martin-
gales and applications. Proc. London Math. Soc. 93 (2006), 227-252.

G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras. Acta
Math. 130 (1973), 53-87.

G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces. CBMS (Regional
conferences of the A.M.S.) 60, 1987.

G. Pisier, Projections from a von Neumann algebra onto a subalgebra. Bull. Soc. Math. France
123 (1995), 139-153.

G. Pisier, The Operator Hilbert Space OH, Complex Interpolation and Tensor Norms. Mem.
Amer. Math. Soc. 122 (1996).

G. Pisier, Non-Commutative Vector Valued Lj,-Spaces and Completely p-Summing Maps.
Astérisque 247 (1998).

G. Pisier, Introduction to Operator Space Theory. Cambridge University Press, 2003.

G. Pisier, The operator Hilbert space OH and type III von Neumann algebras. Bull. London
Math. Soc. 36 (2004), 455-459.

G. Pisier, Completely bounded maps into certain Hilbertian operator spaces. Internat. Math.
Res. Notices 74 (2004), 3983-4018.

G. Pisier and D. Shlyakhtenko, Grothendieck’s theorem for operator spaces. Invent. Math.
150 (2002), 185-217.

G. Pisier and Q. Xu, Non-commutative martingale inequalities. Comm. Math. Phys. 189
(1997), 667-698.

G. Pisier and Q. Xu, Non-commutative Lp-spaces. Handbook of the Geometry of Banach
Spaces II (Ed. W.B. Johnson and J. Lindenstrauss) North-Holland (2003), 1459-1517.

N. Randrianantoanina, Non-commutative martingale transforms. J. Funct. Anal. 194 (2002),
181-212.

N. Randrianantoanina, Conditioned square functions for noncommutative martingales. Ann.
Probab. 35 (2007), 1039-1070.

Y. Raynaud, On ultrapowers of non-commutative Ly spaces. J. Operator Theory 48 (2002),
41-68.

H.P. Rosenthal, On the subspaces of LP (p > 2) spanned by sequences of independent random
variables. Israel J. Math. 8 (1970), 273-303.



57.
58.
59.
60.
61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

BIBLIOGRAPHY 157

H.P. Rosenthal, On subspaces of Lp. Ann. of Math. 97 (1973), 344-373.

Z.J. Ruan, Subspaces of C*-algebras. J. Funct. Anal. 76 (1988), 217-230.

D. Shlyakhtenko, Free quasi-free states. Pacific J. Math. 177 (1997), 329-368.

M. Takesaki, Tomita’s theory of Modular Hilbert Algebras and Its Applications. Lecture Notes
in Mathematics 128, Springer, 1970.

M. Takesaki, Conditional expectations in von Neumann algebras. J. Func. Anal. 9 (1972),
306-321.

M. Takesaki, Theory of operator algebras I. Springer-Verlag, New York, 1979.

M. Terp, Ly, spaces associated with von Neumann algebras. Math. Institute Copenhagen Uni-
versity, 1981.

M. Terp, Interpolation spaces between a von Neumann algebra and its predual. J. Operator
Theory 8 (1982), 327-360.

D.V. Voiculescu, Symmetries of some reduced free product C*-algebras. Operator Algebras
and Their Connections with Topology and Ergodic Theory, Springer-Verlag 1132 (1985),
556-588.

D.V. Voiculescu, A strengthened asymptotic freeness result for random matrices with appli-
cations to free entropy. Internat. Math. Res. Notices 1 (1998), 41-63.

D.V. Voiculescu, K. Dykema and A. Nica, Free random variables. CRM Monograph Series 1,
American Mathematical Society, 1992.

Q. Xu, Recent devepolment on non-commutative martingale inequalities. Functional Space
Theory and its Applications. Proceedings of International Conference & 13th Academic Sym-
posium in China. Ed. Research Information Ltd UK. Wuhan 2003, 283-314.

Q. Xu, A description of (Cp[Lp(M)], Rp[Lp(M)])e. Proc. Roy. Soc. Edinburgh Sect. A 135
(2005), 1073-1083.

Q. Xu, Operator-space Grothendieck inequalities for noncommutative Ly-spaces. Duke Math.
J. 131 (2006), 525-574.

Q. Xu, Embedding of Cyq and Ry into noncommutative Lp-spaces, 1 < p < q < 2. Math. Ann.
335 (2006), 109-131.



