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Abstract. We introduce a notion of lacunarity in higher dimensions
for which we can bound the associated directional maximal operators
in Lp(Rn), with p > 1. In particular, we are able to treat the (al-
most disjoint) classes previously considered by Nagel–Stein–Wainger,
Sjögren–Sjölin and Carbery. Closely related to this, we find a charac-
terisation of the sets of directions which give rise to bounded maximal
operators. The bounds enable Lebesgue-type differentiation of integrals
in Lploc(Rn), replacing balls by tubes which point in these directions.

Introduction

For n > 2 and a set of directions Ω in the unit sphere Sn−1, the directional
maximal operator MΩ is defined, initially on Schwartz functions, by

MΩf(x) = sup
ω∈Ω

sup
r>0

1

2r

∫ r

−r
|f(x− tω)| dt.

If Ω consists of a single direction and p > 1, the boundedness of MΩ from
Lp(Rn) to Lp(Rn) follows from the Hardy–Littlewood maximal theorem.
If Ω consists of many directions, two questions naturally arise:

(i) When Ω is an arbitrary finite subset of Sn−1, a fundamental problem
is to determine the best bounds for the Lp–operator norm of MΩ as
a function of |Ω| and p.

(ii) When Ω is an infinite subset of Sn−1, one can also ask for conditions
on the directions which ensure that MΩ is Lp–bounded.

In two dimensions, the questions have been answered with remarkable
accuracy (see [7, 26, 16, 17] for the first question, [25, 10, 20, 23, 4] for the
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second question, or [2, 3, 1, 15] which address the two questions in a unified
way), however much less is known in higher dimensions (see [27, 5, 19] for
the first question and [20, 23, 6] for the second). We will prove a localiza-
tion principle – subsets of the directions can be considered independently
from the rest of the directions – from which we draw conclusions for the
second question in three dimensions and more. A fundamental difference
between the two–dimensional problem, with directions in S1, and that of
higher dimensions is that we are no longer able to order the directions.

We partition the unit ball in such a way that it resembles a peeled or-
ange with infinitely many segments. In three dimensions, we make three
partitions, each time with a different axis of partition. The independent
sets of our localisation principle will be contained in these segments. More
precisely and more generally, for σ ∈ Σ, where

Σ ≡ Σ(n) = {(j, k) : 1 6 j < k 6 n}

we consider {θσ,i}i∈Z that satisfy 0 < θσ,i+1 6 λσ θσ,i with lacunary constants
0 < λσ < 1. Then, for an orthonormal basis (e1, . . . , en), we divide the
directions into the subsets Ωσ,i defined by

Ωσ,i =
{
ω ∈ Ω : θσ,i+1 <

∣∣∣ω · ek
ω · ej

∣∣∣ 6 θσ,i }
(see Figure 1). Note that the segments become thinner as i converges to ±∞
and the partition of Ω is completed by including the set Ωσ,∞ = Ω∩(e⊥j ∪e⊥k ).

Writing Z∗ = Z∪{∞}, we prove the following localisation principle which
recalls the separation of dyadic frequency scales provided by Littlewood–
Paley theory (see also [21, 11] for another kind of one–dimensional localisa-
tion). A difference is that we have many lacunary partitions instead of one,
however the result is sharp in the sense that the supremum over partitions
must be taken over the whole of Σ. Nor could it be made more flexible by
allowing the segments to ‘accumulate’ away from the hyperplanes perpen-
dicular to the basis vectors.

Theorem A. Let n > 2 and p > 1. Then

‖MΩ‖p→p 6 C sup
σ∈Σ

sup
i∈Z∗
‖MΩσ,i‖p→p,

where C depends only on n, p and the lacunary constants λσ for σ ∈ Σ.

As with the almost orthogonality principle of Alfonseca, Soria and Vargas
in two dimensions [2, 3, 1], we recover the previously known results for
question (ii) in higher dimensions. Nagel, Stein and Wainger [20] proved
the Lp–boundedness of the maximal operator associated to the directions

{(ϑa1
i , . . . , ϑ

an
i )}i>1,
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Figure 1. A partition for σ = (1, 2) of a three–dimensional dissection.

e3
↑

←e1 →e2

where 0 < a1 < . . . < an and 0 < ϑi+1 6 λϑi with lacunary constant

0 < λ < 1. We can apply Theorem A with θσ,i = ϑ
ak−aj
i and λσ = λak−aj ,

where σ = (j, k), reducing the problem to that of a single direction. Note
that it makes no difference if the directions are normalised to live on the
unit sphere or not. On the other hand, Carbery [6] proved that the maximal
operator associated to the directions

(1) {(2k1 , . . . , 2kn)}k1,...,kn∈Z

is Lp–bounded with p > 1. Taking θσ,i = 2−i, the resulting sets of di-
rections Ωσ,i are restricted to (n − 1)–dimensional hyperplanes, so that by
choosing a suitable basis and applying Fubini’s theorem, we reduce to the
(n − 1)–dimensional problem. Iterating the process we eventually end up
with isolated directions as before.

It is not sufficient to constrain the angles between an infinite number of
directions if they are to give rise to a bounded maximal operator in higher
dimensions, even if the directions live inside certain (indeed most) smooth
curves. However Theorem A suggests a definition of lacunarity that gives rise
to bounded maximal operators in general. Given Ω ⊂ Sn−1, an orthonormal
basis of span(Ω) = Rd with d 6 n, and lacunary sequences {θσ,i}i∈Z, define
partitions {Ωσ,i}i∈Z∗ for each σ ∈ Σ(d). We call such a choice of 1

2d(d − 1)
partitions a dissection. We say that Ω is

• lacunary of order 0 if it consists of a single direction
• lacunary of order L if there is a dissection for which the sets Ωσ,i are

lacunary of order 6 L−1 for all i ∈ Z∗ and σ ∈ Σ(d), with uniformly
bounded lacunary constants.
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We say that a set of directions is lacunary if it is a finite union of sets which
are lacunary of finite order and we denote the class of such sets by Lac(n).
Note that the class contains sets of directions which are confined to lower
dimensional subspaces.

According to this definition, the Nagel–Stein–Wainger directions are la-
cunary of order 1 and the Carbery directions are lacunary of order n−1. By
repeatedly applying Theorem A as before, if Ω is lacunary (of finite order),
then MΩ is Lp(Rn)–bounded with p > 1. This extends the two–dimensional
result due to Sjögren–Sjölin [23] (the union of K sets of directions of lacu-
nary order L with respect to their definition, is lacunary of order 2KL + 1
with respect to ours). We have broken with the two–dimensional tradition
(which is one–dimensional in the sense that the directions are contained
in a circle), whereby the label ‘lacunary’ is reserved for the sets which are
lacunary of order one. This is because such sets are less special in higher
dimensions (they cannot necessarily be represented as a sequence for exam-
ple) and at first glance the set of directions defined in (1) seems as deserving
of the label ‘lacunary’ as any other.

As a corollary we obtain a generalisation of the Fundamental Theorem of
Calculus. After a suitably fine finite splitting of the directions, the opera-
tor MΩ can be composed with one–dimensional Hardy–Littlewood maximal
operators to dominate a constant multiple of the maximal operator MΩ

defined by

MΩf(x) = sup
x∈T∈TΩ

1

|T |

∫
T
|f(y)| dy.

Here, TΩ denotes the family of tubes which point in a direction of Ω. Stan-
dard density arguments yield the following Lebesgue type differentiation
result.

Corollary B. Let n > 2 and Ω ∈ Lac(n). Then

lim
x∈T∈TΩ

diam(T )→0

1

|T |

∫
T
f(y) dy = f(x), a.e. x ∈ Rn,

for all f ∈ Lploc(R
n) with p > 1.

Sets of directions which give rise to unbounded MΩ andMΩ can be con-
sidered if we place further restrictions on the tubes TΩ. Most commonly the
eccentricity (length/width) of the tubes is fixed, especially when treating
question (i) above. For question (ii), Córdoba [8] proved that the associ-
ated maximal operator is bounded, with a logarithmic dependency on the
eccentricity, if the directions are restricted to a curve which intersects the
hyperplanes of Rn no more than a uniformly bounded number of times.

We turn now to the question of characterising the sets of directions Ω
for which MΩ is bounded from Lp(Rn) to Lp(Rn). We denote the class of
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such sets by Maxp(n). Bateman [4] proved that Maxp(2) ⊂ Lac(2) which,
combined with the result of Sjögren–Sjölin, yields the equivalence

Maxp(2) ≡ Lac(2), 1 < p <∞.

We do not know if this is true in higher dimensions, however we characterise
Maxp(n) using a formally larger class. For this we take advantage of a quan-
titive version of Bateman’s theorem via projections onto two–dimensional
subspaces Π ⊂ Rn. Given a set of directions Ω, we define the shadow of
Ω on Π to be the normalised orthogonal projection onto Π, so that the
shadow lives in a copy of S1 ⊂ Π. We denote by Lsh(n) the class of sets
of directions whose shadows are all lacunary of finite order, where both the
lacunary orders and lacunary constants are uniformly bounded above.

In order to define our characterising class, we fix an auxiliary ε > 0 and
say that a set Ωσ̃,iσ̃ of a dissection is dominating if it satisfies

‖MΩσ,i‖p→p 6 ‖MΩσ̃,iσ̃
‖p→p + ε for all i ∈ Z∗, σ ∈ Σ(d).

Similarly to before, we say that Ω is

• p–lacunary of order 0 if it consists of a single direction
• p–lacunary of order L if there is a dissection with a dominating set

which is p–lacunary of order 6 L− 1.

We say that a set of directions is p–lacunary if it is p–lacunary of finite order
and we denote the class of such sets by Lacp(n, ε). Finally we write

Lacp(n) :=
⋂
ε>0

Lacp(n, ε).

In the following equivalence we see that the directions which give rise
to bounded maximal operators can be no worse, loosely speaking, than di-
rections that can be divided into isolated directions by a finite number of
lacunary dissections.

Theorem C. Let n > 2 and 1 < p <∞. Then

Lac(n) ⊂ Maxp(n) ≡ Lacp(n) ⊂ Lsh(n).

With n = 2, these classes coincide of course, and so Maxp(2) is the same
for all 1 < p <∞. It is tempting to suppose that this is also true in higher
dimensions – it seems reasonable to expect that a member of Lsh(n) could
be dissected into isolated directions – however it may also be that Maxp(n)
grows with p. In any case, given the nature of the definitions of Lac(n) and
Lsh(n), we see that Maxp(n) is not so far from a purely two–dimensional
concept. This should be compared with [18], where Kakeya sets in R3 with
near minimal dimension were shown to have a ‘planiness’ property.
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In the following section, we prove Theorem A which implies the first in-
clusion of Theorem C. The key ingredient is a nonlinear and nonpositive
partition of a hyperplane in which we compensate for the points which are
covered more than once by removing smaller sets. That is to say, our parti-
tion of unity is more like a covering (normally completely inadequate on the
frequency side), but by adding and subtracting enough times we are able
to partition the hyperplane with intersections of tensor products of two–
dimensional cones. These give rise to a priori frightening nonlinear terms,
however they are dealt with later in a reasonably trivial fashion. In the sec-
ond section we prove the equivalence and the final inclusion of Theorem C.
Unusually in this context, this follows by a topological argument. In the
third section, we justify a number of remarks from above by constructing
sets of apparently well–behaved directions for which the associated maxi-
mal operators are unbounded. In the final section, we provide a corollary
for the maximal directional Hilbert transform. Some of these results were
announced in [22].

1. Proof of Theorem A

By a finite splitting we can suppose that the directions Ω are contained in
the first open ‘octant’ of the unit sphere Sn−1∩Rn+. We consider intersections
of the segments to obtain cells of directions

Ωi =
⋂
σ∈Σ

Ωσ,iσ for each i = (iσ)σ∈Σ ∈ ZΣ.

This yields a finer partition than those of the introduction;

Ω =
⋃
i∈ZΣ

Ωi so that MΩ = sup
i∈ZΣ

MΩi
.

Note that many of the cells are empty, however we will see that this overde-
termination is somehow unavoidable. Let Kσ,i denote the convolution oper-
ator associated to a Fourier multiplier ψσ,i, smooth on Rn\{0}, equal to one
on

Ψσ,i =
{
ξ ∈ Rn :

1

n
θσ,i+1 < −

ξj
ξk
6 nθσ,i

}
,

and supported in a similar cone with n replaced by n+ 1.

The key geometric fact used in the proof of the following lemma is that
the hyperplane perpendicular to ω is contained in ∪σ∈ΣΨσ,iσ for all ω ∈ Ωi.
This is no longer true if, in the definition of the cones, n is replaced by
a constant strictly less than n − 1. At this point we do not use that the
dividing sequences are lacunary.
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Lemma 1.1. Let p > 1. Then

‖MΩ‖p→p 6 C sup
∅6=Γ⊂Σ

∥∥∥ sup
i∈ZΣ

MΩi

∏
σ∈Γ

Kσ,iσ

∥∥∥
p→p

,

where C depends only on n and p.

Proof. Fix a nonnegative, even, smooth function m∨o which is positive on
[−1, 1] and with sufficient decay so that, for positive functions, MΩf is
pointwise equivalent to

sup
ω∈Ω

sup
r>0

∣∣∣1
r

∫
m∨o ( tr )f( · − tω) dt

∣∣∣.
As the operator norm of MΩ can be realised by testing on positive functions,

we can work with the maximal operator M̃Ω defined by

f 7→ sup
ω∈Ω

sup
r>0

∣∣∣1
r

∫
m∨o ( tr )f( · − tω) dt

∣∣∣,
which is more amenable to Fourier analysis. Throughout, ∧ and ∨ denote
the Fourier transform and inverse transform, respectively. One can calculate
that (1

r

∫
m∨o ( tr )f( · − tω) dt

)∧
(ξ) = mo(rω · ξ)f∧(ξ).

It will simplify things to take mo supported in [−1, 1], which can be arranged
by choosing mo = φo ∗ φo where φo is an even, smooth function supported
in [−1/2, 1/2]. We also fix a smooth function ηo, supported in the ball of
radius 4n2, centred at the origin and equal to one on the concentric ball of
radius 2n2, and consider the operator

f 7→ sup
ω∈Ω

sup
r>0
|Sr,ωf |,

where
(
Sr,ωf

)∧
(ξ) = ηo

(
r(ω1ξ1, . . . , ωnξn)

)
mo(rω · ξ)f∧(ξ). This is point-

wise dominated by a constant multiple of the strong maximal operatorMstr,
which can be bounded by iterated applications of the one–dimensional Hardy–
Littlewood maximal theorem. Defining m by

m(ξ) = (1− ηo)(ξ)mo(1 · ξ)
with 1 = (1, . . . , 1), we are left with the maximal operator TΩ defined by

f 7→ sup
ω∈Ω

sup
r>0

∣∣Tr,ωf |,
where (Tr,ωf)∧(ξ) = m

(
r(ω1ξ1, . . . , ωnξn)

)
f∧(ξ). A variant of this reduction

was originally employed by Nagel, Stein and Wainger [20].

It will suffice to prove the pointwise estimate

(2) TΩf 6
∑
∅6=Γ⊂Σ

sup
i∈ZΣ

TΩi

[ ∏
σ∈Γ

Kσ,iσ

]
f.
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The desired Lp–estimate then follows by combining with the inequalities

M̃Ωf 6 C(Mstrf + TΩf), TΩi
f 6 C

(
Mstrf +MΩi

f
)
,

and, when Ωi 6= ∅,∥∥∥ sup
i∈ZΣ

Mstr

∏
σ∈Γ

Kσ,iσ

∥∥∥
p→p
6 C

∥∥∥ sup
i∈ZΣ

MΩi

∏
σ∈Γ

Kσ,iσ

∥∥∥
p→p

.

The final inequality is a trivial consequence of the boundedness of the strong
maximal operator, combined with the fact that |f | 6MΩi

f .

Before proving (2), we motivate why it is reasonable to hope that it should
be true. As suggested earlier, the frequency support of Tr,ωf is contained in
the union of Ψσ,iσ whenever ω ∈ Ωi with i = (iσ)σ∈Σ. If this covering were
in fact a partition, we would obtain

Tr,ωf =
∑
σ∈Σ

Tr,ωKσ,iσf, ω ∈ Ωi,

and so, recalling that TΩf = supi∈ZΣ TΩi
f , a simplified version of (2), with

less terms on the right-hand side, would follow easily. Now the conic sup-
ports do not form a partition and so to compensate we remove the pairwise
intersections of the cones and then add back the intersections of each triple
of cones, and so on, until we obtain a partition. Some of these intersec-
tions may in fact be empty, but we ignore this as there is no advantage
for us to have less terms in the sum. Indeed, we will see that for our pur-
poses there is no difference between the earlier simplified version and the
following complicated looking formula. In three dimensions we can identify
σ = (1, 2), (1, 3), (2, 3) with 3, 2, 1, respectively, and the process yields the
identity

Tr,ωf =
∑

16j63

Tr,ωKj,ijf −
∑

16j<k63

Tr,ωKj,ijKk,ikf + Tr,ωK1,i1K2,i2K3,i3f

plus a remainder term. More generally, we obtain

Tr,ωf =
∑
∅6=Γ⊂Σ

(−1)|Γ|+1 Tr,ω

[ ∏
σ∈Γ

Kσ,iσ

]
f + Tr,ωRif.

In effect, we have expanded the polynomial 1 −
∏
σ(1 − xσ), and so the

remainder Ri is given by

(Rif)∧(ξ) =
∏
σ∈Σ

(1− ψσ,iσ)(ξ)f∧(ξ).

In contrast with the operatorsKσ,i, which are essentially two–dimensional,
the operators Ri are genuinely higher dimensional objects, however once
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we see that the multiplier associated to Tr,ωRi is identically zero whenever
ω ∈ Ωi and r > 0,

(3) m
(
r(ω1ξ1, . . . , ωnξn)

) ∏
σ∈Σ

(1− ψσ,iσ)(ξ) ≡ 0,

we obtain

Tr,ωf =
∑
∅6=Γ⊂Σ

(−1)|Γ|+1 Tr,ω

[ ∏
σ∈Γ

Kσ,iσ

]
f , ω ∈ Ωi

which yields (2). Given that the cones are invariant under scaling, by taking
r large, (3) is little more than the assertion that the hyperplane is covered
by the cones.

After the scaling ωjξj → ξj for 1 6 j 6 n, it will suffice to prove that the
region defined by

(4)
∣∣∣ n∑
j=1

ξj

∣∣∣ 6 1

r
and

( n∑
j=1

ξ2
j

)1/2
>

2n2

r

and

− ξj
ξk

ωk
ωj
6

1

n
θσ,i+1 or − ξj

ξk

ωk
ωj

> nθσ,i for all σ ∈ Σ

is empty. As ω ∈ Ωi, we see that the complements of the scaled cones are
contained in

(5) − ξj
ξk
<

1

n
or − ξj

ξk
> n for all σ ∈ Σ.

We suppose for a contradiction that the region defined by (4) and (5) is not
empty. It is clear by comparing the inequalities in (4) that the components
of a vector ξ in this region cannot all have the same sign. By symmetric
invariance of the conditions, we may suppose that

ξ1, . . . , ξm−1 > 0 and ξm, . . . , ξn < 0

for some 1 < m 6 n. We can also suppose without loss of generality that
|ξ1| > |ξj | for all j > 1 and |ξm| > |ξj | for all j > m. Then taking j = 1
and k = m in (5) we see that |ξ1| > n|ξm|. On the other hand, by the first
condition of (4),

|ξ1| − (n− 1)|ξm| 6
∣∣∣ n∑
j=1

ξj

∣∣∣ 6 1

r
.

Combining the two estimates we obtain |ξ1| 6 n/r. Since |ξ1| > |ξj | for
j > 1, this yields

|ξ1|+ . . .+ |ξn| 6
n2

r
which contradicts the second inequality in (4). Thus, Tr,ωRi ≡ 0 whenever
r > 0 and ω ∈ Ωi, and we are done. �
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We will also require the following square function estimates which follow
easily from the two–dimensional theory.

Lemma 1.2. Let 1 < p <∞ and Γ ⊂ Σ. Then

∥∥∥(∑
i∈ZΓ

∣∣[ ∏
σ∈Γ

Kσ,iσ

]
f
∣∣2) 1

2
∥∥∥
p
6 C ‖f‖p, where i = (iσ)σ∈Γ,

and C depends only on |Γ|, p and the lacunary constants λσ.

Proof. In order to bound directional maximal operators in L2, the required
square function estimate, with p = 2, follows directly from Plancherel’s
theorem and the finite overlapping of the supports of {ψσ,i}i∈Z. This is
where we use the lacunarity of the sequences {θσ,i}i∈Z. When p 6= 2, by a
standard randomisation argument, using Khintchine’s inequality, the square
function estimates follow from the uniform Lp–boundedness, independent of
the choice of the signs, of the Fourier multiplier operators

f 7→
(∑

i∈ZΓ

±
∏
σ∈Γ

ψσ,iσ f
∧
)∨
.

This in turn is a consequence of the Marcinkiewicz multiplier theorem (see
for example [24, pp. 109]), for which it suffices to check a number of condi-
tions involving integrals of derivatives of the multipliers. After applying the
product rule, the calculation reduces to the case |Γ| = 1. Applying Fubini’s
theorem so as to ignore the trivial variables, this was originally checked by A.
Córdoba and R. Fefferman [9, Section 4] in their proof of a two–dimensional
angular Littlewood–Paley inequality. Again, this boils down to checking
that the supports of {ψσ,i}i∈Z are finite overlapping, which follows from the
lacunarity. �

Armed with these lemmas, the proof is completed easily as follows. In
order to establish the idea, we treat the easiest case first.

Case n = 3 and p = 2. We can identify σ = (1, 2), (1, 3), (2, 3) with 3, 2, 1,
respectively, and suppose for simplicity that the supremum in Lemma 1.1 is
attained when Γ = {(1, 2), (1, 3)}, say, which we have identified with {2, 3}.
Then

‖MΩ‖2→2 6 C
∥∥∥ sup
i∈Z3

MΩi
K2,i2K3,i3

∥∥∥
2→2

.
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Using the inclusion `2(Z2) ↪→ `∞(Z2) and interchanging the order of the
sum and the integral,∥∥∥ sup
i∈Z3

MΩi
K2,i2K3,i3f

∥∥∥
2
6
( ∑
i2,i3∈Z

∥∥ sup
i1∈Z

MΩi
K2,i2K3,i3f

∥∥2

2

) 1
2

6 sup
i2,i3∈Z

‖ sup
i1∈Z

MΩi
‖2→2

( ∑
i2,i3∈Z

∥∥K2,i2K3,i3f
∥∥2

2

) 1
2

= sup
i2,i3∈Z

‖MΩ2,i2
∩Ω3,i3

‖2→2

( ∑
i2,i3∈Z

∥∥K2,i2K3,i3f
∥∥2

2

) 1
2

6 C sup
i3∈Z
‖MΩ3,i3

‖2→2

(∑
i3∈Z

∥∥K3,i3f
∥∥2

2

) 1
2

6 C sup
i3∈Z
‖MΩ3,i3

‖2→2‖f‖2,

and so we are done. In the final two inequalities we used nothing more that
the finite overlapping of the two–dimensional conic frequency supports.

More generally, we consider ZΣ = ZΓ × ZΣ\Γ, and given i = (iσ)σ∈Σ, we
write i = j × k where j = (iσ)σ∈Γ and k = (iσ)σ∈Σ\Γ. Using the inclusion

`p(ZΓ) ↪→ `∞(ZΓ) and interchanging the order of the sum and the integral,∥∥∥ sup
i∈ZΣ

MΩi
fj

∥∥∥
p
6
( ∑

j∈ZΓ

∥∥ sup
k∈ZΣ\Γ

MΩi
fj
∥∥p
p

) 1
p

(6)

6 sup
j∈ZΓ

‖ sup
k∈ZΣ\Γ

MΩi
‖p→p

( ∑
j∈ZΓ

∥∥fj∥∥pp) 1
p

6 sup
σ∈Σ

sup
i∈Z
‖MΩσ,i‖p→p

∥∥∥( ∑
j∈ZΓ

|fj|p
) 1
p
∥∥∥
p
.

Case p > 2. Using the inclusion `2(ZΓ) ↪→ `p(ZΓ), from (6) we obtain∥∥∥ sup
i∈ZΣ

MΩi
fj

∥∥∥
p
6 sup

σ∈Σ
sup
i∈Z
‖MΩσ,i‖p→p

∥∥∥( ∑
j∈ZΓ

|fj|2
) 1

2
∥∥∥
p
.

Taking fj =
[∏

σ∈ΓKσ,iσ

]
f , where j = (iσ)σ∈Γ, and applying Lemmas 1.1

and 1.2, we obtain the desired estimate.

Case 1 < p < 2. This is based on an argument of M. Christ used in
[6, 1] which refined the argument of Nagel–Stein–Wainger [20]. We sup-
pose initially that Ω is finite, so that by the triangle inequality and the
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Hardy–Littlewood maximal theorem, MΩ is bounded. Then by interpolat-
ing between ∥∥ sup

i∈ZΣ

MΩi
fj
∥∥
p
6 ‖MΩ‖p→p

∥∥ sup
j∈ZΓ

|fj|
∥∥
p

and (6), we see that
∥∥ supi∈ZΣ MΩi

fj
∥∥
p

is bounded above by

‖MΩ‖
1− p

2
p→p

(
sup
σ∈Σ

sup
i∈Z
‖MΩσ,i‖p→p

) p
2
∥∥∥( ∑

j∈ZΓ

|fj|2
) 1

2
∥∥∥
p
.

Taking fj =
[∏

σ∈ΓKσ,iσ

]
f , where j = (iσ)σ∈Γ, and applying Lemmas 1.1

and 1.2 as before, we see that

‖MΩ‖p→p 6 C ‖MΩ‖
1− p

2
p→p

(
sup
σ∈Σ

sup
i∈Z
‖MΩσ,i‖p→p

) p
2
.

Rearranging, we obtain the desired estimate with C independent of Ω, so
we can drop the restriction that Ω is finite. This completes the proof. �

In both [20] and [6], a single conic Fourier multiplier was introduced for
each direction. This multiplier had to cover (the bulk of) the hyperplane
perpendicular to the direction, and so was necessarily multidimensional in
nature. Rather restrictive conditions on the directions were then required
to ensure finite overlapping of the supports of the multipliers, yielding a
bound via orthogonality as above. In order to achieve greater flexibility,
we introduced a number of essentially two–dimensional multipliers instead.
This is only possible via a covering rather than a partition, however after
adding and subtracting a number of products of these multipliers we obtain
a signed partition of unity. This came at essentially no cost and in fact
simplifies matters because the orthogonality in two dimensions, summing
over one index at a time, is trivial to check. On the other hand, our multi-
pliers are naturally associated to partitions of the directions allowing us to
introduce a multiplier for each segment instead of one for each direction.

2. Proof of Theorem C

First we prove the inclusion Maxp(n) ⊂ Lsh(n) which is restated in the
following lemma. We appeal to a quantitative version of Bateman’s theo-
rem [4], allowing us to treat the shadows simultaneously and thus uniformly.
We also use that the cross product of a two–dimensional Kakeya set with a
cube is a Kakeya set.

Lemma 2.1. Let n > 2 and 1 < p < ∞, and suppose that MΩ is bounded
from Lp(Rn) to Lp(Rn). Then Ω ∈ Lsh(n).



ON DIRECTIONAL MAXIMAL OPERATORS 13

Proof. As MΩ is bounded if and only if MΩ is bounded, we can suppose
that Ω is closed. We appeal to Bateman’s terminology [4]. In particular
we will consider the binary tree TΠ associated to the shadow of Ω on Π, for
any two–dimensional subspace Π, and their splitting numbers split(TΠ). We
say that Ω admits Kakeya shadows if there exists a constant C such that
for any N > 1 there exists a two–dimensional subspace Π(N) and a finite
collection of rectangles RΠ(N) contained in Π(N), with longest side pointing
in a direction of the shadow of Ω on Π(N), that satisfy

(7)
∣∣∣ ⋃
R∈RΠ(N)

R
∣∣∣ 6 C

N

∣∣∣ ⋃
R∈RΠ(N)

3R
∣∣∣.

Here, 3R has the same center and width as R, but three times the length.

We prove the contrapositive. If Ω 6∈ Lsh(n), then by Theorem 3 (combined
with Remark 2) in [4], for any N > 1, there is a shadow of Ω on Π(N) for
which split(TΠ(N)) > 2N . Bateman proved (see pages 61–62 and Claim 7 of

[4]) that split(TΠ(N)) > 2N implies the existence of a finite family RΠ(N) of
rectangles R satisfying (7). Now for each N ∈ N, we pick an orthonormal
basis (e1, . . . , en) so that span(e1, e2) = Π(N). For each rectangle R in the
subcollection RΠ(N), we set

β ≡ β(R) = diam(R)(ω2
1 + ω2

2)−1/2,

where ω is a direction of Ω whose shadow points in the direction of R, and
let α ≡ α(N) to be ten times the maximum β(R) with R ∈ RΠ(N). Taking

EN =
⋃

R∈RΠ(N)

R× [0, α]n−2,

defined with respect to the basis (e1, . . . , en), we then have

MΩ[χEN ](x) > 1/8 for all x ∈
⋃

R∈RΠ(N)

3R× [3β, α− 3β]n−2.

Using (7), we see that for all N > 1,∥∥MΩ[χEN ]
∥∥
p
> cN

1
p ‖χEN ‖p,

so that MΩ is not bounded from Lp(Rn) to Lp(Rn) when p is finite. �

Using Theorem A in order to bound the maximal operators associated to
the sets of Lac(n) and Lacp(n, ε), at this stage we have proven that

Lac(n) ⊂ Lacp(n) ⊂ Maxp(n) ⊂ Lsh(n).

It therefore remains to prove that Maxp(n) ⊂ Lacp(n). It is tempting to
suppose that the job is already done – that Theorem A can be applied
repeatedly in order to reduce a shadow to a single direction, thus reducing
the dimension of the problem. That is to say Lsh(n) ⊂ Lac(n) yielding a
full chain of equivalences. However the lacunary orders of the shadows are
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unstable in the sense that shadows on two–dimensional subspaces which are
close can have dramatically different lacunary orders, and so it is not clear
that it helps to apply Theorem A and then change the basis in order to apply
it again. One may be faced each time with lacunary orders which are as bad
as before, and the process may never end. This would not be a problem if a
slightly more flexible version of Theorem A were true, however the obvious
candidates for such a theorem are false (see the following section).

We get round the problem via a topological argument – we prove that
the process must stop as otherwise there would be a direction of arbitrarily
large accumulation order which is not possible by the following lemma. The
reason why we are able to carry out this argument for p–lacunarity and not
for lacunarity, is that we are assured that if a set of directions is not p–
lacunary (but gives rise to a bounded maximal operator) then a dissection
must always contain a segment which is not p–lacunary. This is not the case
with lacunarity – the segments may all be lacunary but without a uniform
bound on their lacunary orders. We do not know if this is a merely technical
problem or if it could be reflected in the geometry of the directions.

Given an m–dimensional subspace Π ⊂ Rn and a set of directions Ω, we
define the m–shadow Ξ of Ω on Π by

Ξ =
{ PΠ(ω)

|PΠ(ω)|
: ω ∈ Ω \Π⊥

}
⊂ Π ∩ Sn−1,

where PΠ denotes the orthogonal projection onto Π (see Figure 2 for an
illustration with n = 3 and m = 2). Note that a 2–shadow is the same
thing as a shadow. For an m–shadow Ξ, we consider A` = Ac(A`−1), where
A1 = Ac(Ξ), the accumulation points of Ξ. We say that Ξ has accumulation
order L if AL is a finite set.

Lemma 2.2. Let 2 6 m 6 n and 1 < p < ∞, and suppose that MΩ is
bounded from Lp(Rn) to Lp(Rn). Then the m–shadows of Ω have uniformly
bounded accumulation order.

Proof. As MΩ is bounded, the 2–shadows are uniformly lacunary of finite
order by Lemma 2.1, so that in particular the 2–shadows of Ω have uni-
formly bounded accumulation order. Thus, it will suffice to prove that if
the accumulation order of an m–shadow Ξ of Ω on Π is greater than L,
then there exists a 2–shadow of Ξ, and hence also of Ω, whose accumula-
tion order is greater than L. We take ξ ∈ AL+1 and consider a sequence
{ξj}j>1 in AL which accumulates at ξ. Then for all but (at most) one
(m− 1)–dimensional subspace of Π, the (m− 1)–shadows of {ξj}j>1 on the
(m − 1)–dimensional subspaces accumulate at the (m − 1)–shadows of ξ.
Then we consider sequences in AL−1 which accumulate at ξj . Again for
all but one (m − 1)–dimensional subspace of Π, the (m − 1)–shadows on
the (m − 1)–dimensional subspaces accumulate at the (m − 1)–shadows of
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ξj . Continuing the process, we see that for all but a countable number of
(m− 1)–dimensional subspaces of Π, the (m− 1)–shadow of ξ is of accumu-
lation order > L+1. We take one such shadow and repeat the process. This
yields an (m − 2)–dimensional shadow of the (m − 1)–dimensional shadow
of ξ, which is an (m− 2)–dimensional shadow of ξ, that is of accumulation
order > L+ 1. Repeating the process, we obtain the desired result. �

We will require an auxiliary definition, similar to the definition of p–
lacunarity. For a fixed ε > 0, we say that an m–shadow Ξ of Ω is

• (n, p)–lacunary of order 0 if it consists of a single direction
• (n, p)–lacunary of order L if there are members {Ξσ,iσ}σ∈Σ(d) of a

dissection of Ξ which are (n, p)–lacunary of order 6 L − 1 and for
which the sets {Ωσ,iσ}σ∈Σ(d) that shade them are dominating;

‖MΩσ,i‖p→p 6 ‖MΩσ,iσ ‖p→p + ε for all i ∈ Z∗.

We say that an m–shadow Ξ of Ω is (n, p)–lacunary if it is (n, p)–lacunary
of finite order. Note that in this context the dominating sets (which from
now on we refer to as dominating segments) need only dominate the rest of
their partition, not the whole dissection.

The final inclusion, Maxp(n) ⊂ Lacp(n), is a consequence of the fact that

(8) Maxp(n) ⊂ Lacp(n, ε) for all ε > 0.

When Ω ∈ Maxp(n), the existence of dominating segments is always given,
and so the 2–shadows of Ω are (n, p)–lacunary, as by Lemma 2.1 we have
that Ω ∈ Lsh(n). Thus (8) can be obtained by n − 2 applications of the
following lemma, observing that (n, p)–lacunary n–shadows are p–lacunary.

Lemma 2.3. Let 2 6 m 6 n − 1 and 1 < p < ∞, and suppose that MΩ is
bounded from Lp(Rn) to Lp(Rn). Then, if the m–shadows of Ω are (n, p)–
lacunary, then the (m+ 1)–shadows of Ω are (n, p)–lacunary.

Proof. As MΩ is bounded, the (m+1)–shadows of Ω have finite accumulation
order by Lemma 2.2. We suppose for a contradiction that the m–shadows
of Ω are (n, p)–lacunary, but that there is an (m+ 1)–shadow of Ω which is
not. Thus, we will have our desired contradiction if we can show that this
(m + 1)–shadow of Ω, which from now on we call Ξ, is of arbitrarily large
accumulation order.

We take a basis (e1, . . . , em+1) with em+1 being an accumulation point of Ξ
(which exists by compactness as finite sets are (n, p)–lacunary when MΩ is
bounded) and write Π = span(e1, . . . , em). Note that the m–shadow of Ξ on
Π is the same as the m–shadow of Ω on Π. In fact we choose the basis vectors
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em+1

↑

Π

Figure 2. If σ1 ∈ Σ(m) we reduce the order of the shadow on Π.

(e1, . . . , em) more carefully: We dissect Ξ (simultaneously dissecting the m–
shadow on Π and partially dissecting Ω) with (e1, . . . , em) and {θσ,i}i∈Z for
each σ ∈ Σ(m) chosen in order to reduce the (n, p)–lacunary order of the
m–shadow on Π (see Figure 2 for a three dimensional illustration). We
are free to choose any lacunary {θσ,i}i∈Z for σ = (j,m + 1) with 1 6 j 6
m). Now as the (m + 1)–shadow Ξ is not (n, p)–lacunary, there must be
a σ1 ∈ Σ(m + 1) for which the (m + 1)–shadow on span(e1, . . . , em+1) of
the dominating segment Ωσ1,iσ1

is not (n, p)–lacunary. Note that there are
dominating segments in each partition asMΩ is bounded. If σ1 = (j,m+1) ∈
Σ(m+1)\Σ(m) we have found such a shadow which is separated from em+1,
and hence we have found a new accumulation point by compactness (see
Figure 3). If σ1 ∈ Σ(m), we choose one of the dominating segments whose
m–shadow on Π has reduced (n, p)–lacunary order (see Figure 2).

Supposing that the span of this m–shadow is d2–dimensional, where
d2 6 d1 ≡ m, we take ed2+1 to be the original accumulation point and
dissect the (m+ 1)–shadow with e1, . . . , ed2 ∈ Π and {θσ,i}i∈Z for σ ∈ Σ(d2)
chosen in order to reduce the (n, p)–lacunary order of the m–shadow on Π of
this segment. Again there is a σ2 ∈ Σ(d2 +1) for which the (m+1)–shadows
of the dominating segments are not (n, p)–lacunary. If σ2 = (j, d2 + 1) we
have separated from the accumulation point. If not, we choose one of the
dominating segments whose m–shadow on Π has reduced (n, p)–lacunary
order and continue. This division into ever smaller sets of directions, whose
(m + 1)–shadow is not (n, p)–lacunary, cannot stop, as otherwise Ξ would
be (n, p)–lacunary. Also, the chosen sets which are not (n, p)–lacunary can-
not be sliced using hyperplanes which pass through the accumulation point
indefinitely as the (n, p)–lacunary order of the m–shadow on Π is reduced
at each slice so eventually we would reduce to the case where the m–shadow
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e1
↓

em+1

↑

Π

Figure 3. If σ1 ∈ Σ(m+ 1)\Σ(m) we separate from accumulation point.

would be a single direction. In that case the (m + 1)–shadow would be
contained in a two–dimensional subspace, and so would have to be (n, p)–
lacunary by Lemma 2.1. We are choosing the sets to be of infinite (n, p)–
lacunary order, and so the only way we can keep doing this is if one is
eventually chosen which is disconnected from the accumulation point. As
this set has an infinite number of directions, by compactness we find a new
accumulation point.

For a finite number of accumulation points, we can always make a ju-
dicious choice of basis and lacunary sequences so that they are separated
in the dissection. Either this yields a segment whose (m + 1)–shadow is
not (n, p)–lacunary which contains a new accumulation point, or there is a
segment whose (m+ 1)–shadow is not (n, p)–lacunary which contains one of
the old accumulation points. In this case, we take em+1 to be this contained
accumulation point and repeat the process. At some stage the repetition
of the process yields a set which is not (n, p)–lacunary and which is discon-
nected from the contained accumulation point (and the others). This follows
again by hypothesis because the sets produced in the dissection which are
not (n, p)–lacunary can only contain the contained accumulation point a
finite number of times. Continuing the process, we obtain a sequence of ac-
cumulation points, which by compactness have an accumulation point. We
take this to be em+1 and consider again all the directions of Ξ.

Repeating the process there is a segment whose (m + 1)–shadow is not
(n, p)–lacunary separated from the accumulation point of accumulation points.
This gives rise to another sequence of accumulation points, and an accu-
mulation point of them, separated from the original accumulation point of
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accumulation points. Dividing them either yields a segment whose (m+ 1)–
shadow is not (n, p)–lacunary and is separated from them, and we continue
the process with this, or there is a segment whose (m + 1)–shadow is not
(n, p)–lacunary and which contains one of the accumulation points of ac-
cumulation points, which we take to be em+1, and continue the process
with this. Eventually this yields a full sequence of accumulation points of
accumulation points, which have an accumulation point by compactness.
Continuing the process, we see that Ξ contains accumulation points of arbi-
trarily large order which contradicts Lemma 2.2, and so we are done. �

3. Our notion of lacunarity and the sharpness of Theorem A

As in the previous section, to construct unbounded directional maximal
operators, the directions need only be badly spaced after projecting onto
a two–dimensional subspace. Thus, in contrast with the two–dimensional
case, it is not enough to constrain the angles between the directions if they
are to give rise to a bounded maximal operator in higher dimensions. To
see this, we enumerate Q ∩ [1

2 ,
2
3 ] = {q`}`>1 and consider

Ω =
{
ω ∈ Sn−1 ∩ Rn+ :

ω2

ω1
= q`, ωj = 2−j`, 1 < j < n; for some ` > 1

}
.

Then the angles between the directions form a lacunary sequence converging
to zero with lacunary constant 1/2; see Figure 4. Taking θσ,i = 2−i, the seg-
ments Ωσ,i consist of at most one direction for all i ∈ Z∗ and σ ∈ Σ\{(1, 2)}.
In spite of this, MΩ is unbounded. Indeed, consider the set of rectangles
R in Π = span(e1, e2) with longest side parallel to the shadow on Π of
some ω ∈ Ω. Then the construction of Besicovitch (see for example [13])
provides finite subsets RN ⊂ R, for all N > 1, that satisfy (7). Considering
χEN , defined as in the proof of Lemma 2.1, we find MΩ unbounded as before.

If the angles between directions restricted to a great circle are lacunary,
or if the angles between directions restricted to the Nagel–Stein–Wainger
curves are lacunary, then the associated maximal operators are bounded. It
is tempting to suppose that if the angles between directions restricted to
any smooth curve (which does not spiral around the sphere infinitely many
times) are lacunary then the directions give rise to a bounded maximal
operator (the authors thank Antonio Córdoba for asking this question). To
see that this is not the case we consider the curve γ : [0, 1/4] → Sn−1

defined to be the normalisation of γ̃(t) = (t, t/ log2(1/t), t, . . . , t, 1). This is
little more than a smooth perturbation of a great circle. We consider the
directions Ω = {ω`}`>1 where ω` = γ(2−`); see Figure 5. As long as ` is
taken sufficiently large we can safely ignore the normalisation. Then it is
easy to see that the angles between the directions are lacunary with lacunary



ON DIRECTIONAL MAXIMAL OPERATORS 19

en
↑

Π

Figure 4. A Kakeya shadow on Π with 1
2n(n− 1)− 1 lacunary shadows.

constant 1/2:

|γ̃(2−(`+1))− en|
|γ̃(2−`)− en|

6
|(2−(`+1), 2−(`+1)/(`+ 1), . . . , 2−(`+1), 0)|

|(2−`, 2−`/`, . . . , 2−`, 0)|

6
1

2

|(1, 1/(`+ 1), 1, . . . , 1, 0)|
|(1, 1/`, 1, . . . , 1, 0)|

<
1

2
.

In spite of this, MΩ is unbounded. Indeed, consider the set of rectangles
R in Π = span(e1, e2) with longest side parallel to the shadow on Π of
some ω ∈ Ω. Then the construction of Besicovitch provides finite subsets
RN ⊂ R, for all N > 1, that satisfy (7). To see this it is enough to show
that there are approximately uniformly spaced angles between the shadows
of the directions at all scales. We have that

ω` · e2

ω` · e1
=

1

`
and

ω` · e2

ω` · e1
− ω`+1 · e2

ω`+1 · e1
=

1

`(`+ 1)

so that the shadow contains ` approximately equally spaced points between
the shadow of ω` and e1 for all ` sufficiently large. Considering χEN , defined
as in the proof of Lemma 2.1, we find MΩ unbounded as before.

If Theorem A were more flexible, in the sense that the partitions were
allowed to ‘accumulate’ away from the hyperplanes orthogonal to the basis
vectors, then we would obtain Maxp(n) ≡ Lsh(n) as we would be able to
bound the operators associated to the sets of Lsh(n). However, Theorem A
is remarkably sharp in the sense that the supremum in σ must be taken
over the whole of Σ, and the partitions must accumulate at the hyperplanes
perpendicular to the basis vectors. To see this, we let e′2 and e′n be orthogonal
unit vectors in span(e2, en), close to e2 and en, with e′n in the first quadrant
determined by e2 and en. We construct a set of directions, accumulating
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en
↑

←e1
Π

Figure 5. A Kakeya shadow of well-spaced directions in a smooth curve.

rapidly at e′n, for which the angles between the orthogonal projections onto
span(e1, e

′
2) are badly spaced. Indeed, we take Ω = {ω`}`>1 so that ω` · e′2 =

q` ω` ·e1. This does not yet completely determine ω`. Supposing that we have
chosen ω`−1 we can choose the direction ω` sufficiently close to e′n so that
the angle between ω`−1 and e′n is at least double that between ω` and e′n.
We can also choose the directions so that

ω`−1 · e′n
ω`−1 · e′2

6
1

2

ω` · e′n
ω` · e′2

, and
ω`−1 · ek
ω`−1 · ej

6
1

2

ω` · ek
ω` · ej

for all (j, k) ∈ Σ(n)\{(2, n)}. Taking θσ,i = 2−i, the segments Ωσ,i, defined
with respect to the orthonormal basis (e1, . . . , en), consist of at most one
direction for all i ∈ Z∗ and σ ∈ Σ(n)\{(2, n)}. On the other hand, if we
define the final segments by

Ω(2,n),i =
{
ω ∈ Ω : 2−(i+1) <

∣∣∣ω · e′n
ω · e′2

∣∣∣ 6 2−i
}
, i ∈ Z,

accumulating at {e′2}⊥ ∪ {e′n}⊥, then they also consist of at most one di-
rection for all i ∈ Z. In spite of this, MΩ is unbounded as before. Indeed,
consider the set of rectangles R in Π = span(e1, e

′
2) with longest side parallel

to the shadow on Π of some ω`. Then there are finite subsets RN ⊂ R, for
all N > 1, that satisfy (7). Considering χEN , defined as in the proof of
Lemma 2.1, but with respect to the basis (e1, e

′
2, e3, . . . , en−1, e

′
n), we again

find MΩ unbounded on Lp(Rn) for finite p.

Finally we remark that ‘cross products’ of lacunary sets, like the direc-
tions (1), do not give rise to bounded maximal operators in general. To see
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this we consider the largest set of the form

Ω =
{
ω ∈ Sn−1 ∩ Rn+ :

ωk
ωj

= 2−i,
ωn
ω1

= 3−`, 1 < j < k; for some i, ` ∈ Z
}
,

and Θ = {2i3−`}i,`∈Z which is the set of the tangents of the angles between
the shadows of the directions on Π = span(e1, e2). To see that this is dense
in R+, which is presumably well-known, we note that

|2i3−` − 1| < ε ⇔
∣∣ i
` − log2 3

∣∣ < log2(1+ε)
` ,

when 2i3−` > 1, so that by Dirichlet’s approximation theorem, 1 is an
accumulation point of Θ. Then if Θ were not dense we could find an interval
(a, b), with a, b in the closure of Θ, which does not contain an element of Θ.
However, noting that Θ is closed under multiplication, by taking a sequence
of Θ which accumulates to 1 from above and multiplying by elements of Θ
sufficiently close to a, we come to a contradiction. Considering χEN , defined
as in the proof of Lemma 2.1, we find MΩ unbounded as before.

4. The maximal directional Hilbert transform

It is well known that there is a close relationship between the behaviour
of the directional maximal operator and the maximal directional Hilbert
transform HΩ, defined by f 7→ supω∈Ω |Hωf |, where

Hωf(x) = p.v.

∫
R
f(x− ωt) dt

t
.

However, the constant in the following corollary must depend on the cardi-
nality of Ω due to a result of Karagulyan which showed that the maximal
directional Hilbert transform in the plane is unbounded as soon as the num-
ber of directions is infinite [14]. On the other hand, we do not recover the
sharp estimates for HΩ in terms of the power of the logarithm when n = 2;
see [12], and so it would be interesting to see if the following inequality
could be improved in that regard. The estimate also holds for more general
operators, where the kernel 1/t is replaced by the inverse Fourier transform
of a Hörmander–Mikhlin multiplier.

Corollary 4.1. Let n > 2 and p > 1. Then

‖HΩf‖p→p 6 C log |Ω| sup
σ∈Σ

sup
i∈Z∗
‖MΩσ,i‖p→p,

where C depends only on n, p and the lacunary constants λσ for σ ∈ Σ.

Proof. First we note that {x : HΩf(x) > log |Ω|γ} is a subset of{
x : HΩf(x) > log |Ω|γ, MΩf(x) 6 γ

}
∪
{
x : MΩf(x) > γ

}
,
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so we can use Theorem A to deal with the part of the integral coming from
the second level set. Thus, it will suffice to prove

(9)

∫ ∞
0

∣∣{x : HΩf(x) > log |Ω|γ, MΩf(x) 6 γ
}∣∣pγp−1dγ 6 C‖f‖pp.

To see this we first note that∣∣{x : HΩf(x) > log |Ω|γ, MΩf(x) 6 γ
}∣∣

6
∑
ω∈Ω

∣∣{x : Hωf(x) > log |Ω|γ, Mωf(x) 6 γ
}∣∣.

Then we use a reformulation of a one–dimensional inequality due to Hunt,∣∣{x : Hωf(x) > Nγ, Mωf(x) 6 γ
}∣∣ 6 e−N ∣∣{x : H?

ωf(x) > γ
}∣∣

(see [12, Proposition 2.2] for more details), where

H?
ωf(x) = sup

ε>0

∣∣∣ ∫
|t|>ε

f(x− ωt) dt
t

∣∣∣.
Altogether we see that the left-hand side of (9) is bounded by a constant
multiple of ∑

ω∈Ω

1

|Ω|

∫ ∞
0

∣∣{x : H?
ωf(x) > γ

}∣∣pγp−1dγ

6
∑
ω∈Ω

1

|Ω|
‖H?

ωf‖pp 6 C
∑
ω∈Ω

1

|Ω|
‖f‖pp 6 C‖f‖pp,

and so we are done. �

The authors thank Francesco Di Plinio for pointing out the final corollary.
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[9] A. Córdoba and R. Fefferman, On the equivalence between the boundedness of certain
classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci.
U.S.A. 74 (1977), no. 2, 423–425.
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