
A local Hausdorff-Young inequality on the classical

compact Lie groups and related topics

Javier Parcet
Centre de Recerca Matemàtica
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Abstract

Let G be a compact semisimple Lie group. The Hausdorff-Young inequality
on G can be stated as follows

‖f̂ ‖Lp′ (Ĝ) =
( ∑

π∈Ĝ

dπ‖f̂(π)‖p′

Sdπ
p′

)1/p′

≤
(∫

G

|f(g)|p dµ(g)
)1/p

= ‖f‖Lp(G)

where 1 ≤ p ≤ 2 and p′ denotes its conjugate exponent. Here Ĝ denotes the dual
object of G, dπ is the degree of the irreducible representation π : G → B(Hπ),
Sn

p stands for the Schatten p-class over the n × n matrices and µ denotes the
normalized Haar measure on G. We are interested in the Hausdorff-Young
quotients of central functions with arbitrary small support. In other words, if
we define

hyp(G, f) = ‖f̂ ‖Lp′ (Ĝ)/‖f‖Lp(G)

and U1,U2, . . . is any neighborhood basis around the identity 1 of G, we shall
study the constant

K(G, p) = inf
n≥1

sup
{

hyp(G, f)
∣∣ f ∈ Lp(G), f central, suppf ⊂ Un

}
.

The inequality K(G, p) > 0 for any 1 ≤ p ≤ 2 is our main result and can be
regarded as a local Hausdorff-Young type inequality for compact semisimple
Lie groups. In particular, this includes the classical compact Lie groups. Our
result extends to the non-commutative framework some related results (due to
Andersson and Sjölin) for the torus T. We shall also discuss the exact value of
K(G, p), which remains an open problem. As application, we shall obtain the
sharp Fourier type exponents of (commutative and non commutative) Lebesgue
spaces with respect to a compact group. In fact, the local Hausdorff-Young
inequality was originally motivated by this problem in operator space theory.
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Introduction

Let T denote the quotient R/Z with its natural group structure. Then, given any
1 ≤ p ≤ 2 and any function f : T → C in Lp(T), the classical Hausdorff-Young
inequality claims that

‖f̂ ‖Lp′ (Z) =
( ∑

n∈Z
|f̂(n)|p′

)1/p′
≤

(∫

T
|f(t)|pdt

)1/p
= ‖f‖Lp(T),

where p′ denotes the conjugate exponent of p. This result was first proved by Young
[45, 46] when p′ is an even integer and extended by Hausdorff [15] to the general
case. After that, Hardy and Littlewood proved that the only functions for which
this inequality turns out to be an equality are the characters exp(2πint) with n ∈ Z,
see e.g. [47] for more on this. The Hausdorff-Young inequality naturally extends
to any locally compact abelian group G. Namely, given 1 ≤ p ≤ 2 and a function
f ∈ Lp(G), we have

‖f̂ ‖
Lp′ (Ĝ)

=
(∫

Ĝ
|f̂(ξ)|p′dµ2(ξ)

)1/p′
≤

(∫

G
|f(g)|pdµ1(g)

)1/p
= ‖f‖Lp(G),

where µ1 and µ2 are suitably chosen Haar measures on G and its dual group Ĝ
respectively. In what follows, we shall write hyp(G, f) for the Hausdorff-Young
quotient

‖f̂ ‖
Lp′ (Ĝ)

/‖f‖Lp(G).

Let us consider the constant

B(G, p) = sup
{

hyp(G, f)
∣∣ f ∈ Lp(G)

}
.

In 1924, Titchmarsh proved the Hausdorff-Young inequality hyp(R, f) ≤ 1 for the
real line. Then, the problem of finding the exact value of B(R, p) came out. By
analogy with the previous case, it is natural to guess that the maximizer should
be invariant under the action of the Fourier transform. In particular, the Gaussian
function exp(−πx2) is a natural candidate. Babenko proved this result in [3] when
p′ is an even integer and deduced the identities

B(R, p) =
√

p1/p/p′1/p′ and B(Rn, p) = B(R, p)n

in that case. The validity of these identities in the general case 1 ≤ p ≤ 2 was
finally proved by Beckner in [4]. Moreover, Beckner extended this result to any
locally compact abelian group G by using the factorization theorem for this class
of groups (G = Rm(G) × HG for some m(G) ≥ 0 and some locally compact abelian
group HG which contains an open compact subgroup)

B(G, p) = B(R, p)m(G) for 1 ≤ p ≤ 2.
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The proof of this result uses that B(G, p) = 1 for any compact group G and any
exponent 1 ≤ p ≤ 2. After Beckner’s result, the constant B(R, p) is known in the
literature as the Babenko-Beckner constant. We refer the reader to Lieb’s paper [24]
for more on this topic and to Russo’s papers [36, 37, 38] for the study of B(G, p) on
more general classes of groups.

On the other hand, a local variant of the Hausdorff-Young inequality on T was
considered by Andersson in his Ph.D. Thesis [1]. Note that, given any non-vanishing
function f ∈ Lp(T), we have 0 < hyp(T, f) ≤ 1. Andersson’s problem was to study
the quotient hyp(T, f) for functions f with arbitrary small support. More concretely,
after identifying T with the interval [−1

2 , 1
2) and by the translation invariance of the

Haar measure, this problem reduces to study the value of the constant

K(T, p) = inf
n≥1

sup
{

hyp(T, f)
∣∣ f ∈ Lp(T), suppf ⊂ (− 1

n , 1
n)

}
.

Note that any f ∈ Lp(T) can be regarded as a function f : R→ C with

supp f ⊂
{

x ∈ R ∣∣− 1
2 ≤ x ≤ 1

2

}
.

Then, the function ϕk(t) = k1/pf(kt) is supported on [−1/2k, 1/2k] and we have
∫

R
|f̂(ξ)|p′dξ = lim

k→∞
1
k

∑

n∈Z
|f̂(n/k)|p′

= lim
k→∞

1
k

∑

n∈Z

∣∣∣
∫

R
f(x)e−2πinx/kdx

∣∣∣
p′

= lim
k→∞

∑

n∈Z

∣∣∣
∫

T
k1/pf(kt)e−2πintdt

∣∣∣
p′

= lim
k→∞

∑

n∈Z
|ϕ̂k(n)|p′ .

Moreover, we clearly have
∫

R
|f(x)|p dx =

∫

T
|ϕk(t)|p dt.

In summary, we can write

‖f̂ ‖Lp′ (R)

‖f‖Lp(R)
= lim

k→∞

‖ϕ̂k‖Lp′ (Z)

‖ϕk‖Lp(T)
.

In other words, given any function f ∈ Lp(T), there exists a family ϕ1, ϕ2, . . . of
functions in Lp(T) with suppϕk ⊂ (− 1

k , 1
k ) and such that the Hausdorff-Young

quotients converge to
lim

k→∞
hyp(T, ϕk) = hyp(R, f).
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In particular, using that the maximizers for the Babenko-Beckner constant are given
by Gaussians and applying a simple approximation argument, it is not difficult to
check the inequality K(T, p) ≥ B(T, p). Thus, it is quite natural to wonder whether
or not the equality holds. Andersson [1] gave an affirmative answer for p′ an even
integer and Sjölin proved the general case 1 ≤ p ≤ 2 in [40]. Finally, Kamaly [19]
generalized this result to the n-dimensional torus

K(Tn, p) = B(Rn, p).

The main purpose of this paper is the analysis of the constant K(G, p) for any
compact semisimple Lie group G. A compact Lie group G is called semisimple when
the corresponding Lie algebra g has no proper subspaces h included in the center
of g. An excellent reference for the necessary background in this paper on compact
semisimple Lie groups is Simon’s book [39]. As we shall see, semisimplicity is an
essential assumption in our arguments. Indeed, as is well-known any such group
contains a family of maximal tori satisfying certain nice and deep properties such
as the Weyl integration formula. In fact, Weyl’s character and dimension formulas
[42, 43, 44] will also play a very relevant role in the proof. Let us remember the reader
some basic definitions in non-commutative harmonic analysis. Given a function
f : G → C in L1(G) and a unitary irreducible representation π : G → B(Hπ), we
define the Fourier coefficient of f at π as the operator-valued integral

f̂(π) =
∫

G
f(g)π(g)∗ dµ(g),

where µ stands for the normalized Haar measure on G. Let Ĝ denote the dual object
of G (i.e. the set of equivalence classes of unitary irreducible representations up to
unitary equivalence). Then, given 1 ≤ p < ∞ we define the spaces

Lp(Ĝ) =
{

A ∈
∏

π∈Ĝ

Mdπ

∣∣ ‖A‖Lp(Ĝ)
=

( ∑

π∈Ĝ

dπ‖Aπ‖p

Sdπ
p

)1/p
< ∞

}
,

L∞(Ĝ) =
{

A ∈
∏

π∈Ĝ

Mdπ

∣∣ ‖A‖L∞(Ĝ)
= sup

π∈Ĝ

‖Aπ‖Sdπ∞
< ∞

}
.

Equipped with this norm, the space Lp(Ĝ) becomes a Banach space. Here dπ denotes
the degree of π, we write Mn for the algebra of n × n matrices and Sn

p stands for
the Schatten p-class over Mn. The Hausdorff-Young inequality on compact groups
was proved by Kunze [22] and it says that for any f ∈ Lp(G)

‖f̂ ‖Lp′ (Ĝ)
=

( ∑

π∈Ĝ

dπ‖f̂(π)‖p′

Sdπ
p′

)1/p′
≤

(∫

G
|f(g)|p dµ(g)

)1/p
= ‖f‖Lp(G),

where 1 ≤ p ≤ 2 and p′ denotes its conjugate exponent. In other words, if we denote
again the Hausdorff-Young quotient of f by hyp(G, f), Kunze’s result gives

hyp(G, f) ≤ 1.
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Moreover, this inequality can not be improved due to the compactness of G. Now
we are ready to state the main result of this paper. A function f : G → C is called
central if it is constant at the conjugacy classes of G

f(hgh−1) = f(g) for all g, h ∈ G.

Theorem A. Let 1 ≤ p ≤ 2 and let U1,U2, . . . be a neighborhood basis around the
identity 1 of a compact semisimple Lie group G. Then, we have

K(G, p) = inf
n≥1

sup
{

hyp(G, f)
∣∣ f ∈ Lp(G), f central, supp(f) ⊂ Un

}
> 0.

Note that the norm of f on Lp(G) and the norm of f̂ on Lp′(Ĝ) are invariant
under translations of f . Hence, the same result remains valid if U1,U2, . . . is a
neighborhood basis of any other point in G. Thus, this result can be regarded as a
local Hausdorff-Young inequality on compact semisimple Lie groups. We also recall
that any function f : G → C is central when G is abelian. In particular, our constant
K(G, p) is a natural generalization of the constant K(T, p) defined above.

For the convenience of the reader, we give a very brief sketch of the proof in the
simplest case G = SU(2). The special unitary group SU(2) is the group of unitary
2×2 matrices whose determinant is 1. In particular, it is not difficult to characterize
SU(2) as the set of matrices

m(a, b) =
(

a −b
b a

)
with a, b ∈ C s.t. |a|2 + |b|2 = 1.

Now we give a classical geometric interpretation of SU(2). We refer the reader to
Section 5.4 in [8] for further details. The correspondence m(a, b) ↔ (a, b) identifies
SU(2) as a set with the unit sphere S3 in the 4-dimensional R-space C2 in such a way
that the identity element is identified with the north pole (1, 0). The 3-dimensional
analog can be sketched as follows.

f : G → C central ⇔ f|T : T → C is even

Weyl’s Group: WSU(2) ' S2

Meridian: Maximal torus T

Parallels: Conjugacy classesSU(2)

γ(θ)

γ(−θ)

Figure I: Geometric interpretation of SU(2)

Let us consider the one-parameter subgroup γ : θ ∈ R 7→ m(eiθ, 0) ∈ SU(2). The
image of γ can be regarded as a meridian joining the north and south poles. The
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subgroup induced by γ is a so-called maximal torus T (i.e. isomorphic to a torus of
maximal dimension) in SU(2). Moreover, according to [8] the conjugacy classes of
SU(2) are the 2-dimensional surfaces of constant latitude. In particular, any given
function f : SU(2) → C is central iff is constant on the parallels in Figure I iff its
restriction to T is an even function. In other words, a function f is central if and
only if f(γ(θ)) = f(γ(−θ)) for all θ ∈ R. The transformation γ(θ) 7→ γ(−θ) is
described as the action of the so-called Weyl group of SU(2), which in this case is
the symmetric group S2 of permutations over a set with two elements.

The characterization of central functions just given is a general property in the
class of compact semisimple Lie groups. That is, a function f : G → C is central if
and only if its restriction to the maximal torus is invariant under the action of the
Weyl group. This nice characterization and Weyl’s integration formula will enable
us to write the Fourier coefficients of a central function f : G → C in terms of
the Fourier coefficients with respect to T of a function related to its restriction
f|T : T → C. This relation is a key point in the proof. Namely, once we have
functions defined on T we can try to emulate Andersson’s argument. The second
and more difficult obstacle is the presence of the weights dπ in the Fourier series. It
forces us to use the Weyl dimension formula in order to identify the Fourier series
of f on G as another Fourier series on T of a fractional integral operator acting on
f . This part of the proof is more technical so that we omit here the details.

At the time of this writing, the problem of finding the exact value of K(G, p)
remains open. However, after the proof of Theorem A, we shall show the reader
which are the main difficulties. More concretely, it seems that the solution to this
problem is equivalent to finding the best constant for a weighted Hausdorff-Young
inequality of Pitt type, see below for the details.

Theorem A was proved for the first time in [11]. The original aim of that paper
was to study the sharp Fourier type exponents of Lp spaces (either commutative or
non-commutative) with respect to a compact semisimple Lie group. However, the
techniques in [11] only provide a solution for the case 1 ≤ p ≤ 2. After that, the
complete solution to this problem was obtained by Junge and the author in [17]
using techniques coming from non-commutative probability and operator algebra.

The study of the Hausdorff-Young inequality for vector-valued functions was
initiated by Peetre [29] in 1969. Peetre considered functions f : R → X taking
values in some Banach space X. In this case, the validity of the Hausdorff-Young
inequality for some fixed p depends on the Banach space X. That paper lead to the
notion of Fourier type of a Banach space with respect to a locally compact abelian
group, introduced by Milman in [26]. The theory of Fourier type with respect to
locally compact abelian groups was further developed in [2, 6, 10, 20].

The Hausdorff-Young inequality for vector-valued functions f : G → X defined
on a non-commutative compact group G has been recently studied in some works
summarized in [27]. Note that the Fourier coefficients of f are matrices with entries
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in X. Therefore, one has to be able to define norms for such matrices. By Ruan’s
theorem [35], this leads us to consider an operator space structure on X. The
necessary background on operator spaces can be found in [7, 32]. Then, the right
norms for our matrices are provided by Pisier’s work [31] on non-commutative vector
valued Lp spaces. In summary, in order to develop a theory of Fourier type in this
context, we need to take values in operator spaces rather than Banach spaces. This
crucial point is obviously at the root of the notion of Fourier type. We refer the
reader to [12] for more on this topic and to [13, 28] for the notion of Rademacher
type of an operator space.

Given an exponent 1 ≤ p ≤ 2, an operator space X is said to have Fourier type
p with respect to a compact group G if the vector-valued Fourier transform, defined
as follows

f ⊗ x ∈ Lp(G)⊗X 7→ f̂ ⊗ x ∈ Lp′(Ĝ)⊗X,

extends to a completely bounded map

FG,X : Lp(G;X) → Lp′(Ĝ; X).

In other words, a vector-valued Hausdorff-Young inequality of exponent p holds. Let
Kp(X, G) be the cb norm of FG,X. It follows from [12] that the Fourier type becomes
a stronger condition on (X,G) as p approaches the index 2. This gives rise to the
notion of sharp Fourier type exponent. According to the commutative theory, the
natural candidate for the sharp Fourier type of Lp is p. That is, we want to show
that for 1 ≤ p < q ≤ 2 we have Kq(Lp, G) = ∞. Of course, we have to require
the group G not to be finite and the operator space Lp to be infinite-dimensional.
Under such assumptions, we have

Kq(Lp,G) ≥ lim sup
n→∞

Kq(`p(n),G).

Therefore the growth of Kq(`p(n),G) is an even more interesting problem. Here is
where the local Hausdorff-Young inequality stated in Theorem A helps to find a
solution. Namely, we will prove the following result.

Theorem B. If 1 ≤ p < q ≤ 2, we have

K(G, q) n
1
p
− 1

q ≤ Kq(`p(n), G) ≤ n
1
p
− 1

q ,

for any compact semisimple Lie group G and any positive integer n ≥ 1.

Note that Theorem A implies that Kq(`p(n), G) is arbitrary large as n → ∞.
Therefore, Theorem B provides the sharp Fourier type exponents of Lp and also the
optimal growth of the finite-dimensional constants Kq(`p(n), G). It is worthwhile to
mention that the analog of Theorem B in the commutative theory is an absolutely
trivial result, see e.g. [10]. In particular, Theorem B illustrates some of the extra
difficulties that are intrinsic to the non-commutative theory.
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On the other hand, it remains to study the sharp Fourier type exponent of Lp′

for 2 ≤ p′ ≤ ∞. Arguing as above, it suffices to show that the increasing sequence
Kq(`p′(n), G) diverges to infinity for any 1 ≤ p < q ≤ 2. Our solution to this problem
[17] uses techniques of non-commutative probability and it is out of the scope of this
paper. The final result is the following.

Theorem C. If 1 ≤ p < q ≤ 2, we have

Kq(`p′(n), G) ' n
1
p
− 1

q ,

for any compact topological group G and any integer n ≥ 1.

1 The Fourier coefficients of central functions

In this section we provide a simple expression for the Fourier coefficients of a central
function f : G → C defined on a compact semisimple Lie group G. More concretely,
we shall write them in terms of the Fourier coefficients (with respect the maximal
torus T) of a function hf : T → C associated to f . To that aim, we shall apply
some basic results from the representation theory of compact semisimple Lie groups.
These algebraic preliminaries can be found in Simon’s book [39] or alternatively in
Fulton/Harris’ book [9]. We summarize only here the main topics.

Let G be a compact semisimple Lie group and let g be its Lie algebra. In what
follows we choose once and for all an explicit maximal torus T in G while h will
stand for its Lie algebra. That is, h is the Cartan subalgebra of g. The rank r of
G is the dimension of T so that T ' Tr, where T = R/Z with its natural group
structure. Also, as it is customary, we consider the complexification gC = g ⊕ ig
with complex conjugates taken so that gR =

{
Z ∈ gC : Z = Z

}
= ig and similarly

hR = ih. The bracket 〈 , 〉 will denote the complex-valued inner product induced
by the Killing form. We also recall that the Weyl group WG associated to G can
be seen as a set of r× r unitary matrices W –isometries on hR– with integer entries
and det W = ±1. In particular the set W∗

G =
{
Wt : W ∈ WG

}
becomes a set of

isometries on h∗R. The symbol R will stand for the set of roots while, if we take
H0 ∈ hR such that α(H0) 6= 0 for any root α, the symbol R+ =

{
α ∈ R : α(H0) > 0

}
denotes the set of positive roots. Finally we shall write ΛW and ΛDW for the weight
lattice and the set of dominant weights respectively.

Let us consider a central function f : G → C and a given dominant weight
λ ∈ ΛDW. By the dominant weight theorem there exists a unique πλ ∈ Ĝ associated
to λ and, since f is central, we can write by Schur’s lemma

f̂(πλ) =
1
dλ

∫

G
f(g)χλ(g) dµ(g) 1dλ

where dλ is the degree of πλ, χλ is the character of πλ and 1n denotes the n × n
identity matrix. We now recall the definition of the functions Aβ which appear in
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the Weyl character formula. Given β ∈ h∗R, we define the functions expβ : hR → C
and Aβ : hR → C as follows

expβ(H) = e2πi〈β,H〉,

Aβ(H) =
∑

W∈WG

detW expβ

(
W(H)

)
.

The maximal torus T is isomorphic via the exponential mapping to the quotient
space hR/LW, where LW is the set of those H ∈ hR satisfying exp(2πiH) = 1. That
is, LW is the dual lattice of ΛW. Therefore, the functions expβ and Aβ are well
defined functions on T if and only if β ∈ ΛW. As it is well known, the integral form

δ =
1
2

∑

α∈R+

α

is not necessarily a weight and so the functions expδ and Aδ could be not well defined
on T. To avoid this difficulty we assume for the moment that G is simply connected.
This condition on G assures that δ ∈ ΛW. Hence, applying consecutively the Weyl
integration formula and the Weyl character formula, we obtain

f̂(πλ) =
1

dλ|WG|
∫

T
f(t)χλ(t) |Aδ(t)|2 dm(t) 1dλ

=
1

dλ|WG|
∫

T
f(t)Aδ(t)Aλ+δ(t) dm(t) 1dλ

,

where m denotes the Haar measure on T normalized so that m(T) = 1. Now, if we
write Aλ+δ as a linear combination of exponentials, we get

f̂(πλ) =
1

dλ|WG|
∑

W∈WG

detW
∫

T
f(t)Aδ(t) exp−(λ+δ)(W(t)) dm(t) 1dλ

=
1
dλ

∫

T
f(t)Aδ(t) exp−(λ+δ)(t) dm(t) 1dλ

since Aδ(W(t)) = det WAδ(t) and f(W(t)) = f(t). Note that, taking coordinates
with respect to the basis {ω1, ω2, . . . ωr} of fundamental weights, any weight λ ∈ ΛW

has integer coordinates. Therefore, we can understand the last expression as the
Fourier transform of fAδ on the maximal torus T evaluated at λ + δ. Hence

f̂(πλ) =
1
dλ
FT(fAδ)(λ + δ) 1dλ

(1)

for f : G → C central and G any compact semisimple simply connected Lie group.
When G is non-simply connected, a more careful approach is needed. In that

case we only know that Wt(δ) ± δ ∈ ΛW for all W ∈ WG. In particular, we note
that the function

exp±δ Aλ+δ =
∑

W∈WG

detW expWt(λ+δ)±δ
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is a well-defined function on T for all λ ∈ ΛDW. This remark allows us to write
χλ |Aδ|2 = (expδ Aλ+δ) (exp−δ Aδ) as a well-defined function on T. Hence, applying
again Schur’s lemma, the Weyl integration and the Weyl character formulas, we get

f̂(πλ) =
1

|WG|
∑

W∈WG

detW
dλ

∫

T
f(t)(exp−δ Aδ)(t) expδ−Wt(λ+δ)(t) dm(t) 1dλ

=
1
dλ

∫

T
f(t)(exp−δ Aδ)(t) exp−λ(t) dm(t) 1dλ

,

where the last equality follows from the change of variable t 7→ Wt(t). That is

f̂(πλ) =
1
dλ
FT(fBδ)(λ) 1dλ

,(2)

where Bδ = exp−δ Aδ. This expression is now valid for any compact semisimple
Lie group and it coincides with (1) for simply connected ones. The expressions
obtained in (1) and (2) will be crucial in the following section to prove the local
Hausdorff-Young inequality for compact semisimple Lie groups.

2 The local Hausdorff-Young inequality

This section is devoted to the proof of the local variant of the Hausdorff-Young
inequality described in the Introduction. We begin by proving Theorem A for simply
connected compact semisimple Lie groups. The proof for non-simply connected
groups will be outlined after that. It follows essentially the same ideas. However,
some points will have to be slightly modified. Finally, we give a brief discussion on
the exact value of the constant K(G, p), which remains open.

2.1 Simply connected groups

Before the proof of Theorem A, we need some auxiliary results. Let us assume that
G is simply connected and let f : G → C be a central function. A quick look at
relation (1) given above, allows us to write

f̂(πλ) =
1
dλ

detWFT(fAδ)(Wt(λ + δ)) 1dλ
(3)

for all W ∈ WG. On the other hand, let us denote by Pα the hyperplane of h∗R
orthogonal to α with respect to the complex inner product given by the Killing
form. The infinitesimal Cartan-Stiefel diagram is then given by the expression

P =
⋃

α∈R
Pα.
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Lemma 2.1 Let G be a compact semisimple simply connected Lie group. Then we
have

{
Wt(λ + δ) | W ∈ WG, λ ∈ ΛDW

}
= ΛW \P. Moreover, the following mapping

is injective
(W, λ) ∈ WG × ΛDW 7→ Wt(λ + δ) ∈ ΛW \ P.

Proof. Since G is simply connected we have that
{

λ + δ
∣∣ λ ∈ ΛDW

}
= ΛW ∩Cint.

Here C denotes the fundamental Weyl chamber and Cint its interior. Now, since P
and ΛW are invariant under the action of W∗

G and for any Weyl chamber C there
exists a unique W ∈ WG with Wt(C) = C, we obtain the desired equality. Finally,
the injectivity follows from the uniqueness mentioned above. ¥

Lemma 2.2 Let G be a compact semisimple simply connected Lie group and let
f : G → C be a central function. Then there exists a constant A(G, p) depending on
G and p, such that

‖f̂‖Lp′ (Ĝ)
= A(G, p)

( ∑

λ∈ΛW\P

∣∣FT(fAδ)(λ)
∣∣p′

∏

α∈R+

|〈α, λ〉|p′−2

)1/p′

.

Proof. Since f is central and G is simply connected, (3) gives

‖f̂ ‖Lp′ (Ĝ)
=

( ∑

λ∈ΛDW

dλ

∥∥f̂(πλ)
∥∥p′

Sdλ
p′

)1/p′

=
( 1
|WG|

∑

W∈WG

∑

λ∈ΛDW

dλ

∣∣∣ 1
dλ
FT(fAδ)(Wt(λ + δ))

∣∣∣
p′∥∥1dλ

∥∥p′

Sdλ
p′

)1/p′

By the Weyl dimension formula for dλ, the norm of f̂ in Lp′(Ĝ) equals

(
1

|WG|
∏

α∈R+

|〈α, δ〉|p′−2
∑

W∈WG

∑

λ∈ΛDW

∣∣FT(fAδ)(Wt(λ + δ))
∣∣p′

∏

α∈R+

∣∣〈α, λ + δ〉∣∣p′−2

)1/p′

Finally we observe that
∏

α∈R+

∣∣〈α, λ + δ〉∣∣ =
∏

α∈R

∣∣〈W(α), λ + δ〉∣∣1/2 =
∏

α∈R+

∣∣〈α, Wt(λ + δ)〉∣∣

since any W ∈ WG permutes the root set R. Therefore, by Lemma 2.1 we have

‖f̂ ‖Lp′ (Ĝ)
=

(
1

|WG|
∏

α∈R+

∣∣〈α, δ〉∣∣p′−2
∑

λ∈ΛW\P

∣∣FT(fAδ)(λ)
∣∣p′

∏

α∈R+

∣∣〈α, λ〉∣∣p′−2

)1/p′

.
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The proof is completed by taking A(G, q) =
( 1
|WG|

∏

α∈R+

∣∣〈α, δ〉∣∣p′−2
)1/p′

. ¥

We are now ready to give the proof of Theorem A for simply connected groups.
Let

{
H1, H2, . . . ,Hr

}
be the predual basis of the fundamental weights, any element of

LW can be written as a linear combination of H1,H2, . . . ,Hr with integer coefficients.
Then, since T ' hR/LW, we can regard T as the subset of hR

T =
{ r∑

k=1

xkHk

∣∣ − 1
2 ≤ xk < 1

2

}
.

On the other hand, let us fix a bounded central function f0 : G → C. Then f0

can be understood as a function on T invariant under the action of WG. Now,
since the Weyl group is generated by a set of reflections in hR, f0 can be regarded
as a complex-valued function on hR, supported in T and symmetric under such
reflections. Let us recall that {ω1, ω2, . . . ωr} stands for the basis of fundamental
weights. Let τ = 1− 2/p′, the way we have interpreted the function f0 allows us to
define the function

̂Iτ (f0Aδ) : h∗R −→ C as

̂Iτ (f0Aδ)(ξ) =
1∏

α∈R+

|〈α, ξ〉|τ
FhR(f0Aδ)(ξ) where ξ =

r∑

k=1

ξkωk.

Remark 2.3 The motivation for the notation employed is that in a classical group
such as SU(2), the function just defined is nothing but the Fourier transform of the
fractional integral operator

Iτ (f)(x) =
1

Γ(τ)

∫ x

−∞
f(y)(x− y)τ−1dy

acting on f0Aδ. Here lies the main difference with the commutative case [1] since
the presence of the degrees dλ (as a product in Lemma 2.2 by the Weyl dimension
formula) requires the presence of a factor of FhR(f0Aδ). This does not happen in
the commutative case since dλ = 1 for all λ ∈ ΛDW.

Lemma 2.4 Let G be a compact semisimple simply connected Lie group and let
f : G → C be a central function. Then we have

FhR(fAδ)(ξ) = 0 for all ξ ∈ P.

Proof. If ξ ∈ P, there exists a root α such that ξ ∈ Pα. Let Sα be the reflection in
Pα so that Sα(ξ) = ξ. Then, as is well known Sα ∈ W∗

G and therefore we have

FhR(fAδ)(ξ) = detSαFhR(fAδ)(ξ) = −FhR(fAδ)(ξ). ¤
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The function FhR(f0Aδ) is analytic since f0Aδ has compact support and, by
Lemma 2.4, it vanishes at

P =
{

ξ ∈ h∗R :
∏

α∈R+

〈α, ξ〉 = 0
}

.

In particular, since 0 ≤ τ < 1, ̂Iτ (f0Aδ) is continuous and takes the value 0 on P.
Now we write the norm of this function in terms of a Riemann sum

∥∥ ̂Iτ (f0Aδ)
∥∥

Lp′ (h∗R)
= lim

k→∞

( ∑

λ∈ΛW

VG

kr

∣∣FhR(f0Aδ)(k−1λ)
∣∣p′

∏

α∈R+

∣∣〈α, k−1λ〉∣∣τp′

)1/p′

,

with VG being the volume of a cell of ΛW. Moreover φk(x) = kσf0(kx)Aδ(kx) is
supported in T and the relation FhR(f0Aδ)(k−1λ) = kr−σFT(φk)(λ) holds for all
λ ∈ ΛW. Taking σ = τ |R+|+ r/p, we obtain

∥∥ ̂Iτ (f0Aδ)
∥∥

Lp′ (h∗R)
= V1/p′

G lim
k→∞

( ∑

λ∈ΛW\P

∣∣FT(φk)(λ)
∣∣p′

∏

α∈R+

∣∣〈α, λ〉∣∣τp′

)1/p′

,

since we know that for λ ∈ P we get nothing. Finally, let us define ϕk : hR → C
by the relation φk = ϕkAδ. The function ϕk satisfies ϕk(W(x)) = ϕk(x) for all
W ∈ WG and is supported in k−1T. Hence we can understand ϕk as a central
function on G. We can also say that, as a consequence of the well known relation

Aδ = exp−δ

∏

α∈R+

(expα−1),(4)

ϕk has no singularities. Therefore Lemma 2.2 provides the following relation for
some constant B(G, p) depending on G and p

∥∥ ̂Iτ (f0Aδ)
∥∥

Lp′ (h∗R)
= B(G, p) lim

k→∞
‖ϕ̂k‖Lp′ (Ĝ)

.(5)

On the other hand, since ϕk can be seen as a central function on G, we can
estimate the norm of ϕk on Lp(G). By the Weyl integration formula we get

‖ϕk‖Lp(G) =
( 1
|WG|

∫

T
|ϕkAδ(t)|p|Aδ(t)|2−pdm(t)

)1/p

=
(

kσp

|WG|
∫

T
|f0Aδ(kx)|p|Aδ(x)|2−pdx

)1/p

≤
((2π)(2−p)|R+|

|WG| kσp

∫

T
|f0Aδ(kx)|p

∏

α∈R+

|α(x)|2−pdx
)1/p

,
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where the last inequality follows from (4). Now, under the change of variable y = kx
and taking C(G, q) = (2π)τ |R+||WG|−1/p, we obtain

‖ϕk‖Lp(G) ≤ C(G, p) kσ−τ |R+|−r/p
(∫

T
|f0Aδ(y)|p

∏

α∈R+

|α(y)|τpdy
)1/p

.

Recall that supp(f0Aδ) ⊂ T. Thus, the integral over kT (the domain of integration
after the change of variable) reduces to the same integral over T. However,

σ − τ |R+| − r/p = 0

and the product inside the integral is bounded over T, say by MG. Therefore

‖ϕk‖Lp(G) ≤ C(G, p)MG ‖f0Aδ‖Lp(hR).(6)

In summary, by (5) and (6), we know there exists a constant D(G, q) depending
on G and p such that

0 < D(G, p)

∥∥ ̂Iτ (f0Aδ)
∥∥

Lp′ (h∗R)

‖f0Aδ‖Lp(hR)
≤ lim inf

k→∞

‖ϕ̂k‖Lp′ (Ĝ)

‖ϕk‖Lp(G)
≤ 1.

Since f0 is bounded we easily obtain that f0Aδ ∈ Lp(hR), ̂Iτ (f0Aδ) ∈ Lp′(h∗R) and
D(G, p) > 0. Therefore, we have found a family ϕ1, ϕ2, . . . of central functions on
G whose supports are eventually in Un for any positive integer n ≥ 1 and such that
their Hausdorff-Young quotient hyp(G, ϕk) of exponent p is bounded below by a
positive constant. This concludes the proof of Theorem A for compact semisimple
simply connected Lie groups.

2.2 Non-simply-connected groups

If G is not simply connected, some extra comments have to be made. In any case
we shall not give complete proofs of any of them, the details are left to the reader.

i) Generalization (3) of formula (1) has no meaning here, but we can generalize
formula (2) as

f̂(πλ) =
1
dλ

detWFT(fBδ)(Wt(λ + δ)− δ) 1dλ
.

This provides a couple of results parallel to Lemmas 2.1 and 2.4. Namely,

• We have

ΛW \ (P− δ) =
{

Wt(λ + δ)− δ
∣∣ W ∈ WG, λ ∈ ΛDW

}
.

Moreover, the following mapping is injective

(W, λ) ∈ WG × ΛDW 7→ Wt(λ + δ)− δ ∈ ΛW \ (P− δ).
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• If f : G → C is central, then FhR(fBδ)(ξ) = 0 for all ξ ∈ P− δ.

ii) Lemma 2.2 is now replaced by the following identity, valid for central functions
f : G → C

‖f̂ ‖Lp′ (Ĝ)
= A(G, q)

( ∑

λ∈ΛW\(P−δ)

∣∣FT(fBδ)(λ)
∣∣p′

∏

α∈R+

∣∣〈α, λ + δ〉∣∣p′−2

)1/p′

.

iii) The bases of h∗R and hR respectively which generate ΛW and LW with integer
coefficients are no longer the basis of fundamental weights and its predual.
In fact, the fundamental weights generate the weight lattice of the universal
covering group of G, which is a lattice containing ΛW and strictly bigger than
it. Therefore we need to define

{
H1, H2, . . . ,Hr

}
and

{
ω1, ω2, . . . , ωr

}
just

as the bases of hR and h∗R respectively for which LW and ΛW have integer
coefficients. Once we have clarified this point, we can define T in the same
way and regard f0 as a bounded complex-valued function on hR, supported in
T and symmetric under the reflections that generate WG.

iv) Let us recall that if δ /∈ ΛW, the function Aδ is not well-defined on T. But Aδ

is originally defined on hR and δ /∈ ΛW is not an obstacle to work with Aδ as
a function defined on hR. On the other hand, ii) leads us to consider (in the
same spirit as in the proof given for simply connected groups) the function

̂
Ĩτ (f0Bδ)(ξ) =

1∏

α∈R+

|〈α, ξ + δ〉|τ
FhR(f0Bδ)(ξ).

Now, the remark given about Aδ shows that

̂
Ĩτ (f0Bδ)(ξ) = ̂Iτ (f0Aδ)(ξ + δ).

Hence we can proceed as before expressing the norm of this function in Lp′(h∗R)
as a Riemann sum, but this time we take the lattice ΛW + δ instead of ΛW

∥∥ ̂
Ĩτ (f0Bδ)

∥∥
Lp′ (h∗R)

= lim
k→∞

( ∑

λ∈ΛW+δ

VG

kr

∣∣FhR(f0Aδ)(k−1λ)
∣∣p′

∏

α∈R+

∣∣〈α, k−1λ〉∣∣τp′

)1/p′

.

v) It is not difficult to check that FhR(f0Aδ)(k−1λ) = kr−σFT(ϕkBδ)(λ − δ),
where ϕk is defined as we did above. Hence we get

∥∥ ̂
Ĩτ (f0Bδ)

∥∥
Lp′ (h∗R)

= VG
1/p′ lim

k→∞

( ∑

λ∈ΛW\(P−δ)

∣∣FT(ϕkBδ)(λ)
∣∣p′

∏

α∈R+

∣∣〈α, λ + δ〉∣∣τp′

)1/p′

= B(G, p) lim
k→∞

‖ϕ̂k‖Lp′ (Ĝ)
.
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The norm of ϕk is estimated as above. This completes the proof of Theorem A.

2.3 On the exact value of K(G, p)

Let us recall that, given 1 ≤ p ≤ 2, the constant K(G, p) is defined as follows

K(G, p) = inf
n≥1

sup
{

hyp(G, f)
∣∣ f ∈ Lp(G), f central, supp(f) ⊂ Un

}
,

where U1,U2, . . . is a neighborhood basis of the identity 1 of G. This constant does
not depend on the chosen basis and Theorem A states that 0 < K(G, p) ≤ 1 for
any 1 ≤ p ≤ 2 and any compact semisimple Lie group. However, it would be
extremely interesting to find the exact value of that constant. Sharp constants for
the Hausdorff-Young inequality were investigated in [3], [4] or [36, 37, 38]. As it was
pointed out in the Introduction, in the local case if

B(R, p) =
√

p1/p/p′1/p′

stands for the Babenko-Beckner constant, it is already known that

K(Tn, p) = B(Rn, p).

Also it is obvious that K(G, 1) = K(G, 2) = 1 for any compact group G. In the
general case, a detailed look at the proof of Theorem A gives that the constant
K(G, p) is the supremum of

|WG|τ
V1/p′

G

∏

α∈R+

|〈α, δ〉|τ lim
k→∞

(∫

h∗R

∣∣FhR(f0Aδ(ξ))
∣∣p′ ∏

α∈R+

|〈α, ξ〉|2−p′dξ
)1/p′

(∫

hR
|f0Aδ(x)|p ∣∣k|R+|Aδ(x/k)

∣∣2−p
dx

)1/p

for 1 < p ≤ 2, where the supremum runs over the family of functions f0 : hR → C,
supported in T and symmetric under the reflections generating the Weyl group of G.
If Kf0(G, p) denotes the expression given above, then one easily gets that Kf0(G, p)
equals

|WG|τ
(2π)τ |R+|V1/p′

G

∏

α∈R+

|〈α, δ〉|τ

(∫

h∗R

∣∣FhR(f0Aδ(ξ))
∣∣p′ ∏

α∈R+

|〈α, ξ〉|2−p′dξ
)1/p′

(∫

hR
|f0Aδ(x)|p

∏

α∈R+

|〈α, x〉|2−pdx
)1/p

.

Moreover, taking p = 2 and by Plancherel theorem on compact groups, it follows
that VG = 1. The boundedness of this expression can be regarded as a weighted
Hausdorff-Young inequality of Pitt type, see [5] for more on this topic.
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3 Sharp Fourier type exponents

We conclude this paper by applying the local Hausdorff-Young inequality in the
study of the sharp Fourier type exponents of commutative and non-commutative
Lp spaces. In what follows, we shall assume the reader is familiar with some basic
notions from operator space theory and vector-valued Schatten classes. The reader
is referred to [7, 32] for the necessary background on operator spaces while Pisier’s
theory of vector-valued non-commutative Lp spaces can be found in [31]. In [12]
there is also a condensed summary of results according to our needs.

Let G be a compact group equipped with its normalized Haar measure µ and let
X be an operator space. Then, given an irreducible representation π : G → B(Hπ)
of degree dπ and an integrable function f : G → X, we define the Fourier coefficient
of f at π as follows

f̂(π) =
∫

G
f(g)π(g)∗ dµ(g).

Note that this is a dπ × dπ matrix with entries in X. According to [31] and using
the operator space structure of X, we can consider the norm of f̂(π) in the Schatten
class Sdπ

p (X). This gives rise to the vector-valued analog of Lp(Ĝ)

Lp(Ĝ; X) =
{

A ∈
∏

π∈Ĝ

Mdπ ⊗X
∣∣ ‖A‖Lp(Ĝ;X)

=
( ∑

π∈Ĝ

dπ‖Aπ‖p

Sdπ
p (X)

)1/p
< ∞

}
,

with the obvious modifications for p = ∞. Given 1 ≤ p ≤ 2, we shall say that the
operator space X has Fourier type p with respect to the compact group G if every
f ∈ Lp(G; X) satisfies the X-valued Hausdorff-Young inequality on G

( ∑

π∈Ĝ

dπ‖f̂(π)‖p′

Sdπ
p′ (X)

)1/p′
≤cb Kp(X, G)

( ∫

G
‖f(g)‖p

X dµ(g)
)1/p

.

Here the symbol ≤cb is used to indicate that the associated linear map f 7→ f̂ is
indeed completely bounded with cb norm Kp(X, G). Note that this does not make
any difference in the scalar-valued case since Kunze’s Hausdorff-Young inequality
provides not only a bounded but a completely bounded map. The proof of this is
a triviality when using some basic results from operator space theory, see [12] for
a detailed explanation. The dual notion to Fourier type is called Fourier cotype.
Roughly speaking, X has Fourier cotype p′ whenever the inverse of the Fourier
transform f̂ ∈ Lp′(Ĝ; X) 7→ f ∈ Lp(G;X) is a completely bounded map. According
to [12], X has Fourier type p iff X∗ has Fourier cotype p′ and X∗ has Fourier type
p iff X has Fourier cotype p′. In particular, all the forthcoming results could be
stated in the language of Fourier cotype and obtain in such a way an equivalent
formulation of the problem. We shall omit these equivalent formulations here.
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3.1 Statement of the problem

According to [12] and similar to the commutative theory, every operator space X
has Fourier type 1 with respect to any compact group G. Moreover, the cb norm
K1(X,G) is always 1. In particular, the complex interpolation method for operator
spaces [30] provides the following inequality for 1 ≤ p1 ≤ p2 ≤ 2

Kp1(X, G) ≤ K1(X,G)1−θKp2(X,G)θ = Kp2(X, G)θ with θ = p′2/p′1.

This means that the Fourier type becomes a stronger condition on the pair (X, G)
as the exponent p tends to 2. The sharp Fourier type exponent of an operator space
X with respect to a given compact group G is defined by

Sft(X,G) = sup
{

1 ≤ p ≤ 2
∣∣ Kp(X, G) < ∞

}
.

If X has Fourier type Sft(X, G) with respect to G we shall say that X has sharp
Fourier type Sft(X,G). In the rest of this paper, we want to study the sharp Fourier
type of commutative and non-commutative Lp spaces.

The analog of Hilbert spaces in the category of operator spaces are the so-called
OH operator Hilbert spaces. The reader is referred to [30, 32] for more on this topic.
Any commutative or non-commutative L2 space will be equipped in this paper with
its (natural) OH operator space structure. According to [12], any OH operator
space satisfies K2(OH, G) = 1 with respect to any compact group G. In particular,
applying again the complex interpolation method for operator spaces, we obtain

Kp(Lp(M), G) = 1 = Kp(Lp′(M),G),(7)

for any compact group G and any 1 ≤ p ≤ 2. Here Lp denotes its most general
notion. That is, the space Lp(M) associated to a general von Neumann algebra
M. We point out that the classical Lp spaces arise by considering commutative von
Neumann algebras. Note also that the complex interpolation of Lp spaces in this
general framework is studied in Kosaki’s paper [21], see also [14] and [34].

According to (7), given any exponent 1 ≤ s ≤ ∞, the space Ls(M) always
has Fourier type min(s, s′). In the commutative theory (i.e. when dealing with
locally compact abelian groups) this is exactly the sharp Fourier type exponent of
Ls(M) regarded some natural exceptional cases are excluded. Therefore, the natural
guess is that (7) should be the best Fourier type we can expect after excluding the
exceptional cases. In other words, given 1 ≤ p < q ≤ 2, we would like to find out
conditions on G and Lp(M) / Lp′(M) under which

Kq(Lp(M),G) = ∞ and Kq(Lp′(M), G) = ∞.(8)
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3.1.1 Necessary conditions

Before any other consideration on the identities given in (8) we need to exclude from
our study the exceptional cases mentioned above. First we have to exclude finite
groups from our treatment since, as we shall see immediately, every operator space
X has sharp Fourier type 2 with respect to any finite group. Anyway the next result
is a bit more accurate.

Lemma 3.1 If G0 is a finite group and 1 ≤ p ≤ 2, every operator space X satisfies

Kp(X, G0) ≤ |G0|1/p′ .

Proof. By complex interpolation it suffices to see that K2(X, G0) ≤ |G0|1/2 holds
for any operator space X. According to the definition of Fourier type and to the
notion of complete boundedness, we have to show that for all m ≥ 1 and any family
of functions {

fij : G0 → X
∣∣ 1 ≤ i, j ≤ m

}

the following inequality holds
( ∑

π∈Ĝ

dπ

∥∥∥
(

f̂ij(π)
)∥∥∥

2

Sdπm
2 (X)

)1/2
≤

√
|G0|

∥∥∥
(

fij

)∥∥∥
Sm

2 (L2(G0;X))
.

However, if G0 =
{
g1, g2, . . . , gn

}
we have

∥∥∥
(

f̂ij(π)
)∥∥∥

Sdπm
2 (X)

=
∥∥∥
( 1

n

n∑

k=1

fij(gk)π(gk)∗
)∥∥∥

Sdπm
2 (X)

≤ 1
n

n∑

k=1

‖π(gk)∗‖Sdπ
2

∥∥∥
(

fij(gk)
)∥∥∥

Sm
2 (X)

≤
√

dπ

∥∥∥
(

fij

)∥∥∥
Sm

2 (L2(G0;X))

Therefore we obtain
∥∥∥
(

f̂ij

)∥∥∥
Sm

2 (L2
E(Ĝ))

≤
√∑

π∈Ĝ

d2
π

∥∥∥
(

fij

)∥∥∥
Sm

2 (L2(G0;X))

and, since
∑

π∈Ĝ
d2

π = |G0| by the Peter-Weyl theorem, the proof is completed. ¥
Next we show that we can not work with finite-dimensional Lp spaces. To that

aim we need to define the cb distance between two operator spaces. This notion is
due to Pisier and it provides the analog of the Banach-Mazur distance between two
Banach spaces in the context of operator space theory. Let X1 and X2 be operator
spaces. We define their cb distance by the relation

dcb(X1,X2) = inf
{
‖Λ‖cb(X1,X2)‖Λ−1‖cb(X2,X1)

}
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where the infimum runs over all complete isomorphisms Λ : X1 → X2. The following
inequality, also extracted from [12], relates the Fourier type of two operator spaces
X1 and X2 with their cb distance

Kp(X2, G) ≤ dcb(X1, X2) Kp(X1,G).(9)

In particular, given 1 ≤ p ≤ 2 we deduce from (7) that

K2(Lp(M), G) ≤ dcb(Lp(M), L2(M)) K2(L2(M),G) = dcb(Lp(M), L2(M)),
K2(Lp′(M), G) ≤ dcb(Lp′(M), L2(M))K2(L2(M), G) = dcb(Lp′(M), L2(M)).

Thus, since the cb distance between any two finite-dimensional Lp spaces (defined
over the same finite-dimensional von Neumann algebra M) is finite, we conclude
that any finite-dimensional Lp space has Fourier type 2. Therefore, we shall exclude
the finite-dimensional Lp spaces from our study in what follows.

3.1.2 Sufficient conditions

For the moment we have imposed two necessary conditions. Namely, we have to
exclude finite groups and finite-dimensional Lp spaces. Now we concentrate on a
sufficient condition. Indeed, given any infinite-dimensional space Ls(M) for some
1 ≤ s ≤ ∞, it is clear that `s(n) embeds isometrically in Ls(M) for any n ≥ 1.
Hence, we obtain the following lower bounds for the constants in (8)

Kq(Ls(M), G) ≥ lim
n≥1

Kq(`s(n), G).(10)

Remark 3.2 Note that the inequality above is implied by the fact that, given a
closed subspace Y of an operator space X, we always have Kp(Y, G) ≤ Kp(X, G) for
any 1 ≤ p ≤ 2 and any compact group G. The proof can be found in [12]. Note also
that the limit above always exists since, using one more time Kp(Y, G) ≤ Kp(X, G),
we deduce that the sequence Kq(`s(n),G) is non-decreasing.

In summary, given exponents 1 ≤ p < q ≤ 2 and going back to our problem, it
suffices to show that the sequences Kq(`p(n), G) and Kq(`p′(n), G) diverge to infinity
as n → ∞. Therefore, in what follows we shall study the growth of the constants
Kq(`p(n), G) and Kq(`p′(n), G). Note that this problem is thereby more interesting
that the sharp Fourier type exponents of Lp spaces. The first remark concerning
these constants is that the following upper bounds follows from (9)

Kq(`p(n), G) ≤ dcb(`p(n), `q(n)) Kq(`q(n),G) = n1/p−1/q,

Kq(`p′(n), G) ≤ dcb(`p′(n), `q′(n))Kq(`q′(n), G) = n1/q′−1/p′ .
(11)

Note that 1/p− 1/q = 1/q′− 1/p′ so that we obtain the same upper bound for both
constants. The rest of this paper is devoted to show that this is exactly the order
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of growth of the constants Kq(`p(n), G) and Kq(`p′(n), G). We begin by studying
the growth of the first constants for compact semisimple Lie groups. The local
Hausdorff-Young inequality will be essential in our arguments. After that, we give
two different approaches which provides a complete solution of the problem.

Remark 3.3 Given an operator space X, it is also natural to consider the sharp
Fourier type exponent of the vector-valued space Ls(M; X). According to Remark
3.2, we have

Kq(Ls(M; X), G) ≥ max
{

Kq(Ls(M), G),Kq(X, G)
}

.

In particular, it is not difficult to check that (see [11, 12])

Sft(Ls(M; X),G) = min
{

Sft(Ls(M),G), Sft(X, G)
}

.

3.2 On the growth of Kq(`p(n), G)

In this paragraph we study the growth of Kq(`p(n), G) for any compact semisimple
Lie group G. Semisimplicity is an essential assumption since eventually we shall
need to apply the local Hausdorff-young inequality. More concretely, we are proving
Theorem B in the Introduction. The first consequence we shall need from the
semisimplicity of G is the existence of a maximal torus T. Namely, it allows us
to consider a countable family g1, g2, . . . of pairwise commuting elements of G, just
take gk ∈ T for all k ≥ 1. On the other hand, given n ≥ 1 we take Un to be a
neighborhood of the identity 1 of G satisfying

g−1
j Un ∩ g−1

k Un = ∅ for 1 ≤ j, k ≤ n and j 6= k.

Note that we can always consider a central function fn ∈ Lq(G) supported in Un,
for example take Un to be invariant under conjugations (cf. Lemma (5.24) in [8])
and fn = 1Un where 1U denotes the characteristic function of U . Henceforth, the
function fn : G → C will be a central function in Lq(G) supported in Un, to be fixed
later. Then we define Φn : G → Cn by

Φn(g) = (fn(g1g), fn(g2g), . . . , fn(gng)).

We obviously have the estimate

Kq(`p(n), G) ≥ hyq

(
G, Φn

)
=
‖Φ̂n‖Lq′ (Ĝ;`p(n))

‖Φn‖Lq(G;`p(n))
.(12)

Let us point out that (11) provides the upper estimate in Theorem B. Therefore,
it suffices to show that the quotient in (12) is bounded below by K(G, q) n1/p−1/q.
The following result will be needed for that purpose.
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Lemma 3.4 Let π ∈ Ĝ and n ≥ 1. Consider the matrix-valued vector

Aπ,n = (π(g1), π(g2), . . . , π(gn)).

Then, given 1 ≤ p1, p2 ≤ ∞, we have

‖Aπ,n‖`p1 (n;Sdπ
p2

)
= ‖Aπ,n‖Sdπ

p2
(`p1 (n))

= n1/p1d1/p2
π .

Proof. Since g1, g2, . . . , gn are pairwise commuting, there exists a basis of Cdπ made
up of common eigenvectors of π(g1), π(g2), . . . , π(gn). Therefore, in that basis, all
these matrices are diagonal

π(gk) =




ρ1,k

. . .
ρdπ ,k


 .

Moreover, the unitarity of π(gk) gives |ρj,k| = 1 for 1 ≤ j ≤ dπ. Hence, applying
the complete isometry between `p2(dπ; X) and the subspace of diagonal matrices of
Sdπ

p2
(X) (cf. Corollary (1.3) of [31]), we easily obtain the desired equality. ¥

The norm of Φ̂n in Lq′(Ĝ; `p(n)). We begin by recalling that, since fn is central,

f̂n(π) =
1
dπ

∫

G
fn(g)χπ(g) dµ(g) 1dπ = γπ,n1dπ

by Schur’s lemma. Again, χπ denotes the irreducible character associated to π
and 1m stands for the m × m identity matrix. On the other hand fn(gk ·) is the
translation by gk of fn, therefore

Φ̂n(π) =
1
dπ

∫

G
fn(g)χπ(g) dµ(g) (π(g1), π(g2), . . . , π(gn)) = γπ,nAπ,n.

Therefore, Lemma 3.4 gives

‖Φ̂n‖Lq′ (Ĝ;`p(n))
=

( ∑

π∈Ĝ

dπ|γπ,n|q′‖Aπ,n‖q′

Sdπ
q′ (`p(n))

)1/q′

= n1/p
( ∑

π∈Ĝ

d2
π|γπ,n|q′

)1/q′
= n1/p ‖f̂n‖Lq′ (Ĝ).

The norm of Φn in Lq(G; `p(n)). We have

‖Φn‖Lq(G;`p(n)) =
(∫

G

( n∑

k=1

|fn(gkg)|p
)q/p

dµ(g)
)1/q

=
( n∑

k=1

‖fn(gk ·)‖q
Lq(G)

)1/q
= n1/q ‖fn‖Lq(G).



Local Hausdorff-Young inequality 23

Note that we are using supp fn(gk ·) = g−1
k Un so that

supp fn(gj ·) ∩ supp fn(gk ·) = ∅ for 1 ≤ j, k ≤ n and j 6= k.

In summary, we have obtained that Kq(`p(n), G) ≥ K(G, q, n) n1/p−1/q where the
constant K(G, q, n) is given by

K(G, q, n) = hyq(G, fn) =
‖f̂n‖Lq′ (Ĝ)

‖fn‖Lq(G)
.

In particular,

J (G, q)n
1
p
− 1

q =
(

inf
n≥1

K(G, q, n)
)

n
1
p
− 1

q ≤ Kq(`p(n), G).

Therefore, since the fn’s are not fixed yet, we can consider any central function
fn : G → C in Lq(G) supported in Un and Theorem B follows from Theorem A.
Indeed, we have

J (G, q) = inf
n≥1

sup
{

hyq(G, f)
∣∣ f ∈ Lq(G), f central, supp(f) ⊂ Un

}
= K(G, q) > 0.

3.3 On the growth of Kq(`p′(n), G)

As we recalled in the Introduction, the growth of Kq(`p′(n), G) can not be obtained
by applying the local Hausdorff-Young inequality. The techniques employed in [17]
for the solution to this problem como from non-commutative probability and are
out the scope of this paper. However, we can at least describe the main ideas.

To explain the main arguments in [17], we consider a probability space (Ω,M, µ),
an infinite index set Σ and a family {dσ | σ ∈ Σ} of positive integers. Then, the
quantized Rademacher system associated to Σ is defined by a collection

RΣ =
{

ρσ : Ω → O(dσ)
∣∣ σ ∈ Σ

}

of independent random orthogonal matrices, uniformly distributed on the orthogonal
group O(dσ). This kind of systems were defined by Marcus and Pisier in [25] and
provide a non-commutative counterpart of the classical Rademacher variables. In
[13], we defined the notions ofRΣ-type andRΣ-cotype of an operator space X. These
notions may be considered as an operator space analog of the classical notions of
Rademacher type and cotype. Here we shall only use the notion of Rademacher
cotype. Given 1 ≤ p ≤ 2, an operator space X is said to have RΣ-cotype p′ if there
exists an absolute constant Rp′(X, Σ) such that the inequality

( ∑

σ∈Γ

dσ‖Aσ‖p′

Sdσ
p′ (X)

)1/p′
≤cb Rp′(X, Σ)

(∫

Ω

∥∥∥
∑

σ∈Γ

dσtr(Aσρσ(ω))
∥∥∥

p

X
dµ(ω)

)1/p
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holds for any finite subset Γ of Σ and any collection
{

Aσ ∈ Mdσ

∣∣ σ ∈ Γ
}

.

Applying from [25] a matrix-valued version of the contraction principle, we proved
in [13] that Fourier type p with respect to a compact group G implies RΣ-cotype p′

whenever we take Σ = Ĝ. More concretely, we have

Rp′(X, Ĝ) ≤ Kp(X,G)

for any 1 ≤ p ≤ 2, any compact group G and any operator space X. Clearly, this
reduces the problem to find the sharp Rademacher cotype exponents of Lp. Then,
the stochastic independence of the Rademacher variables allows us to use different
tools, such as the non-commutative martingale inequalities [16, 18, 33] and other
techniques from non-commutative probability. These techniques give rise to the
following result, see [17] for more on this topic.

Theorem D. If 1 ≤ p < q ≤ 2, the following holds for any compact group G

Rq′(`p(n), Ĝ) −→ ∞ as n →∞,

Rq′(`p′(n), Ĝ) −→ ∞ as n →∞.

Note that Theorem D provides the sharp Fourier type exponent of Lp for any
compact group G when 1 ≤ p ≤ 2. This case is not considered in Theorem B.
However, the constants obtained in [17] are

Rq′(`p(n), Ĝ) & n1/2p−1/2q and Rq′(`p′(n), Ĝ) ' n1/p−1/q.

The first one is obviously worse than the one provided by the local Hausdorff-Young
inequality. The second one is the one given in Theorem C. Finally, we also point
out that the argument given above (based on the contraction principle) applies to
any uniformly bounded quantized orthonormal system (cf. [13] for the definition).
In particular, Theorem D solves the problem of sharp type/cotype exponents of Lp

with respect to any such system.
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