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Introduction

 l

In Banach space theory probabilistic techniques play a central role. For example
in the local theory of Banach spaces, geometric properties of finite dimensional
subspaces are proved from probabilistic inequalities. The probabilistic approach not
only enriched Banach space theory, but also introduced Banach space techniques
in other areas such as probability or convex geometry. A famous instance of such
interplay is Maurey/Pisier’s theory of type and cotype. Their results are certainly
inspired by Rosenthal’s work on subspaces of Lp. On the other hand, the latter is
strongly influenced by Grothendieck’s notion of absolutely summing maps, extended
by Pietsch to p > 1 and further developed by Lindenstrauss/Pelczynski in their
fundamental work on Grothendieck’s inequality.

All attempts to develop a similar theory for operator spaces have had only a
limited success, so far. This is probably due to the fact that there are many, if not
too many, different operator space structures on any Hilbert space. Indeed, in the
local theory of Banach spaces classification results typically measure the distance
of finite dimensional subspaces to Hilbert spaces and then study critical indices,
such as the best type p or cotype q index [26, 30]. Therefore, the best one can hope
for is that for a given operator space there is a Hilbertian structure which allows
a similar local theory in the context of operator spaces. A good illustration of this
approach is Pisier’s version of Dvoretzky’s theorem for operator spaces [37]. We
will take a different approach here.

This paper is inspired by the work on the ‘Grothendieck’s program’ for operator
spaces [3, 8, 12, 41, 45]. To be more precise, let us start by describing Rosenthal’s
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2 JUNGE AND PARCET

theorem for subspaces of Lp and Maurey’s factorization theorem. We first recall
some classical notions for a linear map T : X → Y between Banach spaces.

• T has cotype q if( n∑
k=1

‖Txk‖qY
) 1
q ≤ cq(T )

(
E
∥∥∥ n∑
k=1

εkxk

∥∥∥q
X

) 1
q

,

• T is absolutely (q, 1)-summing if( n∑
k=1

‖Txk‖qY
) 1
q ≤ πq,1(T ) sup

εk=±1

∥∥∥ n∑
k=1

εkxk

∥∥∥
X
,

• T is q-summing if( n∑
k=1

‖Txk‖qY
) 1
q ≤ πq(T ) sup

‖φ‖X∗≤1

( n∑
k=1

|〈φ, xk〉|q
) 1
q

.

The constants cq(T ), πq,1(T ), πq(T ) are the best ones for which the inequalities hold.

Rosenthal’s theorem [43]. Let X ⊂ L1 be infinite dimensional and let j : X → L1

denote the inclusion map with adjoint j∗ : L∞ → X∗. Then, the following are
equivalent :

i) X embeds in Lp for some p > 1,
ii) X∗ has cotype q for some finite q,

iii) j∗ is (q, 1)-summing for some finite q.

Using an adapted notion of (q, 1)-concave maps, Rosenthal’s theorem remains
true for infinite-dimensional subspaces of Lp and 1 < p < 2. The shortest way to
prove Rosenthal’s result is a combination of the Grothendieck/Pietsch and Maurey’s
factorization results. Indeed, Maurey’s theorem (stated below) yields the hard
inclusion iii) ⇒ i) in Rosenthal’s result. The other inclusions follows from well
established facts in the theory.

Maurey’s factorization theorem [29]. Let 1 ≤ p < q <∞ and let C(K) denote
the space of continuous functions in a compact Hausdorff space. Assume that the
linear map T : C(K) → X is absolutely (p, 1)-summing. Then, T is q-summing
and the following inequality holds

πq(T ) ≤ c(p, q)πp,1(T ).

This means that for any absolutely (p, 1)-summing map T : C(K) → X, we may
find a probability measure µ and a linear map w : Lq(K,µ) → X such that, if
j : C(K)→ Lq(K,µ) denotes the natural inclusion map, T factorizes as

T (x) = w ◦ j(x).

The main result of this paper is an operator space analog of Maurey’s theorem
stated above and its natural generalization for mappings T : Ls → X. We refer to
[4, 40] for basic definitions on operator spaces. Motivated by Pisier’s notion of a
completely q-summing operator [39], we define a map

T : X → Y
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between operator spaces to be completely (q, 1)-summing if

πcbq,1(T ) =
∥∥id⊗ T : `1 ⊗min X → `q(Y )

∥∥
cb
<∞.

An expert in operator space theory might think that it is more natural to take
Schatten classes S1 and Sq instead, see Remark 3.6 below for a little discussion on
this topic. Nevertheless, this weaker notion is enough to obtain the operator space
analog of Maurey’s factorization result.

Theorem A. If 1 ≤ p < q < s <∞ and X is an operator space, we have :

i) Let A be a C∗-algebra and assume that the map T : A → X is completely
(p, 1)-summing. Then, there exist positive elements δ1, δ2 ∈ L2q(A∗∗) and
a map w : Lq(A∗∗)→ X such that T (x) = w(δ1xδ2) and

‖δ1‖2q‖w‖cb‖δ2‖2q ≤ c(p, q)πcbp,1(T ).

ii) LetM be a von Neumann algebra and assume that the map T :M→ X∗ is
normal and completely (p, 1)-summing. Then, there exist positive elements
d1, d2 ∈ L2q(M) and a map v : Lq(M) → X∗ such that T (x) = v(d1xd2)
and

‖d1‖2q‖v‖cb‖d2‖2q ≤ c(p, q)πcbp,1(T ).

iii) LetM be a von Neumann algebra and assume that the map T : Ls(M)→ X
is completely (p, 1)-summing. Then, if 1/q = 1/s+1/w, there exist positive
elements d1, d2 ∈ L2w(M) and a completely bounded map v : Lq(M)→ X
such that T (x) = v(d1xd2) and

‖d1‖2w‖v‖cb‖d2‖2w ≤ c(p, q, s)πcbp,1(T ).

Note here that the analogue of a measure on K is given by a state φ on A. The
natural analogue of the inclusion map id : C(K) → Lp(K,µ) is the positive map
jp(x) = d1/2pxd1/2p where d is the positive density of the state φ(x) = tr(dx) in
L1(A∗∗). Despite the analogy of the results, a Banach space reader will have a
hard time recognizing similarities in the proof. The main difference relies on the
probabilistic part of the argument. Indeed, the new aspect of the key embedding
is based on our previous work [17, 18]. Let us state it here since it might be of
independent interest. Let X be an operator space and M be a von Neumann
algebra. Let us say that a linear map T : X → Lp(M) is (p1, p2)-convex if

k(p1,p2)(T ) =
∥∥id⊗ T : `p1(X)→ Lp(M; `p2)

∥∥
cb
<∞.

Theorem B. Assume that
T : X → Lp(M)

is (p1, p2)-convex and 1 ≤ p < q < (p1 ∧ p2) ≤ ∞. Then, we have∥∥T ⊗ id : Sq(X)→ Lp(M;Sq)
∥∥
cb
≤ c(p, q, p1, p2) k(p1,p2)(T ).

We must emphasize that Theorems A and B hold for general von Neumann
algebras. The lack of a general theory of vector-valued noncommutative Lp spaces
for arbitrary algebras forces us to start with a careful analysis of the spaces we will
handle along the paper. Let us also note that in the special case p = 1, Theorem B
is a dual version of Theorem A, and the corresponding notion of concavity is even
slightly weaker than the assumption in Theorem A i). Our first application is of
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course an operator space analog of Rosenthal’s theorem. Our notion of cotype here
will be the following. Let 2 ≤ q <∞ and

Radq(X) =
{∑

k
εkxk

∣∣ xk ∈ X} ⊂ Lq(Σ;X),

where the εk’s are independent ±1 Bernoulli’s on a probability space (Σ, ν). Let ι
be determined by ι(εk) = δk, where the δk’s form the canonical basis of `q. Then
we say that a linear map T : X → Y between operator spaces has cb-cotype q if

ccbq (T ) =
∥∥ι⊗ T : Radq(X)→ `q(Y )

∥∥
cb
<∞.

An operator space X has cb-cotype q if idX does. We refer to [5, 27, 31, 32] for
previous attempts of defining a satisfactory notion of type and cotype for operator
spaces. In the following results, p′ will denote the conjugate index of p, 1

p + 1
p′ = 1.

Rosenthal’s result takes the following form in the operator space setting.

Corollary A1. If 1 ≤ p < 2 and X ⊂ Lp(M), t.f.a.e.

i) There exists p < q < 2 such that X∗ is of cb-cotype q′.
ii) There exists p < q < 2 such that X∗ is completely (q′, 1)-summing.
iii) There exists p < q < 2 such that X completely embeds into Lq(M).

In the category of Banach spaces, Rosenthal’s theorem was recently extended in
[16] for subspaces of noncommutative Lp spaces. Although the relation with that
result is obvious, we note that Corollary A1 is not comparable since both hypotheses
and conclusions are stronger. Let us continue with the example of Pisier’s operator
space OH = [R,C]1/2. It is not too difficult to prove that the identity map on OH
is completely (2, 1) summing, see Lemma 3.1. However, we know from [12] that the
strong version of the little Grothendieck inequality fails

CB(B(H), OH) 6⊂ Πo
2(B(H), OH).

Corollary A2. If A is a C∗-algebra, u : A→ OH is completely bounded if and only
if there exist positive elements a, b ∈ L1(A∗∗) and a cb-map w : Lp(A∗∗)→ OH for
some (all) 2 < p <∞ such that u = w(a1/2pxb1/2p). In particular, the isomorphism
Πo
p′(OH,Y ) = Πo

1(OH,Y ) holds for 2 < p <∞ and any operator space Y .

We refer to [39] for the definition of the completely p-summing norm πop and
the space Πo

p(X,Y ) of completely p-summing maps T : X → Y . This corollary
vastly improves on the results in [14]. We see that p > 2 is sharp in this result,
in contrast to what happens for Banach spaces. We end up the paper with some
further applications for Fourier multipliers on discrete groups and other mappings
between noncommutative Lp spaces.

1. Vector-valued Lp spaces

Vector-valued, noncommutative Lp spaces where introduced by Pisier [39]. One
of the main applications is a successful understanding of noncommutative square
and maximal functions. We now discuss several settings for which vector-valued
noncommutative Lp spaces are defined and which will be needed below.
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1.1. The hyperfinite case. In Pisier’s setting, we assume thatM is a hyperfinite
von Neumann algebra and X is an arbitrary operator space. For 1 ≤ p < ∞, the
space Lp(M) = limλ Lp(Mλ) is a norm limit of finite dimensional von Neumann
subalgebrasMλ. Therefore, it really suffices to understand vector-valued Schatten
p-classes. If Rmp and Cmp stand for the row and column subspaces of Smp , then define

Smp (X) = Cmp ⊗h X ⊗h Rmp .

In operator space theory, the pairing (a, b) = tr(atb) is chosen between Sm1 and Mm.
With respect to the paring 〈a, b〉 = tr(ab), we can reformulate the main properties
as follows:

a) If 1 ≤ p ≤ ∞, then

a1) ‖x‖Lp(M;X) = inf
x=ayb

‖a‖2p‖y‖M⊗minX‖b‖2p,

a2) ‖x‖Lp(M;X) = sup
‖a‖2p′ ,‖b‖2p′≤1

‖axb‖L1(M;X).

b) If 1 ≤ p <∞, Lp(M;X)∗ = Lp′(Mop;X∗) with respect to the bracket〈∑
j
aj ⊗ x∗j ,

∑
k
bk ⊗ xk

〉
=
∑

j,k
tr(ajbk) 〈x∗j , xk〉.

1.2. Amalgamated and conditional Lp spaces. Let us now recall some new
noncommutative function spaces from [18] which will be essential below. Let M
be an arbitrary von Neumann algebra and let R stand for the matrix amplification
M⊗̄B(`2). In what follows we shall work with indices represented in the following
solid of R3

K =
{

(1/u, 1/v, 1/q)
∣∣ 2 ≤ u, v ≤ ∞, 1 ≤ q ≤ ∞, 1/u+ 1/q + 1/v ≤ 1

}
.

Given 1 ≤ p ≤ ∞ such that 1
p = 1

u + 1
q + 1

v for some ( 1
u ,

1
v ,

1
q ) in K, we define

the corresponding amalgamated Lp space as the subspace Luqv(R;M) of Lp(R)
equipped with the norm

‖x‖uqv = inf
{
‖a‖Lu(M)‖y‖Lq(R)‖b‖Lv(M)

∣∣ x = ayb
}
.

We shall also be interested in the duals of amalgamated Lp spaces. To that end
given ( 1

u ,
1
v ,

1
p ) ∈ K and 1

s = 1
u + 1

p + 1
v , we define the corresponding conditional Lp

space Lusv(R;M) as the completion of Lp(R) with respect to the norm

‖x‖usv = sup
{
‖αxβ‖Ls(R)

∣∣ ‖α‖Lu(M), ‖β‖Lv(M) ≤ 1
}
.

We refer to [18] for a more detailed exposition and note in passing that we have
changed/improved our terminology for amalgamated and conditional Lp’s. Now
we collect the main complex interpolation and duality properties from [18]. Let K0

denote the interior of K. Then we have:

i) Luqv(R;M) is a Banach space.
ii) Luθqθvθ (R;M) is isometrically isomorphic to[

Lu0q0v0(R;M), Lu1q1v1(R;M)
]
θ
,

with ( 1
uθ
, 1
qθ
, 1
vθ

) = ( 1−θ
u0

+ θ
u1
, 1−θ
q0

+ θ
q1
, 1−θ
v0

+ θ
v1

).
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iii) If (1/u, 1/v, 1/q) ∈ K0 and 1− 1/p = 1/u+ 1/q + 1/v(
Luqv(R;M)

)∗ = Luq′v(R;M) and
(
Luq′v(R;M)

)∗ = Luqv(R;M),

with respect to the antilinear duality bracket 〈x, y〉 = tr(x∗y).

1.3. Mixed norms I. The definition of amalgamated and conditional Lp spaces
was mainly inspired by Pisier’s fundamental identities for the mixed norm spaces
Lp(M1;Lq(M2)) with M1 hyperfinite. Given 1 ≤ p, q ≤ ∞ and 1

r = | 1p −
1
q |, we

have

‖x‖Lp(Lq) =


inf
{
‖α‖L2r(M1)‖y‖Lq(M1⊗̄M2)‖β‖L2r(M1)

∣∣ x = αyβ
}

if p ≤ q,

sup
{
‖αxβ‖Lq(M1⊗̄M2)

∣∣ ‖α‖L2r(M1), ‖β‖L2r(M1) ≤ 1
}

if p ≥ q.

The extension to arbitrary von Neumann algebras is a matter of regarding these
spaces as amalgamated and conditional Lp spaces. Indeed, given any von Neumann
algebra M and R =M⊗̄B(`2), we may define

Lp(M;Sq) =

{
L2rq2r(R;M) if p ≤ q,
L2rq2r(R;M) if p ≥ q,

Remark 1.1. We define an operator space structure on Lp(M;Sq) by complex
interpolation. It thus suffices to provide the o.s.s. of the endpoints Lp(M;Sq) for
p, q ∈ {1,∞}. If p = q the definition is obvious, while L1(M;S∞) embeds into
the dual of L∞(M;S1). Hence, it just remains to understand the o.s.s. of the
latter one. According to [40], we may define the operator space L∞(M;S1) as the
quotient

M⊗h S1 ⊗hM
/

ker q,
by the quotient map q(a⊗ x⊗ b) = ab⊗ x. Moreover, we also find

• Complex interpolation also gives Snp (Lp(M;Sq)) = Lp(Mn ⊗M;Sq).
• The same argument provides an o.s.s. for A(`1) with A any C∗-algebra.

Then we easily find that

a) If 1 ≤ p ≤ ∞, then

a1) ‖x‖Lp(M;Smq ) = inf
x=ayb

‖a‖2p‖y‖L∞(M;Smq )‖b‖2p,

a2) ‖x‖Lp(M;Smq ) = sup
‖a‖2p′ ,‖b‖2p′≤1

‖axb‖L1(M;Smq ).

b) If 1 ≤ p <∞, we have Lp(M;Smq )∗ = Lp′(M;Smq′ ).

Note that M⊗min X in the hyperfinite case is replaced here by L∞(M;Smq ). It
should be noticed that we still have Lp(M;Smq ) = [Lp(M;Sm∞), Lp(M, Sm1 )]1/q for
general von Neumann algebras, see [21, 23]. It is well known since [11] that the
norms of the boundary points are given by

‖x‖Lp(M;Sm∞) = inf
x=ayb

‖a‖L2p(M)‖y‖Mm(M)‖b‖L2p(M),

‖x‖Lp(M;Sm1 ) = inf
xij=

P
kaikbjk

∥∥∥(∑
i,k
aika

∗
ik

) 1
2
∥∥∥

2p

∥∥∥(∑
j,k
b∗jkbjk

) 1
2
∥∥∥

2p
.
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Remark 1.2. We have just considered the amplification algebra R since we shall
be mainly interested in mixed-norms with values in matrix algebras. Nevertheless
at some points in this paper we will handle spaces of the form Lp(M1;Lq(M2)) for
non-hyperfinite Mj . In this case the notions of amalgamated and conditional Lp
spaces remains unchanged, see [18] for further details.

1.4. Asymmetric Schatten classes. Given any von Neumann algebra M, we
write Lr2(M) and Lc2(M) to denote the row/column quantizations on L2(M) and
consider the operator spaces

Lru(M) = [M, Lr2(M)] 2
u

and Lcv(M) = [M, Lc2(M)] 2
v
.

In fact, a rigorous definition should take Kosaki’s embeddings into account as done
in [18, Identity (1.3)], but we shall ignore such formalities here. We have the
complete isometry Lp(M) = Lr2p(M) ⊗M,h L

c
2p(M), where ⊗M,h stands for the

M-amalgamated Haagerup tensor product. This motivates the definition of the
asymmetric spaces

L(2u,2v)(M) = Lr2u(M)⊗M,h L
c
2v(M) = L2u∞2v(M;M).

These spaces were originally defined in [15] for finite matrix algebras, where the
definition simplifies in terms of ordinary Haagerup tensors. In this case, given an
arbitrary operator space X, we may as well consider the vector-valued space as

Sm(2u,2v)(X) = Cmu ⊗h X ⊗h Rmv .

Its module behavior is explained better by

Sm(2u,2v)(X) = Sm(2u,∞) ⊗Mm,h S
m
∞(X)⊗Mm,h S

m
(∞,2v).

Again by interpolation, we find a natural o.s.s. for L(2u,2v)(M) and we see that

Cnu ⊗h L(2u,2v)(M)⊗h Rnv = L(2u,2v)(Mn ⊗M).

According to [15], we have

a) If 1 ≤ u, v ≤ ∞, then

a1) ‖x‖Sm(2u,2v)(X) = inf
x=ayb

‖a‖2u‖y‖Sm∞(X)‖b‖2v,

a2) ‖x‖Sm(2u,2v)(X) = sup
‖a‖2u′ ,‖b‖2v′≤1

‖axb‖Sm1 (X).

b) If 1 ≤ u, v ≤ ∞, Sm(2u,2v)(X)∗ = Sm(2u′,2v′)(X
∗) with respect to the bracket〈∑

j
aj ⊗ x∗j ,

∑
k
bk ⊗ xk

〉
=
∑

j,k
tr(ajbk) 〈x∗j , xk〉.

1.5. Mixed norms II. The next family of spaces are noncommutative Lp spaces
with values in asymmetric Schatten classes. Namely, let us recall the spaces
L∞(M;Cq) = [L∞(M;C∞), L∞(M;R∞)]1/q defined from the row/column spaces
L∞(M;R∞) = M⊗̄R and L∞(M;C∞) = C⊗̄M. The spaces L∞(M;Cq) were
already considered by Pisier for semifinite von Neumann algebras [36] and by
Haagerup for general von Neumann algebras [6]. Define

Lr2p(M;Cq) = Lr2p(M)⊗M,h L∞(M;Cq),

Lc2p(M;Rq) = L∞(M;Rq)⊗M,h L
c
2p(M).

These spaces satisfy:
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i) Lr2p(M;Cp) = C2p(L2p(M)) isometrically.
ii) Lr2pθ (M;Cqθ ) =

[
Lr2p0(M;Cq0), Lr2p1(M;Cq1)

]
θ

isometrically.

and analogous properties hold for the adjoint spaces. Indeed, the second property
follows from a nowadays standard interpolation technique originated in [36] and
further developed in [18, 44]. The first property is clear for p = ∞ and it then
suffices by interpolation to consider the case p = 1. Again, this is standard by
applying Pisier’s factorization trick in [39]. If 1

s = | 1p −
1
q |, the norm can written as

follows

‖x‖Lr2p(M;Cq) =

{
infx=αy ‖α‖2s‖y‖C2q(L2q(M)) if p ≤ q,
sup‖α‖2s≤1 ‖αx‖C2q(L2q(M)) if p ≥ q.

If 1 ≤ p ≤ q1 ∧ q2 ≤ ∞ and 1 ≤ s1, s2 ≤ ∞ satisfy 1
sj

= 1
p −

1
qj

and R =M⊗̄B(`2),
we set

Lp(M;Cq1 ⊗h Rq2) = Lr2p(M;Cq1)⊗M,h L
c
2p(M;Rq2).

By interpolation, it is compatible with the symmetric case given in Paragraph 1.3.

Remark 1.3. Connes’ characterization of hyperfiniteness can be rephrased by the
condition L∞(M;OH) 'M⊗min OH, see [38]. Thus in general we have to accept
that the norms considered so far are different, but consistent. Namely, we have seen
that the asymmetric/nonhyperfinite norms generalize the symmetric/hyperfinite
ones respectively. Thus, there should be no ambiguity of what definition is being
used along the text.

Remark 1.4. If A is a C∗-algebra, consider the norm

‖(xk)‖A(`1) = inf
xk=

P
j akjbkj

∥∥∥(∑
j,k
ajka

∗
kj

) 1
2
∥∥∥∥∥∥(∑

j,k
b∗jkbkj

) 1
2
∥∥∥.

Replacing A by Mm(A), we see that A(`1) ⊂ `1 ⊗min A is a complete contraction
and according to an unpublished work of Haagerup, this is an isometry only for
C∗-algebras with Lance’s weak expectation property. At any rate, we see that every
completely (p, 1)-summing map T : A→ X satisfies∥∥id⊗ T : A(`1)→ `p(X)

∥∥
cb
≤ πcb(p,1)(T ).

Indeed, for Theorem A i) only this weaker assumption of (p, 1)-concavity is required.
This concavity is the cb-version of Pisier’s notion of (p, 1) C∗-summability in [35].

Remark 1.5. In the hyperfinite and asymmetric cases we considered arbitrary
operator spaces and specific von Neumann algebras. In the mixed-norm cases the
situation is the opposite. There exists an intermediate notion of Lp(M;X) valid for
QWEP von Neumann algebras and operator spaces contained in any C∗-algebra
with the local lifting property. The notion was developed in [13] and is based
on the hyperfinite theory replacing norm approximations by ultraproducts. Some
arguments in this paper could be slightly simplified if we restricted to work over
QWEP von Neumann algebras.

2. Key probabilistic estimates

In this section we use the theory of vector-valued Lp spaces in connection with
convexifying operators. This leads to a change of density which will be crucial for
our proof of Maurey’s theorem.
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2.1. A cb-embedding for Sq(X). Let us consider a weight function w indexed
over the integers Z and define the Hilbert space `2(w) determined by the following
norm ∥∥∥∑

n
wnδn

∥∥∥
`2(w)

=
(∑

n
wn|αn|2

) 1
2
.

If `r2(w) and `c2(w) denote the row/column o.s.s. on `2(w), we set

`
rp
2 (w) =

[
`r2(w), `c2(w)

]
1
p

and `
cp
2 (w) =

[
`c2(w), `r2(w)

]
1
p

.

Most of the time, our weights will be of the form wn = λn for some λ > 1. In that
cases we will write wλ and `2(wλ) instead. Our first step will be a description of
Sq(X) closely related to Xu’s characterization [47] of Rq and Cq. Although it also
follows from a more general argument in [22], we give here a concrete approach for
completeness. In what follows we shall write α . β to indicate the existence of
an absolute constant c such that α ≤ cβ. We begin with a well-known observation
comparing the J and K methods as in [12, 47].

Lemma 2.1. Let A and B be non-singular positive operators on a Hilbert space
H and assume further than A and B commute. If 0 < θ < 1 and λ > 1, let us
consider the constants

c1(λ, θ) =

√
1

λθ − 1
+

1
λ1−θ − 1

, c2(λ, θ) =
√

1
1− λ−θ

+
1

1− λ−(1−θ) .

Then, the equivalence c1(λ, θ)α . β . c2(λ, θ)α holds with

α =
∥∥AθB1−θx

∥∥
H,

β = inf
x=yn+zn

(∑
n∈Z

λn(1−θ)‖Ayn‖2H
) 1

2
+
(∑
n∈Z

λ−nθ‖Bzn‖2H
) 1

2
.

A duality argument also gives c1(λ, θ)β′ . α′ . c2(λ, θ)β′ with

α′ =
∥∥A1−θBθx

∥∥
H,

β′ = inf
A1−2θB2θ−1x=

P
n zn

(∑
n∈Z

λ−n(1−θ)‖Azn‖H2
) 1

2
+
(∑
n∈Z

λnθ‖Bzn‖2H
) 1

2
.

Proof. By simultaneous diagonalization, it suffices to prove the first assertion
for diagonal operators A = Da and B = Db. Then it is clear that the term β is
equivalent to

inf
xk=ynk+znk

(∑
n∈Z

λn(1−θ)
∑
k∈N
|ak|2|ynk|2 +

∑
n∈Z

λ−nθ
∑
k∈N
|bk|2|znk|2

) 1
2
.

This equals(∑
k∈N

inf
xk=ynk+znk

[∑
n∈Z

λn(1−θ)|akynk|2 +
∑
n∈Z

λ−nθ|bkznk|2
]) 1

2
.

Thus, it suffices to prove the assertion for k fixed and then we may even assume that
xk = 1 by normalization. This reduces the assertion to scalars and we therefore
claim that

c1(λ, θ) aθb1−θ . B . c2(λ, θ) aθb1−θ
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for a, b > 0 and

B = inf
1=γn+ρn

(∑
n∈Z

λn(1−θ)|aγn|2 +
∑
n∈Z

λ−nθ|bρn|2
) 1

2
.

Let us start with an easy observation

inf
1=γ+ρ

δ|γ|2 + σ|ρ|2 = inf
0≤t≤1

δt2 + σ(1− t)2 =
δσ

δ + σ
∼ min(δ, σ)

holds for all δ, σ > 0. Going back to our claim, since |γn| + |ρn| ≥ 1, it therefore
suffices to consider γn and ρn positive in the right hand side above. This leads to
the following estimate

B2 = inf
1=γn+ρn

∑
n∈Z

[
a2λn(1−θ)|γn|2 + b2λ−nθ|ρn|2

]
∼
∑
n∈Z

min(a2λn(1−θ), b2λ−nθ)

=
∑

λ−n≥a2/b2

a2λn(1−θ) +
∑

λ−n<a2/b2

b2λ−nθ = a2 λn0(1−θ)

1− λ−(1−θ) + b2
λ−(n0+1)θ

1− λ−θ
.

Here n0 is chosen so that λ−(n0+1) < a2/b2 ≤ λ−n0 and this gives

c1(λ, θ)2 a2θb2(1−θ) . B2 . c2(λ, θ)2 a2θb2(1−θ).

Hence, the first assertion follows. To prove the second assertion, given a positive
non-singular operator L acting on H, we denote by HL the Hilbert space equipped
with the norm

‖x‖HL = ‖Lx‖H.
By the first assertion, we know that HAθB1−θ is isomorphic (up to the constants
cj(λ, θ)) to the subspace of constant sequences in `2(λ1−θ;HA)+`2(λ−θ;HB). Since
HAθB1−θ is a Hilbert space, it is isometric to its dual. In particular, recalling that

A1−θBθx = AθB1−θ(A1−2θB2θ−1x
)
,

we find that its norm in H is equivalent to the norm of A1−2θB2θ−1x in the quotient
of `2(λ−(1−θ);HA) ∩ `2(λθ;HB) by the subspace of mean zero sequences. Writing
this down we obtain the second assertion. The proof is complete. �

To continue, we need to introduce Xu’s terminology in [47]. We will only define
the column spaces, but we shall freely use below the row analogs which are defined
in the obvious way. Let

`2(w; `2) = `2(Z, w; `2(N)) with norm
∥∥∥∑
n,k

xnk ⊗ δnk
∥∥∥ =

(∑
n∈Z

wn
∑
k∈N
|xnk|2

) 1
2
.

Define `2(wλ; `2) similarly, let `cp2 (wλ; `2) = [`c2(wλ; `2), `r2(wλ; `2)] 1
p

and set

GKcp,cq (wλ, θ) = `
cp
2 (w−θλ ; `2) + `

cq
2 (w1−θ

λ ; `2) with wηλ = wλη .

Let CKcp,cq (wλ, θ) denote the subspace of Z-constant sequences. Using the bracket〈
(ank), (bnk)

〉
=
∑
n∈Z

∑
k∈N

ankbnk,

the dual spaces are (
GKcp,cq (wλ, θ)

)∗ = GJcp′ ,cq′ (w
−1
λ , θ),
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CKcp,cq (wλ, θ)

)∗ = CJcp′ ,cq′ (w
−1
λ , θ),

with operator space structures given by∥∥∥∑
n∈Z

∞∑
k=1

xnk ⊗ e(n,k),1

∥∥∥
Mm(GJ )

= max
{
np(x), nq(x)

}
,

∥∥∥∑
n∈Z

∞∑
k=1

xnk ⊗ e(n,k),1 + C⊥K
∥∥∥
Mm(CJ )

= infP
n xnk−znk=0

max
{
np(z), nq(z)

}
where the norms np(ξ) and nq(ξ) are given by

np(ξ) =
∥∥∥∑
n∈Z

λnθ/2
∞∑
k=1

ξnk ⊗ e(n,k),1

∥∥∥
Mm(Cp′ )

,

nq(ξ) =
∥∥∥∑
n∈Z

λ−n(1−θ)/2
∞∑
k=1

ξnk ⊗ e(n,k),1

∥∥∥
Mm(Cq′ )

.

The following result is closely related to [46, Section 2]. However we have to
review the argument in order to understand the generalization presented below.

Lemma 2.2. If p0 < q < p1 with 1
q = 1−θ

p0
+ θ

p1
and λ > 1, then

Rq 'cb CKrp0 ,rp1 (wλ, θ) and Cq 'cb CKcp0 ,cp1 (wλ, θ).

The constant of these complete isomorphisms only depend on λ and θ.

Proof. Since both cb-isomorphisms are proved in the same way, we only argue
with column spaces. Let us first show that the inclusion CKcp0 ,cp1 (wλ, θ) ⊂ Cq is
completely bounded. We recall the o.s.s. of Cq from the main result in [44]∥∥∥ ∞∑

k=1

xk ⊗ ek,1
∥∥∥
Mm(Cq)

= sup
‖a‖Sm2q ,‖b‖Sm2q′

≤1

( ∞∑
k=1

‖axkb‖22
) 1

2
.

We may clearly assume that a and b are positive and invertible. Let us denote by
La(x) = ax and Rb(x) = xb the left/right actions. We define A = Laq/p1Rbq′/p′1
and B = Laq/p0Rbq′/p′0 . Then we apply Lemma 2.1 to x =

∑
k xk⊗ek,1 and deduce

that we have( ∞∑
k=1

‖axkb‖22
) 1

2
=
∥∥AθB1−θx

∥∥
2
. c1(λ, θ)−1 inf

xk=ynk+znk

{
ny, nz

}
where

ny =
(∑
n∈Z

λ−nθ
∞∑
k=1

∥∥aq/p0ynkbq′/p′0∥∥2

2

) 1
2
,

nz =
(∑
n∈Z

λn(1−θ)
∞∑
k=1

∥∥aq/p1znkbq′/p′1∥∥2

2

) 1
2
.

Using again the o.s.s. of `cp02 (w−θλ ; `2) and `
cp1
2 (w1−θ

λ ; `2) as above, we get( ∞∑
k=1

‖axkb‖22
) 1

2
. c1(λ, θ)−1

∥∥1Z ⊗ x
∥∥
Mm(CK)
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where 1Z =
∑
n∈Z δn is the constant-1 sequence in Z. Let us now show that

CJcp′0 ,cp′1
(w−1

λ , θ) ⊂ Cq′ .

Indeed, arguing by homogeneity we assume that
∑
n,k xnk ⊗ e(n,k),1 satisfies∥∥∥∑

n,k

xnk ⊗ e(n,k),1

∥∥∥
Mm(CJ )

< 1.

That is, we may find (znk) such that
∑
n xnk =

∑
n znk and

max
{∥∥∥∑

n,k

λ
nθ
2 znk ⊗ e(n,k),1

∥∥∥
Mm(Cp′0

)
,
∥∥∥∑
n,k

λ
−n(1−θ)

2 znk ⊗ e(n,k),1

∥∥∥
Mm(Cp′1

)

}
≤ 1.

Taking zn =
∑
k znk ⊗ ek and

A = L
aq
′/p′1
Rbq/p1 and B = L

aq
′/p′0
Rbq/p0 ,

we observe that∑
n∈Z

λ−n(1−θ)‖Azn‖22 +
∑
n∈Z

λnθ‖Bzn‖22

=
∑
n,k

λ−n(1−θ)∥∥aq′/p′1znkbq/p1∥∥2

2
+
∑
n,k

λnθ
∥∥aq′/p′0znkbq/p0∥∥2

2
≤ 2

holds by our assumption. According to Lemma 2.1, ξ = A2θ−1B1−2θ
∑
n zn satisfies

‖A1−θBθξ‖2 . c2(λ, θ) and for x =
∑
k xk ⊗ ek,1 with xk =

∑
n xnk =

∑
n znk, we

have( ∞∑
k=1

‖axkb‖22
) 1

2
=
∥∥AθB1−θx

∥∥
2

=
∥∥∥A1−θBθA2θ−1B1−2θ

(∑
n∈Z

zn
)∥∥∥

2
. c2(λ, θ).

Therefore, duality yields Cq ⊂ CKcp0 ,cp1 (wλ, θ) and the assertion follows. �

Our next step is to construct a complete embedding of Sq(X) into a 4-term sum.
Together with Proposition 2.6 below, this cb-embedding will be the key towards
the main result in this section. Let Kp,q(w;X) be defined by

Sp(X) + Cp ⊗h X ⊗h `
rq
2 (w) + `

cq
2 (w)⊗h X ⊗h Rp + `

cq
2 (w)⊗h X ⊗h `

rq
2 (w).

Let us write Kp,q(w) for the same space when X = C and Kp,q(wλ;X) / Kp,q(wλ)
for exponential sequences. Here it is important to recall that we will be considering
weights w on the index set Z×N which are constant on the N-component, so that
(using the terminology above) another description for this space could be

Kp,q(w;X) =
[
Cp(Z× N) + `

cq
2 (w; `2)

]
⊗h X ⊗h

[
Rp(Z× N) + `

rq
2 (w; `2)

]
.

In the following result, we study a map Sq(X)→ Kp0,p1(w;X) of the form
∞∑

k,`=1

ek,1 ⊗ xk` ⊗ e1,` 7→
∞∑

i,j=−∞
wij(p0, p1, q)

∞∑
k,`=1

ei,1 ⊗ ek,1 ⊗ xk` ⊗ e1,` ⊗ e1,j .

Just to shorten the notation, we change the order of tensors and write

x 7→
( ∞∑
i,j=−∞

wij(p0, p1, q) eij
)
⊗ x.

With this terminology, we have 1Z ⊗ 1Z =
∑
i,j∈Z eij for 1Z =

∑
n∈Z δn as above.



NONCOMMUTATIVE MAUREY’S FACTORIZATION 13

Proposition 2.3. If p0 < q < p1 with 1
q = 1−θ

p0
+ θ

p1
and λ > 1, then

u : x ∈ Sq(X) 7→
( ∞∑
i,j=−∞

λ−(i+j)θ/2 eij

)
⊗ x ∈ Kp0,p1(wλ;X)

is a completely isomorphic embedding with constants depending only on (λ, θ).

Proof. According to Lemma 2.2, the mappings

x ∈ Cq 7→ 1Z ⊗ x ∈ CKcp0 ,cp1 (wλ, θ),

x ∈ Rq 7→ 1Z ⊗ x ∈ CKrp0 ,rp1 (wλ, θ),

are cb-isomorphisms. Recalling that 1Z ⊗ 1Z =
∑
i,j∈Z eij , we get

x ∈ Cq ⊗h X ⊗h Rq 7→
(∑

i,j
eij

)
⊗ x ∈ CKcp0 ,cp1 (wλ, θ)⊗h X ⊗h CKrp0 ,rp1 (wλ, θ)

a complete isomorphism. The right hand side inherits its o.s.s. from

GKcp0 ,cp1 (wλ, θ)⊗h X ⊗h GKrp0 ,rp1 (wλ, θ) =
∑

i,j=1,2

Ui ⊗h X ⊗h Vj

U1 = `
cp0
2 (w−θλ ; `2) , U2 = `

cp1
2 (w1−θ

λ ; `2) , V1 = `
rp0
2 (w−θλ ; `2) , V2 = `

rp1
2 (w1−θ

λ ; `2).

Thus, is suffices to show that the map

z ∈
∑

i,j=1,2

Ui ⊗h X ⊗h Vj 7→
(∑
i∈Z

λ−iθ/2eii

)
z
(∑
j∈Z

λ−jθ/2ejj

)
∈ Kp0,p1(wλ;X)

is a complete embedding, in this case with constants independent on λ and θ.
Moreover, since both spaces are the sum of 4 spaces indexed respectively by (p0, p0),
(p0, p1), (p1, p0) and (p1, p1), it clearly suffices to check our claim term by term.
However, this later fact follows from repeated use of the complete isometries

z ∈ `cp2 (wλ1 ; `2)⊗h X ⊗h `
rq
2 (wλ2 ; `2)

7→
(∑
i∈Z

λ
i/2
1 eii

)
z
(∑
j∈Z

λ
j/2
2 ejj

)
∈ Cp ⊗h X ⊗h Rq,

with λ1, λ2 ∈ {λ−θ, λ1−θ} and p, q ∈ {p0, p1}. Details are left to the reader. �

Remark 2.4. The cb-embedding of Lp(M) into a von Neumann algebra predual
from [17, 18] can be described by means of the map u : Lp(M)→ K1,2(wλ) defined
onM⊗̄B(`2(Z)) with the weight given by λ. Indeed, it suffices to apply the Poisson
map from [18, Section 8.2] (a suitable average of sums of independent copies which
embeds L1 + Lr+c2 (w) in L1, for a suitable strictly seminfinite weight w) with
coefficients in OH in order to embed K1,2(wλ) into some L1(A).

We shall also need an extended form of the embedding of Proposition 2.3 for
arbitrary von Neumann algebras. More concretely, that we have an isomorphic
embedding Lp0(M;Sq) → Lp0(M;Kp0,p1(wλ)). Fortunately, we only need this in
the scalar case X = C, something that simplifies our approach very much. Our
first task is to define the space Lp0(M;Kp0,p1(w)) appropriately. We have

Kp0,p1(w) =
[
Cp0 + Cp1(w)

]
⊗h
[
Rp0 +Rp1(w)

]
,
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where the row/column spaces are taken in the index set Z × N and the weight
w is constant on the N-component. Recall that in Section 1 we have defined the
spaces Lr2p(M;Cq) and Lc2p(M;Rq) and the same definition is valid for the weighted
row/column spaces. Moreover, we may define

Lr2p(M;Cq1(w1) + Cq2(w2)) = Lr2p(M;Cq1(w1)) + Lr2p(M;Cq2(w2)),

Lc2p(M;Rq1(w1) +Rq2(w2)) = Lc2p(M;Rq1(w1)) + Lc2p(M;Rq1(w2)),

for arbitrary weights by viewing them as both embedded into the space of sequences
with values in L2p(M), and thereby defining the sum by taking the corresponding
quotients. This allows us to consider

Lp0(M;Kp0,p1(w)) = Lr2p0
(
M;Cp0 + Cp1(w)

)
⊗M;h L

c
2p0

(
M;Rp0 +Rp1(w)

)
with norm given by

inf
xij=

P
k αikβkj

∥∥(αik)
∥∥
Lr2p0

(M;Cp0+Cp1 (w))⊗hR

∥∥(βkj)
∥∥
C⊗hLc2p0 (M;Rp0+Rp1 (w))

.

Proposition 2.5. If p0 < q < p1 with 1
q = 1−θ

p0
+ θ

p1
and λ > 1, then

u : x ∈ Lp0(M;Sq) 7→
( ∞∑
i,j=−∞

λ−(i+j)θ/2 eij

)
⊗ x ∈ Lp0(M;Kp0,p1(wλ))

is a complete isomorphic embedding with constants depending only on (λ, θ).

Proof. Lemma 2.2 remains valid here as well, i.e. we have

Lr2p0(M; CKcp0 ,cp1 (wλ, θ)) 'cb Lr2p0(M;Cq),

Lc2p0(M; CKrp0 ,rp1 (wλ, θ)) 'cb Lc2p0(M;Rq).

Indeed, by the factorization properties of the spaces involved it really suffices to
prove this for p0 = ∞, and then the exact same argument in Lemma 2.2 applies
since the key formula is the operator space structure of Cq, which according to
[6, 36] is still valid for arbitrary von Neumann algebras∥∥∥∑

k
xk ⊗ ek,1

∥∥∥
L∞(M;Cq)

= sup
‖a‖L2q(M),‖b‖L2q′ (M)≤1

(∑
k
‖axkb‖2L2(M)

) 1
2
.

Since we have

Lp0(M;Sq) = Lr2p0(M;Cq)⊗M,h L
c
2p0(M;Rq),

an element in Lp0(M;Sq) factorizes as a product of two elements in Lr2p0(M;Cq)
and Lc2p0(M;Rq) respectively. Thus, we deduce it can be written as a product of
two sums from

Lr2p0(M; CKcp0 ,cp1 (wλ, θ)) and Lc2p0(M; CKrp0 ,rp1 (wλ, θ))

respectively. Arguing as in Proposition 2.3, we see that u is bounded. To prove the
converse, we observe that a norm estimate for u(x) means a factorization of the
form xk` =

∑
m λ

iθ/2αik,mβm,j`λ
jθ/2 valid for all i, j ∈ Z and with

(αik,m) ∈ Lr2p0(M;Cp0 + Cp1(wλ))⊗h R,
(βm,j`) ∈ C ⊗h Lc2p0(M;Rp0 +Rp1(wλ)).

We may rewrite this as
xk` = aikbj`
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where aik = λiθ/2
∑
m αik,m ⊗ e1m and bj` = λjθ/2

∑
m βj` ⊗ em1. We may also

assume by approximation that we are only dealing with finitely many nonzero
entries xk` with full left and right support in a finite von Neumann algebraM. Let
ej` be the left support of bj`. Then we deduce from aikbj` = xk` = ai′kbj` that we
have aikejl = ai′kejl. This holds for all indices j, ` and hence for e = ∨ej` we find
aike = ai′ke for all k and i 6= i′. Taking vk = aike, we deduce

xk` = vkbj`

for all j. Similarly, let f be supremum of the right supports of the vk’s. As above
we deduce that fbj` = fbj′` for all ` and j 6= j′. Thus we may define w` = fbj`
and obtain a factorization

xk` = vkw`

such that vk = aike and w` = fbj`. Since the space Lr2p0(R;Cp0 + Cp1(wλ)) is a
right R-module and Lc2p0(R;Rp0 +Rp1(wλ)) is a left R-module, we may now apply
the announced extension of Lemma 2.2 and deduce that

(vk) ∈ Lr2p0(M;Cq) , (w`) ∈ Lc2p0(M;Rq).

This implies x = (xkl) ∈ Lp0(M;Sq) and hence u is an isomorphism. Tensoring
with another copy of Lp0(Mn) does not change constants in this argument and
hence u is indeed a complete isomorphism. The proof is complete. �

2.2. Change of density. We need an alternative description of Lp(M;Kq1,q2(w))
according to another description of the space Lp(M;Cq1 ⊗h Rq2). Namely if we
take 1

p = 1
sj

+ 1
qj

and 1
q = 1

2q1
+ 1

2q2
, we have the Banach space isometry

Lp(M;Cq1 ⊗h Rq2) = L2s1q2s2(R;M).

This follows again by complex interpolation. In particular, Lp(M;Kq1,q2(w)) is
Banach space isomorphic to a 4-term sum of amalgamated Lp spaces. Certain
embedding in [18] for these spaces will be essential in the following change of density
argument. Recall the notion of (p1, p2)-convex maps T : X → Lp(M) from the
Introduction.

Proposition 2.6. Let 1 ≤ p < p1 ∧ p2 ≤ ∞ and

α =
(1
p
− 1
p2

)/(1
p
− 1
p1

)
.

If T : X → Lp(M) is (p1, p2)-convex and w is any weight, then

T ⊗ id : Kp,p1(w;X)→ Lp
(
M;Kp,p2(wα)

)
with (wα)n = (wn)α

is completely bounded and its cb-norm can be estimated by c(p, p2) k(p1,p2)(T ).

Proof. We may and will assume that X is finite dimensional. Given natural
numbers m,n ∈ N, consider a faithful state φm on Mm with density dφm . We may
regard the density dnφm of nφm as a diagonal operator whose entries form a weight
on the index set {1, 2, . . . ,m}. Define

Knp,q(φm;X) =
[
`
cp
2 (d

1
p

nφm
) + `

cq
2 (d

1
q

nφm
)
]
⊗h X ⊗h

[
`
rp
2 (d

1
p

nφm
) + `

rq
2 (d

1
q

nφm
)
]
.
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As above, the expression Knp,q(φm) will be reserved for the scalar-valued case. The
space Knp,q(φm;X) can be written as a 4-term sum of asymmetric Lp spaces as in
[15, 17, 18]. Namely, if we consider the asymmetric spaces

L(2p,2q)(φm;X) = `
cp
2 (d

1
p

φm
)⊗h X ⊗h `

rq
2 (d

1
q

φm
),

we have∥∥∥ m∑
i,j=1

xij ⊗ eij
∥∥∥
L(2p,2q)(nφm;X)

= n
1
2p+ 1

2q

∥∥∥d 1
2p
φm

( m∑
i,j=1

xij ⊗ eij
)
d

1
2q
φm

∥∥∥
Cmp ⊗hX⊗hRmq

.

This gives a description of Knp,q(φm;X) in terms of asymmetric Schatten classes.

Consider the n-fold free product

An = (Mm, φm)∗n.

According to [12], we know that An is QWEP. In particular, it is very well-known
the existence of a normal ∗-homomorphism ρ and a normal conditional expectation
E as follows

ρ : An →
(∏

U
S1

)∗
and E :

(∏
U
S1

)∗
→ An.

We also know that we have Lp extensions ρp and Ep for 1 ≤ p < ∞. Let us
denote by πj : Mm → An the j-th coordinate map. Then ρπj : Mm → [

∏
U S1 ]∗

is a ∗-homomorphism. Following an argument of Kirchberg, we observe that by
Kaplansky’s density theorem the unit ball of

∏
U S∞ is dense in the strong and

strong∗ topology of [
∏
U S1]∗. Let B = `st∗∞ (I,

∏
S∞) the C∗-algebra of all strong

and strong∗ converging families. Then [
∏
U S1]∗ is a quotient of B. Since Mm

is nuclear, we can apply the Choi-Effros lifting theorem [2, Theorem 3.10] for the
maps πj and find nets vs,j : Mm →

∏
U S∞ of completely positive and contractive

maps such that (vs,j) converges to ρπj in the strong and strong∗ topologies. Let us
consider the maps

u1 : x ∈ Knp,p1(φm;X) 7→
n∑
j=1

ρpπj(x)⊗ δj ∈
∏
U
Sp(`np1(X)),

u2 : x ∈ Lp(M;Knp,p2(φm)) 7→
n∑
j=1

(idLp(M) ⊗ πj)(x)⊗ δj ∈ Lp(An⊗̄M; `np2).

We claim that u1 is completely contractive and u2 is an embedding. Let us note
that u1 is also a cb-embedding, a fact which will not be needed nor proved in this
paper. The proof that u2 is an embedding (defining Lp(M;Knp,p2(φm)) as indicated
before the statement of this result) was given in Theorem 7.3 and Remark 7.4 of
[18]. Moreover, we know that u2 is a complete contraction while the cb-norm of its
inverse is controlled by a constant c(p, p2), see Remark 2.8 below for more on the
value of c(p, p2). For the first part of the claim, let us show that∥∥u1(x)

∥∥Q
U Sp(`np1

(X))
≤ n

1
p ‖x‖L(2p,2p)(φm;X).

In fact, we will only prove this inequality since the remaining ones for the terms
associated to (2p, 2p1), (2p1, 2p) and (2p1, 2p1) are similar. Indeed, we refer the
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reader to [15, Proposition 3.5] for the exact same argument. Since p < p1, we have∥∥u(x)
∥∥Q
U Sp(`np1 (X))

≤
( n∑
j=1

∥∥ρpπj(x)
∥∥pQ
U Sp(X)

) 1
p

.

Therefore, it suffices to consider a fixed component j. We may write x = ayb∗ such
that a, b ∈ Lr2p(φm) are of norm 1 and ‖x‖L(2p,2p)(φm;X) ∼ ‖y‖Mm(X). Then, the
element ys,j defined by

ys,j =
(
vs,j ⊗ idX

)
(y) ∈

∏
U
S∞(X)

satisfies ‖ys,j‖ ≤ ‖y‖Mm(X). Moreover, the strong convergence guarantees the norm
convergence of lims ρ2pπj(a) ys,j ρ2pπj(b) = ρ2pπj(a) ρπj(y) ρ2pπj(b) = ρpπj(x) (see
[20] for further details) and we obtain∥∥ρpπj(x)

∥∥Q
U Sp(X)

≤ ‖x‖L(2p,2p)(φm;X).

Since the same inequality holds after tensorizing with the identity on Sp, this proves
our claim. On the other hand, using the (p1, p2)-convexity of T in conjunction with
the contractivity of u1, we deduce∥∥∥ n∑

j=1

ρp

(
πj ⊗ idX

(
d

1/2p
nφm

(idMm
⊗ T (x))d1/2p

nφm

)︸ ︷︷ ︸
πj(Tx) for short

)
⊗ δj

∥∥∥Q
U Sp(Lp(M;`np2

))

≤ k(p1,p2)(T ) ‖x‖Knp,p1 (φm;X).

Moreover, we may understand this as a cb-inequality, which remains true after
tensorizing with idSp . Then we recall from [18, Chapter 3] that the space Lp(`p2)
is stable under the conditional expectation

Ep :
∏
U
Sp(Lp(M; `np2))→ Lp(An⊗̄M; `np2).

Therefore, we have proved that∥∥Epu1T : Knp,p1(φm;X)→ Lp(An⊗̄M; `np2)
∥∥
cb
≤ k(p1,p2)(T ).

Note that the range of Epu1T is still of the form

Epu1T (x) =
n∑
j=1

πj(Tx)⊗ δj .

This means in particular that Epu1T maps Knp,p1(φm;X) in the range of

u2 [Lp(M;Knp,p2(φm))].

Thus we obtain∥∥T ⊗ id : Knp,p1(φm;X)→ Lp(M;Knp,p2(φm))
∥∥
cb
. c(p, p2) k(p1,p2)(T ).

Let us now prove the assertion. First we may replace φm by the state φm ⊗ τ`
on Mm` where τ` is the normalized trace on M`. Then we note that the space of
elements x ⊗ e, with e a fixed projection satisfying τ`(e) = γ, is simultaneously
complemented in all the asymmetric spaces L(2p,2q) considered. Thus, we restrict
our attention to this subspace. Moreover, we clearly have

n
1
2p+ 1

2q ‖x⊗ e‖L(2p,2q)(φm⊗τ`;X) =
∥∥d 1

2p
nγφm

xd
1
2q
nγφm

∥∥
Cmp ⊗hX⊗hRmq

.
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By [15, Lemma 1.2], tensorizing with idS(2p,2q) we obtain a complete isometry

x⊗ e ∈ Knp,p1(φm ⊗ τ`;X) 7→ d
1
2p
nγφm

xd
1
2p
nγφm

∈ Kp,p1(wλ;X)

with wλ = (nγdφm)
1
p1
− 1
p . A similar argument leads to the complete isometry

Tx⊗ e ∈ Lp
(
M;Knp,p2(φm ⊗ τ`)

)
7→ d

1
2p
nγφm

Txd
1
2p
nγφm

∈ Lp
(
M;Kp,p2(wµ)

)
with µ = (nγdφm)

1
p2
− 1
p = wα. This implies the assertion for w = (nγφm)

1
p1
− 1
p .

It just remains to show that the general case follows from this one. Indeed, by
approximation it clearly suffices to show it for w being a weight on {1, 2, . . . ,m} as
far as we see that the constants are independent of m. Therefore, we have to see
that every w supported on {1, 2, . . . ,m} can be obtained in this form. Given such
a weight w, we consider the functional on Mm given by

ψm

( m∑
i,j=1

αijeij

)
=

m∑
k=1

w
pp1
p−p1
k αkk

and the state φm defined by ψm = ψm(1Mm)φm. Let us set n = [ψm(1Mm)] + 1
where [·] stands for the integer part. Let 0 < γ < 1 be determined by the relation
nγ = ψm(1Mm

). We may assume by approximation that γ is a rational number.
Let τ` be the normalized trace on M`. Taking ` large enough, we may consider a
projection e in M` satisfying τ`(e) = γ. Hence, the embedding

x ∈ (Mm, φm) 7→ x⊗ e ∈ (Mm`, φm ⊗ τ`)

produces the desired identification w = (nγdφm)
1
p1
− 1
p . The proof is complete. �

Remark 2.7. The embedding of the algebra An into an ultraproduct algebra is
the key tool used in [13] to generalize vector-valued noncommutative Lp spaces
to QWEP algebras and such notion underlies the proof of Proposition 2.6. Note
however that we do not need at any rate to require M to be QWEP.

Remark 2.8. According to Remarks 2.2 and 5.7 of [19], the value of the constant
c(p, p2) above remains uniformly bounded in p and p2 as far as (p, p2) � (1,∞).
In that case, we only know that it is controlled by 1 + p2−p

pp2+p−p2 . Note that this
singularity near (1,∞) seems to be removable since the corresponding complete
embedding holds at the point (1,∞).

Remark 2.9. Although not needed for our purposes in this paper, let us point a
generalization of Proposition 2.6 for potential applications. Only for this remark
we shall write Lp[M;X] to denote the generalization of Lp(M;X) for QWEP von
Neumann algebras in [13]. Assume that 1 ≤ s ≤ u ∧ v ≤ u ∨ v < p1 ∧ p2 ≤ ∞ and
set β = ( 1

s −
1
p2

)/( 1
u −

1
p1

). If the map T : X → Lv(M) is (p1, p2)-convex and w is
any weight, then

T ⊗ id : Ku,p1(w;X)→ Lv
(
M;Ks,p2(wβ)

)
is completely bounded and its cb-norm can be estimated by c(s, p2) k(p1,p2)(T ). The
proof follows the same pattern. Indeed, arguing as above we know that the mapping
EuTu1 : Knu,p1(φm;X)→ Lu[An;Lv(M; `np2)] is completely bounded. Moreover, we
also have complete contractions

Lu
[
An;Lv(M; `np2)

]
→ Ls

[
An;Lv(M; `np2)

]
→ Lv

[
M;Ls(An; `np2)

]
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given by the identity map. The first one follows from the fact that s ≤ u and An
is a noncommutative probability space. The second one follows from Minkowski’s
inequality since s ≤ v. Then, we use again the embedding

Lv
(
M;Kns,p2(φm)

)
→ Lv

[
M;Ls(An; `np2)

]
to conclude∥∥T ⊗ id : Knu,p1(φm;X)→ Lv

(
M;Kns,p2(φm)

)∥∥
cb
. c(s, p2) k(p1,p2)(T ).

The change of density in this case is given by

w = (nγdφm)
1
p1
− 1
u and µ = (nγdφm)

1
p2
− 1
s .

Thus, it turns out that µ = wβ for our choice of β. This completes the argument.

Now we are ready for the key embedding of this paper.

Proof of Theorem B. Let
1
q

=
1− θ
p

+
θ

p1
=

1− η
p

+
η

p2

and λ > 1. Then we have the identity

αη =
1
p −

1
p2

1
p −

1
p1

1
p −

1
q

1
p −

1
p2

=
1
p −

1
q

1
p −

1
p1

= θ,

where α is the real number defined in Proposition 2.6. Let

uθ,λ : Sq(X)→ Kp,p1(wλ;X) and uη,µ : Sq → Kp,p2(wµ)

be the cb-embeddings given by Proposition 2.3. Taking µ = λα, we note that

(T ⊗ id)uθ,λ = (uη,µ ⊗ idLp(M))(T ⊗ id).

Indeed, we deduce from µη = λαη = λθ that

(uη,µ ⊗ idLp(M))(T ⊗ id)(x) =
( ∞∑
i,j=−∞

µ−(i+j)η/2 eij

)
⊗ T (x)

=
( ∞∑
i,j=−∞

λ−(i+j)θ/2 eij

)
⊗ T (x) = (T ⊗ id)uθ,λ(x).

According to Proposition 2.6, we know that

T ⊗ id : Kp,p1(wλ;X)→ Lp
(
M;Kp,p2(wαλ )

)
is completely bounded and hence (T ⊗ id)uθ,λ is completely bounded. Thus, we
derive that (uη,µ ⊗ idLp(M))(T ⊗ id) is completely bounded. Since uη,µ ⊗ idLp(M)

is a cb-embedding by Proposition 2.5, we obtain∥∥T ⊗ id : Sq(X)→ Lp(M;Sq)
∥∥
cb
≤ c(p, q, p1, p2) k(p1,p2)(X). �

Remark 2.10. Keeping track of constants, we have

c(p, q, p1, p2) .
pp2

pp2 + p− p2
inf
λ>1

c2(λ, θ)2

c1(λα, θ/α)2

=
pp2

pp2 + p− p2
inf
λ>1

(2λ− λθ − λ1−θ)(λα−θ − 1)
(λ1−θ − 1)(λθ + λα−θ − 2)
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≤ pp2

pp2 + p− p2
lim
λ→1+

2λ− λθ − λ1−θ

λ1−θ − 1
=

pp2

pp2 + p− p2

1
1− θ

,

unless (p, p2) = (1,∞), in which case the first term on the right behaves like 1.

3. Maurey’s factorization and applications

We now prove an operator space form of Maurey’s factorization theorem. Then
we will establish some selected applications for operator spaces, noncommutative
Lp spaces and Fourier multipliers.

3.1. Maurey’s factorization. Let us begin with some basic inequalities to be used
below. We refer the reader to the Introduction for the definition of the operator
space analogs of cotype p and absolutely (p, 1)-summing maps.

Lemma 3.1. Let 2 ≤ p ≤ ∞ :

i) If T has cb-cotype p, then

πcbp,1(T ) ≤ ccbp (T ).

ii) idLp(M) is completely (p, 1)-summing for any algebra M.
iii) Let us consider two von Neumann algebras M,N and assume that the map

T : Lq(M) → Lp(N ) is a completely bounded map. Then, the following
inequality holds for 1 ≤ q ≤ ∞∥∥T ⊗ id : Lq(M; `1)→ `p(Lp(N ))

∥∥
cb
≤ ‖T‖cb.

Proof. Consider Ω = TN equipped with the product topology and the correspond-
ing Haar measure µ. Clearly, the map j : `1 → C(Ω) given by j(α)(ω) =

∑
k ωkαk

is a complete contraction. Hence, we have∥∥j ⊗ idX : `1 ⊗min X → L∞(Ω)⊗min X
∥∥
cb
≤ 1.

The inclusion L∞(Ω;X) ⊂ Lp(Ω;X) is also completely contractive and

j ⊗ idX(`1 ⊗min X) ⊂ Radp(X).

Hence i) follows by definition. To prove ii) it suffices to show that the space Lp(M)
has cb-cotype p. Let Λ : f ∈ L∞(Ω)⊗̄M 7→ (

∫
Ω
f εk dµ)k≥1 ∈ `∞(M) be the

Rademacher coefficient map. Λ is a complete contraction and coincides with the
orthogonal projection Λ : L2(Ω;L2(M)) → `2(L2(M)). Thus, by interpolation
we deduce that Λ : Lp(Ω;Lp(M)) → `p(Lp(M)) is a contraction. We conclude
by restriction to Radp(Lp(M)). Assertion iii) now follows from the fact that the
inclusion Lq(M; `1) ⊂ Lq(M)⊗minC(Ω) is completely contractive. Indeed, in that
case, we may compose with

Lq(M)⊗min C(Ω) T−→ Lp(N )⊗min C(Ω)
id−→ Lp(Ω;Lp(N ))
Λ−→ `p(Lp(N )).

It therefore suffices to show that for every ω ∈ Ω, the map

φω : Lq(M; `1)→ Lq(M) with φω(x) =
∑

k
ωkxk
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is completely contractive. Recall that Smq (Lq(M; `1)) = Lq(Mm⊗M; `1) and hence
we just need to show that φw is a contraction for all w ∈ Ω. Assume xk =

∑
j akjbkj

such that ∥∥∥(∑
k,j
akja

∗
kj

) 1
2

∥∥∥
2q

∥∥∥(∑
k,j
b∗kjbkj

) 1
2

∥∥∥
2q
≤ 1.

Then, the Cauchy-Schwartz inequality implies∥∥∥∑
k
ωkxk

∥∥∥
q

=
∥∥∥∑

k,j
ωkakjbkj

∥∥∥
q

≤
∥∥∥(∑

k,j
akja

∗
kj

) 1
2

∥∥∥
2q

∥∥∥(∑
k,j
|ωk|2b∗kjbkj

) 1
2

∥∥∥
2q
≤ 1. �

Lemma 3.2. Let 1 ≤ p <∞. Then Lp(M) has cb-cotype q = max{p, p′}.

Proof. Let Ω = {−1, 1}n with Haar measure µ. Given 2 ≤ p ≤ ∞ and arguing
as above, we know that the map Λ : Lp(Ω, Lp(M)) → `p(Lp(M)) defined by
Λ(f) = (

∫
fεkdµ)k≤n is a complete contraction. This yields the result for p ≥ 2.

When p < 2 we note that Λ : L∞(Ω;L1(M))→ `∞(L1(M)) is completely bounded.
Again interpolation yields the result. The sharpness of this result is justified in
Remark 3.12 below. �

Lemma 3.3. Let A be a C∗-algebra and φ be a state on N = A∗∗ whose restriction
to A is faithful. Let d ∈ L1(N ) be the associated density with support e in N . Let
us set Ne = eN e. Then, we have[

A,L1(Ne)
]

1
p

= Lp(Ne).

Proof. Following Kosaki’s work, we have symmetric injective embedding of Ne in
L1(Ne) ∼= (Ne)∗ given by ι(x) = d1/2xd1/2. Let x ∈ A and y be an analytic element
in Ne. Then we observe that

〈ι(x), y〉 = tr(d1/2xd1/2y) = tr(dxd1/2yd−1/2) = φ(xσi/2(y)) .

Since the elements of the form σi/2(y), y analytic, are in dense inNe, we deduce from
ι(x) = 0 that φ(x∗x) = 0. However, φ is faithful and hence (A,L1(Ne)) is indeed
an interpolation couple and we may define Xp = [A,L1(Ne)]1/p. By Kaplansky’s
density theorem we known that eAe is strongly dense in Ne and hence d1/2Ad1/2

norm dense in L1(Ne). Thus the interpolation couple has dense intersection. The
unit ball in X∗p is the closure in the sum topology of the unit ball in

Zp =
[
A∗, L1(Ne)∗

]
1
p

=
[
Ne, L1(Ne)

]
1− 1

p

,

see [1] for further details. Here the natural inclusion map is again given by

n ∈ Ne 7→ d
1
2nd

1
2 ∈ L1(Ne) 7→ d

1
2nd

1
2 |A ∈ A∗,

because A is the intersection in the interpolation couple. Certainly, L1(Ne) is
faithfully embedded in A∗. Thus in the dual picture we find exactly the symmetric
version of Kosaki’s embedding [25], Zp = Lp′(Ne). Since Lp′(Ne) is reflexive,
its unit ball is already closed in the sum topology. Indeed, given any converging
sequence in the sum topology, it is easily checked that the limit is a cluster point of
the sequence in the weak∗ topology. This gives X∗p = Lp′(Ne), so that the inclusion
Xp ⊂ Lp(Ne) is isometric. The assertion then follows from the fact that the norm
dense subspace d1/2pAd1/2p of Lp(Ne) is contained in Xp. �
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Lemma 3.4. Let U be an ultrafilter on an index set I and

(di)• ∈
∏
U
L1(M).

Let φ(x) = limi,U tr(dix) be the corresponding weak limit state and d ∈ L1(M∗∗)
the corresponding nonfaithful density supported by e in M∗∗. Then, there exists a
completely contractive map densely defined on d1/2pM d1/2p by

up : d
1
2px d

1
2p ∈ Lp(eM∗∗e) 7→

(
d

1
2p
i x d

1
2p
i

)• ∈∏
U
Lp(M).

Proof. Let eU be the support of

φU (xi)• = limi,U tr(dixi)

and consider the σ-finite von Neumann algebra MU = eU
[∏
U L1(M)

]∗
eU . The

image of up sits on Lp(MU ) and φU is faithful onMU . Hence, the spaces Lp(MU )
interpolate by Kosaki’s result. Let f be the support of φ inM and e be the support
of φ in M∗∗. Note that e ≤ f . We apply Lemma 3.3 to A = Mf = fMf and
obtain

Lp(eM∗∗e) =
[
Mf , L1(eM∗∗e)

]
1
p

.

Therefore, the map up is obtained by interpolation. Clearly u∞(x) = eU (x)•eU is a
complete contraction. The interesting part is the case p = 1. For a positive x ∈M,
we note that∥∥(d

1
2
i x d

1
2
i )•
∥∥Q
U L1(M)

= limi,U tr
(
d

1
2
i x d

1
2
i

)
= limi,U tr(dix) = φ(x).

For a positive element x ∈ M∗∗, we may apply Kaplansky’s density theorem and
approximate x1/2 in SOT∩SOT∗ by a net xλ ∈M such that ‖xλ‖ ≤ ‖x1/2‖. Then
we have

limi,U
∥∥(xλ − xµ)d

1
2
i

∥∥2

2
= limi,U tr

(
di|xλ − xµ|2

)
= φ

(
|xλ − xµ|2

)
.

Hence, (xλd
1
2
i )• is Cauchy in

∏
U L2(M) with limit (x

1
2 d

1
2
i )• because

(φ
(
|xλ − xµ|2

)
)1/2 ≤ φ

(
|xλ − x|2

) 1
2 + φ

(
|xµ − x|2

) 1
2

=
(
φ(x∗λxλ) + φ(x∗x)− φ(x∗λx)− φ(x∗xλ)

) 1
2

+
(
φ(x∗µxµ) + φ(x∗x)− φ(x∗µx)− φ(x∗xµ)

) 1
2

converges to 0. Moreover, we have

u1(x) = (dix
1
2 )•(x

1
2 di)• ∈

∏
U
L1(M).

Now let x ∈ eM∗∗e be a self-adjoint element. Then we recall from [7] that

limi,U
∥∥d 1

2
i x d

1
2
i

∥∥
1
≤ inf
x=x1−x2

φ(x1) + φ(x2) =
∥∥d 1

2x d
1
2
∥∥

1

where the infimum is taken over positive elements in eM∗∗e. This implies that

u1 : d
1
2x d

1
2 ∈ L1(eM∗∗e)→

(
d

1
2
i x d

1
2
i

)• ∈∏
U
L1(M),

is a c.p. map with u∗1(1) = 1. Hence, u1 and u∗1 are contractions. Interpolation
and the density of [Mf , L1(eM∗∗e)]1/p ⊂ Lp(eM∗∗e) implies the result. Since the
same argument holds for Mm(eM∗∗e), up is a complete contraction. �



NONCOMMUTATIVE MAUREY’S FACTORIZATION 23

Proof of Theorem A. Let us begin by proving the statement i). Let N = A∗∗

and consider the adjoint mapping T ∗ : X∗ → A∗. Since A∗ 'cb L1(N op) and T
is a completely (p, 1)-summing map we deduce from (the dual version of) Remark
1.4 that ‖T ∗ ⊗ id : `p′(X∗) → L1(N op; `∞)‖cb ≤ πcbp,1(T ). According to Theorem
B, this implies∥∥T ∗ ⊗ id : Sq′(X∗)→ L1(N op;Sq′)

∥∥
cb
≤ c(p, q)πcbp,1(T ).

Dualizing again, we obtain the following key inequality∥∥T ⊗ id : A(Sq)→ Sq(X)
∥∥
cb
≤ c(p, q)πcbp,1(T ).

Here we interpret A(Sq) as in Remark 1.4

A(Smq ) =
[
Mm(A), A(Sm1 )

]
1
q

⊂
[
L∞(A∗∗;Sm∞), L∞(A∗∗;Sm1 )

]
1
q

= L∞(N ;Smq ).

Now we follow Pisier and apply the Grothendieck-Pietsch separation argument as
in [39, Theorem 5.1]. Namely, the substitute of the auxiliary Theorem 5.3 there for
A⊗minSq has to be replaced here by the fact that A(Sq) ⊂ L∞(N ;Sq) is understood
as a conditional L∞ space with norm given by

‖x‖A(Sq) = sup
{
‖αxβ‖Lq(N⊗̄B(`2))

∣∣ ‖α‖L2q(N ), ‖β‖L2q(N ) ≤ 1
}
.

Then, it turns out that Pisier’s argument in [39] generalizes verbatim to this setting
and we find nets (aλ) and (bλ) in the positive part of the unit ball of L2q(N )
satisfying the inequality

‖T (x)‖Sq(X) ≤ c(p, q)πcbp,1(T ) limλ

∥∥aλxbλ∥∥Sq(Lq(N ))
.

On M2(N ), we define the state

φ(x) = limλ
1
2

[
tr
(
a2q
λ x11

)
+ tr

(
b2qλ x22

)]
.

Let d ∈ L1(M2(N )) be the density of φ. We also use the notation da, db for the
densities of the states φa(x) = limλ tr(a2q

λ x) and φb(x) = limλ tr(b2qλ x). According
to Lemma 3.4, we see that

uq
(
d

1
2q x d

1
2q
)

=
(
d

1
2q
λ x d

1
2q
λ

)• with dλ =
1
2

(
e11 ⊗ a2q

λ + e22 ⊗ b2qλ
)
.

is a complete contraction. Restricting this to the (1, 2) entry, we deduce that

limλ 2−
1
q

∥∥aλxbλ∥∥q = limλ

∥∥d 1
2q
λ (e12 ⊗ x) d

1
2q
λ

∥∥
q

≤
∥∥d 1

2q (e12 ⊗ x) d
1
2q
∥∥
q

= 2−
1
q

∥∥d 1
2q
a x d

1
2q
b

∥∥
q
.

Moreover, the same chain of inequalities holds for x replaced by an element in
Mm(A). The first assertion then follows immediately. Indeed, it just remains to
choose the densities δ2q

1 = da, δ2q
2 = db and define the map

w(δ1xδ2) = T (x).

To prove ii), we follow an argument by Haagerup. According to the first part applied
to A = M, we find δ1, δ2 ∈ L+

2q(M∗∗) of norm 1. Moreover, using the existence
of a central projection z in M∗∗ such that M = zM∗∗, we define d1 = zδ1 and
d2 = zδ2. Let (zλ) ⊂ M be a net of contractions which converges strongly to z
in M∗∗. Then d1 = limλ zλδ1 and d2 = limλ zλδ2. On the other hand 1M − zλ
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converges strongly to 0, where strongly refers this time to M. Since T is supposed
to be normal, we have T ∗(X∗) ⊂ L1(M). This implies

limλ,µ

〈
x∗, T (zλxzµ)

〉
= limλ,µ

〈
zλT

∗(x∗)zµ, x
〉

= 〈x∗, T (x)〉.

Let x ∈ Sq(M) and x∗ in the unit ball of Sq′(X∗) so that

‖T (x)‖Sq(X) =
∣∣〈x∗, T (x)〉

∣∣.
Then we find

‖T (x)‖Sq(X) = limλ,µ

∣∣〈x∗, T (zλxzµ)
〉∣∣

≤ c(p, q)πcbp,1(T ) limλ,µ

∥∥δ1zλxzµδ2∥∥Sq(Lq(M∗∗))
= c(p, q)πcbp,1(T )

∥∥d1xd2

∥∥
Sq(Lq(M∗∗))

.

This shows that v(d1xd2) = T (x) is continuous and even completely bounded. The
proof of iii) follows the same pattern above. We first dualize and consider the map
T ∗ : X∗ → Ls′(M), which is (p′,∞)-convex. Indeed, this follows by duality since

Ls(M; `1) id−→ `1 ⊗min Ls(M) T−→ `p(X)

is completely bounded. Then, since s′ < q′ < p′ ∧ ∞, we may apply Theorem
B to deduce that T ∗ ⊗ id : Sq′(X∗) → Ls′(M;Sq′) is completely bounded with
cb-norm controlled by c(p, q, s)πcbp,1(T ). Dualizing back and with the help of the
Grothendieck-Pietsch factorization theorem (adapted to this setting as indicated
above), we find nets (aλ), (bλ) in the positive part of the unit ball of L2w(M) such
that

‖T (x)‖Sq(X) ≤ c(p, q, s)πcbp,1(T ) limλ

∥∥aλxbλ∥∥Sq(Lq(M))
.

Let us assume for simplicity that aλ = bλ = dλ. Recall that this can always be
done using the 2× 2 matrix trick from above. Then we define the following weak∗

limit in Ls′(M)

tr(dx) = limλ tr
(
d

2w/s′

λ x
)
.

The assertion is obtained from the inequality

limλ

∥∥dλxdλ∥∥q ≤ ∥∥ds′/2wx ds′/2w∥∥q,
which follows by approximating x ∼ dw/sλ zd

w/s
λ and applying Lemma 3.4. �

Remark 3.5. According to Remark 2.10, we obtain

c(p, q) .
1

1− p
q

.

We also have the weaker estimate c(p, q, s) . q(s− p)/(q − p) for s <∞.

Remark 3.6. We may define canonically

πcbp,q(T ) =
∥∥id⊗ T : `q ⊗min X → `p(Y )

∥∥
cb

as the completely (p, q)-summing norm of T : X → Y . At the time of this writing,
it is not clear whether πcbp,p(T ) = πop(T ) holds for all maps T . However, Pisier’s
factorization theorem immediately implies that every completely p-summing map
is completely (p, p) summing, and πcbp,p(T ) ≤ πop(T ). If in addition T is a normal
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map on an injective von Neumann algebra, then the norms are equivalent. Indeed,
let T ∗ : Y ∗ → L1(M) be the adjoint, M injective such that

πcbp,p(T ) =
∥∥id⊗ T ∗ : `p′(Y ∗)→ L1(M; `p′)

∥∥
cb
<∞.

Recall from [15] that we have a cb-embedding j : Smp′ → L1(N ; `p′), so that

id⊗ j : L1(M;Smp′ )→ L1(M⊗̄N ; `p′)

is an isomorphic embedding. This map uses independent copies and hence it is
easy to check that j ⊗ idY ∗ : Smp′ (Y

∗) → L1(N ; `p′(Y ∗)) remains bounded with a
constant c(p). Then we find the following diagram

Smp′ (Y
∗) T∗−→ L1(M, Smp′ )

j ↓ ↑ j−1

L1(N ; `p′(Y ∗))
T∗−→ L1(M⊗̄N ; `p′).

The two maps ↓ and ↑ are bounded, and hence∥∥idSm
p′
⊗ T ∗ : Smp′ (Y

∗)→ L1(M;Smp′ )
∥∥ ≤ c(p)πcbp,p(u)

is still bounded with constants independent of m. This completes the argument.

3.2. Applications I. Operator spaces. Our first application is an operator space
analog of Rosenthal’s theorem [43] for subspaces of (commutative or not) Lp spaces.
This partly justifies our definition of cb-cotype, see [5, 15, 27, 32] for related notions.

Proof of Corollary A1. We shall prove i)⇒ii)⇒iii)⇒i). The first implication
follows from Lemma 3.1. For the second implication, assume that X∗ is completely
(p′0, 1)-summing for some index p < p0 < 2 and let j : X → Lp(M) be the inclusion
map. Take the (necessarily normal) adjoint map T = j∗ : Lp′(M) → X∗. Given
p′0 < q′ < p′, the map T : `1 ⊗min Lp′(M) → `p′0(X∗) is completely bounded since
idX∗ is completely (p′0, 1)-summing and

`1 ⊗min Lp′(M) T−→ `1 ⊗min X
∗ id−→ `p′0(X∗).

In particular, T satisfies the assertion of Theorem A. Let v : Lq′(M) → X∗ be
the corresponding map. Then v∗ : X → Lq(M) is also completely bounded and
d1v
∗(x) d2 = j(x). In particular, since d1, d2 are norm 1 in L2w(M) and 1

p = 1
q + 1

w

‖x‖Mm(X) = ‖j(x)‖Mm(Lp(M)) =
∥∥d1v

∗(x) d2

∥∥
Mm(Lp(M))

≤ ‖v∗(x)‖Mm(Lq(M)).

Thus, X is cb-isomorphic to v∗(X) ⊂ Lq(M). For the third implication, the
Rademacher transform map Λ : f ∈ Rad(Lq′(M)) 7→ (

∫
Ω
f εk dµ) ∈ `q′(Lq′(M))

is completely contractive and this remains true for every quotient of Lq′(M). In
particular, X∗ has cb-cotype q′. The proof is complete. �

Corollary 3.7. If p ≥ 2 and idX is completely (p, 1)-summing

Πo
1(X,Y ) = Πo

q′(X,Y ) for all operator spaces Y and q > p.

Proof. The inclusion
Πo

1(X,Y ) ⊂ Πo
q′(X,Y )

is well-known. For the converse, we consider u : Mm → X and note that

πcbp,1(u) ≤ ‖u‖cb πcbp,1(idX).
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Theorem A for M = Mm gives a, b ∈ Sm2q and a cb-map w : Smq → X such that

u = w ◦Mab and ‖a‖2q‖w‖cb‖b‖2q ≤ c(p, q) ‖u‖cb πcbp,1(idX).

The argument now follows by a standard duality argument. We refer the reader to
[39, Chapter 7] for a brief review of the duality theory of p-summing maps both in
the Banach and operator space settings. We shall also use the p-nuclear norm νop
and the fact that it is trace dual to πoq′ , see [10, Chapter 3]. If T : X → Y and
v : Y →Mm, we deduce that∣∣tr(vTu)

∣∣ =
∣∣tr(MabvTw)

∣∣
≤ νoq (Mabv)πoq′(Tw)

≤ ‖v‖cb ‖a‖2q‖w‖cb‖b‖2q πoq′(T )

≤ c(p, q)πcbp,1(idX) ‖v‖cb‖u‖cb πoq′(T ).

Thus we obtain the inequality

sup
‖u‖cb,‖v‖cb≤1

∣∣tr(vTu)
∣∣ ≤ c(p, q)πcbp,1(idX)πoq′(T ).

Since CB(Y,Mm) = [Sm1 (Y )]∗ and CB(Mm, X) = Sm1 ⊗min X, we get∥∥T ⊗ id : Sm1 ⊗min X → Sm1 (Y )
∥∥ ≤ c(p, q)πcbp,1(idX)πoq′(T ),

but the left hand side is the completely 1-summing of T . The proof is complete. �

Proof of Corollary A2. The first assertion follows from Theorem A, while the
second assertion follows from Lemma 3.2 applied to OH and Corollary 3.7. �

3.3. Applications II. Noncommutative Lp spaces. We now investigate some
further consequences of our results for linear maps between noncommutative Lp
spaces equipped with their natural operator space structures.

Corollary 3.8. Let 2 ≤ q1 < p1 < q2 ≤ p2 ≤ ∞. Assume that

T : Lp2(M)→ Lp1(M) and S : Lq2(N )→ Lq1(N )

are completely bounded maps with M,N being QWEP von Neumann algebras. In
the case p2 = ∞ or q2 = ∞, assume in addition that the corresponding map is
normal. Then, the following map is completely bounded

T ⊗ S : Lp2
(
M;Lq2(N )

)
→ Lp1

(
M;Lq1(N )

)
.

Proof. If 2 ≤ p1 < q2 ≤ p2, we claim that(
T̃ ⊗ id

)
(x⊗ y) = y ⊗ T (x)

satisfies∥∥T̃ ⊗ id : Lp2
(
M;Lq2(N )

)
→ Lq2

(
N ;Lp1(M)

)∥∥
cb
≤ c(p1, q2) ‖T‖cb.

Indeed, if p2 = q2 then Lp2(M;Lp2(N )) = Lp2(M⊗̄N ) = Lp2(N ;Lp2(M)). Since
N is QWEP, we deduce the assertion from the complete boundedness of T . A
similar argument can be found in [13]. When p2 > q2, we use that Lp1(M) has
cb-cotype p1 and Theorem A to factorize

T = v ◦Mab,
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where v : Lq2(M) → Lp1(M) is completely bounded and Mab(x) = axb with a, b
positive norm 1 elements of L2s(M) for 1/q2 = 1/p2 + 1/s. It is clear that the map

Mab ⊗ id : Lp2(M;Lq2(N ))→ Lq2(M;Lq2(N ))

is completely contractive. Moreover, our argument for p2 = q2 gives∥∥v ⊗ id : Lq2
(
M;Lq2(N )

)
→ Lq2

(
N ;Lp1(M)

)∥∥
cb
≤ c(p1, p2, q2)πcbp1,1(T )

≤ c(p1, p2, q2) ‖T‖cb.

This proves our claim. Moreover, if

2 ≤ q1 < p1 < q2 ≤ p2

the same argument for ĩd⊗ S yields∥∥ĩd⊗ S : Lq2
(
N ;Lp1(M)

)
→ Lp1

(
M;Lq1(N )

)∥∥
cb
≤ c(p1, q1, q2) ‖S‖cb.

Combining the two estimates, we deduce the assertion. The proof is complete. �

Corollary 3.9. If 2 ≤ p < q <∞ and M,N are hyperfinite

CB
(
L1(M), Lp(N )

)
= Πo

q

(
L1(M), Lp(N )

)
.

Proof. Since 1 < p′ ≤ 2 and according to [17, 18], we have a cb-embedding
j : Lp′(N ) → L1(A) for some hyperfinite von Neumann algebra A. The dual
map j∗ : Aop → Lp(N ) is a complete surjection. Let u : L1(M) → Lp(N ) be
a completely bounded map and u∗ : Lp′(N ) → Mop its adjoint map. Since M
is injective, we have a cb-norm preserving extension w : L1(A) → Mop. The
restriction ũ of w∗(Mop)∗ → Aop to L1(M) gives an extension of u : L1(M)→ Aop
such that u = j∗w∗ and

‖ũ‖cb ≤ ‖u‖cb‖j‖cb‖j−1‖cb ≤ c‖u‖cb.

Since Lp(M) has cb-cotype p from Lemma 3.2 and j∗ is normal, we know from
Theorem A that j∗ is completely q-summing. Recall that the fact that A is injective
is used here to ensure that A(Smq ) = A⊗min S

m
q . Thus we conclude u = j∗ũ is also

completely q-summing. �

Corollary 3.10. If M is finite and hyperfinite and

T : L1(M)→ L2(M)

is completely bounded, then the eigenvalues of T : L2(M)→ L2(M) satisfy(∑
k
|λk(T )|2

) 1
2 ≤ ‖T‖cb.

Proof. It is well-known [10, 3.4.3.13] that(∑
k
|λk(T )|q

) 1
q ≤ πoq(T )

for 2 < q <∞. Here λk(T ) are the eigenvalues in non-decreasing order. Let us take
the opportunity to correct an oversight in the proof. In [10, p.238] it was claimed
that ∏

U
Sp

?=
[∏

U
S∞,

∏
U
S2

]
2
p
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interpolates. However, this is not an interpolation couple. Instead, one has to use
Pisier’s factorization theorem and use that for a positive density d = (di) ∈

∏
U S1

the spaces

LSp = cl
({

(d1/2p
i xid

1/2p
i )•

∣∣ (xi)• = eU (xi)•eU ∈ (
∏
U
S1)∗

})
⊂
∏
U
Sp

form an interpolation scale, due to Kosaki’s interpolation theorem. In the rest of
the proof one works with these spaces. In order to push the result to q = 2, we may
apply a standard tensor trick. Let m ∈ N and jm : L2(M⊗m)→ L1(M⊗m) be the
natural completely contractive inclusion map. Then we deduce from Corollary 3.9
that ( n∑

k=1

|λk(T )|2
)m

2
=

( nm∑
k=1

|λk(T⊗m)|2
) 1

2

≤ n
m
2 −

m
q

( nm∑
k=1

|λk(T⊗m)|q
) 1
q

≤ n
m
2 −

m
q πoq(T⊗mjm) ≤ n

m
2 −

m
q c(q) ‖T⊗m‖cb.

We now claim that ‖T⊗m‖cb ≤ ‖T‖mcb. Indeed, given

T : L1(M)→ L2(M) and S : L1(N )→ L2(N ),

we observe that

L1(M⊗̄N ) S−→ L1(M;L2(N )) −→ L2(N ;L1(M)) T−→ L2(M⊗̄N )

where the middle map is a complete contraction by Minkowski’s inequality. Hence
we have ‖T ⊗ S‖cb ≤ ‖T‖cb‖S‖cb. Applying it m − 1 times, we deduce our claim
and therefore we get ( n∑

k=1

|λk(T )|2
)m

2 ≤ n
m
2 −

m
q c(q) ‖T‖mcb.

Thus, taking m-th roots and sending (m, q)→ (∞, 2), the result follows. �

Corollary 3.11. Let 1 < p <∞ and q > p ∨ p′. If M is hyperfinite and the map
T : M→M is normal with a factorization T = vw, where v : Lp(M) →M and
w :M→ Lp(M) normal, both completely bounded. Then, we have(∑

k
|λk(T )|q

) 1
q ≤ c(p, q) ‖v‖cb‖w‖cb.

Proof. When p ≥ 2, this follows from Theorem A because w : M → Lp(M) is
completely q-summing and hence T = vw is also completely q-summing. In the
case 1 < p < 2, we consider T ∗ = w∗v∗ and deduce from Corollary 3.9 that the
map v∗ : L1(M) → Lp′(M) is completely q-summing. Following the eigenvalue
estimates from [10, p.238] and letting T∗ = T ∗|L1 , we know that Tm∗ is compact for
some m ∈ N. Hence Tm is also compact and T is a Riesz operator. Recall that an
operator T : X → X is Riesz if for all ε > 0 there exist n,m ∈ N and y1, ..., ym such
that Tn(BX) ⊂

⋃
k yk + εBX . Fortunately, we know by a result of West which can

be found in [34, 3.2.26] that for a Riesz operator the eigenvalues sequence (λk(T ))
can be arranged so that (λk(T )) = (λk(T ∗)). We also refer to [34, Section 3.2]
for the definition of the eigenvalue sequence respecting the algebraic multiplicity.



NONCOMMUTATIVE MAUREY’S FACTORIZATION 29

Hence our estimate of the q-norm of (λk(T∗)) implies the same estimate for the
eigenvalue sequence of T :M→M. �

Remark 3.12. Let us consider an example. Given a sequence (µk) ∈ `p of positive
numbers, the cb-norm of the diagonal map ∆√µ : ek1 ∈ C 7→

√
µk ek1 ∈ Cp is given

by ∥∥∆√µ : C → Cp
∥∥
cb

=
( ∞∑
k=1

µpk

) 1
2p

=
∥∥∆√µ : Cp → C

∥∥
cb
.

Hence, ∆√µ factors through Sp and Sp′ and therefore the best possible exponent in
Corollary 3.11 is indeed p∨p′. This also shows that Lemma 3.2 can not be essentially
improved, because Cp = Rp′ ⊂ Sp′ is a complemented subspace and hence we can
not have cotype 2, at most cotype p. However, for p = 2 we know that the exponent
is not attained in general because the little Grothendieck inequality fails in this form
[12]. Also hyperfiniteness is necessary, because in the free group algebra V N(F∞)
every diagonal operator ∆µ(λ(gk)) = µk λ(gk), gk the generators, factors completely
through Lp(V N(F∞)) whenever ∆µ : Rp ∩ Cp → R ∩ C is completely bounded.
Note here that the span of the generators is completely complemented (see [40])
and we may therefore view these maps as defined on V N(F∞). That is, µ ∈ `2p.
Hence the eigenvalues are not in `p.

3.4. Applications III. Fourier multipliers. Our last application is devoted to
Fourier multipliers. Let G be a discrete group and let V N(G) stand for the finite
von Neumann algebra generated by the left regular representation λ. Given a
function φ : G → C, the corresponding Fourier multiplier λ(g) 7→ φ(g)λ(g) will be
denoted by Tφ.

Corollary 3.13. If 2 ≤ p < q <∞ and if

Tφ : V N(G)→ Lp(V N(G))

is completely bounded, then Tφ : Lq(V N(G))→ Lp(V N(G)) satisfies∥∥Tφ : Lq(V N(G))→ Lp(V N(G))
∥∥
cb
≤ c(p, q)

∥∥Tφ : V N(G)→ Lp(V N(G))
∥∥
cb
.

Proof. The algebra C[G] of finite sums
∑
g αgλ(g) is dense in Lp′(V N(G)) and

T ∗φ (C[G]) ⊂ C[G]. This shows that Tφ is normal. Theorem A gives two norm 1
elements a, b ∈ L2q(V N(G)) and a cb-map v : Lq(V N(G)) → Lp(V N(G)) such
that Tφ(x) = v(axb). Let π : V N(G) → V N(G)⊗̄V N(G) be the representation
given by π(λ(g)) = λ(g)⊗ λ(g). Let us show that the map

Λab : x ∈ Lq(V N(G)) 7→ (1⊗ a)π(x) (1⊗ b) ∈ Lq(V N(G)⊗̄V N(G))

is completely contractive. This is obvious for q =∞, while for q = 2∥∥∥∑
g

αgλ(g)⊗ aλ(g)b
∥∥∥2

2
=

∑
g
|αg|2

∥∥aλ(g)b
∥∥2

2

≤ ‖a‖24 ‖b‖24
∑

g
|αg|2

= ‖a‖24 ‖b‖24
∥∥∥∑

g
αgλ(g)

∥∥∥2

2
.

On the other hand, note that id⊗v : Lq(V N(G)⊗̄V N(G))→ Lp(V N(G)⊗̄V N(G))
is completely bounded. Indeed, id ⊗ v : Lq(Lq) → Lq(Lp) is clearly completely
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bounded and the inclusion Lq(Lp) ⊂ Lp(Lp) is completely contractive. The latter
assertion follows regarding the involved spaces as conditional Lp spaces and using
interpolation. Combining this with Λab we find that

π
(
Tφ(λ(g)

)
= φ(g)λ(g)⊗ λ(g) = λ(g)⊗ v

(
aλ(g)b

)
= (id⊗ v)Λab(λ(g)⊗ λ(g)).

Finally, we observe that π : Lp(V N(G)) → Lp(V N(G)⊗̄V N(G)) is a completely
isometric embedding. This follows from the Lp version of Fell absorption principle
[33]. Therefore, we conclude that Tφ = π−1(id⊗ v)Λab is completely bounded. �
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